Functional Servicing & Stormwater Management Report

Residential Development 1315 Silver Spear Road City of Mississauga

10 October 2017

fabian papa & partners A Division of FP&P HydraTek Inc.

216 Chrislea Road, Suite 204 | Vaughan, Ontario | L4L 8S5 Tel: 905-264-2420 | www.fabianpapa.com

CONTENTS

1.0	INT	TRODUCTION	1
2.0	WA'	TER SUPPLY	1
	2.1	Supply Demands	2
	2.2	Proposed Connections and Layout	3
3.0	SAN	NITARY DRAINAGE	4
	3.1	Sanitary Design Flow	4
	3.2	Receiving Sanitary Sewer Capacity	5
	3.3	Sanitary Service Connection	5
4.0	STC	DRM DRAINAGE	6
	4.1	Design Criteria	6
	4.2	Pre-Development and Post-Development Conditions	7
	4.3	Stormwater Management (Quantity Control)	8
	4.4	Stormwater Management (Quality Control)	9
	4.5	Stormwater Management (Water Balance)	9
	4.6	Storm Service Connection	10
	4.7	Emergency Overflow	11
	4.8	Sediment and Erosion Control	11
5.0	COI	NCLUSIONS	12

Appendix A	Key Plan & Aerial Photograph of Subject Site Sample Architectural Renderings
Appendix B	Plan & Profile Drawings (Burnhamthorpe Road East, Silver Spear Road)
Appendix C	Hydrant Pressure Data (Silver Spear Road – 05 October 2017) Water Demand & Available Pressure Calculations
Appendix D	Sanitary Design Calculations Excerpt Mapping from Region of Peel "2013 Water and Wastewater Master Plan"
Appendix E	Pre and Post Development Drainage Plans Stormwater Design Calculations 100 Year Storage Design Calculations Runoff Coefficient, Stormwater Quality & Initial Abstraction Calculations Stormceptor Sizing and Schematic Drawing City of Mississauga Watersheds City of Mississauga SWM Criteria

Appendix F Site Servicing and Grading Exhibit

1.0 INTRODUCTION

We have been retained by Starlight Group Property Holdings Inc. to prepare this Functional Servicing & Stormwater Management Letter Report in support of a Re-Zoning Application for the above captioned development from a municipal servicing perspective. This report discusses the provision of municipal services for the development proposal, including the stormwater management servicing strategy.

Located at 1315 Silver Spear Road in the City of Mississauga, the overall site is approximately $8,404 \text{ m}^2$ (0.8 ha) in size, and is bounded by an existing apartment building to the west, Burnhamthorpe Road East to the north, an existing public library to the east, and Silver Spear Road to the south.

The subject property current contains an existing eight-storey residential apartment building (which is to remain) with an estimated 384 residential units, large areas of surface parking and large vegetated areas throughout. A key map and an aerial photograph of the subject site can be found in Appendix A. The development proposal contemplates the construction of an additional eight-storey residential building consisting of 159 residential units with two levels of underground parking.

It should be noted that the "area of development" is limited to the footprint of the new underground parking level (which includes the new building footprint) and is approximately 4,171 m² in size. Several architectural renderings of the proposed development can be found in Appendix A for reference.

Plan and profile drawings for both Silver Spear Road and Burnhamthorpe Road East were obtained from the City of Mississauga and the Region of Peel, and a subsurface investigation was performed by Multiview Inc. (Multiview). Pertinent information from the plan and profile drawings and the subsurface investigation have been incorporated into the servicing exhibit (refer to Appendix F). Excerpt copies of the profile drawings and the subsurface investigation can be found in Appendix B for reference.

2.0 WATER SUPPLY

In terms of existing municipal infrastructure adjacent to the property, Burnhamthorpe Road East hosts a 400 mm watermain within the north boulevard and an 1800 mm feedermain within the centerline of the roadway. Silver Spear Road hosts a 300 mm watermain on the north side, and a 150 mm watermain on the south side. An existing public hydrant is located adjacent to the subject site within the south boulevard of Silver Spear Road within 22 m of the existing building.

After careful review of the subsurface investigation and the available profile drawings, it can be reasonably concluded that the existing building is connected to the existing 300 mm municipal watermain within the Silver Spear Road right-of-way with a 150 mm water service.

An independent hydrant flow test was commissioned and performed at existing fire hydrants within close proximity to the subject site on Silver Spear Road on 05 October 2017. The results are as follows:

Flow (usgpm)	Flow (L/s)	Pressure (psi)	Pressure (kPa)
0	0	82	565.4
338	21.3	81	558.5
803	50.7	78	537.8
1,339	84.5	64	441.3
2,367	149.3	50	344.7

300mm Watermain within Silver Spear Road

A copy of these results can be found in Appendix C for reference.

2.1 Supply Demands

The domestic water demand for the subject site has been calculated using the Region of Peel design criteria which is summarized as follows:

Average Day Demand:	280 L/c∙day
Max Day Peaking Factor:	2.0
Peak Hour Peaking Factor:	3.0
Population Density:	1.1 people/unit (1-Bedroom)
	2.1 people/unit (2-Bedroom)
	3.1 people/unit (3-Bedroom)

The detailed demand calculations, which can be found in Appendix C is summarized in the following table:

	Avg. Domestic	Peak Hour	Peak Day
Building	Demand	Demand	Demand
	ADD (L/s)	PHD (L/s)	MDD (L/s)
Proposed	0.7	2.2	1.5

The recommended fire flow demand for the proposed building has also been calculated using the criteria outlined in the Water Supply for Public Fire Protection Manual, 1999, by the Fire Underwriters Survey (FUS). The following FUS reductions and increases have been applied to the calculations as follows:

	8-Storey Building
Construction Coefficient	0.6 (fire resistive construction)
Building Occupancy	-15% (limited-combustible)
Fire Suppression System	-50% (sprinklered)
Exposure / Proximity	+40%

The area for the proposed building is calculated as follows:

8-Storey Building

A = Largest Area + 25% (floor area above + floor area below) $A = 1,545 \text{ m}^2 + 25\% (1,377 \text{ m}^2 + 1,377 \text{ m}^2)$ $A = 2,234 \text{ m}^2$

The corresponding fire flow for the proposed building is calculated as follows:

 $F = 220 \cdot C \cdot \sqrt{A}$ $F = [220 \cdot 0.6 \cdot (2,234 \text{ m}^2)^{0.5}] = 6,238 \text{ L/min}$ F = 6,000 L/min (rounded to nearest 1,000) F1 = F * 0.85 = 5,100 L/min F2 = F * 0.50 = 2,550 L/min F3 = F * 0.45 = 2,040 L/min $Fire \text{ Flow} = F1 \cdot F2 + F3 = 4,590 \text{ L/min}$ Fire Flow = 5,000 L/min (rounded to nearest 1,000) Fire Flow = 83.3 L/s

The design flows applied in the design of the service connections to the proposed building are calculated as follows:

- Domestic Supply Line (PHD): 2.2 L/s
- Total Fire Flow (MDD + Fire): 1.5 L/s + 83.3 L/s = 84.8 L/s

2.2 Proposed Connections and Layout

Based on the above demands, a new 150 mm water connection shall be made to the existing 300 mm municipal watermain within Silver Spear Road. The proposed service shall be installed within the existing drive aisle and split to form a separate 100 mm domestic supply line prior to property line. Each line shall then be installed to the P1 level of the proposed building which will host the necessary meter and backflow device.

The Ontario Building Code requires that any building above 85 m in height shall be protected by two separate fire service connections separated by an isolation valve. Since the proposed building is under this threshold, one connection is sufficient.

It is proposed that the proposed building will be sprinklered, therefore a siamese connection will be required. The siamese connection shall be located on the south face of the building adjacent to the internal fire route. The exact final location of the siamese connection will be determined at the Building Permit stage.

The NFPA 14 considers any building greater than 23 m in height to be a high rise which requires two siamese connections for each zone. Since the proposed building is greater than 23 m in height, two siamese connections shall be provided.

The Ontario Building Code requires siamese connections to be within 45 m of a hydrant. Therefore an internal private hydrant is proposed to be connected to the internal plumbing system and shall be located in a planter in the southwest corner in order to service the proposed siamese connection. By strategically placing the proposed private hydrant and the proposed siamese connection in these aforementioned locations, the requirements of the Ontario Building Code with respect to fire protection have been satisfied. The location of the existing and proposed infrastructure is shown on the Site Grading & Servicing Exhibit.

Based on the available static pressure within the municipal system and using the Hazen-Williams formula to determine the head losses in the lines, the resulting residual pressure at the building face is as follows (refer to Appendix C for the detailed calculations):

	Hazen Williams Formula: $Q = 0.278 \cdot C \cdot D^{2.63} \cdot \left(\frac{H_f}{L}\right)^{0.54}$					
Service	Flow	Head Loss	Head Loss	Residual Pressures		
Connection	(L/s) (psi)	(kPa)	At Connection (psi/kPa)	At Building (psi/kPa)		
100mm Domestic (Peak Hour)	2.2	0.1	0.5	82.0/565.3	81.9/564.8	
150mm Fire (Max Day + Fire)	84.8	9.7	66.5	63.9/440.8	54.3/374.2	

The calculations above show that the residual pressures at the building face are well above the minimum acceptable pressures of 40 psi (275 kPa) for 'Peak Hour' and 20 psi (140 kPa) for 'Maxday + Fire' demand situations, therefore, the existing municipal water infrastructure and the proposed internal water network can support the proposed development.

3.0 SANITARY DRAINAGE

Local municipal sanitary infrastructure within Burnhamthorpe Road East consists of an existing 250 mm sanitary sewer on the north side of which flows in a southwesterly direction towards Hickory Drive. Silver Spear Road hosts two existing 250 mm sanitary sewers in the center of Silver Spear Road which flow in opposite directions (southwesterly and southeasterly).

As the subject site is located at a crest within Silver Spear Road, each 250 mm sanitary sewer represents the first (or top) segment of each sanitary sewer. Both sanitary sewers convey flows to the Region of Peel "East Trunk Sewer" which eventually connects to the G.E. Booth wastewater treatment plant. Please see excerpt mapping from the Region of Peel "2013 Water and Wastewater Master Plan for Lake-Based Systems" in Appendix D.

After careful review of the subsurface investigation and the available profile drawings, it can be reasonably concluded that the existing building is serviced by an existing 200 mm sanitary service which conveys flows to the easternmost 250 mm sanitary sewer within Silver Spear Road.

3.1 Sanitary Design Flow

The sanitary design flows for the "area of development" have been calculated using the Region of Peel's current design criteria for sewage flow rates. The relevant design criteria is summarized below.

Design Flow:	302.8 L/c·day (per Peel Region)
Infiltration Flow:	0.20 L/s/ha (per Peel Region)
Peaking Factor:	Calculated using the Harmon Formula
Pop. Density:	1.1 people/unit (1-Bedroom)
	2.1 people/unit (2-Bedroom)
	3.1 people/unit (3-Bedroom)

As a new connection is proposed, the pre-development sanitary sewer flow is taken a 0 L/s. The post-development sanitary sewer flow is calculated as follows:

$$Q_{SAN,POST} = \frac{\left(302.8 \ Lpcd \times 226 \ pers \times 4.13_{Peaking}\right)}{86400 s \ / \ day} + 0.20 \ L \ / \ s \ / \ ha \times 0.4171 \ ha = 3.4 \ L/s$$

The sanitary sewer flow for the overall development is increased by 3.4 L/s over the predevelopment condition (3.4 L/s - 0.0 L/s). Please refer to Appendix D for the detailed sanitary sewer design sheet.

3.2 Receiving Sanitary Sewer Capacity

As previously mentioned, the subject development represents an increase of 3.4 L/s in sanitary sewer flow. The full flow capacity of the receiving 250 mm sanitary sewer within Silver Spear Road is calculated to be 134.3 L/s. The increase in flow represents only 2.5% of the full flow capacity, therefore it is deemed an appropriate conclusion that the proposed development from the subject site can proceed without any mitigation measures, and thus no sewer upgrades are required. The Region of Peel will be able to review the overall system model to confirm this conclusion.

3.3 Sanitary Service Connection

As previously mentioned, the subject site is currently serviced by an existing 200 mm sanitary service. It is proposed that the proposed building be connected to the existing service with a new 200 mm diameter sanitary service.

The following is a summary of the flow characteristics within the subject site:

Service	From	То	Design Flow (L/s)	Pipe Size (mm)	Slope	Full Flow Capacity (L/s)	Percent of Full Flow
Prop. 1	Bldg.	MH1A	3.4	200	2.0%	46.4	7.3%
Prop. 2	MH1A	MH2A	3.4	200	3.0%	56.8	6.0%

The proposed services will easily convey their respective post development sanitary flows operating at only 8.5% or less of full flow capacity. The proposed connection to the new building has adequate depth to service the ground floor (and above), however the underground parking levels will require a grinder pump to discharge to the connection. To prevent backup of sewage into the basement level, we recommend that the Mechanical Consultant adequately design the internal system to operate under and withstand the potential for a surcharged municipal system.

Based on the discussion in the previous sections, the proposed development has marginal impact on the existing sewer infrastructure and therefore can be adequately serviced from a sanitary sewerage perspective. The location of the existing and proposed infrastructure is shown on the Site Servicing and Grading Exhibit which can be found in Appendix F.

4.0 STORM DRAINAGE

Local exclusive storm infrastructure within Burnhamthorpe Road East consists of a 525 mm storm sewer on the south side of which flows in a westerly direction. Similarly to the sanitary sewers, Silver Spear Road hosts a 300 mm storm sewer and a 600 mm storm sewer on the south side of Silver Spear Road which flow in opposite directions (southwesterly and southeasterly).

Both of the storm sewers are eventually conveyed to "Little Etobicoke Creek" which falls within the limits and regulations of the Toronto and Region Conservation Authority (TRCA). An excerpt copy of the associated watershed map can be found in Appendix E for reference.

4.1 Design Criteria

The stormwater management servicing strategy proposed for the development has been prepared in conjunction with City design standards, the Ministry of the Environment and Climate Change (MOECC) Stormwater Management Practices Planning and Design Manual dated March 2003, and the TRCA Watershed Development Policies. The relevant criteria are summarized below:

Stormwater Management (Quantity Control)

- Storm sewer capacity constraints may govern.
- Stormwater runoff peak flow discharges must be controlled to a minimum of the predevelopment levels for all design storm events (i.e. 1:2 year, 1:5 year, 1:10 year, 1:25 year, 1:50 year, and 1:100 year) using TRCA unit flow rates.
- It should be noted that TRCA unit flow rates are typically only applied to regional SWM facilities and / or development sites that directly outfall to a TRCA regulated areas. Therefore it has been concluded that TRCA unit flow rates do not apply to this small infill development. Accordingly, all post-development storm flows shall be controlled to pre-development levels per City IDF data.

Stormwater Management (Quality Control)

- Stormwater quality control is to be implemented in accordance with the applicable Master Drainage Plan or Subwatershed Plan, the City's Stormwater Quality Control Strategy prepared by R.E Winter dated January 1996 and MOECC's Stormwater Management Practices Planning and Design Manual.
- Pursuant to the City's design criteria, stormwater quality controls are required to be implemented on-site to achieve a minimum of 80% long-term total suspended solid (TSS) removal.

Stormwater Management (Runoff Volume Reduction)

The first 5mm of runoff shall be retained on-site and managed by way of infiltration, evapotranspiration or re-use. This is a minimum requirement whereas applicable Master Drainage Plans or Subwatershed Plans may carry a higher minimum requirement. Methods to achieve this can include measures such as permeable pavements, infiltration systems, rainwater harvesting tanks, bioretention systems or green roofs.

4.2 Pre-Development and Post-Development Conditions

=

As previously mentioned, the subject site currently hosts an existing eight-storey building, a large asphalt parking surface, and large areas of landscaping throughout resulting in a pre-development runoff coefficient of 0.58. Refer to the aerial photograph in Appendix A for reference. Per City design criteria, the pre-development runoff coefficient shall be limited to 0.50 and thus governs.

The addition of the eight-storey building results in a modest increase in impervious area (for the developable portion of the subject property) with a post-development runoff coefficient calculated to be 0.75.

Per City design criteria, the following runoff coefficient adjustments have been applied:

Storm Return Period	Coefficient Adjustment
2-Year	1.0
5-Year	1.0
10-Year	1.0
25-Year	1.1
50-Year	1.2
100-Year	1.25

As previously mentioned, stormwater runoff peak flow discharges must be controlled to a minimum of the pre-development levels for all design storm events. The pre-development and post-development hydrologic conditions for the site were established using the City's IDF data, a recommended entry time of 15 minutes, and the following storm drainage run-off coefficients:

Site Area	Coefficient
Bare Roof	0.90
Landscaped Areas	0.25
Landscaped Areas (over parking garage)	0.45
Permeable Pavers	0.55
Hard Surfaces	0.90

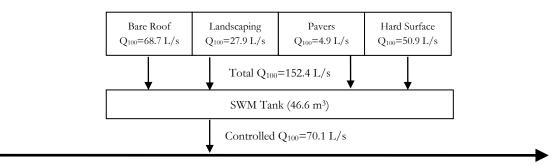
The following is a summary of the subject site's peak discharge for each storm event under both pre-development and post-development conditions:

Storm Return	Rainfall Intensity	Pre-Dev. Flow	Post-Dev. Flow	Allowable
Period	(mm/hr)	(L/s)	(L/s)	Flow ¹ (L/s)
2-Year	59.9	39.9	51.9	34.7
5-Year	80.5	53.7	69.8	46.6
10-Year	99.2	66.1	85.9	57.4
25-Year	113.9	83.5	108.6	72.6
50-Year	127.1	101.7	132.2	88.4
100-Year	140.7	117.3	152.4	101.9

¹ Based on a pre-development runoff coefficient of 0.50 which governs

As shown above, the post-development discharge is greater than the allowable site discharge for each storm return period, thus on-site attenuation will be required. Typically, a combination of roof top, surface and/or underground storage can used to achieve the required volumes which is discussed in the following section. Please refer to the detailed storm sewer design sheet which can be found in Appendix E.

4.3 Stormwater Management (Quantity Control)


To attenuate flows from the site, an underground stormwater storage tank system, complete with a City approved orifice plate, is proposed in the within the underground P1 level. The following is a summary of the subject site's release rates using a 180 mm orifice control:

Storm Return Period	Allowable Flow ¹ (L/s)	Attenuated Flow (L/s)	Depth of HGL in SWM Tank (m)
2-Year	34.7	28.2	0.26
5-Year	46.6	45.6	0.54
10-Year	57.4	53.8	0.72
25-Year	72.6	59.9	0.87
50-Year	88.4	65.0	1.0
100-Year	101.9	70.1	1.2

As shown above, the post-development flows have been reduced over the pre-development condition for each storm return period. The detailed stormwater storage volume calculations can be found in Appendix E, and the location of the stormwater management system is available on the Site Servicing and Grading Exhibit which can be found in Appendix F.

A schematic representation of the proposed stormwater management system for the 100-year storm return period is provided as follows:

Stormwater	Management	Plan

Silver Spear Road (Existing 300 mm Ø Storm Service)

 $Q_{\text{SITE RELEASE}} \leq Q_{\text{ALLOWABLE DISCHARGE}}$ (for each storm return period)

It is important to note that regular maintenance inspections of the stormwater management tank, storm sewers, and orifice control should be conducted to ensure that there are no blockages or other conditions which would prevent the proper functioning of this design element. The recommended minimum frequency of such inspections is annually.

By providing on-site storage via an underground granular storage bed, and by controlling the site's stormwater discharge with an orifice control, the subject site satisfies the City's stormwater management objectives for quantity control.

4.4 Stormwater Management (Quality Control)

As previously mentioned, stormwater quality controls are required to be implemented on-site to achieve a minimum of 80% long-term total suspended solid (TSS) removal. As a large asphalt surface is proposed, on-site treatment will be required. The following is a summary of the subject site's inferred TSS removal rate without and with treatment:

Site Characteristics			Withou	it Treatment	Wi	With Treatment		
Site Area	Area (m2)	(% of total)	TSS	Overall	TSS	Overall		
Bare Roof	1,563	(37.5%)	95%	35.6%	95%	35.6%		
Pavers	183	(4.4%)	80%	3.5%	80%	3.5%		
Landscaping	1,268	(30.4%)	100%	30.4%	100%	30.4%		
Hard Surfaces	1,157	(27.7%)	0%	0.0%	50% ²	13.9%		
Total	4,171	(100%)		69.5%		83.4%		

As shown above, the site will not achieve the City's requirement for 80% TSS removal if left untreated. Therefore, the installation of a Stormceptor® oil / grit separator (OGS) model STC 750 has been incorporated into the stormwater management approach in order to treat the stormwater runoff. The OGS unit is rated to exceed 80% TSS removal however it is noted that the TRCA only accepts a 50% TSS removal for these units.

By installing a Stormceptor® OGS, and due to the high percentage of roof and landscaped areas via a treatment train approach, the City requirements for quality control (i.e. minimum 80% TSS removal) have been satisfied.

4.5 Stormwater Management (Water Balance)

In order to promote preservation of the site's natural hydrological water balance, the City requires a minimum volume of 5 mm be re-used on-site. Based on the inferred initial abstraction rates for the various site surfaces, the total pre-development abstraction is calculated as follows:

Site Area	Area (m2)	(% of total)	Initial Abstraction (mm)	Total Abstraction (mm)
Bare Roof	1,563	(37.5%)	1 mm	0.37
Pavers	183	(4.4%)	5 mm	0.22
Landscaping	1,268	(30.4%)	5 mm	1.52
Hard Surfaces	1,157	(27.7%)	1 mm	0.28
Total	4,171	(100%)		2.39

Therefore an additional 2.61 mm of rainfall (i.e., 5.00 mm - 2.39 mm) needs to be collected and retained on the subject site.

² Implementing a Stormceptor® Oil-Grit Separator and conservatively using 50% TSS removal

The total water balance volume required for on-site re-use is calculated as follows:

Volume Required = Storage Depth \times Site Area Volume Required = 2.61 mm \times 4,171 m2 = 10.9 m³

It is proposed that a sump be installed within the stormwater management tank in order to retain the required water balance volume and store it for irrigation of landscaped areas on the property. The volume available for rainwater harvesting is calculated as follows:

> Volume Provided = Tank Area \times Depth of Sump Volume Provided = 40.0 m² \times 0.30 m = 12.0 m³

As shown above, the sump within the stormwater management tank has more than sufficient volume to detain the required water balance volume thus satisfying the City's requirements for volume control (i.e. minimum 5 mm).

As rooftop and landscape area drains are considered clean, it is recommended that these areas be directed to a separate irrigation holding tank for irrigation usage. The specific details relating to the stormwater management and irrigation tanks shall be provided at the site plan application stage.

The specific details relating to the irrigation sump, and to the rainwater harvesting system shall be provided by the Mechanical Consultant and Landscape Architect during the detailed internal building design stage.

4.6 Storm Service Connection

All areas from the developable portion of the site will be directed to the stormwater management tank for on-site attenuation through an orifice control. Storm flows will then be conveyed to an OGS for on-site treatment, and then be conveyed through a series of 300 mm storm sewers which will connect to the existing 300 mm municipal storm sewer within Silver Spear Road.

	From	То	Pipe Size (mm)	Pipe Slope	Peak Flow ³ (L/s)	Capacity (L/s)	Percent of Full Flow
Storm Service 1	Tank	STC	300	1.0 %	53.8	96.7	56 %
Storm Service 2	STC	MH1	300	1.0 %	53.8	96.7	56 %
Storm Service 3	MH1	MH2	300	1.0 %	53.8	96.7	56 %

The following is a summary of the capacity for each proposed on-site storm service:

The proposed private storm sewers (and main service connection) can easily handle their attenuated post-development storm flow of 53.8 L/s, operating at only 56% of full flow capacity (96.7 L/s). The location of the existing and proposed infrastructure is shown on the Site Servicing and Grading Exhibit which can be found in Appendix F.

³ Peak flows are based on 10-year attenuated (controlled) design flows

4.7 Emergency Overflow

Any downspouts shall outlet to the surrounding landscaped areas within the subject site and shall be directed away from the buildings. The proposed building should be provided with rooftop scuppers which will ensure a safe emergency overflow should the rooftop drains become blocked or clogged. The areas surrounding the building have been designed with positive drainage (away from the buildings). The maximum ponding depths through the subject site shall not exceed 0.25 m per City requirements.

To provide a relief point within the underground system, the stormwater management tank shall be fitted with an emergency overflow catchbasin (open grate) lid. Should the property experience a storm greater than the 100-year event or should the orifice become clogged, surplus water will overflow through the grate (elevation 97.85 m), and spill onto the Silver Spear Road right-of-way.

We recommend that all incoming pipes to the tank be fitted with one-way flap gate valves (i.e. backflow preventers) to prevent surcharging in the building's plumbing system. Details pertaining to the site grading and overland flow are shown on the Site Servicing and Grading Exhibit which can be found in Appendix F.

4.8 Sediment and Erosion Control

In accordance with the Erosion and Sediment Control Guidelines for Urban Construction, temporary erosion and sediment control measures are required for any development application. Due to the small size of the subject site, it is proposed that a sediment control fence be installed along the entire perimeter of the site per the City of Mississauga standards.

Any existing / adjacent catch basins shall be protected with a Terrafix 360R geotextile fabric (or approved equal). In lieu of a mud mat, the existing asphalt driveway shall be utilized to prevent any mud tracking onto the municipal roads.

5.0 CONCLUSIONS

This letter report illustrates that the proposed development is feasible from municipal servicing and stormwater management perspectives.

Proposed fire and domestic water demands are within acceptable ranges and can likely be accommodated by the existing municipal water supply infrastructure within Silver Spear Road.

The receiving sanitary sewer network within Silver Spear Road is marginally impacted from the proposed intensification, and should not require any mitigation measures (to be confirmed by the Region of Peel).

Furthermore, the proposed internal storm sewer network, on-site storage, and the controlled discharge release rate to the receiving exclusive storm sewer are at appropriate levels and therefore the proposed development satisfies the City's stormwater management objectives.

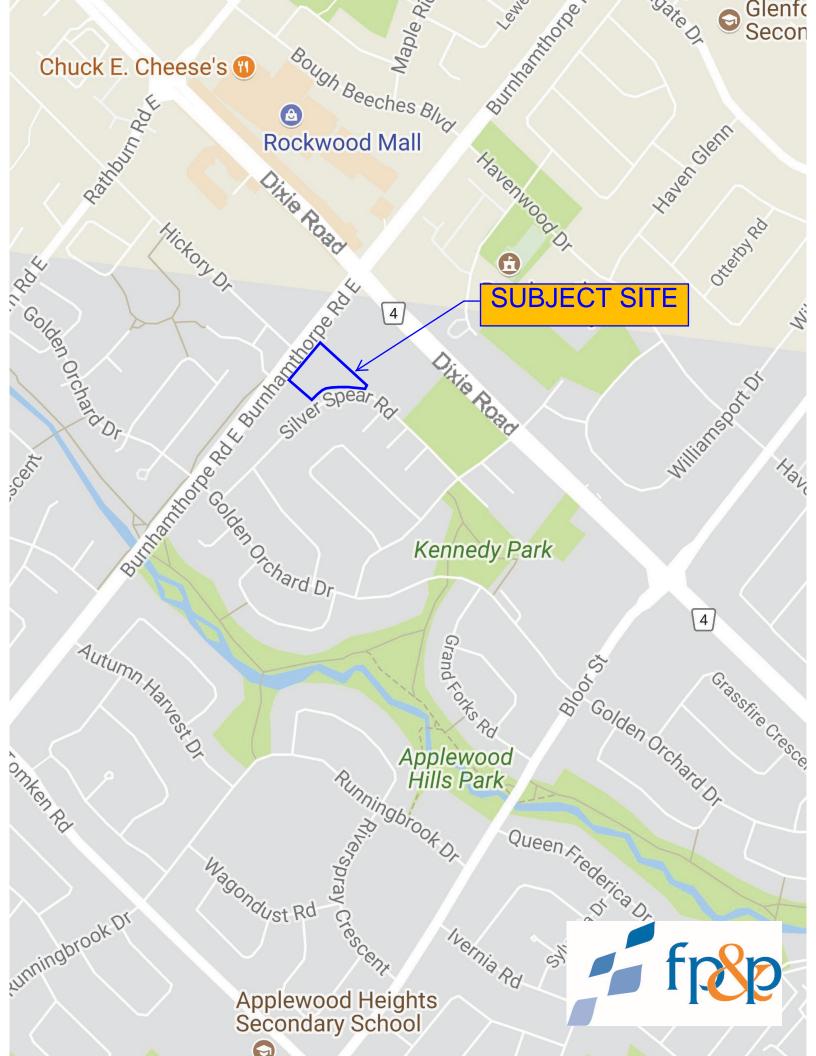
We trust that this satisfies your current needs. Should you have any questions, or require additional information, please do not hesitate to contact the undersigned.

Respectfully Submitted,

fabian papa & partners

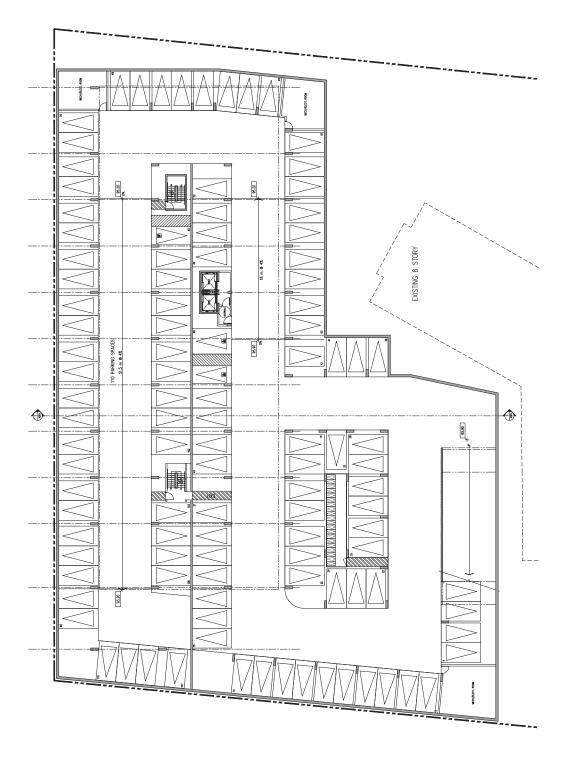
A Division of FP&P HydraTek Inc.

Jason Jenkins, P.Eng, P.E. Project Manager

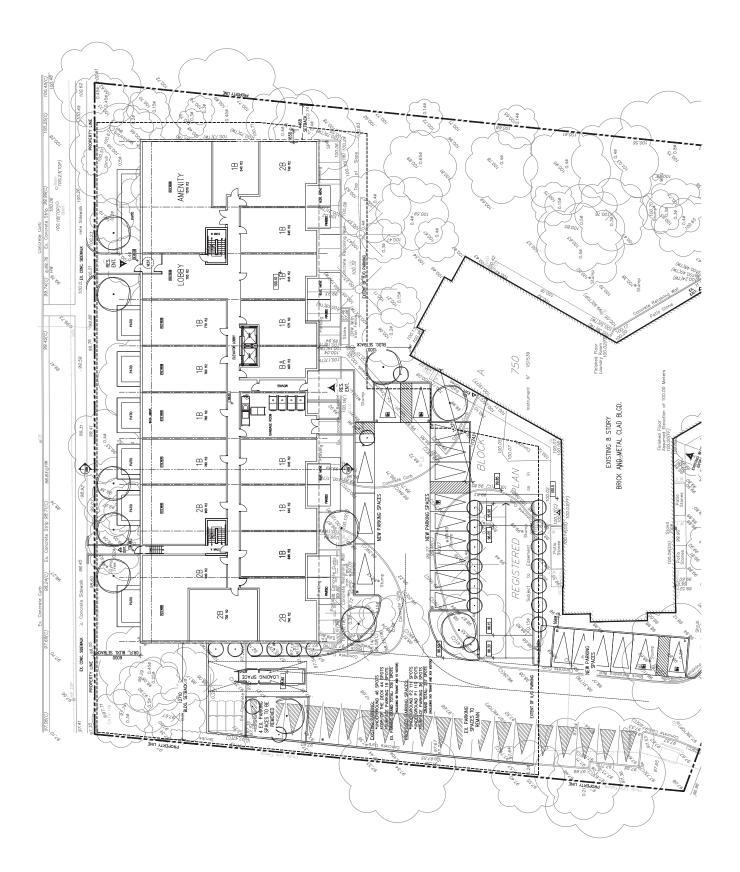


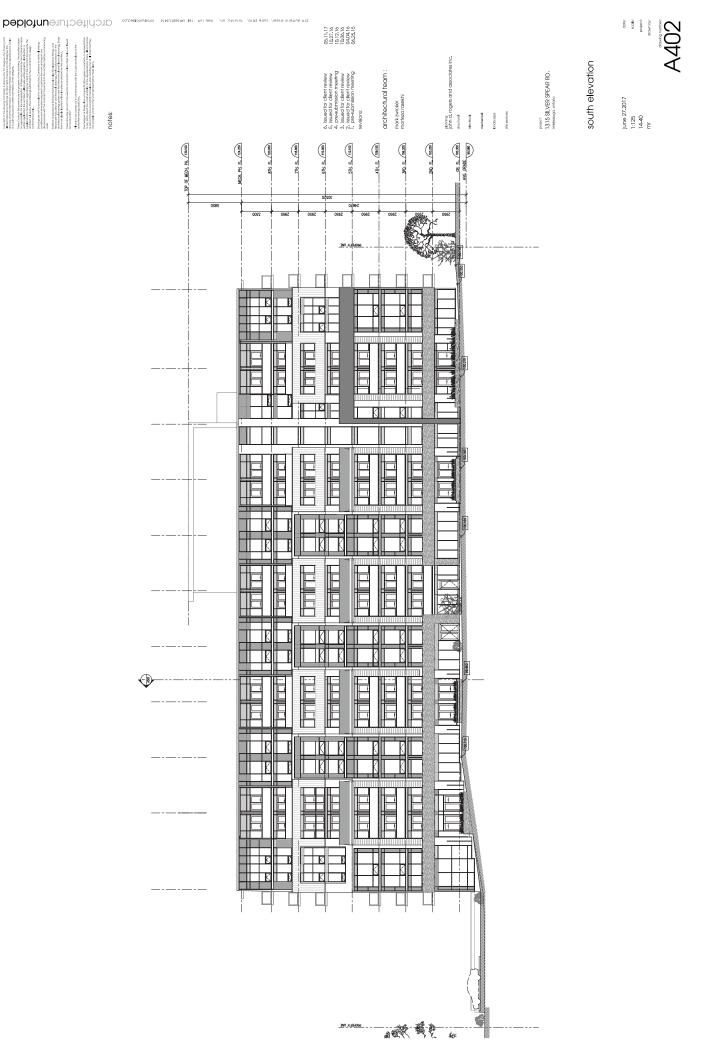
Paolo Albanese, P.Eng. *PEO Designated Consulting Engineer* Partner

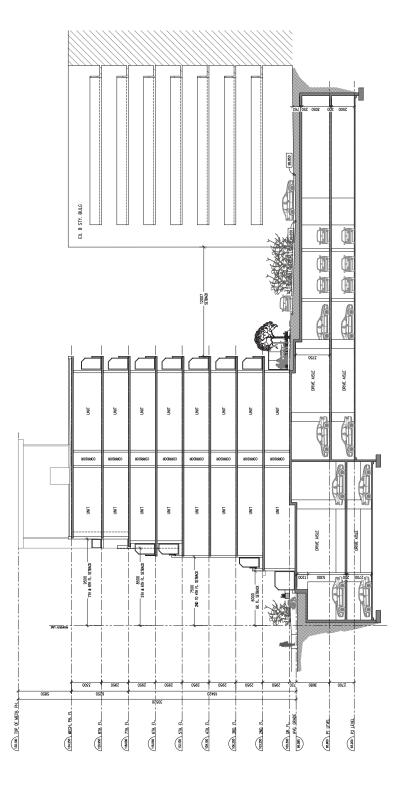
h:\fp&p hydratek\projects\2017\17073 - 1315 silver spear, mississauga\report\re-zoning\revision 0\17073 - fs and swm report (revision 0).doex

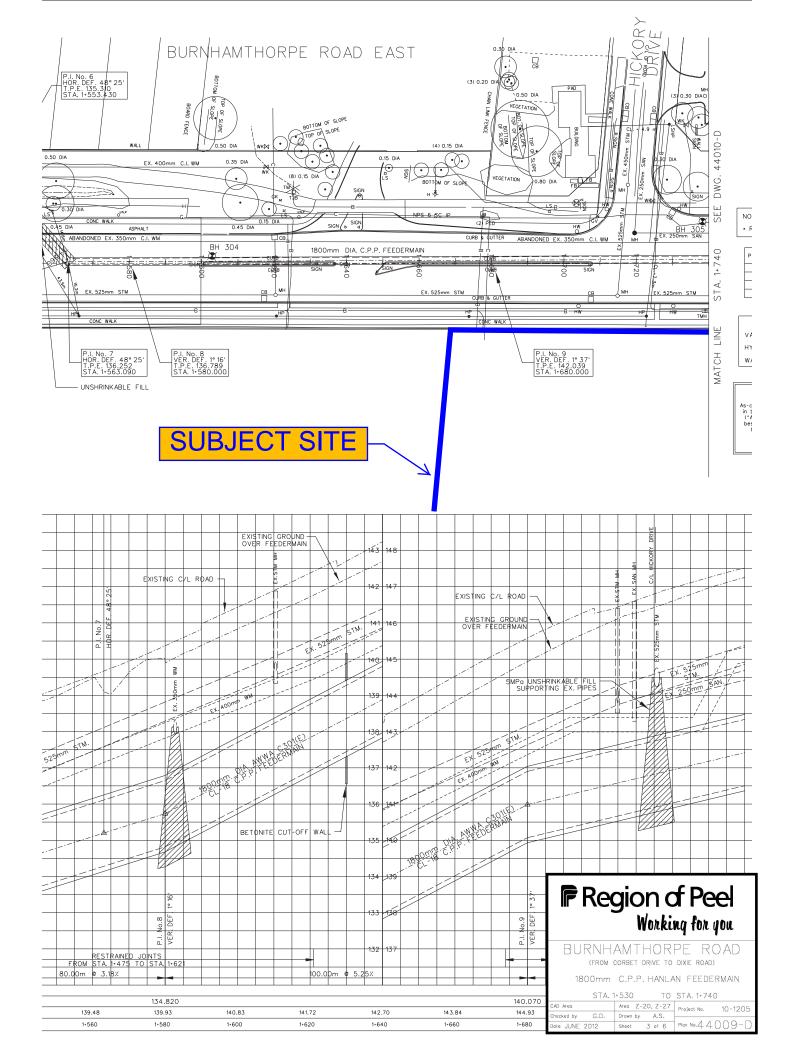


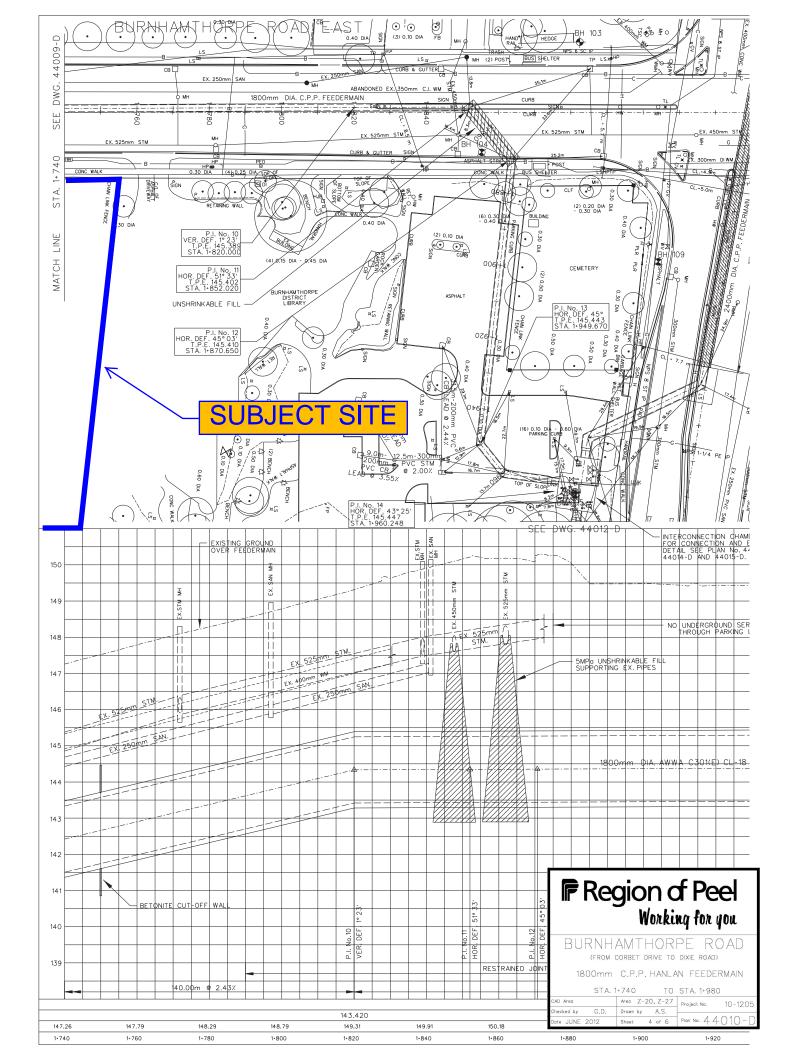
APPENDIX A

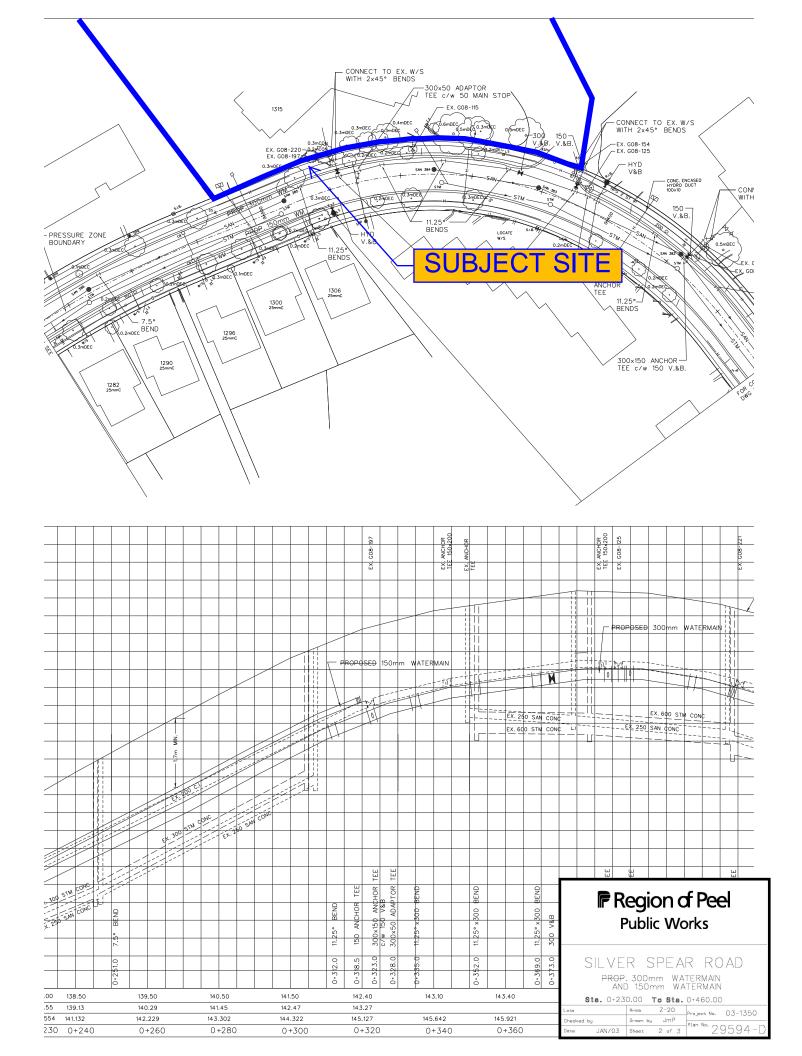




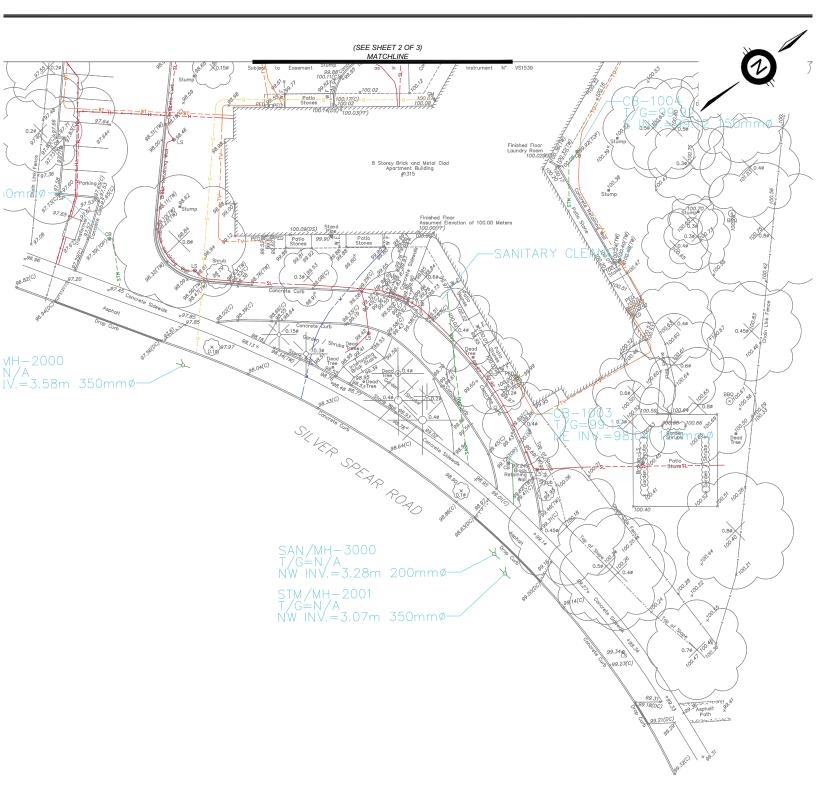





Copylight of disposition disposition of disposition of disposition of disposition of the disposition of the

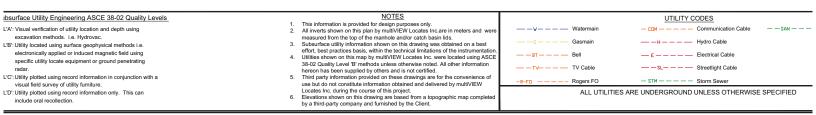


APPENDIX B



BURNHAMTHORPE ROAD EAST 97.68(C) 97.06(u Concrete Curl 99.74(C)[™] ●99.76 9^{9.16° HW} 98.24(0 98.83 @HW 100.28 ⊗BMH 100.23(TOP) 97.41 ×100.26 100.62 × 99.59 ×97.95 Concrete Sidewalk × 98.45 ×98.92 99.31× 100.02×x100.03 Concrete Sidewalk 100.01 Chain Link Fend 7.35 98.06 Chain Link Fence 99.41 99,76 499.80 100.23 99.07 10.450 99.55 0.40 98.93 ying free 0. 097.7 CATV HW 30,00 ×00.1 29.57 2 0.30 ×100.13 1,00.72 99.16 0.3ø 2300.4CM 2900.6CM El m 38 N 0 - SL SL 100.38 Concrete Retaining Wall 99.85 98 - 96°66 ἀΒ−∥Ουμ Τ/G=97.00 SW INV.=95.60 150mmø g1: 91.21 1,00.33(TW) 199.97 100.04 .9^{9.91} Nall on Car ľż, 97. 97.28(0 100 orta 100 Fence ■99.05 Stump SEL Stump 100 82 00.8 200.92 STU ,00. X0.65¢ 9^{1.81} Parking 12 0.14 99.27 <u>99.46(C)</u> ×99.27 *∎ 99.65* Stump 4ø BLOCK X0.44 100.05 CBI 100.07 `@) REGISTERED 750 MATCHLINE (SEE SHEET 1 OF 3) SCALE 1:200 THE LOCATION OF UNDERGROUND SERVICES SHOULD BE VERIFIED

NOTES This information is provided for design purposes only. All inverts shown on this plan by multiVIEW Locates inc.are in meters and were measured from the top of the manhole and/or catch basin lids. Subsurface utility information shown on this drawing was obtained on a best effort, best practices basis, within the technical limitations of the instrumentation. Utilities shown on this map by multiVIEW Locates inc. were located using ASCE 38-02 Quality Level 'B' methods unless otherwise noted. All other information hereon has been supplied by others and is not certified. Third party information provide on these drawings are for the convenience of use but do not constitute information obtained and delivered by multiVIEW Locates inc. during the course of this project. Elevations shown on this drawing are based from a topographic map completed by a third-party company and furnished by the Client. gineering ASCE 38-02 Quality Levels UTILITY CODES of utility location and depth using is. i.e. Hydrovac. g surface geophysical methods i.e. ied or induced magnetic field using te equipment or ground penetrating 1. 2. Watermain - COM - - - - Communication Cable Gasmain — — н — — — Hydro Cable 3. — — BT — — — Bell - E - - - - Electrical Cable TV Cable g record information in conjunction with a of utility furniture. g record information only. This can action. Rogers FO – STM – Storm Sew ALL UTILITIES ARE UNDERGROUND UNLESS OTHERWISE SPECIFIED 6.


Insight, not hindsight

PRIOR TO EXCAVATION. UTILITY LOCATES ARE REQUIRED PRIOR TO ANY EXCAVATION ACTIVITY /

THE LOCATION OF UNDERGROUND SERVICES SHOULD BE VERIFIED PRIOR TO EXCAVATION. UTILITY LOCATES ARE REQUIRED PRIOR TO ANY EXCAVATION ACTIVITY SCALE 1:200

APPENDIX C

PRESSURE P.S.I.G.

10 Estate Drive, Toronto, Ontario M1H 2Z1 Phone: 416.282.1665 Fax: 416.282.7702 Toll Free: 1.888.349.2493 www.corix.com

	SITE N	AME:	Fal	otan	Pap	a 8	2 0	aitne	15	In	с.				D	ATE:		10	15	120	117			
	LOCATI																							
	TEST D																		00			0 8		
	<u> </u>																	RO	- 1	hcA	ity 3	P		
						(R	ESID	UAL)	1 5+	Hy	AN) of	13F	5	Silv	er S	neal	Rd	/	ncAu	114 2 114 3	P		
	MAIN S	I7E.								J							V		-		J			
	STATIC																							
															5 G F		DE		DRE	SSURE			6	
	# 1				10 & C				8		JUNE			338				82		JOUNE	1			
	# 2			314					2			\top		503				81			1			
	# 3			1/2					6					33				78]			
	# 4	1	2×7	2'12					5	0			2	36	7			74						
145																								
140							++				_								_					
130																								
125 120			$\left \right $		++	+	++		+		+								-					
115															127									_
110											_													_
100											_													_
95 90		-																						
85																								_
80 💽 🖉			9					•																-
70											_			_			0							$\overline{)} \rightarrow$
65 60																								_
55	+ $+$ $+$ $+$		\rightarrow	+	$\left \right $													_						_
45																			Ð					_
40			++	+	$\left \right $	++	++										-							_
35																								_
25 20		+++	++					~					4				_	-	-					-
15																								-
10	+++	+++	++	+						+			-	-				_	+					-
5			#																				[_1.8 7 -
 0 200 4	₅₀₀ 400 600	700 1 800	900 ว	1000	1100 1 ⁻ 1100	150 1: 1200	250 1300	1350 14	00 1450	1500	550 I 160	165 00	י ו 1700	175)	0 I 180	1850 0) I 1900	1950	2000	50 21	21 00	50 I 220	22'50 00	J
								FLC	W	U.S	. G	. P. N												
	COMMEN	NTS.	Perl	forme	d or	re c	omo	lete	NE	PA	29	i fu	\sim	tes	t a	5 (equ.	ester	₹.					
	2 CHINE						4										v							
	3	13											2		20.7			1	4	11				
	Authorize	d Sigr	nature							C	orix	Wate	r Ser	vice	es Sig	gnatu	re	AS .	Chy	po	/			

1315 Silver Spear Road Water Demand Calculations

Domestic Water Supply Demands:

Relavant Region of Peel Design Criteria:

Designed By: Jason Jenkins, P.Eng., P.E. Checked By: Paolo Albanese, P.Eng. File No.: 17026 Date: September 29, 2017

- Residential Demand = 280 L/capita/day

- Max day demand peaking factor = 2.0

- Peak hour demand peaking factor = 3.0

- Population for Apartments is 2.7 people / unit or 475 pp/ha

- Population for Townhomes is 3.5 people / unit

- Peaking Factor per Harmon

Building	No. of Units	Density	Population	Ave. Day Flow	Peak Hour, ADxPH	Max. Day, ADxMD
			pers	(L/s)	(L/s)	(L/s)
Prop. Bldg.	159	varies	226	0.732	2.197	1.465

Proposed 8-Storey Building

Fire Protection Supply Demands:

Per Water Supply for Public Fire Protection Manual, 1999, by the Fire Underwriters Survey

STEP 1: Calculate Fire Flow

$F = 220 \cdot C \cdot \sqrt{A} \cdot (\text{various adjustments}) \text{ L/min}$

C = Coefficient related to type of construction:

= 1.5 for wood frame construction (Structure essentially all combustable)

= 1.0 for ordinary construction (brick or other masonry walls, combustable floor and interior)

= 0.8 for non combustable construction (unprotected metal structure components, masonry or metal walls)

= 0.6 for fire resistive construction (fully protected frame, floors, roof)

C =	0.6		
Floor Area (largest building) =	1,545.0	m2	
Floor Above =	1,377.0	m2	
Floor Below =	1,377.0	m2	
Area = (Largest Area + 25% of floor above and below) =	2,234	m2	
F =	6,238	L/min	
F =	6,000	L/min	Rounded to the nearest 10

STEP 2: Adjust for building occupancy (Note: Number shall not be less then 2000 L/min)

= - 25% (Non-Combustable)

= - 15% (Limited Combustable)	Factor =	-0.15	
= 0 (Combustable)	F1 = F x Factor =	5,100	L/min

= + 15% (Free Burning)

= + 25% (Rapid Burning)

1315 Silver Spear Road Water Demand Calculations

STEP 3: Decrease F1 if building contains fire supression system

- = 50% (Automatic Sprinklers)
- = 30% (Adequately Designed System)
- = Additional -10% if the water supply is standard for the system and the fire department hose lines required
- = Additional -10% if the system is fully supervised

Factor = 50%F2 = F1 x Factor = 2,550 L/min

STED A. Inoro	and E1 due to over	ura / alaga provimit	v to other huildinge	(Noto: Total shall not avaged 750/)
SIEP 4. IIICIE	ase r i que lo expos	ure / close proximit		(Note: Total shall not exceed 75%)

= 25% (0m to 3m)	Distances =	12m / 12m /	/ 22m / >45m
= 20% (3.1m to 10m)	Factors =	15% + 15%	+ 10% + 0%
= 15% (10.1m to 20m)			
= 10% (20.1m to 30.1m)	Factor =	40%	(max 75%)
= 5% (30.1m to 45m)	F3 = F1 x Factor =	2,040	L/min
= 0% (Greater then 45m)			

STEP 5: Calculate Fire Flow (Note: Fireflow shall not be less then 2000 L/min or greater then 45,000 L/min)

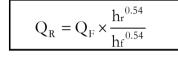
Fire Flow =	F1-F2+F3	
F1 =	5,100	L/min
- F2 =	2,550	L/min
+ F3 =	2,040	L/min
Fire Flow =	4,590	L/min
Fire Flow =	5,000	L/min
Fire Flow =	83.3	L/s

Rounded to the nearest 1000

STEP 6: Calculate Total Water Demand (Max Day Demand + Fire Flow)

Recall Max Day Demand (from chart above) =	1.5	L/s
TOTAL Fire Demand =	84.8	L/s

1315 Silver Spear Road



Proposed 8-Storey Building

Designed By: Jason Jenkins, P.Eng., P.E. Checked By: Paolo Albanese, P.Eng. File No.: 17026 Date: September 29, 2017

Recall Total Fire Demand = 84.8 L/s (Taken From Fire Flow Spreadsheet)

Hydrant Flow Test Results												
Flow	Pressure											
(gpm)	(L/s)	(psi)	(kPa)									
0	0.00	82	565.4									
338	21.32	81	558.5									
803	50.66	78	537.8									
1339	84.48	64	441.3									
2367	149.34	50	344.7									
	84.80	63.9	440.8									

Hazen-Williams formula for watermain head loss: $h_L = (10.675 * L * Q^{1.85}) / (C^{1.85} * D^{4.8655})$

- h_L = pressure drop (m)
 - L = length of pipe (m)

 $Q = flow rate (m^3/s)$

C = *roughness coefficient*

D = inside hydraulic diameter (m)

Peak Hour	Peak Hour Flow Head Loss, h_L Residual Pressure at Main					sure at Main ¹	Residual Pro	essure at Bldg.	
Q (L/s)	Q (m3/s)	(m)	(in)	(psi)	(kPa)	(psi)	(kPa)	(psi)	(kPa)
2.2	0.0	0.1	2.0	0.1	0.5	82.0	565.3	81.9	564.8

where

¹ Residual pressure taken from above

New	150	mm	Fire	Line
-----	-----	----	------	------

L=	30.0	m
D=	150	mm
C=	100	

L=

D=

C=

27.0

100

100

m

mm

Total Fire	Flow								
(Max Day + F	ire Flow)		Head I	_oss, h _L		Residual Pres	sure at Main ¹	Residual Pr	essure at Bldg.
Q (L/s)	Q (m3/s)	(m)	(m) (in) (psi) (kPa)				(kPa)	(psi)	(kPa)
84.8	0.1	6.8	267.2	9.7	66.5	63.9	440.8	54.3	374.2

¹ Residual pressure taken from above

APPENDIX D

1315 Silver Spear Road fr

Relavant Region of Peel Design Criteria:

Post-development domestic sewage flow based upon a unit flow of 302.8 Lpcd Infiltration flow based upon a unit flow of 0.20 L/s/ha Population for Apartments is either <u>475 pp/ha</u> OR <u>2.7 people / unit</u> Population for Commercial Properties is 50 pp/ha

Minimum flow velocity for partial flow = 0.75 m/s. Maximum flow velocity for pipe full flow = 3.5 m/sPeaking Factor per Harmon Equation Mannings = 0.013

						D	ESIGN FLOW	/ CALCULAT	IONS						SEWER	CDESIGN & /	ANALYSIS			
	from M.H.	to M.H.	Area (ha) or # of Units	Density (p/unit)	Population	Cumulative Area (ha)	Cumulative Population	Peaking Factor M	Sewage Flow (1) (L/s)	Infiltration Flow (2) (L/s)	Foundation Drain (3) (L/s)	Total Flow, Qd (1)+(2)+(3) (L/s)	Nominal Diameter (mm)	Pipe Slope	Pipe Length (m)	Nominal Full Flow Capacity, Qf (L/s)		Percent of Full Flow (Qd/Qf)	Actual Flow Velocity V (m/s)	Remarks
				(p/ arm)		(110)			(302.8 L/c/d)	0.20 L/s/ha		(_,0)	()	(70)	()		(11.0)		. (
ost-Development	<u> </u>		I						(N		<u> </u>						
Prop. Sewer 1	New Building	MH1A	0.4171		226	0.4171	226	4.13	3.268	0.083		3.4	200	2.00%		46.38	1.48	7.3%	0.86	
Prop. Sewer 2	MH1A	MH2A				0.4171	226	4.13	3.268	0.083		3.4	200	3.00%		56.81	1.81	6.0%	0.99	
tisting 250mm Sar	nitary Sewer (Silve	er Spear Road)																		
													250	5.10%		134.30	2.74	0.0%	#N/A	
								Perce	ntage of Full	Flow Capacity	y>	2.5%	Full Fl	low Capacity						

PROPOSED Development Populations											
No. of Units Density Population											
Bachelor	1	1.1 pp/unit	1								
1 Bedroom	113	1.1 pp/unit	124								
1 Bedroom + Den	0	1.1 pp/unit	0								
2 Bedroom	39	2.1 pp/unit	82								
3 Bedroom	6	3.1 pp/unit	19								
	226										

14.UNIT SUMMA

UNIT TYPE										
FLOOR	BA	1B	1B+D	2B	3B	TOTAL				
GRD	1	11	0	5	0	17				
2ND TO 4TH	0	36	0	18	6	60				
5TH AND 6TH	0	34	0	8	0	42				
7TH TO 8TH	0	32	0	8	0	40				
TOTAL	1	113	0	39	6	159				
TOTAL	0.6%	71.1%	0.0%	24.5%	4%	100%				

City of Mississauga SANITARY SEWER DESIGN SHEET

Designed By: Jason Jenkins, P.Eng., P.E. Checked By: Paolo Albanese, P.Eng. File No.: 17073

Date: September 29, 2017

I	2	•	v	,	
	1		'		

EXCERPT REGION OF PEEL "2013 WATER AND WASTEWATER MASTER PLAN FOR LAKE-BASED SYSTEMS"

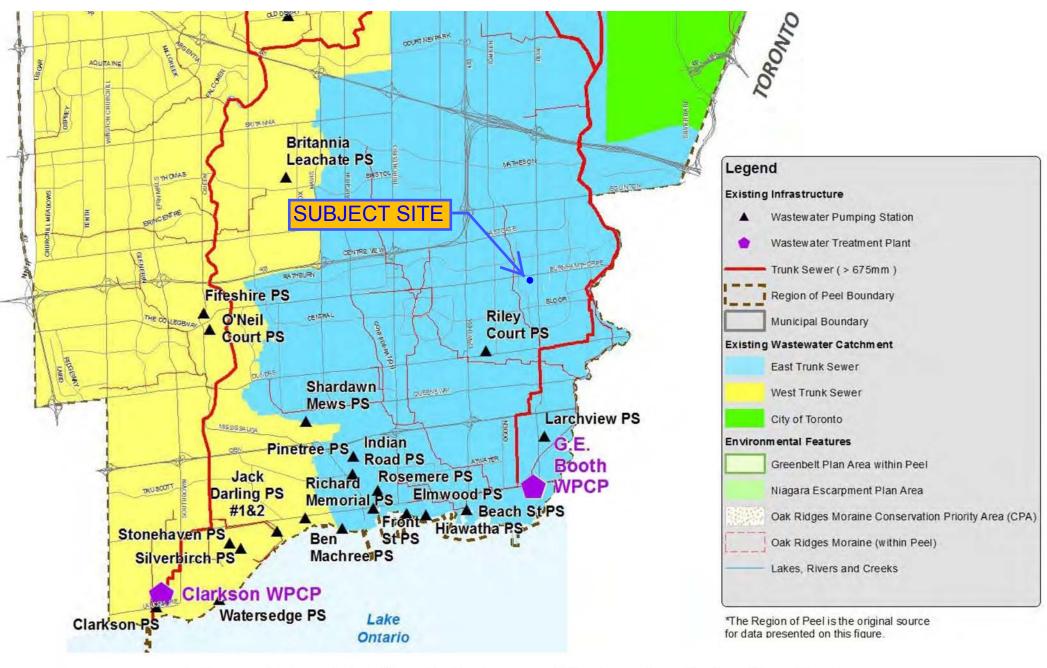
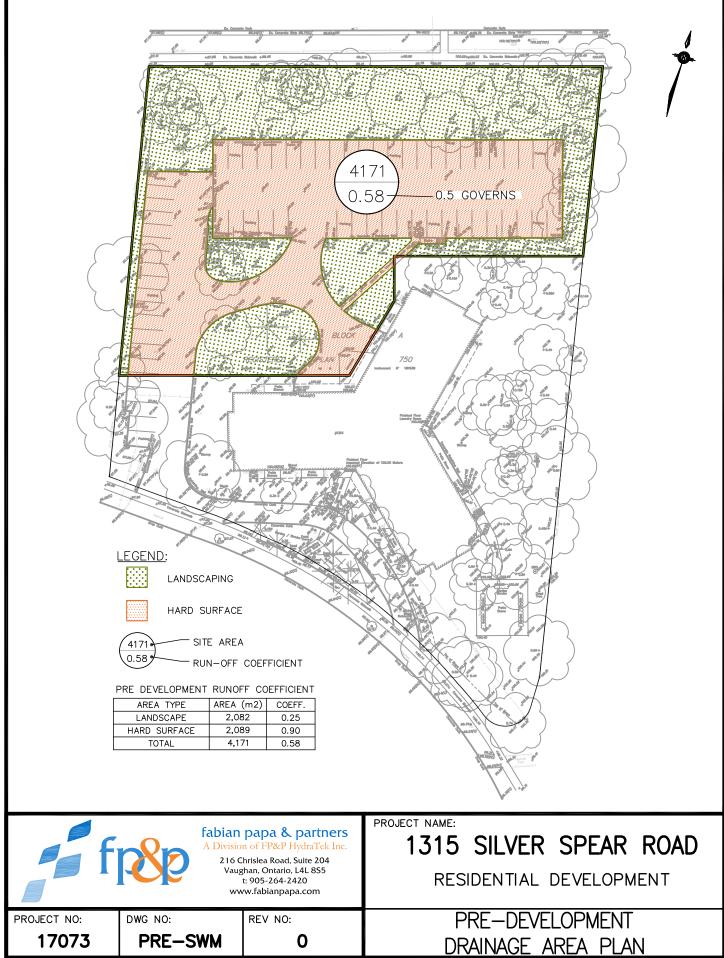
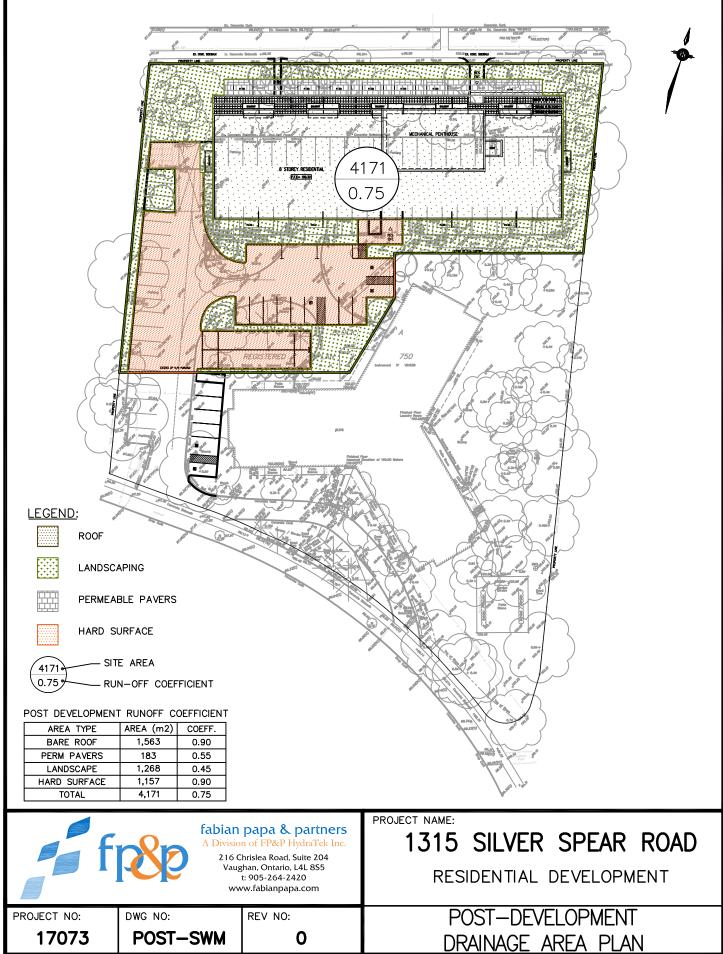




Figure 4.2 Existing Lake-Based Wastewater Collection System

APPENDIX E

	·						Relava	nt Desig	n Criter	ia:									
16 Chrislea Road, Suite 204, Vaughan, Ontario, Canada L4L 8S5 el: 905-264-2420 Fax: 905-264-2441 info@fabianpapa.com rww.fablanpapa.com					Minimum flow velocity = <u>0.75 m/s</u> Maximum flow velocity = <u>4.0 m/s</u> Storm Sewers to be designed to a 10-year storm Mannings = 0.013				Designed By: Jason Jenkins, P.Eng., P.E. Checked By: Paolo Albanese, P.Eng. File No.: 17073 Date: September 29, 2017										
Street	From MH	To MH	A (ha)	R	A x R	Accum. A x R	T _c (min)	l (mm/hr)	Q _{act} (I/s)	Size of Pipe (mm)	Slope (%)	Nominal Capacity Q _{cap} (L/s)	Full Flow Velocity (m/s)	Actual Flow Velocity (m/s)	Length (m)	Time in Sect. (min)	Total Time (min)	Q _{act} /Q _{cap}	Remarks
E DEVELOPMENT CON	DITIONS															[
2-YEAR			0.4171	0.58	0.240	0.240	15.0	59.9	39.9	11		1		610				1100	
5-YEAR		<u> </u>	0.4171	0.58	0.240	0.240	15.0	80.5	53.7				I _{2-year} =	610 (T+4.6) ^{0.78}	= 59.8	9 mm/hr	I _{25-year} =	(T+4.6) ^{0.78}	= 113.89 mm/hr
10-YEAR			0.4171	0.58	0.240	0.240	15.0	99.2	66.1									. ,	
25-YEAR			0.4171	0.63	0.240	0.240	15.0	113.9	83.5				I _{5-year} =	(T+4.6) ^{0.78}	= 80.5	1 mm/hr	I _{50-year} =	1300 (T+4.7) ^{0.78}	= 127.13 mm/hr
50-YEAR			0.4171	0.69	0.288	0.288	15.0	127.1	101.7					1010		_ //		1450	
100-YEAR			0.4171	0.72	0.300	0.300	15.0	140.7	117.3				I _{10-year} =	1010 (T+4.6) ^{0.78}	= 99.1	7 mm/hr	I _{100-year} =	1450 (T+4.9) ^{0.78}	= 140.69 mm/hr
LOWABLE RELEASE RA	ATES (MAX (50 RUNO	FF COFF	FICIENT	·)														
2-YEAR			0.4171	0.50	0.209	0.209	15.0	59.9	34.7										
5-YEAR			0.4171	0.50	0.209	0.209	15.0	80.5	46.6										
10-YEAR			0.4171	0.50	0.209	0.209	15.0	99.2	57.4										
25-YEAR			0.4171	0.55	0.229	0.229	15.0	113.9	72.6										
50-YEAR			0.4171	0.60	0.250	0.250	15.0	127.1	88.4										
100-YEAR			0.4171	0.63	0.261	0.261	15.0	140.7	101.9										
ST DEVELOPMENT CC		No Attenua	tion)																
2-YEAR			0.4171	0.75	0.312	0.312	15.0	59.9	51.9					<u> </u>					
5-YEAR			0.4171	0.75	0.312	0.312	15.0	80.5	69.8					1 1					
10-YEAR			0.4171	0.75	0.312	0.312	15.0	99.2	85.9										
25-YEAR			0.4171	0.82	0.343	0.343	15.0	113.9	108.6										
50-YEAR			0.4171	0.90	0.374	0.374	15.0	127.1	132.2										
100-YEAR			0.4171	0.93	0.390	0.390	15.0	140.7	152.4										
ST DEVELOPMENT CC	DNDITIONS (With Atten	uation)			Depth	L	Orifice						<u> </u>					
2-YEAR					d=	0.2640	k=0.6	180	28.2										
5-YEAR					d=	0.5441	k=0.6	180	45.6										
10-YEAR					d=	0.7228	k=0.6	180	53.8										
25-YEAR					d=	0.8735	k=0.6	180	59.9										
50-YEAR						1.0150	k=0.6	180	65.0										
100-YEAR	-				d=	1.1651	k=0.6	180	70.1										
	N	I								11		I	l	I I		I	I		
ORM SERVICE DESIGN									50.0	200	1.00%	96.7	1.37	1.40	1.0	0.0	10.0	56%	
ORM SERVICE DESIGN Storm Service 1	Tank	STC	C	ontrolled	10-year S	STIM TIOW			53.8	300	1.00%	90.7	1.37	1.40	1.0	0.0	10.0	50%	
TORM SERVICE DESIGN Storm Service 1 Storm Service 2		STC MH1	C	ontrolled	10-year S	STIM TIOW			53.8	300	1.00%	96.7 96.7	1.37	1.40	20.0	0.0	10.0	56%	

City of Mississauga STORM SEWER DESIGN SHEET

1315 Silver Spear Road

Stormwater Management Storage Calculations using Rational Method City of Mississauga

2-year Storm			610	
		I _{2-year} =	(T+4.6) ^{0.78}	= 59.89 mm/hr
Project No.	17073		Site Area (ha) =	0.4171
Analysis By:		Wei	ghed Runoff Coefficient =	0.576
	September 26, 2017		Peak Discharge (L/s) =	28.21
Time (min)	Intensity (mm/hr)	Q-100 (L/s)	Q-stored (L/s)	Storage Vol. (m ³)
0	0.0	0.000	0.000	0.000
15	59.9	39.938	11.731	10.558
20	50.2	33.452	5.245	6.294
30	38.4	25.637	0.000	0.000
40	31.5	21.031	0.000	0.000
50	26.9	17.961	0.000	0.000
60	23.6	15.753	0.000	0.000
70	21.1	14.080	0.000	0.000
80	19.1	12.764	0.000	0.000
90	17.5	11.699	0.000	0.000
100	16.2	10.817	0.000	0.000
110	15.1	10.074	0.000	0.000
120	14.2	9.437	0.000	0.000
130	13.3	8.886	0.000	0.000
140	12.6	8.403	0.000	0.000
150	12.0	7.976	0.000	0.000
160	11.4	7.595	0.000	0.000
170	10.9	7.254	0.000	0.000
180	10.4	6.945	0.000	0.000
190	10.0	6.665	0.000	0.000
200	9.6	6.410	0.000	0.000
210	9.3	6.176	0.000	0.000
220	8.9	5.960	0.000	0.000
230	8.6	5.761	0.000	0.000
240	8.4	5.576	0.000	0.000
250	8.1	5.405	0.000	0.000
260	7.9	5.245	0.000	0.000
270	7.6	5.095	0.000	0.000
280	7.4	4.955	0.000	0.000
290	7.2	4.823	0.000	0.000
300	7.0	4.699	0.000	0.000
310	6.9	4.582	0.000	0.000
320	6.7	4.472	0.000	0.000
330	6.5	4.367	0.000	0.000
340	6.4	4.268	0.000	0.000
350	6.3	4.174	0.000	0.000
360	6.1	4.084	0.000	0.000

Volume Required (cu.m) =	10.6
Volume Provided (cu.m) =	10.6
HGL Depth (m) =	0.26
Orifice Size (mm) =	180

0

Stormwater Management Storage Calculations using Rational Method City of Mississauga

5-year Storm			820	
		I _{5-year} =	(T+4.6) ^{0.78}	= 80.51 mm/hr
Project No.	17073		Site Area (ha) =	0.4171
Analysis By:	Jason Jenkins	Wei	ghed Runoff Coefficient =	0.748
	September 26, 2017		Peak Discharge (L/s) =	45.58
Time (min)	Intensity (mm/hr)	Q-100 (L/s)	Q-stored (L/s)	Storage Vol. (m ³)
0	0.0	0.000	0.000	0.000
15	80.5	69.759	24.184	21.766
20	67.4	58.429	12.854	15.425
30	51.7	44.780	0.000	0.000
40	42.4	36.735	0.000	0.000
50	36.2	31.373	0.000	0.000
60	31.8	27.516	0.000	0.000
70	28.4	24.594	0.000	0.000
80	25.7	22.295	0.000	0.000
90	23.6	20.435	0.000	0.000
100	21.8	18.894	0.000	0.000
110	20.3	17.595	0.000	0.000
120	19.0	16.484	0.000	0.000
130	17.9	15.521	0.000	0.000
140	16.9	14.677	0.000	0.000
150	16.1	13.931	0.000	0.000
160	15.3	13.266	0.000	0.000
170	14.6	12.670	0.000	0.000
180	14.0	12.131	0.000	0.000
190	13.4	11.642	0.000	0.000
200	12.9	11.196	0.000	0.000
210	12.4	10.787	0.000	0.000
220	12.0	10.410	0.000	0.000
230	11.6	10.062	0.000	0.000
240	11.2	9.740	0.000	0.000
250	10.9	9.440	0.000	0.000
260	10.6	9.161	0.000	0.000
270	10.3	8.900	0.000	0.000
280	10.0	8.655	0.000	0.000
290	9.7	8.425	0.000	0.000
300	9.5	8.208	0.000	0.000
310	9.2	8.004	0.000	0.000
320	9.0	7.811	0.000	0.000
330	8.8	7.628	0.000	0.000
340	8.6	7.455	0.000	0.000
350	8.4	7.291	0.000	0.000
360	8.2	7.134	0.000	0.000
1				

Volume Required (cu.m) =	21.8
Volume Provided (cu.m) =	21.8
HGL Depth (m) =	0.54
Orifice Size (mm) =	180

D

Stormwater Management Storage Calculations using Rational Method City of Mississauga

10-year Storm			1010	
		I _{10-year} =	(T+4.6) ^{0.78}	= 59.89 mm/hr
Project No.	17073		Site Area (ha) =	0.4171
Analysis By:	Jason Jenkins	Wei	ghed Runoff Coefficient =	0.748
Last Revised:			Peak Discharge (L/s) =	53.80
Time (min)	Intensity (mm/hr)	Q-100 (L/s)	Q-stored (L/s)	Storage Vol. (m ³)
0	0.0	0.000	0.000	0.000
15	99.2	85.923	32.125	28.912
20	83.1	71.968	18.170	21.804
30	63.7	55.156	1.357	2.443
40	52.2	45.247	0.000	0.000
50	44.6	38.642	0.000	0.000
60	39.1	33.891	0.000	0.000
70	35.0	30.292	0.000	0.000
80	31.7	27.461	0.000	0.000
90	29.0	25.169	0.000	0.000
100	26.9	23.272	0.000	0.000
110	25.0	21.672	0.000	0.000
120	23.4	20.303	0.000	0.000
130	22.1	19.117	0.000	0.000
140	20.9	18.077	0.000	0.000
150	19.8	17.159	0.000	0.000
160	18.9	16.340	0.000	0.000
170	18.0	15.605	0.000	0.000
180	17.2	14.942	0.000	0.000
190	16.5	14.340	0.000	0.000
200	15.9	13.790	0.000	0.000
210	15.3	13.286	0.000	0.000
220	14.8	12.822	0.000	0.000
230	14.3	12.394	0.000	0.000
240	13.8	11.997	0.000	0.000
250	13.4	11.628	0.000	0.000
260	13.0	11.284	0.000	0.000
270	12.7	10.962	0.000	0.000
280	12.3	10.660	0.000	0.000
290	12.0	10.377	0.000	0.000
300	11.7	10.110	0.000	0.000
310	11.4	9.859	0.000	0.000
320	11.1	9.621	0.000	0.000
330	10.8	9.396	0.000	0.000
340	10.6	9.183	0.000	0.000
350	10.4	8.980	0.000	0.000
360	10.1	8.787	0.000	0.000

Volume Required (cu.m) =	28.9
Volume Provided (cu.m) =	28.9
HGL Depth (m) =	0.72
Orifice Size (mm) =	180

Stormwater Management Storage Calculations using Rational Method City of Mississauga

year Storm		I _{25-year} =	1160	= 113.89 mm/hr
	47070	20 9007	(T+4.6) ^{0.78}	0.4474
Project No.	17073		Site Area (ha) =	0.4171
Analysis By:		vvei	ghed Runoff Coefficient =	0.748
Last Revised:	•		Peak Discharge (L/s) =	59.86
Time (min)	Intensity (mm/hr)	Q-100 (L/s)	Q-stored (L/s)	Storage Vol. (m ³)
0	0.0	0.000	0.000	0.000
15	113.9	98.684	38.822	34.940
20	95.4	82.656	22.794	27.353
30	73.1	63.347	3.485	6.273
40	60.0	51.967	0.000	0.000
50	51.2	44.381	0.000	0.000
60	44.9	38.925	0.000	0.000
70	40.2	34.791	0.000	0.000
80	36.4	31.540	0.000	0.000
90	33.4	28.908	0.000	0.000
100	30.8	26.728	0.000	0.000
110	28.7	24.891	0.000	0.000
120	26.9	23.319	0.000	0.000
130	25.3	21.956	0.000	0.000
140	24.0	20.762	0.000	0.000
150	22.7	19.707	0.000	0.000
160	21.7	18.767	0.000	0.000
170	20.7	17.923	0.000	0.000
180	19.8	17.161	0.000	0.000
190	19.0	16.469	0.000	0.000
200	18.3	15.838	0.000	0.000
210	17.6	15.259	0.000	0.000
220	17.0	14.727	0.000	0.000
230	16.4	14.235	0.000	0.000
240	15.9	13.779	0.000	0.000
250	15.4	13.355	0.000	0.000
260	15.0	12.959	0.000	0.000
270	14.5	12.590	0.000	0.000
280	14.1	12.243	0.000	0.000
290	13.8	11.918	0.000	0.000
300	13.4	11.612	0.000	0.000
310	13.1	11.323	0.000	0.000
320	12.8	11.050	0.000	0.000
330	12.5	10.791	0.000	0.000
340	12.2	10.546	0.000	0.000
350	11.9	10.314	0.000	0.000
360	11.6	10.092	0.000	0.000

Volume Required (cu.m) =	34.9
Volume Provided (cu.m) =	34.9
HGL Depth (m) =	0.87
Orifice Size (mm) =	180

0

Stormwater Management Storage Calculations using Rational Method City of Mississauga

year Storm		I _{50-year} =	1300 (T+4.7) ^{0.78}	= 127.13 mm/hr
Project No.	17073	,	Site Area (ha) =	0.4171
Analysis By:		14/~:	ghed Runoff Coefficient =	0.748
Last Revised:		vvei		65.04
		0.400 (1.4.)	Peak Discharge (L/s) =	
Time (min)	Intensity (mm/hr)	Q-100 (L/s)	Q-stored (L/s)	Storage Vol. (m ³)
0	0.0	0.000	0.000	0.000
15	127.1	110.156	45.112	40.601
20	106.6	92.339	27.295	32.754
30	81.7	70.833	5.789	10.419
40	67.1	58.137	0.000	0.000
50	57.3	49.666	0.000	0.000
60	50.3	43.570	0.000	0.000
70	45.0	38.949	0.000	0.000
80	40.8	35.314	0.000	0.000
90	37.4	32.370	0.000	0.000
100	34.5	29.932	0.000	0.000
110	32.2	27.876	0.000	0.000
120	30.1	26.117	0.000	0.000
130	28.4	24.591	0.000	0.000
140	26.8	23.255	0.000	0.000
150	25.5	22.074	0.000	0.000
160	24.3	21.022	0.000	0.000
170	23.2	20.077	0.000	0.000
180	22.2	19.224	0.000	0.000
190	21.3	18.450	0.000	0.000
200	20.5	17.743	0.000	0.000
210	19.7	17.095	0.000	0.000
220	19.0	16.498	0.000	0.000
230	18.4	15.947	0.000	0.000
240	17.8	15.437	0.000	0.000
250	17.3	14.962	0.000	0.000
260	16.8	14.519	0.000	0.000
270	16.3	14.105	0.000	0.000
280	15.8	13.717	0.000	0.000
290	15.4	13.353	0.000	0.000
300	15.0	13.010	0.000	0.000
310	14.6	12.686	0.000	0.000
320	14.3	12.380	0.000	0.000
330	14.0	12.091	0.000	0.000
340	13.6	11.816	0.000	0.000
350	13.3	11.556	0.000	0.000
360	13.1	11.308	0.000	0.000

Volume Required (cu.m) =	40.6
Volume Provided (cu.m) =	40.6
HGL Depth (m) =	1.02
Orifice Size (mm) =	180

LIND

Stormwater Management Storage Calculations using Rational Method City of Mississauga

100-year Storm			1450	
		I _{100-year} =	(T+4.9) ^{0.78}	= 140.69 mm/hr
Project No.	17073		Site Area (ha) =	0.4171
Analysis By:	Jason Jenkins	Wei	ghed Runoff Coefficient =	0.748
Last Revised:	September 26, 2017		Peak Discharge (L/s) =	70.12
Time (min)	Intensity (mm/hr)	Q-100 (L/s)	Q-stored (L/s)	Storage Vol. (m ³)
0	0.0	0.000	0.000	0.000
15	140.7	121.902	51.780	46.602
20	118.1	102.348	32.227	38.672
30	90.8	78.652	8.531	15.356
40	74.6	64.619	0.000	0.000
50	63.8	55.239	0.000	0.000
60	56.0	48.480	0.000	0.000
70	50.0	43.353	0.000	0.000
80	45.4	39.316	0.000	0.000
90	41.6	36.045	0.000	0.000
100	38.5	33.336	0.000	0.000
110	35.8	31.050	0.000	0.000
120	33.6	29.094	0.000	0.000
130	31.6	27.397	0.000	0.000
140	29.9	25.911	0.000	0.000
150	28.4	24.597	0.000	0.000
160	27.0	23.425	0.000	0.000
170	25.8	22.374	0.000	0.000
180	24.7	21.424	0.000	0.000
190	23.7	20.562	0.000	0.000
200	22.8	19.775	0.000	0.000
210	22.0	19.053	0.000	0.000
220	21.2	18.389	0.000	0.000
230	20.5	17.776	0.000	0.000
240	19.9	17.207	0.000	0.000
250	19.2	16.678	0.000	0.000
260	18.7	16.185	0.000	0.000
270	18.1	15.724	0.000	0.000
280	17.6	15.292	0.000	0.000
290	17.2	14.886	0.000	0.000
300	16.7	14.504	0.000	0.000
310	16.3	14.143	0.000	0.000
320	15.9	13.802	0.000	0.000
330	15.6	13.480	0.000	0.000
340	15.2	13.174	0.000	0.000
350	14.9	12.883	0.000	0.000
360	14.6	12.607	0.000	0.000

Volume Required (cu.m) =	46.6
Volume Provided (cu.m) =	46.6
HGL Depth (m) =	1.17
Orifice Size (mm) =	180

1315 Silver Spear Drive Runoff Coefficients, Water Quality, and Water Balance City of Mississauga

Designed By: Jason Jenkins, P.Eng., P.E. Checked By: Paolo Albanese, P.Eng. File No.: 17026 Date: September 25, 2017

RUN-OFF COEFFICIENT (Post Development)

Bare Roof	1563.0	37.5%	0.90	0.34
Perm Pavers	183.0	4.4%	0.55	0.02
Landscaping	1268.0	30.4%	0.45	0.14
Hard Surface	1157.0	27.7%	0.90	0.25
	4171.0	100%		0.75

WATER QUALITY (Post Development) - NO TREATMENT						
% TSS Overall						
Bare Roof	1563.0	37.5%	95	35.6		
Perm Pavers	183.0	4.4%	80	3.5		
Landscaping	1268.0	30.4%	100	30.4		
Hard Surface	1157.0	27.7%	0	0.0		
	4171.0	100%		69.5		

Does not not meet 80% TSS Removal without treatment.

WATER QUALITY (Post Development) - WITH TREATMENT							
	% TSS Overall						
Bare Roof	1563.0	37.5%	95	35.6			
Perm Pavers	183.0	4.4%	80	3.5			
Landscaping	1268.0	30.4%	100	30.4			
Hard Surface 1157.0 27.7% 50 13							
	4171.0	100%		83.4			

Meets 80% TSS Removal.

WATER BALANCE (Post Development)					
Initial Abstraction	on		mm	Overall	
Bare Roof	1563.0	37.5%	1	0.37	
Perm Pavers	183.0	4.4%	5	0.22	
Landscaping	1268.0	30.4%	5	1.52	
Hard Surface	1157.0	27.7%	1	0.28	
	4171.0	100%		2.39	
Required Water	5.00				
Required Rain H	2.61				
Required Rain H	larvesting T	ank (cu.m)		10.9	

Area of SWM Tank =	40.0	m2
Depth of Storage (sump below orifice) =	0.30	m
Storage Volume Provided =	12.0	m3

Detailed Stormceptor Sizing Report – Silver Spear Rd

Project Information & Location				
Project Name	Ne Silver Spear Rd Project Number 4621			
City	Mississauga	State/ Province	Ontario	
Country	Canada	Date	9/13/2017	
Designer Information		EOR Information (optional)		
Name	HAL STRATFORD	Name Jason J		
Company	FORTERRA	Company Fabian Papa		
Phone #	226-220-3943	Phone #		
Email	hal.stratford@forterrabp.com	Email		

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	
Recommended Stormceptor Model	STC 750
Target TSS Removal (%)	80.0
TSS Removal (%) Provided	83
PSD	Fine Distribution
Rainfall Station	TORONTO CENTRAL

The recommended Stormceptor model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary					
Stormceptor Model	% TSS Removal Provided	% Runoff Volume Captured Provided			
STC 300	74	90			
STC 750	83	96			
STC 1000	84	96			
STC 1500	85	96			
STC 2000	87	98			
STC 3000	89	98			
STC 4000	91	99			
STC 5000	92	99			
STC 6000	93	100			
STC 9000	95	100			
STC 10000	95	100			
STC 14000	96	100			
StormceptorMAX	Custom	Custom			

Stormceptor Detailed Sizing Report - Page 1 of 8

The Stormceptor oil and sediment separator is sized to treat stormwater runoff by removing pollutants through gravity separation and flotation. Stormceptor's patented design generates positive TSS removal for each rainfall event, including large storms. Significant levels of pollutants such as heavy metals, free oils and nutrients are prevented from entering natural water resources and the re-suspension of previously captured sediment (scour) does not occur. Stormceptor provides a high level of TSS removal for small frequent storm events that represent the majority of annual rainfall volume and pollutant load. Positive treatment continues for large infrequent events, however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load.

Design Methodology

Stormceptor is sized using PCSWMM for Stormceptor, a continuous simulation model based on US EPA SWMM. The program calculates hydrology using local historical rainfall data and specified site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to achieve a defined water quality objective. The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load. The Stormceptor's unit process for TSS removal is settling. The settling model calculates TSS removal by analyzing:

- Site parameters
- Continuous historical rainfall data, including duration, distribution, peaks & inter-event dry periods
- Particle size distribution, and associated settling velocities (Stokes Law, corrected for drag)
- TSS load
- Detention time of the system

Hydrology Analysis

PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of Stormceptor are based on the average annual removal of TSS for the selected site parameters. The Stormceptor is engineered to capture sediment particles by treating the required average annual runoff volume, ensuring positive removal efficiency is maintained during each rainfall event, and preventing negative removal efficiency (scour). Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section.

Rainfall Station				
State/Province	Ontario	Total Number of Rainfall Events	3329	
Rainfall Station Name	TORONTO CENTRAL	Total Rainfall (mm)	13189.2	
Station ID #	0100	Average Annual Rainfall (mm)	732.7	
Coordinates	45°30'N, 90°30'W	Total Evaporation (mm)	1025.3	
Elevation (ft)	328	Total Infiltration (mm)	2757.0	
Years of Rainfall Data	18	Total Rainfall that is Runoff (mm)	9406.9	

Notes

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.

• For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

150.0

400.0

2000.0

2.20

2.65

2.65

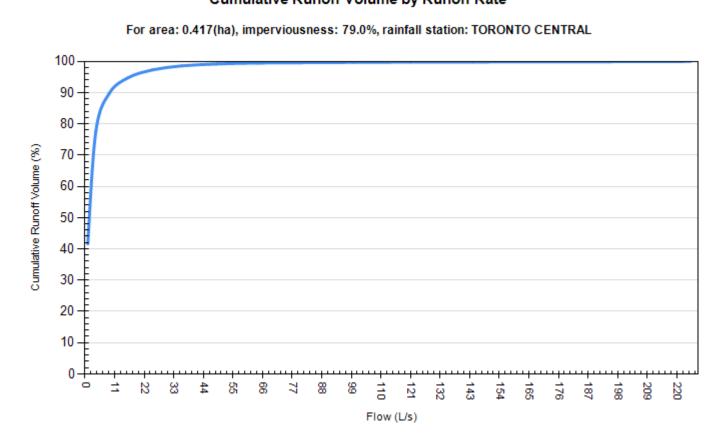
Drainage Area		Up Stream Storage		_		
Total Area (ha)	0.417	Storage	(ha-m) Discharge (cms		rge (cms)	
Imperviousness %	79.0	0.00	0.000 0.000		000	
Water Quality Objectiv	ve	Up Stream Flow Diversion		on		
TSS Removal (%)	80.0	Max. Flo	w to Stormce	ptor (cms)	0.00000	
Runoff Volume Capture (%)	90.00		Desi	gn Details		
Oil Spill Capture Volume (L)		Stormcer	otor Inlet Inve	rt Elev (m)		
Peak Conveyed Flow Rate (L/s)		Stormcep	tor Outlet Inve	ert Elev (m)		
Water Quality Flow Rate (L/s)		Storm	ceptor Rim E	lev (m)		
Normal Water Level Elevation (m)						
		Pip	pe Diameter (r	nm)		
			Pipe Materia	l		
		Μι	ultiple Inlets ()	(/N)	No	
		C	Grate Inlet (Y/I	N)	No	
	Particle Size D	istribution (P	PSD)			
as metals, hydrocarbons ar	Removing the smallest fraction of particulates from runoff ensures the majority of pollutants, such as metals, hydrocarbons and nutrients are captured. The table below identifies the Particle Size Distribution (PSD) that was selected to define TSS removal for the Stormceptor design.					
	Fine Di	istribution				
Particle Diameter (microns)	Distribut %	Distribution Specific Gravity				
20.0	20.0			1.30		
60.0	20.0			1.80		

Stormceptor Detailed Sizing Report - Page 3 of 8

20.0

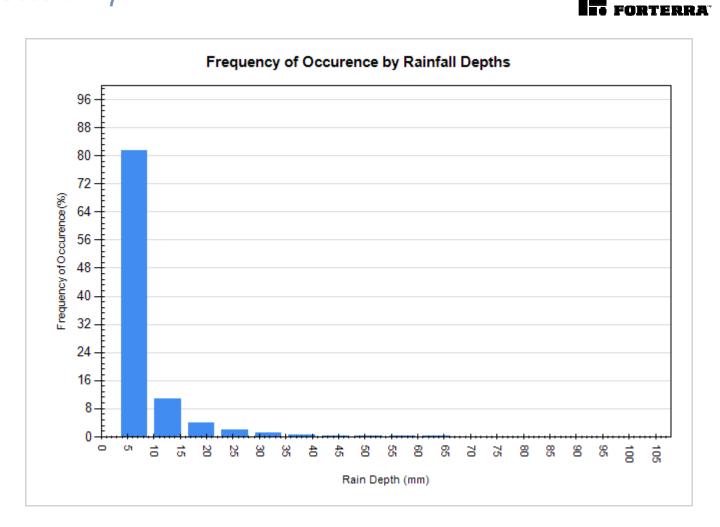
20.0

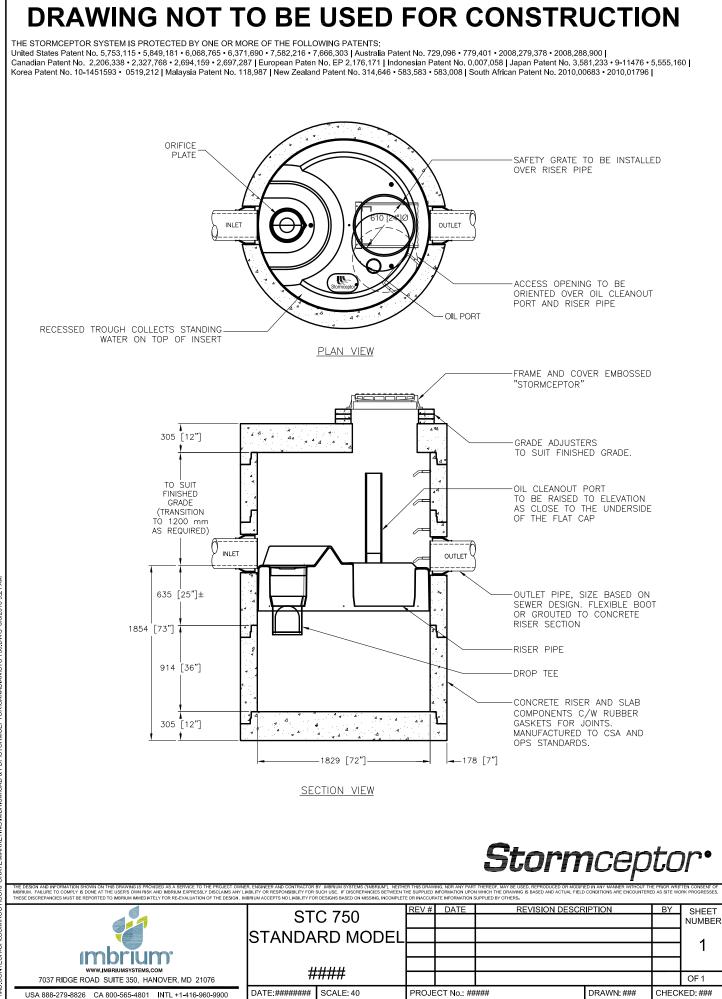
20.0


Site Name					
Site Details					
Drainage Area	Drainage Area Infiltration Parameters				
Total Area (ha)	0.417	Horton's equation is used to estimate	infiltration		
Imperviousness %	79.0	Max. Infiltration Rate (mm/hr)	61.98		
Surface Characteristics	5	Min. Infiltration Rate (mm/hr)	10.16		
Width (m)	129.00	Decay Rate (1/sec)	0.00055		
Slope %	2	Regeneration Rate (1/sec)	0.01		
Impervious Depression Storage (mm)	0.508	Evaporation			
Pervious Depression Storage (mm)	5.08	Daily Evaporation Rate (mm/day)	2.54		
Impervious Manning's n	0.015	Dry Weather Flow			
Pervious Manning's n	0.25	Dry Weather Flow (lps) 0			
Maintenance Frequency	y	Winter Months			
Maintenance Frequency (months) >	12	Winter Infiltration	0		
	TSS Loading	Parameters			
TSS Loading Function		Build Up/ Wash-off			
Buildup/Wash-off Parame	eters	TSS Availability Paramete	ers		
Target Event Mean Conc. (EMC) mg/L	125	Availability Constant A	0.05		
Exponential Buildup Power	0.40	Availability Factor B	0.04		
Exponential Washoff Exponent	0.20	Availability Exponent C	1.10		
	Min. Particle Size Affected by Availability 400 (micron)				

FORTERRA
EVALENA

Cumulative Runoff Volume by Runoff Rate				
Runoff Rate (L/s)	Runoff Volume (m ³)	Volume Over (m ³)	Cumulative Runoff Volume (%)	
1	16456	23101	41.6	
4	30712	8845	77.6	
9	35524	4033	89.8	
16	37487	2069	94.8	
25	38480	1077	97.3	
36	38989	567	98.6	
49	39256	300	99.2	
64	39363	193	99.5	
81	39404	152	99.6	
100	39437	120	99.7	
121	39460	96	99.8	
144	39481	75	99.8	
169	39504	53	99.9	
196	39528	28	99.9	
225	39549	8	100.0	




Cumulative Runoff Volume by Runoff Rate

Rainfall Event Analysis				
Rainfall Depth (mm)	No. of Events	Percentage of Total Events (%)	Total Volume (mm)	Percentage of Annual Volume (%)
6.35	2711	81.4	3900	29.6
12.70	356	10.7	3266	24.8
19.05	127	3.8	1991	15.1
25.40	62	1.9	1346	10.2
31.75	32	1.0	905	6.9
38.10	16	0.5	541	4.1
44.45	8	0.2	334	2.5
50.80	11	0.3	519	3.9
57.15	2	0.1	106	0.8
63.50	2	0.1	120	0.9
69.85	0	0.0	0	0.0
76.20	0	0.0	0	0.0
82.55	1	0.0	77	0.6
88.90	1	0.0	85	0.6
95.25	0	0.0	0	0.0
101.60	0	0.0	0	0.0



For Stormceptor Specifications and Drawings Please Visit: http://www.imbriumsystems.com/technical-specifications

AD.CONTECH-CPI COMIROOTICORPORATEMARKETINGIIMBRIUMICAD & PDFISTORMCEPTORICANADIANISTC 750 DWG 8/8/2016 9:21 AM

A-1 - Watershed Boundaries

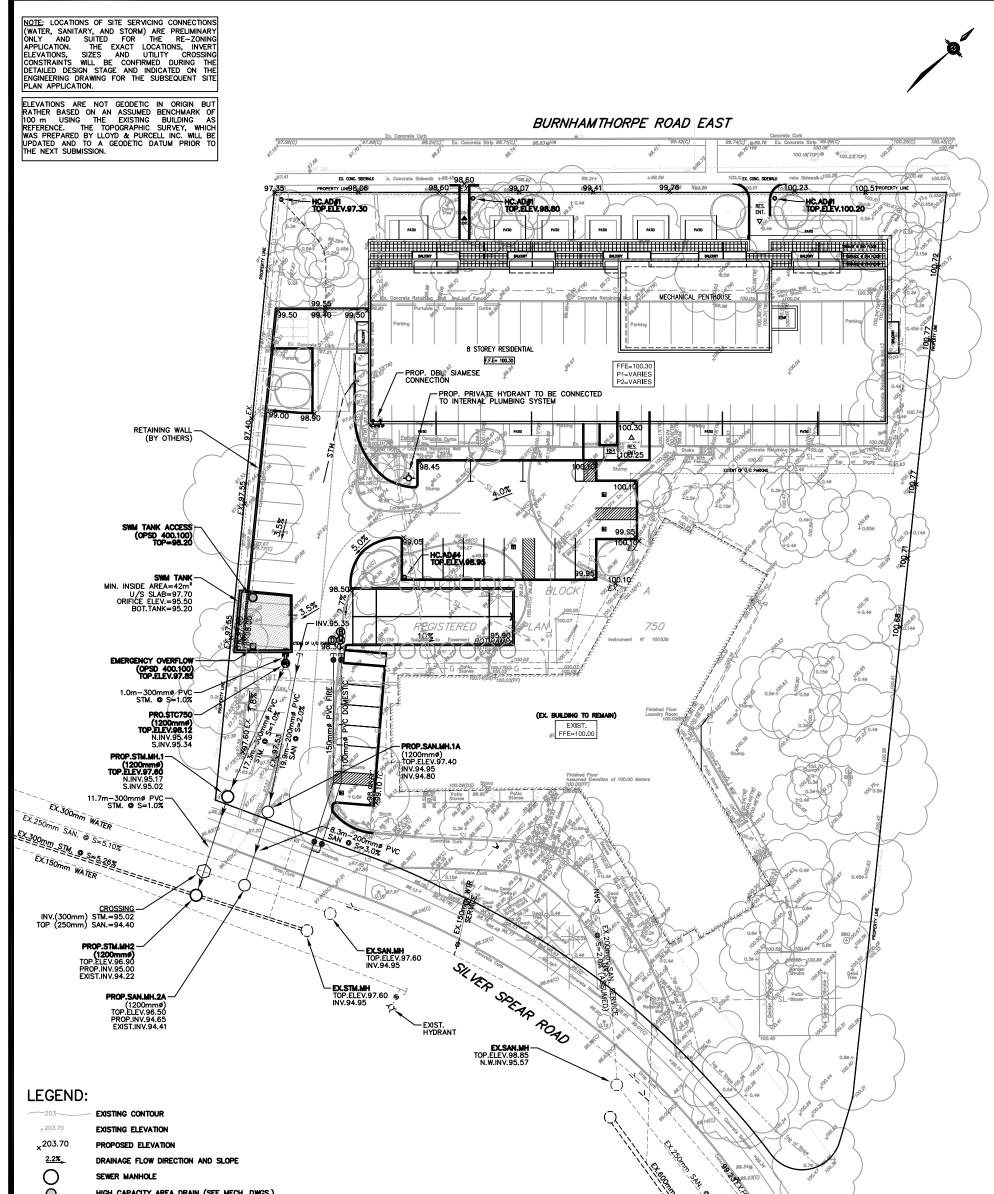

Development Requirements Manual Effective September 2016

TABLE 2.01.03.03b: STORMWATER QUANTITY CONTROL REQUIREMENTS Note 1: In all cases, the storm sewer capacity constraints may govern

- Note 2: Where "pre-development" is listed as part of the requirement, it is implied as raw land for which the run-off co-efficient=0.25 but will not exceed 0.50 for a site that may already be developed
- Note 3: CVC-Credit Valley Conservation, TRCA-Toronto Region Conservation Authority, CH-Conservation Halton

Subwatershed Name (Conservation Authority)	Quantity Control Criteria	References & Notes		
Etobicoke Creek -	Provide post to pre control for all storms	Hydrologic Model: VISUAL OTTHYMO-Return period peak flows based on the AES - 12 hour design storm		
West Branch (TRCA)	(i.e. 2,5,10,25,50 & 100 year) using unit rates	Hydrology Study:Etobicoke Creek Hydrology Update (MMM Group, 2013)		
Fletcher's Creek (CVC)	No control required	Fletchers Creek Subwatershed Study Report (Paragon Engineering Limited, 1996)		
	in the City of Mississauga	Subwatershed Management Strategy and Implementation Plan (AMEC Earth & Environmental, 2012)		
Joshua Creek (CH)	100 Year Post to 2 Year Pre-development Control	Commentary from Conservation Halton in lieu of 1992 Watershed Plan		
Kenollie Creek (CVC)	10 Year Post to 2 Year Pre-development Control	-		
Lakeside Creek (CVC)	100 Year Post to 2 Year Pre-development Control	Southdown District Master Drainage Plan (Totten Sims Hubicki, 2000)		
Levi Creek (CVC)		Hydrologic Model: GAWSER Model-Return period peak flows based on 24 hour SCS Type II distribution		
	Provide post to pre control for all storms (i.e. 2,5,10,25,50 & 100 year) & Regional Storm	Gateway West Subwatershed Study (Gartner Lee Limited & Cosburn Patterson Mather, 1999)		
		Gateway West Subwatershed Study Update by Kidd Consulting (Update in Progress)		
Little Etobicoke Creek (TRCA)	Provide post to pre control for all storms (i.e. 2,5,10,25,50 & 100 year) using unit rates	Hydrologic Model: VISUAL OTTHYMO-Return period peak flows based on the AES - 12 hour design storm		
		Hydrology Study:Etobicoke Creek Hydrology Update (MMM Group, 2013)		
Lornewood Creek (CVC)	100 Year Post to 2 Year Pre-development Control	-		

APPENDIX F

Image: With the second seco	CK VALVE ASSEMBLY MP PUMP FOR SAN. ND VALVE) X SURB / CURB CUT NE ST FLOOR ELEVATION ELEVATION VVERLAND FLOW ICE ERVICE				(IST. IDRANT
		papa & partners	PROJECT NAME: 1315 SILVER SPEAR ROAD	DWN. BY:	JMJ
A Division of FP&P HydraTek Inc. 216 Chrislea Road, Suite 204 Vaughan, Ontario, L4L 855 t: 905-264-2420 www.fabianpapa.com			ISTS SILVER SPEAK ROAD		r: JMJ
		nan, Ontario, L4L 8S5 : 905-264-2420	RESIDENTIAL DEVELOPMENT	CHECKED BY	· PFA
		w.rabianpapa.com	DRAWING TITLE:	SCALE:	1:500
PROJECT NO:	DWG NO:	REV NO:	SITE SERVICING AND GRADING EXHIBIT	DATE:	SEPT. 2017
17073	SSG-1	0		SHEET NO:	1 OF 1

H:\FP&P HydraTek\Projects\2017\17073 - 1315 Silver Spear, Mississauga\Drawings\Re-Zoning\Revision 0\17073 - Civil Engineering Plans (Revision 0).dwg (Oct 04, 2017 - 6:24pm)