

NYX CAPITAL CORP. 51-57 TANNERY STREET AND 208 EMBY DRIVE CITY OF MISSISSAUGA

SERVICING AND STORMWATER MANAGEMENT BRIEF

LEA Project No. 18038

June 8, 2018

Table of Contents

1		INTRODUCTION	1
	1.1	Scope of the SWM and Servicing Report	. 1
	1.2	Site Location	. 1
	1.3	Stormwater Management Plan Objectives	.1
	1.4	SWM Design Criteria – Credit Valley Conservation Authority	1
2		EXISTING CONDITIONS	2
	2.1	General	2
	2.2	Rainfall Information	.3
	2.3	Peak Flow Rates under Existing Condition	. 4
3		POST-DEVELOPMENT CONDITIONS	4
	3.1	General	4
	3.2	Peak Flow Rates under Proposed Condition	.5
	3.3	Impact on Water Environment	6
4		PROPOSED SWM PLAN – SUB-CATCHMENT C1	6
	4.1	Water Balance Requirement	.6
	4.2	Water Quantity Control Requirement	7
	4.3	Water Quality Control Requirement	. 7
	4.4	Erosion and Sediment Control during Construction	. 8
5		SITE SERVICING	8
	5.1	Existing Municipal Services	. 8
	5.2	Proposed MUNICIPAL ServiceS ON EMBY DRIVE EXTENSION	.9
	5.3	Proposed Site Service Connections	9
	5.4	Adequacy of Existing Municipal Services	10
6		CONCLUSIONS	10

List of Tables and Figures

TABLE 1: PRE-DEVELOPMENT RUNOFF COEFFICIENT	3
TABLE 2: RAINFALL PARAMETERS	1
TABLE 3: PRE-DEVELOPMENT PEAK FLOW RATES (L/s)	1
TABLE 4: LAND-USE AREA BREAKDOWN	5
TABLE 5: POST-DEVELOPMENT PEAK FLOW RATES (L/s)	ć
TABLE 6: KEY HYDROLOGIC PARAMETERS	ć
TABLE 7: REQUIRED ON-SITE STORAGE VOLUMES (m ³)	7
TABLE 8: TTS REMOVAL ASSESSMENT SUB-CATCHMENT C1	3
TABLE 9: SITE SERVICING REQUIREMENT)

APPENDICES

- APPENDIX A Stormwater Peak Flow and Storage Calculation for Sub-Catchment Area C1
- APPENDIX B Stormwater Peak Flow Calculation for Sub-Catchment Area C2
- APPENDIX C Storm Sewers Calculations
- APPENDIX D Sanitary and Water Demand Calculations
- APPENDIX E Hydrant Flow Test data and Watermain Adequacy Assessment Data
- APPENDIX F Figures and Drawing

DRAWING (APPENDIX F)

- FIG-01 Existing Storm Drainage Area Plan
- FIG-02 Proposed Storm Drainage Area Plan
- DWG C-100 Preliminary Site Grading Plan
- DWG C-101 Preliminary Site Servicing Plan

1 INTRODUCTION

1.1 SCOPE OF THE SWM AND SERVICING REPORT

LEA Consulting Ltd has been retained by NYX Capital Corp. to prepare a Servicing and Stormwater Management Report for a residential development project at 51-57 Tannery Street and 208 Emby Drive in City of Mississauga. This stormwater management and servicing report shall:

- Examine the potential water quality and quantity impacts of the proposed townhouses and summarize how each will be addressed in accordance with the City of Mississauga and Credit Valley Conservation (CVC) stormwater management requirements.
- Review the existing water supply, storm and sanitary services, and propose a site servicing plan.

1.2 SITE LOCATION

The proposed development site is located at the southeast quadrant of Tannery Street and Canadian Pacific Railway (CPR) and bounded by Mullet Creek to the west - contributory to Credit River watershed (or sub-watershed #4, Mullet Creek), and under the jurisdiction of Credit Valley Conservation (CVC). Site access is via Tannery Street or Emby Drive.

The site is approximately 1.8 ha in area.

1.3 STORMWATER MANAGEMENT PLAN OBJECTIVES

The objectives of the stormwater management plan is to review the stormwater environment impact by the proposed residential development and address the City's requirements for stormwater quantity control and quality control as required.

1.4 SWM DESIGN CRITERIA – CREDIT VALLEY CONSERVATION AUTHORITY

Credit Valley Conservation Authority (CVC), in partnership with the Toronto and Region Conservation Authority, has issued the Storm Water Management Criteria (August 2012) to provide direction on how to manage rainfall and runoff inside CVC's jurisdiction. A summary of the storm water management criteria applied for this project, is provided below:

- Storm Water Quality Control Mullet Creek is classified as requiring an Enhanced level of protection (80% TSS removal) by CVC quality control criteria.
- Flood Control (Water Quantity Control) all storm events up to 100-year and Regional storm post-development peak flow to pre-development control is required by CVC within Mullet Creek Sub-watershed.
- Water Balance Control Maintain pre-development groundwater recharge rates and appropriate distribution ensuring the protection of related hydrologic and ecologic functions.
- Erosion Control On-site detention of 5mm within Mullet Creek sub-watershed.

2 EXISTING CONDITIONS

2.1 GENERAL

The existing site is bounded by Tannery Street to the north, CPR to the east, Mullet Creek to the west and existing industrial buildings to the south. The site consists of four single family houses and two industrial buildings, and has a soft landscaped area of 0.50 ha and a paved parking area of 0.56 ha. Figure 1 in Appendix F illustrates the existing storm drainage condition.

Storm Drainage of the Development Site (Catchment C1):

In general, the ground falls from the east (CPR) to the west (Mullet Creek). During rainfall events, rainfall runoff in the form of overland flow drains westerly within the development site, and outlets to the Mullet Creek. There is no existing minor storm sewer within the development site. The total drainage area is approximately 1.084 ha.

Storm Drainage of the Emby Drive Extension (Catchment C2):

During rainfall events, rainfall runoff in the form of overland flow drains westerly through the development site, and outlets to the Mullet Creek. There is no existing minor storm sewers within the future Emby Drive Extension area. The total drainage area is approximately 0.269 ha.

External Storm Drainage Areas:

- Both minor and major flows from the Catchment EC1 (CPR right-of-way) drain westerly across the railway through an 825mm CSP culvert and through the development site, and finally outlet to Mullet Creek. The total drainage area is approximately 0.120 ha.
- The minor flow from Catchment EC2 on both side of Emby Drive currently drains southerly to 300 mm dia. storm sewers under Emby Drive, 600mm dia. storm sewer on Thomas Street westerly, and finally outlets to Mullet Creek. The major flow (overland) travels southerly along Emby Drive, turns to Thomas Street westerly and outlets to Mullet Creek. The total drainage area is approximately 0.354 ha.
- Both minor and major flows from the Catchment EC3 (existing industrial area, right-of-ways of Broadway and Thomas Street) drain southerly and westerly, and outlets to Mullet Creek. The total drainage area is approximately 1.268 ha.
- Both minor and major flows from the Catchment C3 (CPR right-of-way and part of properties to the east) drain westerly across the railway through an 825mm CSP culvert and through the development site, and finally outlet to Mullet Creek. The total drainage area is approximately 0.425 ha.
- The minor flow from existing industrial area (Catchment C4) on both side of Pearl Street currently drains to 450 mm dia. storm sewers under Pearl Street westerly and Broadway Street northerly, discharges to the existing ditch on the east side of railway, flows westerly across the railway through an 825mm CSP culvert and through the development site, and finally outlets to Mullet Creek. The major flow (overland) travels westerly along Pearl Street, turns to Broadway

northerly and drains to Tannery Street. The total drainage area is approximately 2.83 ha.

• Both minor and major flows from the Catchment C5 (on both sides of Thomas Street, north of Emby Drive) drain westerly along Thomas Street across, and finally outlet to Mullet Creek. The total drainage area is approximately 3.39 ha.

Based on the land ownerships and proposed development scheme, the following sub-catchment areas are to be studied under pre- and post-development condition:

- C1 Proposed Condominium area;
- C2 Proposed Emby Drive Extension;
- C3 Railway sub-catchment area;
- C4 Pearl Street and Broadway Street sub-catchment area.

The existing storm drainage within sub-catchment EC1, EC2, EC3 and C5 will remain unchanged under the proposed condominium development.

The composite runoff coefficients of four sub-catchment areas are, as estimated in Appendices A, B and C, listed in Table 1.

Sub-catchment No	Catchment Description	Catchment Area (ha)	Runoff Coefficient
C1	Prop. Condominium Area	1.084	0.56
C2	Prop. Extension of Emby Dr.	0.269	0.66
C3	Ex. Railway Area	0.425	0.40
C4	Ex pearl St. and Broadway St.	2.830	0.45

TABLE 1: PRE-DEVELOPMENT RUNOFF COEFFICIENT

As shown in Table 1, the actual pre-development runoff coefficient is 0.56 and 0.66 for C1 and C2 respectively, however the maximum runoff coefficient of 0.50 will be considered under predevelopment condition in accordance with City's design criteria.

Based on our review of the topographic survey and site observation, there is no on-site stormwater management facility under existing condition.

2.2 RAINFALL INFORMATION

The rainfall intensity for the site was calculated using the following equation:

 $I = A / (T_c + B)^{0.78}$

Where; I = rainfall intensity in mm/hr,

T_c = time of concentration in minutes,

A, B = constant parameters (see below)

The parameters (A and B) recommended for use in the City of Mississauga are defined in City Standard Drawing No. 2111.010 and are summarized in Table 2.

TABLE 2: RAINFALL PARAMETERS

Return Period (Year)	2 - Yr	5 - Yr	10 - Yr	25 - Yr	50 - Yr	100 - Yr
А	610	820	1010	1160	1300	1450
В	4.6	4.6	4.6	4.6	4.7	4.9

An initial time of concentration, TC, of 15 minutes is recommended in the City's Development Requirements Manual.

2.3 PEAK FLOW RATES UNDER EXISTING CONDITION

Based on the existing site condition and rainfall parameters, the Rational Method is adopted to calculate peak flows at different design storm events upto 100-year storm.

As required by CVC, the Regional Flood flow shall be considered in Stormwater quantity control. For each sub-catchment, a 24-hour SCS type II distribution is modeled utilizing the Visual Otthymo V5.0 program.

The calculated peak flow rates for the four sub-catchment areas in the pre-development condition are summarized below in Table 3. Detailed calculations are provided in Appendices A, B and C.

	Cult Catalans and	Return Period (Year)				
Sub-catchment No	Sub-Catchment	2 - Yr	10 - Yr	100 - Yr	Regional	
C1	Prop. Condominium Area	90.18	149.31	211.83	151.0	
C2	Prop. Extension of Emby Dr.	22.38	37.05	52.57	39.0	
C3	Ex. Railway area	28.49	47.17	66.92	61.0	
C4	Ex pearl St. and Broadway St.	212.19	351.32	-	-	

TABLE 3: PRE-DEVELOPMENT PEAK FLOW RATES (L/s)

Note: Only minor flow from Sub-catchment C4 via municipal storm sewers under pearl Street and north of the Broadway Street, drains to the proposed storm sewer on Emby Drive. Based on the City of Mississauga design criteria, the maximum flow from this area will be 10-yr flow.

3 POST-DEVELOPMENT CONDITIONS

3.1 GENERAL

The proposed development consists of 155 new condominium in seven blocks with underground parking, and Emby Drive Extension to Tannery Street. It is understood that Emby Drive Extension will be a municipal road. The proposed storm drainage pattern is designed as follow.

- Rainfall runoff from the proposed condominium site is collected by area drains, conveyed through proposed internal storm drainage pipes from the landscape areas to the proposed storage tank and outlets to proposed storm sewer on the Emby Drive.
- Rainfall runoff from the proposed extension of Emby Drive is collected by proposed catchbasins and conveyed through proposed storm sewer on the Emby Drive and outlets to Municipal storm sewer on Thomas Street.
- The construction of Emby Drive extension and new parking structure will block the drainage
 outlet of railway area and pearl Street area to Mullet Creek. Therefore, all storm flows will be
 diverted to the new storm sewer under Emby Drive. Since Stormwater quantity control and
 quality control will be implemented, the total Stormwater discharge rate to Mullet Creek will be
 decreased, and water quality will be improved. therefore, the proposed development will not
 have negative impact on the current conditions of Mullet Creek watershed.

Refer to Figure 2 in Appendix F for proposed storm drainage condition.

The overland flow from proposed condominium area and Emby Drive extension, will spill onto existing Emby Drive and outlets to Mullet Creek as shown on Dwg. C100–Site Grading Plan.

Based on the proposed land-use, the composite runoff coefficients are estimated at 0.60 and 0.66 for C1 and C2 sub-catchment area, respectively. Refer to Appendices A and B for details.

The landuse is provided below in Table 4 for comparison between existing and proposed condition.

Cub Catabra ant Na	Sub-Catchment	Impervious	s Area (m²)	Pervious Area (m ²)	
Sub-Catchment No.		Existing	Proposed	Existing	Proposed
C1	Prop. Condominium Area	3758.0	5219.0	7082.0	5622.0
C2	Prop. Extension of Emby Dr.	1314.0	1713.0	1376.0	977.0

TABLE 4: LAND-USE AREA BREAKDOWN

Table 4 demonstrates that the impervious area will be increased by 13.5% and 14.8% in C1 and C2 subcatchment area after proposed development.

3.2 PEAK FLOW RATES UNDER PROPOSED CONDITION

Based on the proposed site condition and rainfall parameters, the Rational Method is adopted to calculate peak flows for 2-yr to 100-yr design storm events. The Regional Flood flow is calculated based on the 24-hour SCS type II distribution using the Visual Otthymo V5.0 program.

The calculated peak flow rates for the four sub-catchment areas in the post-development condition are summarized below in Table 5. Detailed calculations are provided in Appendices A and B.

Cub actobracht No.	Cult Catalyna ant	Return Period (Year)				
Sub-catchment No	Sub-Catchment	2 - Yr	10 - Yr	100 - Yr	Regional	
C1	Prop. Condominium Area	107.58	178.13	252.72	154.0	
C2	Prop. Extension of Emby Dr	29.71	49.20	69.80	39.0	
C3	Ex. Railway area	28.49	47.17	66.92	61.0	
C4	Ex pearl St. and Broadway St.	212.19	351.32	-	-	

TABLE 5: POST-DEVELOPMENT PEAK FLOW RATES (L/s)

Note: Only minor flow from Sub-catchment C4 via municipal storm sewers under pearl Street and north of the Broadway Street, drains to the proposed storm sewer on Emby Drive. Based on the City of Mississauga design criteria, the maximum flow from this area will be 10-yr flow.

3.3 IMPACT ON WATER ENVIRONMENT

Based on the review and analysis for existing and proposed site conditions, Table 6 summarizes the key hydrologic parameters of the site under proposed condition.

Sub Catabra ant Araa	Imperviou	sness (%)	Runoff Coefficient		100-year Peak Flow Rate (L/s)	
Sub-Catchment Area	Pre-Dev	Post-Dev	Pre-Dev	Post-Dev	Pre-Dev	Post-Dev
Prop. Condominium Area (C1)	34.7	48.1	0.50	0.60	211.83	252.72
Prop. Extension of Emby Dr. (C2)	48.8	63.7	0.50	0.66	52.57	69.80

TABLE 6: KEY HYDROLOGIC PARAMETERS

The actual pre-development runoff coefficient is 0.56 and 0.66 for C1 and C2 respectively, however the maximum runoff coefficient of 0.50 will be considered under pre-development condition in accordance with City's design criteria. If actual runoff coefficient (0.66) were considered, there would be no difference between pre- and post-development condition in sub-catchment C2, or no negative impact on stormwater. Given that future Emby Drive extension will be a typical linear development with limited right-of-way, there is no space for stormwater quality and quantity control measures, therefore, there will no SWM measures implemented within the right-of-way of Emby Drive Extension.

However, mitigation measures are proposed for sub-catchment C1 in accordance with the CVC's design criteria.

4 PROPOSED SWM PLAN – SUB-CATCHMENT C1

4.1 WATER BALANCE REQUIREMENT

Based on the water balance criteria, the minimum on-site runoff retention requires retaining all runoff of the first 5mm from each rainfall through infiltration, evapo-transpiration, etc. To satisfy the water

balance criteria, an on-site storage volume of approximate 54.2 m³ is required for sub-catchment C1 (Refer to Appendices A).

The potential method to address the water balance criteria is to reuse the retained Stormwater (from roof areas) for Irrigation of trees and plants on the property.

The exact application and consumption rate will be determined at the next design stage in consultation with project design team landscape designer and mechanical engineer. Based on the past project experiences, irrigation water alone will be anticipated to satisfy the water balance requirement.

4.2 WATER QUANTITY CONTROL REQUIREMENT

According to the CVC's stormwater quantity control criteria – the post-development to predevelopment peak flow control for all storms up to 100-yr and Regional storm should be provided.

Under post-development condition, all storm flows from sub-catchment C2, C3 and C4 will be diverted to new storm sewer under Emby Drive and discharge to municipal storm sewer on Thomas Street. Therefore, post-development peak flow, only from the residential development site (sub-catchment C1), will be considered and controlled to 10-year pre-development flow rate with a runoff coefficient value of 0.50.

Based on the post-development conditions, the required on-site stormwater storage volume for different design storm events are calculated as shown in Appendices A and summarized in Table 7 below.

TABLE 7: REQUIRED ON-SITE STORAGE VOLUMES (m³)

Sub-Catchment No.	Sub-Catchment	2 - Yr	10 - Yr	100 - Yr	Regional
C1	Prop. Condominium Area	0.0	25.94	93.07	120.0

Sub-catchment C1: Based on the proposed site condition for sub-catchment C1, a stormwater storage tank, located in the underground parking lot, will be proposed to provide a total storage volume of 190 m³ (with 10% safety factor). Refer to architect floor plan for the tank location. Orifice control device will be sized in the next design stage.

Refer to Dwg. C-101 for proposed storm sewers and Dwg.C-100 for overland flow route on Emby drive.

4.3 WATER QUALITY CONTROL REQUIREMENT

In order to achieve the long-term average removal of 80% of Total Suspended Solids (TSS) on an annual basis from all runoff leaving the site, the following quality control measures will be provided:

Sub-catchment C1: Based on the SWM design criteria, the residential block rooftop area is not subject to vehicular traffic, and the application of sand and de-icing salt constituents, petroleum hydrocarbons and heavy metals. As such, runoff from the roof surface is generally considered to be clean. Table 8 provides a preliminary estimate of TSS removal level of stormwater leaving the site.

Land Use	Area (m²)	TSS Removal Efficiency (%)	Composite TSS Removal Efficiency (%)
Roof	5219.4	80	38.5
Permeable Pavement	1818	80	13.4
Landscape	3804	80	28.1
Total	10841	-	80.0

TABLE 8: TTS REMOVAL ASSESSMENT SUB-CATCHMENT C1

Table 8 demonstrates that the overall TSS removal efficiency is satisfactory to the City's requirement - 80% TSS removal. Therefore, additional water quality treatment facility is not recommended.

4.4 EROSION AND SEDIMENT CONTROL DURING CONSTRUCTION

During site construction, it is recommended that all erosion and sediment control Best Management Practices (BMPs) shall be installed and maintained in accordance with the Credit Valley Conservation Authorities' (CVC CA's) Stormwater Management criteria (August 2012);

In Report, the measures below will be provided on site during the entire period of construction:

- Sediment control measures to prevent silt entry at all the existing area drains and catch basins;
- Granular mud-mats at all construction ingress / egress locations;
- An inspection and monitoring program following the CVC CA's Stormwater Management criteria (August 2012).

5 SITE SERVICING

The purpose of this site servicing study is to review the site servicing requirement of the proposed new condominium development, and propose a site servicing plan, including water supply, sanitary and storm services. Refer to Dwg. C-101 - Site Servicing Plan for details of the proposed site service connections.

5.1 EXISTING MUNICIPAL SERVICES

The proposed development will require new service connections to the existing municipal services, i.e. storm sewers, sanitary sewers and watermains, located on Thomas Street, Emby Drive and Tannery Street adjacent to the site. Existing underground municipal services/utilities are summarized below:

- a) 600mm dia. storm sewer on Thomas Street;
- b) 200mm dia. PVC sanitary sewer on Emby Drive;
- c) 300mm dia. PVC watermain on the Emby Drive;
- d) 200mm dia. watermain on the Tannery Street.

Refer to Dwg. C-101 for existing municipal utilities.

5.2 PROPOSED MUNICIPAL SERVICES ON EMBY DRIVE EXTENSION

Based on City's design criteria, the following new municipal services will be provided:

- New storm drainage system: catchbasins, manholes and storm sewers to convey 10-year design storm;
- New water supply system: valves, fire hydrants and 300mm dia. PVC watermain;

5.3 PROPOSED SITE SERVICE CONNECTIONS

Based on the project statistics provided by the architect and Region's design criteria, sanitary flow and water demand are estimated in Appendix D and summarized in Table 9. Storm flow discharge rate has been provided in the previous section of this report.

TABLE 9: SITE SERVICING REQUIREMENT

Site	Storm Discharge Rate	Sanitary Discharge Rate	Water Demand
	(L/s)	(L/s)	(L/s)
Prop. Condominium Area	149.13	13.22	107.71

Through discussion with design team, the locations and sizes of the proposed site service connections have been determined to satisfy the requirements of the City of Mississauga and Ontario Building Code (OBC). In summary:

- Sanitary Service: The existing sanitary sewer on Emby Drive is extended northerly by 10.5m from existing manhole No.137 to proposed manhole No.7. A 150mm dia. sanitary service connection will be installed to service the proposed condominiums and discharge to the proposed manhole No.7 on Emby Drive.
- 2. Storm Service: A 375mm dia. storm service connection will be installed to drain condominium area to proposed manhole No.3 on Emby Drive extension.
- 3. Water service:
 - Domestic Water Service: A 100mm dia. domestic water service connection will be installed to service the proposed condominiums and connected to the proposed 150mm dia. fire protection water service with a cut-in Tee.
 - Fire Protection Service: A 150mm fire protection PVC water service will be provided.

The existing 300mm diameter water main on Emby Drive will be extended northerly and connected to the existing 200mm diameter water main on Tannery Street to service the proposed development site.

Refer to Dwg. C-101 for details of proposed service connections.

5.4 ADEQUACY OF EXISTING MUNICIPAL SERVICES

The full flow capacity of the existing 250mm sanitary sewers on the Emby Drive is estimated at 76 L/s based on Region's record drawing and anticipated to be adequate to accommodate the sanitary flow (6.10 L/s) from the proposed development.

Based on the City's storm sewer design record, the existing 600mm storm sewers (MH.4 to Outlet) on Thomas Street, from Emby Drive to Mullet Creek, will not be adequate to accommodate the storm flow rate of 1602.9 L/s from development site, existing external flow from pearl Street and storm flow from Thomas Street and industrial area south of the development site. In order to provide adequate capacity for the storm flow, the last two legs of storm sewer on Thomas Street will need to be upsized to 675 mm and 825 mm diameter concrete pipe. As a result of storm sewer upgrade, the existing outlet at Mullet Creek will need to be rebuilt.

The design water demand is estimated as 107.71 L/s based on the project statistics. In order to evaluate the adequacy of existing water supply, the existing 300mm watermain on Tannery Street was tested on June 15, 2017 by Focus Fire Protection. Test results are included in Appendix E.

As shown by the test readings, the available water pressure ranges from 58 psi with a flow of 983.3 US GPM to 54 psi with a flow of 683.5 US GPM during the flow test with a static pressure of 62 psi. At the design water demand of 107.71 L/s (or 1707.24.74 US GPM) generated from the development, the flow test results show a residual pressure of 47.2 psi, which is greater than the minimum requirement of 20 psi (150 kPa). Therefore, adequate water supply and pressure are available to serve the proposed development

6 CONCLUSIONS

Stormwater Management Plan – Sub-Catchment C1

- Under existing condition, there are no existing on-site stormwater management facilities.
- On-site storage volume of approximate 55 m³ will be provided for proposed condominium development site for retaining the first 5mm rainfall runoff as required to achieve water balance target. This portion of water shall be reused on site for irrigation. The consumption rate will be provided by the project team landscape designer in the next stage of design.
- The land-use of the proposed condominium development site satisfies the City's 80% TSS removal, and additional water quality treatment facility will not be required.
- On-site storage volume of 120 m³ in volume will be required in order to control the postdevelopment 100-year/Regional stormwater flows to 10-year pre-development level;
- A Stormwater storage tank at underground parking lot is proposed to provide a total storage volume of 190 m³.

Stormwater Management Plan – Sub-Catchment C2

• There will be no actual increase in Stormwater flow rate and volume in the Emby Drive Extension

area;

• Due to the constraints of available right-of-way, no SWM measures are proposed for Emby Drive extension.

Temporary Erosion & Sediment Control Measures

• Temporary erosion and sediment control measures will be provided before construction and maintained during construction in accordance with CVC CA's "Stormwater Management Criteria"

New Municipal Services for Emby Drive Extension

Based on City's design criteria, the following new municipal services will be provided:

- New storm drainage system: catchbasins, manholes and storm sewers to convey 10-year design storm;
- New water supply: valves, fire hydrants and 300mm dia. PVC watermain;

Site Servicing

Proposed site service connections for the proposed development site:

- Storm service: 375mm dia. PVC pipes
- Sanitary service: 150mm dia. PVC pipes
- Water service: 100mm dia. PVC pipe for domestic water supply

150mm dia. PVC pipe for fire water supply

Prepared By:

LEA Consulting Ltd.

Michael Z. Du, P.Eng. Senior Municipal Engineer

Appendix A

Stormwater Peak Flow and Storage Calculation Sub-Catchment Area C1

	LEA Consulting Ltd. Consulting Engineers and Planners	Land Use				
		Prepared:	F.M	Page No.	A-01	
		Checked:	M.D.			
SUB-CATCHMENT C1		Proj. #	18038			
		Date:	Feb.08/18			

EXISTING CONDITIONS:

Existing Land Use	Area (m ²)
Building	2459.0
Asphalt	1299.0
Gravel	2744.0
Lawn & Tree	4338.0
Total Site Area:	10840.0

PROPOSED DEVELOPMENT:

Area (m ²)
5219.0
0.0
1818.0
3804.0
10841.0

LEA Consulting Ltd. Consulting Engineers and Planners	Composite "C" Calculation			
	Prepared:	F.M	Page No.	A-02
and Fiamers	Checked:	M.D.		
Project: 51-57 Tannery Street SUB-CATCHMENT C1	Proj. #	18038		
City Of Mississauga	Date:	Feb.08/18		

Pre-Development Composite Runoff Coefficient "C"

Location	Area (ha)	С	Composite "C"
Building	0.246	0.90	
Asphalt	0.130	0.90	
Gravel	0.274	0.60	
Lawn & Tree	0.434	0.25	
Total Site Area:	1.084		0.56
Imperviousness Percent:			0.50 max. by City's Criteria 34.7

Post-Development Composite Runoff Coefficient "C"

Location	Area (ha)	С	Composite "C"
Building	0.522	0.90	
Asphalt and paved	0.000	0.90	
Permeable Pavement	0.182	0.45	
Landscaped Area	0.380	0.25	
Total Site Area	1.084		0.60
Imperviousness Percent:			48.1

	-	5mm	5mm Rainfall Retention Volume (Water Balance)		
	Prepared:	F.M	Page No.	A-03	
		Checked:	M.D.		
Project: 51-57 Tannery Street SUB-CATCHMENT C1 City Of Mississauga		Proj. #	18038		
		Date:	Mar.28/18		

According to the CVC Guidelines, in order to achieve the water balance target, it is required to retain all runoff from a small event - typically 5mm (in Toronto, storms with 24 hour volumes of 5mm or less contribute about 50% of the total average annual rainfall volume) through infiltration, evapotranspiration & rainwater reuse.

Site Area:	1.084 ha
Runoff Coefficient :	0.60 Post-development site conditions

Runoff volume from 5mm rainfall event on site:

 $V = 1.084 \times 10 \times 5$ =54.21 m³

Required on-site retention volume for 5mm rainfall event: 54	.21 m ³
--	--------------------

LEA Consulting Ltd. Consulting Engineers	Pre-Development Peak Flow Rates Calculation				
	and Planners	Prepared:	F.M	Page No.	A-04
and Flaimers		Checked:	M.D.		
SUB-CATCHMENT C1		Proj. #	18038		
		Date:	Feb.08/18		

Rational Formulae: Q = 2.78 CIA (L/s)

Site Area:	1.084 ha
Time of Concentration:	15 minutes as per City Guidelines
Runoff Coefficient :	0.50 Pre-development condition

Rainfall Intensity: $I = a/(Tc+b)^c$ (City Std. 2111.010)

Return Period:	2-yr	5-yr	10-yr	25-yr
Rainfall Intensity (mm/hr):	59.89	80.51	99.17	113.89

Peak Flow Rate (L/s):

Return Period:	2-yr	5-yr	10-yr	25-yr
Under existing site conditions (L/s):	90.18	121.22	149.31	171.49

Allowable discharge rate into municipal storm sewer:

@ 10-year storm:

149.31 L/s

	LEA Consulting Ltd. Consulting Engineers and Planners	Post-Development Peak Flow Rates Calculation (Uncontrolled)				
		Prepared:	F.M	Page No.	A-05	
		Checked:	M.D.			
Project: 51-57 Tannery Street SUB-CATCHMENT C1 City Of Mississauga		Proj. #	18038			
		Date:	Feb.08/18			

Rational Formulae: Q = 2.78 CIA (L/s)

Site Area:	1.084 ha
Time of Concentration:	15 minutes as per City Guidelines
Runoff Coefficient :	0.60 Post-development

Rainfall Intensity: $I = a/(Tc+b)^c$ (City Std. 2111.010)

Return Period:	2-yr	5-yr	10-yr	25-yr
Rainfall Intensity (mm/hr):	59.89	80.51	99.17	113.89

Peak Flow Rate (L/s):

Return Period:	2-yr	5-yr	10-yr	25-yr
Under existing site conditions (L/s):	107.58	144.62	178.13	204.59

	and Planners	On-Site Storage Calculation (2-Year Storm)				
		Prepared:	F.M	Page No.	A-06	
		Checked:	M.D.			
Project: 51-57 Tannery Street SUB-CATCHMENT C1 City Of Mississauga		Proj. #	18038			
		Date:	Feb.08/18			

Total Drainage Area (ha) = 1.084	ha
Drainage Area Composite C = 0.60	
Allowable Release Rate = 149.31	L/s
Return Period = 2	Year

Site storage Requirement:

O	brage Requirement:							
	Time	Rainfall Intensity	Peak Flow	Storm Runoff Volume	Release Rate	Release Flow Volume	Required Storage Volume	
	(minutes)	(mm/hr)	(L/s)	(m³)	(L/s)	(m³)	(m³)	
	15	59.89	107.58	96.83	149.31	134.38	-37.55	
	20	50.16	90.11	108.13	149.31	179.17	-71.04	
	25	43.42	78.00	117.00	149.31	223.97	-106.97	
	30	38.45	69.06	124.31	149.31	268.76	-144.45	
	35	34.60	62.16	130.54	149.31	313.55	-183.01	
	40	31.54	56.65	135.97	149.31	358.35	-222.38	
	45	29.03	52.15	140.80	149.31	403.14	-262.34	
	50	26.94	48.38	145.15	149.31	447.93	-302.78	
	55	25.16	45.19	149.12	149.31	492.73	-343.61	
	60	23.62	42.44	152.77	149.31	537.52	-384.75	
	65	22.29	40.04	156.15	149.31	582.31	-426.16	
	70	21.12	37.93	159.30	149.31	627.11	-467.81	
	75	20.07	36.06	162.26	149.31	671.90	-509.64	
	80	19.14	34.38	165.05	149.31	716.70	-551.65	
	85	18.30	32.88	167.68	149.31	761.49	-593.81	
	90	17.54	31.51	170.18	149.31	806.28	-636.10	
	95	16.85	30.27	172.56	149.31	851.08	-678.52	
	100	16.22	29.14	174.83	149.31	895.87	-721.04	
	105	15.64	28.10	177.01	149.31	940.66	-763.65	
	110	15.11	27.14	179.10	149.31	985.46	-806.36	

Required Storage Volume = -37.55 m³

	LEA Consulting Ltd. Consulting Engineers and Planners	On-Site Storage Calculation (10-Year Storm)				
		Prepared:	F.M	Page No.	A-07	
		Checked:	M.D.			
Project: 51-57 Tannery Street SUB-CATCHMENT C1 City Of Mississauga		Proj. #	18038			
		Date:	Feb.08/18			

Total Drainage Area (ha) = 1.084	ha
Drainage Area Composite C $= 0.60$	
Allowable Release Rate = 149.31	L/s
Return Period = 10	Year

Site storage Requirement:

O	Drage Requirement:							
	Time	Rainfall Intensity	Peak Flow	Storm Runoff Volume	Release Rate	Release Flow Volume	Required Storage Volume	
	(minutes)	(mm/hr)	(L/s)	(m³)	(L/s)	(m³)	(m³)	
	15	99.17	178.13	160.32	149.31	134.38	25.94	
	20	83.06	149.20	179.04	149.31	179.17	-0.13	
	25	71.90	129.15	193.73	149.31	223.97	-30.24	
	30	63.66	114.35	205.82	149.31	268.76	-62.94	
	35	57.30	102.92	216.13	149.31	313.55	-97.42	
	40	52.22	93.80	225.13	149.31	358.35	-133.22	
	45	48.07	86.34	233.13	149.31	403.14	-170.01	
	50	44.60	80.11	240.33	149.31	447.93	-207.60	
	55	41.65	74.82	246.90	149.31	492.73	-245.83	
	60	39.11	70.26	252.94	149.31	537.52	-284.58	
	65	36.91	66.29	258.54	149.31	582.31	-323.77	
	70	34.96	62.80	263.76	149.31	627.11	-363.35	
	75	33.24	59.70	268.66	149.31	671.90	-403.24	
	80	31.69	56.93	273.27	149.31	716.70	-443.43	
	85	30.31	54.44	277.63	149.31	761.49	-483.86	
	90	29.05	52.18	281.77	149.31	806.28	-524.51	
	95	27.90	50.13	285.72	149.31	851.08	-565.36	
	100	26.86	48.25	289.48	149.31	895.87	-606.39	
	105	25.90	46.52	293.08	149.31	940.66	-647.58	
	110	25.01	44.93	296.54	149.31	985.46	-688.92	

Required Storage Volume = 25.94 m^3

	and Planners	On-Site Storage Calculation (100 - Year Storm)				
		Prepared:	F.M	Page No.	A-08	
		Checked:	M.D.			
Project: 51-57 Tannery Street SUB-CATCHMENT C1 City Of Mississauga		Proj. #	18038			
		Date:	Feb.08/18			

Total Drainage Area (ha) = 1.084 ha Drainage Area Composite C = 0.60Allowable Release Rate = 149.31 L/s Return Period = 100 Year

Site storage Requirement:

orage Requirement.							
	Time	Rainfall Intensity	Peak Flow	Storm Runoff Volume	Release Rate	Release Flow Volume	Required Storage Volume
	(minutes)	(mm/hr)	(L/s)	(m³)	(L/s)	(m³)	(m³)
	15	140.69	252.72	227.45	149.31	134.38	93.07
	20	118.12	212.18	254.62	149.31	179.17	75.45
	25	102.41	183.96	275.94	149.31	223.97	51.97
	30	90.77	163.06	293.51	149.31	268.76	24.75
	35	81.77	146.89	308.47	149.31	313.55	-5.08
	40	74.58	133.97	321.52	149.31	358.35	-36.83
	45	68.68	123.38	333.12	149.31	403.14	-70.02
	50	63.75	114.52	343.56	149.31	447.93	-104.37
	55	59.56	106.99	353.08	149.31	492.73	-139.65
	60	55.95	100.51	361.83	149.31	537.52	-175.69
	65	52.81	94.85	369.93	149.31	582.31	-212.38
	70	50.03	89.88	377.49	149.31	627.11	-249.62
	75	47.58	85.46	384.57	149.31	671.90	-287.33
	80	45.38	81.51	391.24	149.31	716.70	-325.46
	85	43.39	77.95	397.55	149.31	761.49	-363.94
	90	41.60	74.73	403.53	149.31	806.28	-402.75
	95	39.97	71.79	409.23	149.31	851.08	-441.85
	100	38.47	69.11	414.66	149.31	895.87	-481.21
	105	37.10	66.65	419.87	149.31	940.66	-520.79
	110	35.84	64.37	424.86	149.31	985.46	-560.60

Required Storage Volume = 93.07 m³

Appendix B

Stormwater Peak Flow Calculation Sub-Catchment Area C2

Cons	LEA Consulting Ltd. Consulting Engineers		Land	Use	
	and Planners	Prepared:	F.M	Page No.	B-01
	and Planners	Checked:	M.D.		
Project: 51-57 Tannery Street SUB-CATCHMENT C2 City Of Mississauga		Proj. #	18038		
		Date:	Feb.08/18		

EXISTING CONDITIONS:

Existing Land Use	Area (m ²)
Building	496.0
Asphalt Gravel	818.0 710.0
Lawn & Tree	666.0
Total Site Area:	2690.0

PROPOSED DEVELOPMENT:

Proposed Land Use	Area (m ²)
Asphalt	1440.0
Paved	273.0
Total Landscaped Area	977.0
Total Site Area	2690.0

LEA Consulting Ltd. Consulting Engineers	Composite "C" Calculation			
and Planners	Prepared:	F.M	Page No.	B-02
and hanners	Checked:	M.D.		
Project: 51-57 Tannery Street SUB-CATCHMENT C2	Proj. #	18038		
City Of Mississauga	Date:	Feb.08/18		

Pre-Development Composite Runoff Coefficient "C"

Area (ha)	С	Composite "C"
0.050	0.90	
0.082	0.90	
0.071	0.60	
0.067	0.25	
0.269		0.66
		0.50 max. by City's Criteria
		48.8
	0.050 0.082 0.071 0.067	0.0500.900.0820.900.0710.600.0670.25

Post-Development Composite Runoff Coefficient "C"

Location	Area (ha)	С	Composite "C"
Asphalt	0.144	0.90	
Paved	0.027	0.90	
Total Landscaped Area	0.098	0.25	
Total Site Area	0.269		0.66
Imperviousness Percent:			63.7

LEA Consulting Ltd. Consulting Engineers and Planners	-	Pre-Development Peak Flow Rates Calculation			
	00	Prepared: F.M Page No	Page No.	B-04	
		Checked:	M.D.		
Project: 51-57 Tannery Street SUB-CATCHMENT C2 City Of Mississauga		Proj. #	18038		
		Date:	Feb.08/18		

Rational Formulae: Q = 2.78 CIA (L/s)

Site Area:	0.269 ha
Time of Concentration:	15 minutes as per City Guidelines
Runoff Coefficient :	0.50 Pre-development condition

Rainfall Intensity: $I = a/(Tc+b)^c$ (City Std. 2111.010)

Return Period:	2-yr	5-yr	10-yr	25-yr
Rainfall Intensity (mm/hr):	59.89	80.51	99.17	113.89

Peak Flow Rate (L/s):

Return Period:	2-yr	5-yr	10-yr	25-yr
Under existing site condition (L/s):	22.38	30.08	37.05	42.56

Allowable discharge rate into municipal storm sewer: @ 2-year storm:

37.05 L/s

LEA Consulting Ltd. Consulting Engineers and Planners	-	Post-Development Peak Flow Rates Calculation (Uncontrolled)			
	00	Prepared:	F.M	Page No.	B-05
		Checked:	M.D.		
Project: 51-57 Tannery Street SUB-CATCHMENT C2 City Of Mississauga		Proj. #	18038		
		Date:	Feb.08/18		

Rational Formulae: Q = 2.78 CIA (L/s)

Site Area:	0.269 ha
Time of Concentration:	15 minutes as per City Guidelines
Runoff Coefficient :	0.66 Post-development

Rainfall Intensity: $I = a/(Tc+b)^c$ (City Std. 2111.010)

Return Period:	2-yr	5-yr	10-yr	25-yr
Rainfall Intensity (mm/hr):	59.89	80.51	99.17	113.89

Peak Flow Rate (L/s):

Return Period:	2-yr	5-yr	10-yr	25-yr
Under Post development condition (L/s):	29.71	39.94	49.20	56.51

Appendix C

Storm Sewers Calculations

	LEA Consulting Ltd. Consulting Engineers and	Land Use				
	and chymleers and	Prepared:	F.M	Page No.	C-01	
Planners		Checked:	M.D.			
Project: 51-57 Tannery Street SUB-CATCHMENT C3 City Of Mississauga		Proj. #	18038			
		Date:	Feb.08/18			

EXISTING RAILWAY DITCHES:

Land Use	Area (m ²)
Asphalt	335.0
Railway (Gravel)	1161.0
Lown	2758.0
Total Site Area:	4254.0

	LEA Consulting Ltd Consulting Engineers Planners
Project: 51-57 Tanne SUB-CATCHMENT C	-

City Of Mississauga

d. rs and	Composite "C" Calculation						
15 8110	Prepared:	F.M	Page No.	C-02			
	Checked:	M.D.					
	Proj. #	18038					
	Date:	Feb.08/18					

Composite Runoff Coefficient "C"

Location	Area (ha)	С	Composite "C"
Asphalt	0.034	0.90	
Railway (Gravel)	0.116	0.60	
Lown	0.276	0.25	
Total Site Area:	0.425		0.40
Imperviousness Percent:			7.9

	LEA Consulting Ltd.	External Flow Rates Calculation			
	Consulting Engineers and Planners	Prepared:	F.M	Page No.	C-03
		Checked:	M.D.		
Project: 51-57 Tannery Street SUB-CATCHMENT C3 City Of Mississauga		Proj. #	18038		
		Date:	Feb.08/18		

Rational Formulae: Q = 2.78 CIA (L/s)

Existing Railway Ditches

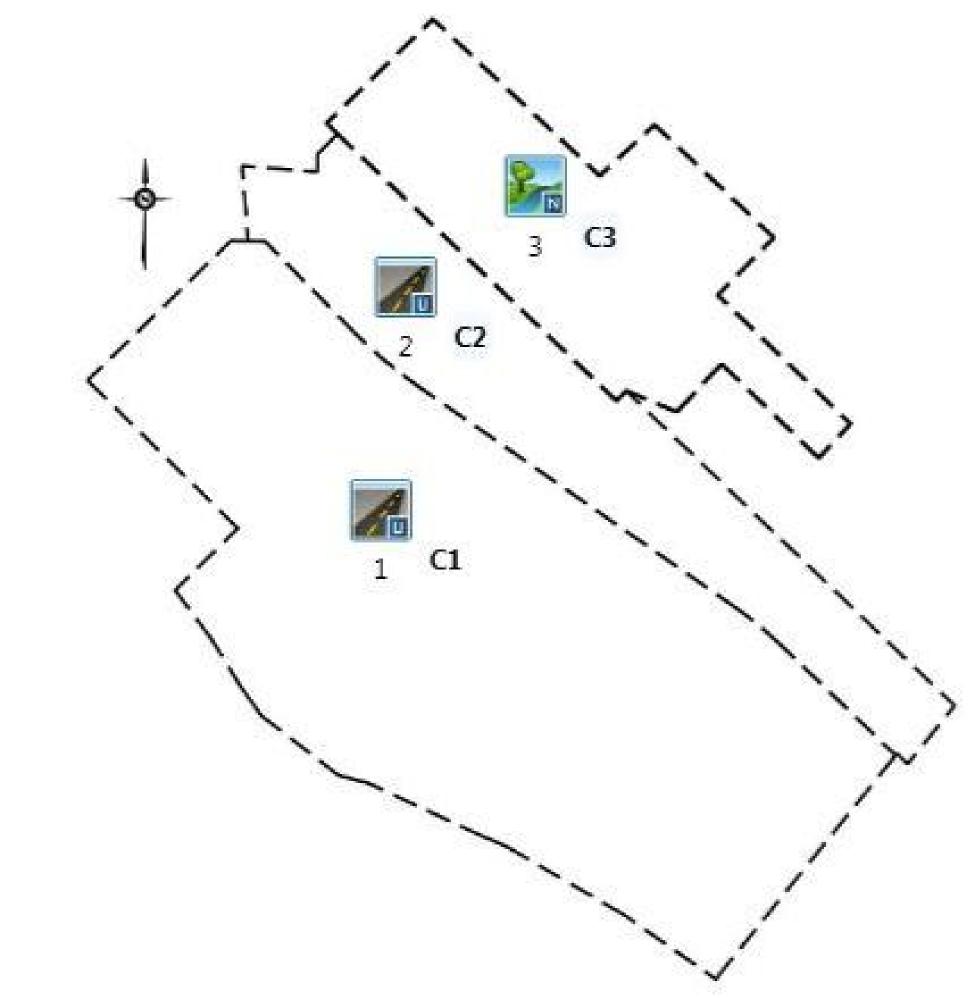
Site Area:	0.425 ha
Time of Concentration:	15 minutes as per City Guidelines
Runoff Coefficient :	0.40 Existing condition

Rainfall Intensity: I = a/(Tc+b)^c

(City Std. 2111.010)

Return Period:	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr
Rainfall Intensity (mm/hr):	59.89	80.51	99.17	113.89	127.13	140.69

Peak Flow Rate (L/s):


Return Period:	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Regional
Flow (L/s):	28.08	37.74	46.49	53.39	59.60	65.96	61.0

	LEA Consulting Ltd. Consulting Engineers	Land Use				
	and Planners	Prepared:	F.M	Page No.	C-04	
	and Planners	Checked:	M.D.			
Area and Runoff Coefficient		Proj. #	18038			
		Date:	Feb.08/18			

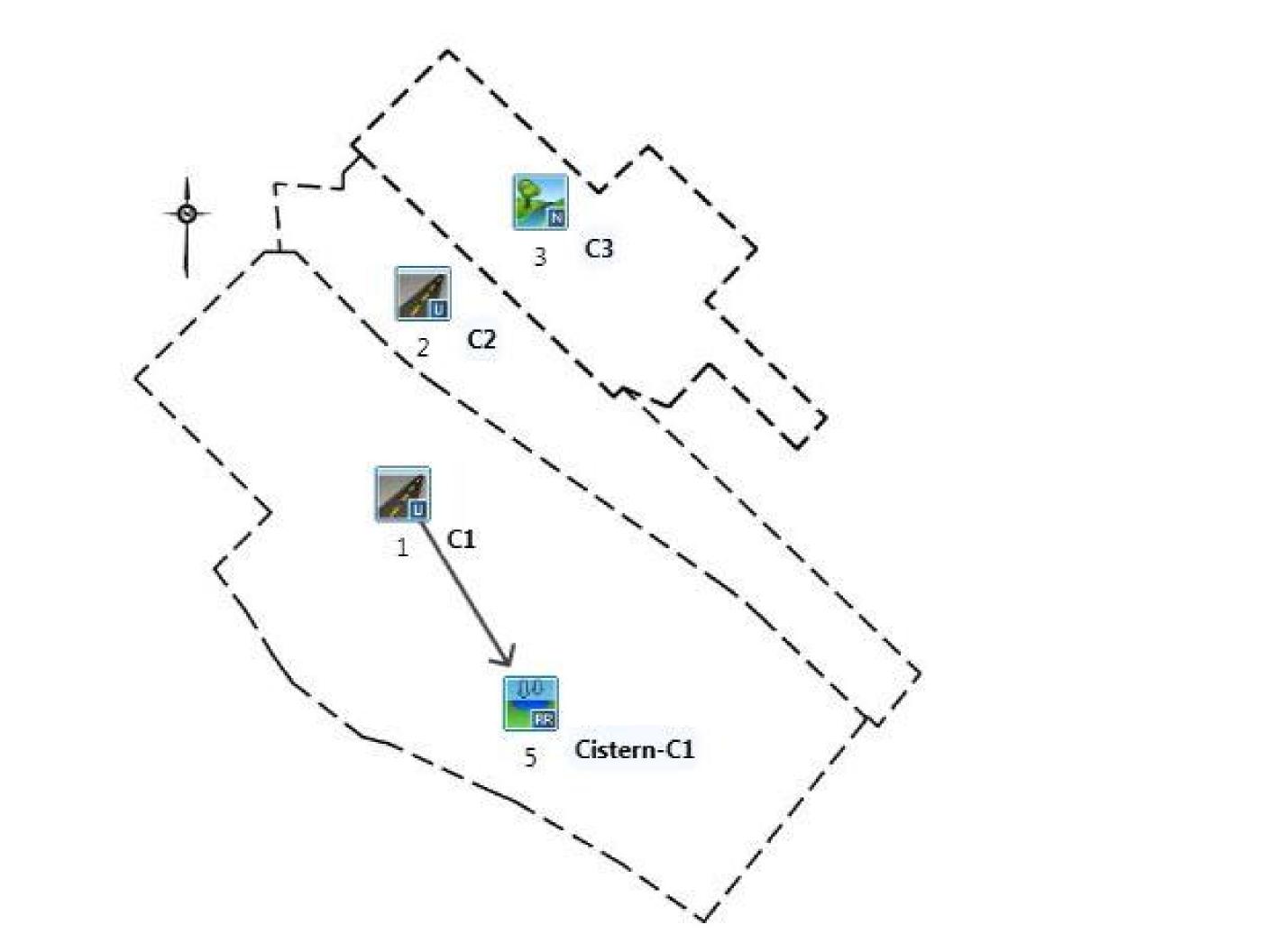
EXISTING CONDITIONS:

EC1	Area (m ²)
ECI	Area (III)
Building	0.0
Asphalt	0.0
Gravel	244.0
Lawn & Tree	959.0
Total Site Area:	1203.0
EC2	Area (m ²)
Building	98.0
Asphalt	1851.0
Gravel	574.0
Lawn & Tree	1012.0
Total Site Area	3437.0
EC3	Area (m ²)
Building	2393.0
Asphalt	4574.0
Gravel	3742.0
Lawn & Tree	1966.0
Total Site Area	12675.0

LEA Consulting Ltd.		Composite "C" Calculation			
	Consulting Engineers and Planners		F.M	Page No.	C-05
and Planners		Checked:	M.D.		
Project: 51-57 Tannery Street Area and Runoff Coefficient		Proj. #	18038		
City Of Mississauga	Date:	Feb.08/18			
EC1					
Location	Area (ha)	С	Composite	"C"	
Building	0.000	0.90	-		
Asphalt	0.000	0.90			
Gravel	0.024	0.60			
Lawn & Tree	0.096	0.25			
Total Site Area:	0.120		0.32		
Imperviousness Percent:			0.0		
EC2					
Location	Area (ha)	С	Composite	"C"	
Building	0.010	0.90			
Asphalt	0.185	0.90			
Gravel	0.057	0.60			
Lawn & Tree	0.101	0.25			
Total Site Area	0.344		0.68		
Imperviousness Percent:			70.6		
EC3					
Location	Area (ha)	С	Composite	"C"	
Building	0.239	0.90			
Asphalt	0.457	0.90			
Gravel	0.374	0.60			
Lawn & Tree	0.197	0.25			
Total Site Area	1.268		0.71		

READ STORM	Filename: C:\Users\fmorshedi\AppD ata\Local\Temp\ 2fc6111f-4b32-49d1-ae8a-db14c5eed1f8\9c7215c3					
Ptotal=212.00 mm	Comments: Hazel					
TI ME hrs 1.00 2.00 3.00	RAINTIMERAINTIMERAINTIMERAINmm/hrhrsmm/hr'hrsmm/hrhrsmm/hr6.004.0013.007.0023.0010.0053.004.005.0017.008.0013.0011.0038.006.006.0013.009.0013.0012.0013.00					
CALIB STANDHYD (0001) Area (ha)= 1.08 ID= 1 DT= 5.0 min Total Imp(%)= 34.70 Dir. Conn.(%)= 1.00						
	$\begin{array}{rcl} & \text{IMPERVIOUS} & \text{PERVIOUS} & (i) \\ (ha) &= & 0.38 & 0.71 \\ mm) &= & 1.00 & 1.50 \\ (\%) &= & 1.00 & 2.00 \\ (m) &= & 85.01 & 40.00 \\ &= & 0.013 & 0.250 \end{array}$					
NOTE: RAI NFAL	L WAS TRANSFORMED TO 5.0 MIN. TIME STEP.					
TRANSFORMED HYETOGRAPH						

TIME	RALN	TIME	RAIN	' TIME	RALN	TIME	RAI N
hrs 0.083	mm/hr	hrs 3.083	mm/hr 13.00	' hrs 6.083	mm/hr 23.00	hrs 9.08	mm∕hr 53.00
0. 063	6.00 6.00	3. 167	13.00	6. 167	23.00	9.00	53.00 53.00
0.250	6.00	3.250	13.00	6.250	23.00	9.25	53.00
0. 333 0. 417	6.00 6.00	3. 333 3. 417	13.00 13.00	6. 333 6. 417	23.00 23.00	9.33 9.42	53.00 53.00
0.500	6.00	3.500	13.00	6.500	23.00	9.50	53.00
0.583	6.00	3.583	13.00 13.00	6.583	23.00	9.58	53.00
0. 667 0. 750	6.00 6.00	3.667 3.750	13.00	6. 667 6. 750	23.00 23.00	9.67 9.75	53.00 53.00
0.833	6.00	3.833	13.00	6.833	23.00	9.83	53.00
0. 917 1. 000	6.00 6.00	3.917 4.000	13.00 13.00	6. 917 7. 000	23.00 23.00	9. 92 10. 00	53.00 53.00
1.083	4.00	4.083	17.00	7.083	13.00	10. 08	38.00
1. 167 1. 250	4.00 4.00	4. 167 4. 250	17.00 17.00	7. 167 7. 250	13.00 13.00	10. 17 10. 25	38.00 38.00
1.333	4.00	4.230	17.00	7.333	13.00	10.23	38.00
1.417	4.00	4.417	17.00	7.417	13.00	10.42	38.00
1. 500 1. 583	4.00 4.00	4.500 4.583	17.00 17.00	7.500 7.583	13.00 13.00	10. 50 10. 58	38.00 38.00
1.667	4.00	4.667	17.00	7.667	13.00	10.67	38.00
1. 750 1. 833	4.00 4.00	4.750 4.833	17.00 17.00	7.750 7.833	13.00 13.00	10. 75 10. 83	38.00 38.00
1.917	4.00	4.917	17.00	7.917	13.00	10. 03	38.00
2.000	4.00	5.000	17.00	8.000	13.00	11.00	38.00
2. 083 2. 167	6.00 6.00	5. 083 5. 167	13.00 13.00	8. 083 8. 167	13.00 13.00	11. 08 11. 17	13.00 13.00
2.250	6.00	5.250	13.00	8. 250	13.00	11.25	13.00
2. 333 2. 417	6.00 6.00	5.333 5.417	13.00 13.00	8. 333 8. 417	13.00 13.00	11. 33 11. 42	13.00 13.00
2.500	6.00	5.500	13.00	8.500	13.00	11.50	13.00
2.583	6.00	5.583	13.00	8.583	13.00	11.58	13.00
2. 667 2. 750	6.00 6.00	5.667 5.750	13.00 13.00	8.667 8.750	13.00 13.00	11.67 11.75	13.00 13.00
2.833	6.00	5.833	13.00	8.833	13.00	11.83	13.00
2. 917 3. 000	6.00 6.00	5.917 6.000	13.00 13.00	8.917 9.000	13.00 13.00	11.92 12.00	13.00 13.00
5.000	0.00	1 3.000	10.00	, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	. 0. 00	1 12:00	. 0. 00


Max.Eff.Inten. ove Storage Coeff. Unit Hyd. Tpea Unit Hyd. peak	(mm/hr)= r (min) (min)= k (min)= (Cms)=	53.00 5.00 2.99 (5.00 0.28	78 15 ii) 10 15 0	30 00 77 (ii) 00 09	* ТОТА! С *	
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFIC	(cms) = (hrs) = (mm) = (mm) = IENT =	0. 00 9. 58 211. 00 212. 00 1. 00	0 10 185 212 0	15 00 08 00 87	*TOTALS* 0. 154 (iii 10. 00 185. 33 212. 00 0. 87)
***** WARNING: STOR ***** WARNING: FOR A YOU S	AGE COEFF. I REAS WITH IN HOULD CONSII	MPERVI OUS	RATIOS B	ELOW 20%		
(ii) TIME STE	85.0 I a P (DT) SHOUI STORAGE COI	= Dep. St _D BE SMAL EFFICIENT.	orage (, LER OR E	Above) QUAL		
READ STORM		ata\Lo 2fc611	cal \Temp'	\	-db14c5eed1f8\	9c7215c3
TI h 1. 2. 3.			RAIN ' mm/hr ' 13.00 17.00 13.00	TIME hrs 7.00 2 8.00 1 9.00 1	RAINTIMEmm/hrhrs3.0010.003.0011.003.0012.00	RAIN mm/hr 53.00 38.00 13.00
CALIB NASHYD (0003) ID= 1 DT= 5.0 min NOTE: RAI	- Area Ia - U.H. Tp NFALL WAS TF					
TI				HYETOGRAP TI ME		RAIN
	rs mm/hr 83 6.00 67 6.00 50 6.00	hrs 3.083 3.167 3.250	mm/hr ' 13.00 (13.00 (13.00 (hrs 6.083 2 6.167 2 6.250 2	mm/hr hrs 3.00 9.08 3.00 9.17 3.00 9.25 3.00 9.33	mm/hr 53.00 53.00 53.00 53.00 53.00

0. 083 0. 167 0. 250 0. 333 0. 417 0. 500 0. 583 0. 667 0. 750 0. 833 0. 917 1. 000 1. 083 1. 167 1. 250 1. 333 1. 417 1. 500 1. 583 1. 467	$\begin{array}{c} 6. \ 00\\ 6. \ 00\\ 6. \ 00\\ 6. \ 00\\ 6. \ 00\\ 6. \ 00\\ 6. \ 00\\ 6. \ 00\\ 6. \ 00\\ 6. \ 00\\ 6. \ 00\\ 4. \ 00\\ 4. \ 00\\ 4. \ 00\\ 4. \ 00\\ 4. \ 00\\ 4. \ 00\\ 4. \ 00\\ 4. \ 00\\ 4. \ 00\\ 4. \ 00\\ 4. \ 00\\ 4. \ 00\\ 4. \ 00\\ 4. \ 00\\ 4. \ 00\\ 5. \ $	$\begin{array}{c} 3.\ 083\\ 3.\ 167\\ 3.\ 250\\ 3.\ 333\\ 3.\ 417\\ 3.\ 500\\ 3.\ 583\\ 3.\ 667\\ 3.\ 750\\ 3.\ 833\\ 3.\ 917\\ 4.\ 000\\ 4.\ 083\\ 4.\ 167\\ 4.\ 250\\ 4.\ 333\\ 4.\ 417\\ 4.\ 500\\ 4.\ 583\\ 4.\ 667\end{array}$	13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00	6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 7.500 7.583 7.667	23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00	9.08 9.17 9.25 9.33 9.42 9.50 9.58 9.67 9.75 9.83 9.92 10.00 10.08 10.17 10.25 10.33 10.42 10.50 10.58 10.67	53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 38.00 3
1.583	4.00	4.583	17.00	7.583	13.00	10. 58	38.00

2. 000 2. 083 2. 167 2. 250 2. 333 2. 417 2. 500 2. 583 2. 667 2. 750 2. 833 2. 917 3. 000		$\begin{array}{c} 5.\ 000\\ 5.\ 083\\ 5.\ 167\\ 5.\ 250\\ 5.\ 333\\ 5.\ 417\\ 5.\ 500\\ 5.\ 583\\ 5.\ 667\\ 5.\ 750\\ 5.\ 833\\ 5.\ 917\\ 6.\ 000 \end{array}$	17.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00	8. 000 8. 083 8. 167 8. 250 8. 333 8. 417 8. 500 8. 583 8. 667 8. 750 8. 833 8. 917 9. 000	13.00 13.00	11. 00 11. 08 11. 17 11. 25 11. 33 11. 42 11. 50 11. 58 11. 67 11. 75 11. 83 11. 92 12. 00	38. 00 13. 00
Unit Hyd Qpeak (cm							
	m) = 212	. 000					
(i) PEAK FLOW DOES	NOT INC	LUDE BAS	EFLOW IF	ANY.			
		ie: C:\Us ata\L 2fc61 s: Hazel	ocal \Tem			c5eed1f8\	9c7215c3
TI ME hrs 1.00 2.00 3.00	RAIN mm/hr 6.00 4.00 6.00	TIME hrs 4.00 5.00 6.00	mm/hr 13.00 17.00	' TIME ' hrs 7.00 8.00 9.00	RAIN mm/hr 23.00 13.00 13.00	hrs	RAIN mm/hr 53.00 38.00 13.00
	otal Im	p(%) = 4				1. 00	
Dep. Storage (m Average Slope (la) = lm) = %) = m) = =	MPERVI OU 0. 13 1. 00 1. 00 42. 35 0. 013	4	2VI OUS (i 0. 14 1. 50 1. 50 0. 00 0. 250)		
NOTE: RAI NFALL	. WAS TR	ANSFORME	D TO 15	5.0 MIN.	TIME STE	EP.	
$\begin{array}{c} 0.\ 250\\ 0.\ 500\\ 0.\ 750\\ 1.\ 000\\ 1.\ 250\\ 1.\ 500\\ 1.\ 750\\ 2.\ 000\\ 2.\ 250\\ 2.\ 500\\ 2.\ 750\\ 3.\ 000 \end{array}$	RAIN mm/hr 6.00 6.00 6.00 4.00 4.00 4.00 4.00 6.00 6	TI ME hrs 3. 250 3. 500 3. 750 4. 000 4. 250 4. 500 4. 750 5. 000 5. 250 5. 500 5. 750 6. 000	NSFORMED RAIN mm/hr 13.00 13.00 13.00 13.00 17.00 17.00 17.00 17.00 17.00 13.00 13.00 13.00 13.00	HYETOGR TI ME 6. 250 6. 500 6. 750 7. 000 7. 250 7. 500 7. 500 7. 750 8. 000 8. 250 8. 500 8. 500 8. 750 9. 000	APH RAI N mm/hr 23. 00 23. 00 23. 00 13. 00	TI ME hrs 9. 25 9. 50 9. 75 10. 00 10. 25 10. 50 10. 75 11. 00 11. 25 11. 50 11. 75 12. 00	RAIN mm/hr 53.00 53.00 53.00 53.00 38.00 38.00 38.00 38.00 13.00 13.00 13.00 13.00
Max.Eff.Inten.(mm/h over (mi		53.00 15.00		0.72 5.00			

Max. Eff. Inten. (mm/hr):	= 53.00	100. 72
over (min)	15.00	15.00
Storage Coeff. (min)	= 1.97 (ii)	9.64 (ii)

Unit Hyd. Unit Hyd.	Tpeak peak	(min)= (cms)=	15.00 0.11	15.00 0.09	*TOTALS*	
PEAK FLOW TIME TO PI RUNOFF VOI TOTAL RAIN RUNOFF COI	EAK _UME NFALL	(mm) =	0.00 9.50 211.00 212.00 1.00		0. 039 (iii) 10. 00 190. 50 212. 00 0. 90	
**** WARNING: I	OR AR	EAS WITH		THAN TIME STEP! ATIOS BELOW 20% NG THE AREA.		
CN (ii) TIM THAI	* = 2 E STEP N THE 2	85.0 I (DT) SHO STORAGE C	TED FOR PERVI a = Dep. Stor JLD BE SMALLE DEFFICIENT. INCLUDE BASE	rage (Above) ER OR EQUAL		
FINISH						
=======================================	======					

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ READ STORM Filename: C: \Users\fmorshedi \AppD ata\Local \Temp\ 9ce606c3-2b4e-4300-9e3a-0e83df46b35b\9c7215c3 Ptotal = 212.00 mm Comments: Hazel _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ RAIN | TIME hrs TIME RALN TIME RALN | TIME RALN
 mm/hr
 hrs

 23.00
 10.00

 13.00
 11.00

 13.00
 12.00
 hrs mm/hr hrs mm/hr mm/hr 4.00 13.00 7.00 1.00 6.00 53.00 2.00 4.00 5.00 17.00 8.00 38.00 3.00 6.00 6.00 13.00 9.00 13.00 _____ CALI B (ha)= 0.44 Curve Number (CN)= 86.0 (mm)= 1.50 # of Linear Res.(N)= 3.00 (hrs)= 0.20 NASHYD (0003) Area |ID= 1 DT= 5̀.0 miń| Ιa U.H. Tp(hrs)= NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TI ME hrs 0. 083 0. 167 0. 250 0. 333 0. 417 0. 500 0. 583 0. 667 0. 750 0. 833 0. 917 1. 000	RAIN mm/hr 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.0	TR/ TI ME hrs 3. 083 3. 167 3. 250 3. 333 3. 417 3. 500 3. 583 3. 667 3. 750 3. 833 3. 917 4. 000	ANSFORMEI RAIN mm/hr 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00	 HYETOGR TI ME hrs 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 	RAIN mm/hr 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00	- TI ME hrs 9.08 9.17 9.25 9.33 9.42 9.50 9.58 9.67 9.75 9.83 9.92 10.00	RAI N mm/hr 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00 53.00
$\begin{array}{c} 1. \ 083\\ 1. \ 167\\ 1. \ 250\\ 1. \ 333\\ 1. \ 417\\ 1. \ 500\\ 1. \ 583\\ 1. \ 667\\ 1. \ 750\\ 1. \ 833\\ 1. \ 917\\ 2. \ 000\\ 2. \ 083\\ 2. \ 167\\ 2. \ 250\\ 2. \ 333\\ 2. \ 417\\ 2. \ 500\\ 2. \ 583\\ 2. \ 667\\ 2. \ 750\\ 2. \ 583\\ 2. \ 667\\ 2. \ 750\\ 2. \ 833\\ 2. \ 917\\ 3. \ 000\\ \end{array}$	$\begin{array}{c} 4.\ 00\\ 4.\ 00\\ 4.\ 00\\ 4.\ 00\\ 4.\ 00\\ 4.\ 00\\ 4.\ 00\\ 4.\ 00\\ 4.\ 00\\ 4.\ 00\\ 4.\ 00\\ 4.\ 00\\ 4.\ 00\\ 4.\ 00\\ 4.\ 00\\ 6.\ 00\\ 0.\ 0\\ 0\\ 0.\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	$\begin{array}{c} 4.\ 083\\ 4.\ 083\\ 4.\ 167\\ 4.\ 250\\ 4.\ 333\\ 4.\ 417\\ 4.\ 500\\ 4.\ 583\\ 4.\ 667\\ 4.\ 750\\ 4.\ 833\\ 4.\ 917\\ 5.\ 000\\ 5.\ 083\\ 5.\ 167\\ 5.\ 250\\ 5.\ 333\\ 5.\ 417\\ 5.\ 500\\ 5.\ 583\\ 5.\ 667\\ 5.\ 750\\ 5.\ 833\\ 5.\ 917\\ 6.\ 000\\ \end{array}$	$\begin{array}{c} 13.00\\ 17.00\\ 17.00\\ 17.00\\ 17.00\\ 17.00\\ 17.00\\ 17.00\\ 17.00\\ 17.00\\ 17.00\\ 17.00\\ 17.00\\ 17.00\\ 17.00\\ 13.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10$	$\begin{array}{c} 7.\ 083\\ 7.\ 167\\ 7.\ 250\\ 7.\ 333\\ 7.\ 417\\ 7.\ 500\\ 7.\ 583\\ 7.\ 667\\ 7.\ 750\\ 7.\ 833\\ 7.\ 917\\ 8.\ 000\\ 8.\ 083\\ 8.\ 167\\ 8.\ 250\\ 8.\ 333\\ 8.\ 417\\ 8.\ 500\\ 8.\ 583\\ 8.\ 417\\ 8.\ 500\\ 8.\ 583\\ 8.\ 667\\ 8.\ 750\\ 8.\ 833\\ 8.\ 917\\ 9.\ 000\\ \end{array}$	$\begin{array}{c} 13.\ 00\\ 13.\ $	$\begin{array}{c} 10.00\\ 10.08\\ 10.17\\ 10.25\\ 10.33\\ 10.42\\ 10.50\\ 10.58\\ 10.67\\ 10.75\\ 10.83\\ 10.92\\ 11.00\\ 11.08\\ 11.17\\ 11.25\\ 11.33\\ 11.42\\ 11.50\\ 11.58\\ 11.67\\ 11.58\\ 11.67\\ 11.92\\ 11.92\\ 12.00\\ \end{array}$	38.00 38.00

Unit Hyd Opeak (cms) = 0.083

PEAK FLOW	(CMS)=	0. 061	(i)
ΤΙΜΕ ΤΟ ΡΕΑΚ	(hrs)=	10.000	• •
RUNOFF VOLUME	(mm) =	175.604	

TOTAL RAINFALL (mm) = 212.000 RUNOFF COEFFICIENT = 0.828

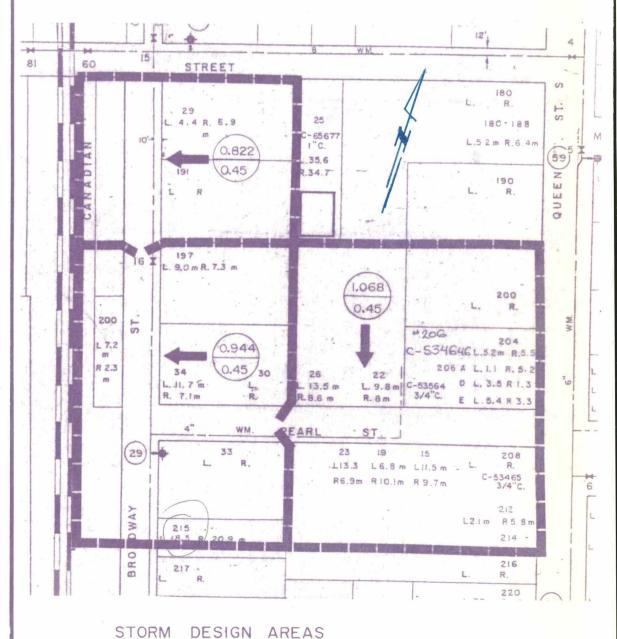
(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

READ STORM	- Filenam		ers\fmoi .ocal\Ter	rshedi\Ap	рD		
Ptotal =212.00 mm	Comment	9ce60	6c3-2b4	≘-4300-9€	e3a-0e83c	df46b35b∖	9c7215c3
TII hi 1. (2. (3. (rs mm/hr 00 6.00 00 4.00	TIME hrs 4.00 5.00 6.00	RAIN mm/hr 13.00 17.00 13.00	' TIME ' hrs 7.00 8.00 9.00	RAIN mm/hr 23.00 13.00 13.00	TIME hrs 10.00 11.00 12.00	RAIN mm/hr 53.00 38.00 13.00
CALIB STANDHYD (0002) ID= 1 DT=15.0 min	Total In -	np(%) = 6		Dir. Conr		1. 00	
Surface Area Dep. Storage Average SI ope Length Manni ngs n	(ha)=	MPERVI OU 0. 17 1. 00 1. 00 42. 35 0. 013	2	RVI OUS (i 0. 10 1. 50 1. 50 40. 00 0. 250)		
NOTE: RAII	NFALL WAS TR	RANSFORME	D TO 1	5.0 MIN.	TIME STE	EP.	
0. 29 0. 50 0. 79 1. 00 1. 29 1. 50 1. 79 2. 00 2. 29 2. 50 2. 79 3. 00	rs mm/hr 50 6.00 50 6.00 50 6.00 50 6.00 50 4.00 50 4.00 50 4.00 50 4.00 50 4.00 50 6.00 50 6.00 50 6.00 50 6.00	TRA TI ME hrs 3. 250 3. 500 3. 750 4. 000 4. 250 4. 500 4. 750 5. 000 5. 250 5. 500 5. 750 6. 000		 HYETOGF TI ME hrs 6. 250 6. 500 6. 750 7. 000 7. 250 7. 500 7. 750 8. 000 8. 250 8. 750 9. 000 	APH RAI N mm/hr 23.00 23.00 23.00 23.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00	TI ME hrs 9. 25 9. 50 9. 75 10. 00 10. 25 10. 50 10. 75 11. 00 11. 25 11. 50 11. 75 12. 00	RAIN mm/hr 53.00 53.00 53.00 53.00 38.00 38.00 38.00 38.00 13.00 13.00 13.00 13.00
Max.Eff.Inten. over Storage Coeff. Unit Hyd.Tpeal Unit Hyd.peak	(min) (min)=	53.00 15.00 1.97 15.00 0.11	(ii)	43.20 15.00 8.63 (ii 15.00 0.09	-	ſALS*	
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFIC	(cms) = (hrs) = (mm) = (mm) = ENT =	0.00 9.50 211.00 212.00 1.00	10	0.04 10.00 96.20 12.00 0.93	0. 10 196 212	039 (iii). 00 5. 33 2. 00). 93)
***** WARNING: STOR/ ***** WARNING:FOR AI YOU SI	AGE COEFF. I REAS WITH IN HOULD CONSIE	IPERVI OUS	RATIOS	BELOW 20	9! 9%		
(i) CN PROCEI CN* = (ii) TIME STEI THAN THE (iii) PEAK FLOV	85.0 I a P (DT) SHOUL STORAGE COE	= Dep. S D BE SMA FFICIENT	torage LLER OR	(Above) EQUAL			

READ STORM	Filenar	ata\l	_ocal \Ter	rshedi\Ap mp\			
Ptotal =212.00 mm	Commen	9ce60 ts: Hazel	06c3-2b40	e-4300-9e	3a-0e830	lf46b35b∖	9c7215c3
TI MI		TIME	RAIN	' TIME	RAIN		RAIN
hr: 1.00 2.00	0 6.00	hrs 4.00 5.00	mm/hr 13.00 17.00 13.00	111.5	mm/hr 23.00 13.00	hrs 10.00 11.00	mm/hr 53.00 38.00
3.00	6.00	6.00	13.00	9.00	13.00	12.00	
CALI B		<i></i>					
STANDHYD (0001) ID= 1 DT= 5.0 min	Area Total Ir	(ha)= np(%)= 4	1.08 48.00 [Dir. Conn	. (%) = 4	18.00	
Surface Area		MPERVI OL 0.52		RVIOUS (i 0.56)		
Surface Area Dep. Storage Average SIope	(mm) =	1.00		1. 50 2. 00			
Length Manni ngs n	(m) = =	1.00 85.01 0.013	(40.00 0.250			
C C	FALL WAS TH				TIME STE	EP.	
		TD					
TIM		TIME	RAIN	D HYETOGR ' TIME	RALN	TIME	RAIN
hr: 0. 08 0. 16	6.00	hrs 3.083 3.167	mm/hr 13.00 13.00	' hrs 6.083 6.167	mm/hr 23.00 23.00	hrs 9.08 9.17	mm/hr 53.00 53.00
0. 10 0. 25(0. 33)	0 6.00	3. 250 3. 333	13.00 13.00 13.00	6. 250 6. 333	23.00 23.00 23.00	9. 17 9. 25 9. 33	53.00 53.00 53.00
0. 41 0. 500	6.00	3. 417 3. 500	13.00 13.00	6. 417 6. 500	23.00 23.00	9.42 9.50	53.00 53.00
0. 583 0. 66	3 6.00 7 6.00	3. 583 3. 667	13.00 13.00	6. 583 6. 667	23.00 23.00	9.58 9.67	53.00 53.00
0. 750 0. 833	6.00	3.750 3.833	13.00	6. 750 6. 833	23.00 23.00	9.75 9.83	53.00 53.00
0.91 1.000	0 6.00	3.917 4.000	13.00 13.00	6. 917 7. 000	23.00 23.00	9.92 10.00	53.00 53.00
1.083 1.16 1.25	7 4.00	4.083 4.167	17.00 17.00	7.083	13.00 13.00	10. 08 10. 17 10. 25	38.00 38.00
1. 250 1. 33: 1. 41	3 4.00	4.250 4.333 4.417	17.00 17.00 17.00	7.250 7.333 7.417	13.00 13.00 13.00	10. 25 10. 33 10. 42	38.00 38.00 38.00
1. 500 1. 583	0 4.00	4. 500 4. 583	17.00 17.00 17.00	7.500	13.00 13.00 13.00	10. 42 10. 50 10. 58	38.00 38.00 38.00
1. 66 1. 750	7 4.00	4. 667 4. 750	17.00 17.00 17.00	7.667	13.00 13.00 13.00	10. 50 10. 67 10. 75	38.00 38.00 38.00
1. 833 1. 91	3 4.00	4. 833 4. 917	17.00 17.00 17.00	7.833	13.00 13.00 13.00	10. 73 10. 83 10. 92	38.00 38.00
2. 000 2. 083	0 4.00	5. 000 5. 083	17.00 13.00	8. 000 8. 083	13.00 13.00	11.00 11.08	38.00 13.00
2. 16 2. 250	6.00	5. 167 5. 250	13.00 13.00	8. 167 8. 250	13.00 13.00	11. 17 11. 25	13.00 13.00
2. 33 2. 41	3 6.00 7 6.00	5.333 5.417	13.00 13.00	8. 333 8. 417	13.00 13.00	11. 33 11. 42	13.00 13.00
2.500 2.583	6.00	5.500 5.583	13.00 13.00	8. 500 8. 583	13.00 13.00	11. 50 11. 58	13.00 13.00
2. 66 2. 75(0 6.00	5. 667 5. 750	13.00 13.00	8. 667 8. 750	13.00 13.00	11. 67 11. 75	13.00 13.00
2.83 2.91	6.00	5.833 5.917	13.00 13.00	8.833	13.00 13.00	11.83 11.92	13.00 13.00
3.000 Max.Eff.Inten.(r		6.000 53.00	13.00	9.000 50.33	13.00	12.00	13.00
Storage Coeff.		5.00 2.99	-	15.00 12.28 (ii)		
U U U U U U U U U U U U U U U U U U U	. ,						

Unit Hyd. Tpe Unit Hyd. pea PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFAL RUNOFF COEFFI	k (cms)= (cms)= (hrs)= (mm)= L (mm)=	5.00 0.28 0.08 9.75 211.00 212.00 1.00	10 00	*TOTALS* 0.154 (iii) 10.00 191.52 212.00 0.90	
**** WARNING: STC					
CN* = (ii) TIME ST	E STORAGE CO	= Dep. Stor LD BE SMALLE EFFICIENT.	rage (Above) ER OR EQUAL		
RESERVOIR(0005 IN= 2> OUT= 1 DT= 5.0 min **** WARNING	OUTFL (cms : FIRST OUTF) (ha.m. LOW IS NOT 2) (CMS)		
INFLOW : ID= 2 OUTFLOW: ID= 1	(0001) (0005)	(ha) 1.084	DPEAK TPEAK (cms) (hrs) 0.154 10.0 0.149 10.0	(mm) DO 191.52	
	TIME SHIFT	OF PEAK FLOW	N [Qout/Qin](%)= W (min)= D (ha.m.)=	= 0.00	
FINISH					

SUB-CATCHMENT C4


LEGEND

IN DIS 198 AND AND A

NOTES

- 1. TRENCH WIDTH (SEPARATE TRENCH) AT THE TOP OF THE PIPE SHALL BE AS PER CITY OF MISSISSAUGA STANDARD C.2-1-31.
- 2. CONTRACTOR IS RESPONSIBLE FOR SUPPLYING ADDITIONAL BEDDING AND/OR STRONGER PIPE, IF ACTUAL TRENCH WIDTHS EXCEED DESIGN WIDTHS.
- 3. SEWERS TO HAVE CLASS B BEDDING TO CITY OF MISSISSAUGA STANDARD C.2-1-31 AND CITY OF MISSISSAUGA STANDARD C.2-1-32 AND 300mm SAND COVER TO CITY OF MISSISSAUGA STANDARD C.2-1-33
- 4. CONCRETE SEWER PIPE TO HAVE RUBBER GASKET JOINTS.
- 5. CONCRETE SEWER PIPE TO BE ENCASED IN 20MPa CONCRETE, FROM EACH MANHOLE TO THE FIRST JOINT OUTSIDE MANHOLE. ENCASEMENT TO EXTEND FROM UNDISTURBED GROUND TO 300mm ABOVE TOP OF PIPE.
- SURROUND ALL MANHOLES WITH A MINIMUM OF 1.0m COMPACTED GRANULAR BACKFILL. ALL CATCHBASINS TO HAVE COMPLETE, COMPACTED GRANULAR BACKFILL SURROUND.
- 7. EXCAVATED ROADS TO BE REINSTATED TO LATEST CITY OF MISSISSAUGA AND REGION OF PEEL STANDARDS.

1 = 1

SUBDIVISION CONSULTANT MAJOR DRAINAG					REET	-	CITY STORM FOR CIRCU	DRA	DRAI	DESI		_	AU 21 82		Si Pf DE	HEET ROJEC SIGNE	No F No D BY.)	_ OF _		DATE MAY 03	<u>1989</u>
LOCATION OF SECTION	FROM UPSTREAM	TO DOWNSTREAM	ADJACENT CONTRIBUTARY AREA	RUNOFF COEFFICIENT		ACCUMULATIVE AREA DRAINED BY SECTION	ACCUMULATIVE AREA TIMES RUNOFF COEFFICIENT FOR SECTION	FLOW TIME TO SECTION (FROM EXTREME	INITIAL TIME OF CONCENTRATION AT	TIME OF CONCENTRATION AT UPSTEAM END OF SECTION	INTENSITY OF RAINFALL	QUANTIEY OF FLOW TO BE ACCOMMODATED IN BECTION.	TYPE OF PIPE	MANNINGS Roughness Coefficient	SLOPE	DIAMETER	LENGTH OF SECTION	VELOCITY OF FLOWING WITH PIPE FLOWING	CAPACITY OF PIPE FLOWING FULL	PIPE INVERT AT UPSTREAM M.H.	PIPE INVERT AT DOWNSTREAM MH	TIME OF FLOW
	MH#	MH#	AA	Ca	AARCA	A = 244	AxC= SAAXCA	.161	101	1c=1c1+c	1	0=1AC 360		n	S,	D	L	V	Q			t=L
			(ha)			(ha)		(min)	(min)	min	mm/hr	m3/SEC	10000		.%	mm	m	m/SEC	m3/SEC	m	m	min :
BROADWAY ST.	PROP. 42	Ex.4	:822	0.45	0.370	· 822	0.370			15:0	100	0.103		.013	0.5%	450	27.5	1.45	.208			0.31
	Ex.4C	Ex.4	2.012	0.45	0.905	2.012	0.905			15.0	100	0.251		.013	0.5%	600	53.75	1.77	.453			0.26
								•														
	Ex4	OUTFALL	2.834	0.45	1.275	2.834	1.275	11000		15.31	98	0.347		.013	1.1%	600	15.5	2.628	. 472			0.10
														· · · · · · · · · · · · · · · · · · ·								
0						•															•	
						·																+
-7 6																						+
6- 1																						<u> </u>
- CE I																						
N																						
RE									·		·											
	•																					
· .																						
						• .																

		DEVEL	OPMENT:	51-57 Ta	nnery Stro	eet		Ê	MISS	SISS	AUG	A					SHEE	T No.:		DATE:	March.27	7,2018	
	CONSULTANT: LEA Consulting Ltd											DESIGN	NED BY:	F.M.									
	MAJO	R DRAINA	GE AREA:	Mullet C	reek			FOR CIR	CULAR	DRAIN	City of Miss			10yr = 10	10 42/(tc-	+4 6) ^{0.78}	CHECK	(ED BY:	M.D.				
Σ	Σ	4	ENT	DFF	REA	R		AT AM	z ^L	FALL	07						N D	щ		, Ŧ	z	V T 0	
FROM UPSTREA	TO DOWNSTREA	Catchment AREA	RUNOFF COEFFICIEN	AREA TIMES RUNOFF COEFFICIENT	ACCUMULATIVE AREA DRAINED BY SECTION	ACCUMULATIVE AREA TIMES RUNOFF COEFFICIENT FOR SECTION	FLOW TIME TO SECTIO FROM EXTREME UPSTREAM INLET	INITIAL TIME OF CONCENTRATION AT EXTREME UPSTREAM INL.	TIME OF CONCENTRATION UPSTREAM END OF SECTION	INTENSITY OF RAINF	QUANTITY OF FLOW T BE ACCOMODATED II SECTION	TYPE OF PIPE	MANNING ROUGHNESS COEFFICIENT	SLOPE	DIAMETER	LENGTH OF SECTION	VELOCITY OF FLOW WITH PIPE FLOWING FULL	CAPACITY OF PIPE FLOWING FULL	PIPE INVERT AT UPSTREAM M.H.	PIPE INVERT AT DOWNSTREAM M.H.	TIME OF FLOW IN SECTION	QUANTITY OF FLOW TO PIPE FLOWING FULL	NOTES
MH#	MH#	A	С	AxC	SUM. A	SUM AxC	tc _f	tci	tc=tc _f +tc _i	i	Q=iAC/360		n	S	D	L	V	Q _f			t=L/Vx60	Q/Q _f	
		ha			ha		min	min	min	mm/hr	L/sec			%	mm	m	m/sec	m3/sec	m	m	min	%	
Culvert	1	3.26	0.44	0.00	0.00	0.00	0	15	15		413.0	0010	0.014	0.00	450	44.00	0.00	170.5	455.74	455.40	0.41		External flow from broadwat St. and Railway Ditch
1	2	0.00	0.00	0.00	0.00	0.00	0.41	15	15.41 15.49	97.3	413.0 460.9	CONC CONC	0.011	2.00	450	14.20 83.40	3.00 2.57				0.08	0.87	
23	DCBMH1	0.27	0.66	0.18	0.27	0.18	0.08	15.41 15.49	15.49	97.3	460.9 619.4	CONC	0.011 0.011	1.00	600	96.00	2.57		155.28 154.42		0.54 0.62	0.64 0.85	
DCBMH1	MH4	0.12	0.32	0.04	0.39	0.22	0.54	16.03	16.65	93.1	680.3	CONC	0.011	1.00	600	13.40	2.57		154.42		0.02	0.85	
MH4	DCBMH2	0.00	0.00	0.24	0.74	0.46	0.02	16.65	16.74	92.8		CONC		3.11	675	52.00	4.90				0.18	0.79	External flow to MH4, A= 3.39ha, C=0.6, Q=699l/s, Tc=15.11 min
DCBMH2	Outfall	1.27	0.71	0.90	2.01	1.36	0.18	16.74	16.92	92.2	1608.7	CONC	0.011	1.00	825	47.00	3.17	1696.4	151.46	150.99	0.25	0.95	
											L												

Appendix D

Sanitary and Water Demand Calculations

	LEA Consulting Ltd. Consulting Engineers	San	nitary Flow Rate Calculation		
	and Planners	Prepared:	F.M.	Page No.	D-01
		Checked:	M.D.		
		Proj. #	18038		
		Date:	Feb.08/18		

POPULATION CALCULATION	V	
Site Area Number of Townhoses		10841 m ² 155 units
Proposed Building Type	Density (P.P.U)	Population
Residential	2.7	418.50
		418.50
SANITARY FLOW CALCULA Harmon Peaking Factor:	M=1+14/(4+P ^{0.5})	
Peaking Factor Average Daily Wastewater Flo Total Actual Domestic Flow	w	4.01 302.8 L/cap/day 5.89 L/sec
Total Domestic Flow (For less 13.0 L/sec-STD.DWG. 2-5-2, F	•	13.00 L/sec
Infiltration Allowance (@ 0.2 L/ Actual Design flow Standard Design Flow	sec/ha)	0.22 L/sec 6.10 L/sec 13.22 L/sec

LEA Consulting Ltd. Consulting Engineers	Water Demand Calculation				
and Planners	Prepared:	red: F.M. Page No. D	D-02		
	Checked:	M.D.			
Project: 51-57 Tannery Street	Proj. #	18038			
City Of Mississauga	Date:	Feb.08/18			

This calculation is following the "Water Supply for Public Fire Protection" by Fire Underwriters Survey.

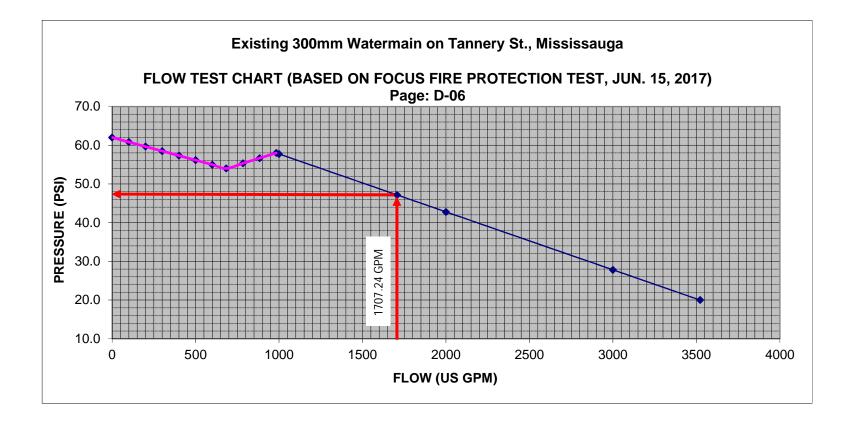
F = 220C√A Formula: where F = the required fire flow in litres per minute C = coefficient related to the type of construction. = 1.0 for Ordinary construction A = the total floor area in square metres. For fire resistive buildings, consider only the area of the largest floor plus 25% of each of the two immediately adjoining floors. According the building stats, Area (m2) Ground Floadjoining 541 2nd Floor largest 576 3rd Floor adjoining 576 А 855 Therefore, F = 6400 I/min **Occupancy reduction:** For occupancies with a low contents fire hazard, the reduction rate is 15%, Therefore: F = 5400 l/min Reduction for sprinkler protection: Using the NFPA sprinkler system, a reduction rate of 30% is used. Therefore: F = 3800 l/min Separation charge: Charge for the separations on each side: Separation Charge 0-3m 25% West 30.1 to 45 m 5% North 20.1 to 30 m 10% South 0-3m 25% East Total charge in % 65% Total charge in I/min 2500 Required Fire Flow: 6300 l/min 105.00 l/s or 1664 US GPM or

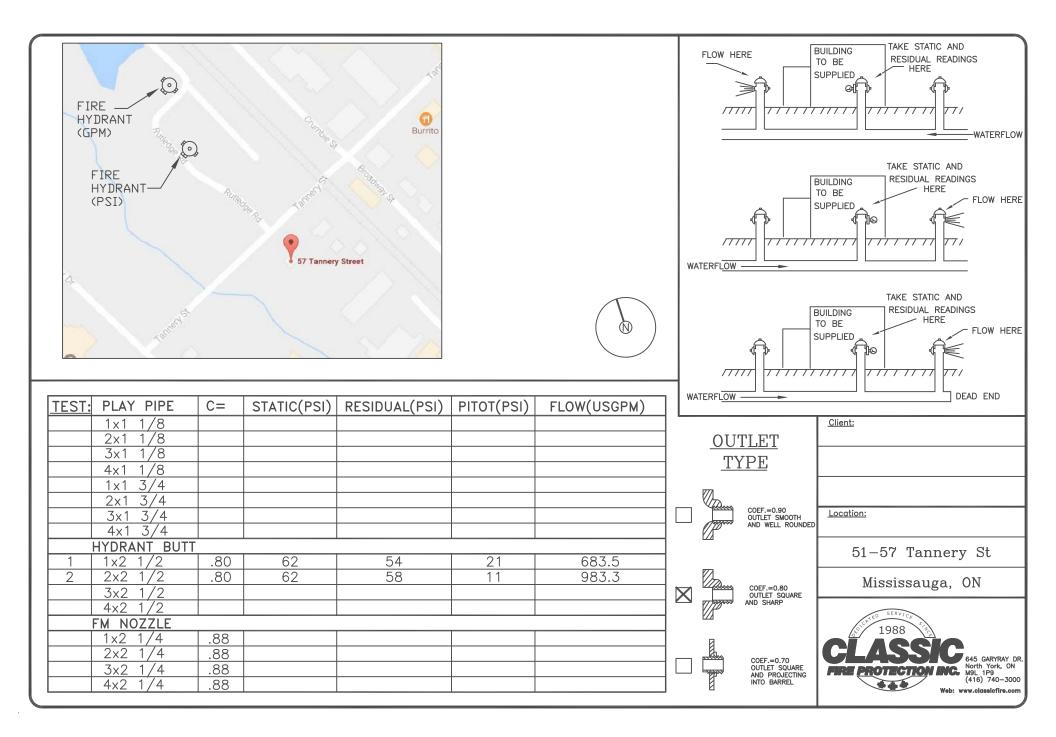
	Consulting Ltd.	W	Water Demand Calculation			
	ulting Engineers	S Prepared: F.M. Page No.	Page No.	D-03		
and F	and Planners	Checked:	M.D.			
Project: 51-57 Tannery Street		Proj. #	18038			
City Of Mississauga		Date:	Feb.08/18	1		

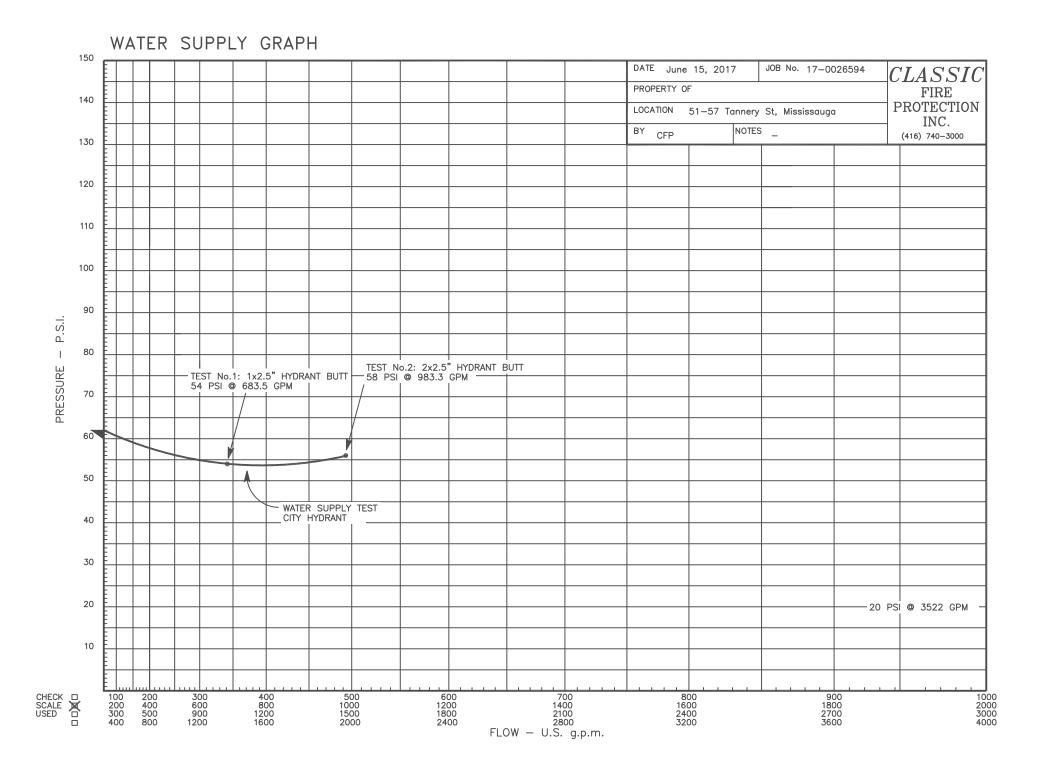
Total Population:	419 (See Page D-01)		
Peak Hour Demand Ca	Iculation:		
Residential Per Capita D Peaking Factor Peak Hour Demand	emand		280 L/cap/day 3 4.07 L/sec
Maximum Day Demand	Calculation:		
Residential Per Capita D Peaking Factor Maximum Day Demand			280 L/cap/day 2 2.71 L/sec
Fire Flow for Residenti	al:		105.00 L/sec
Max. Day Demand plus	Fire Flow:		107.71 L/sec
Design Water Demand			107.71 L/sec
		or	1707.24 US GPM

Appendix E

Hydrant Flow Test data and Watermain Adequacy Assessment Data


LEA Consulting Ltd.	Residual Pressure				
Consulting Engine	Prepared:	J.L.	Page No.	D-05	
and Flaimers	Checked:	M.D.			
Project: 51-57 Tannery Street	Proj. #	18038			
City Of Mississauga	Date:	Jul. 14/17			

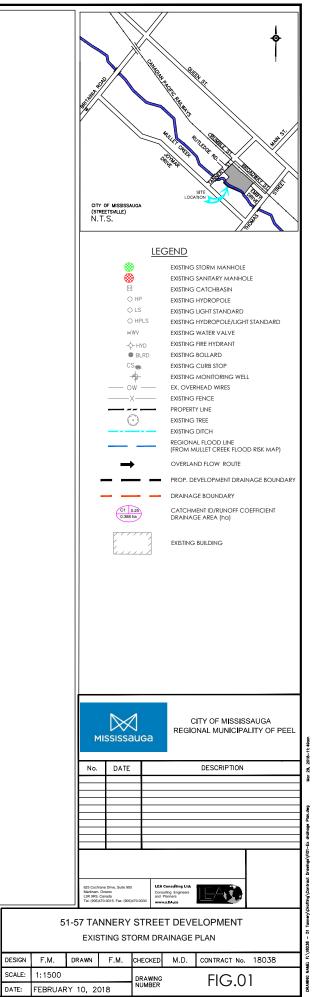

Hydrant Test Readings (300mm watermain, 51 Tannery Street) undertaken on June 15, 2017, by Focus Fire Protection


	· •
Flow	Residual Pressure
0 US GPN	/ 62 psi
683.5 US GPN	/I 54 psi
983.3 US GPN	/I 58 psi
3522 US GPN	/I 20 psi

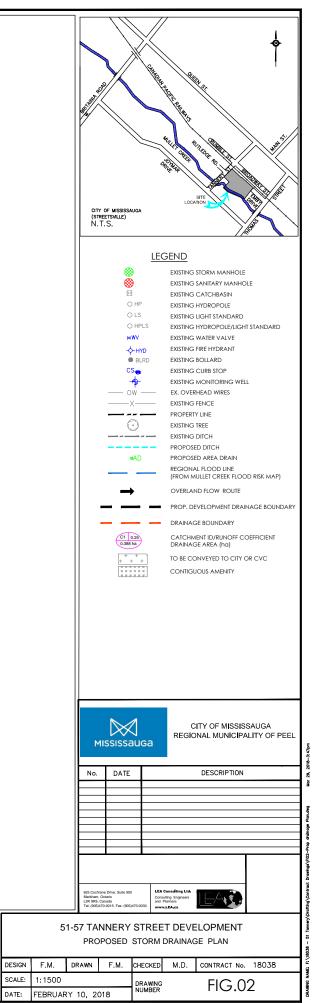
Focus Fire Protection Estimate

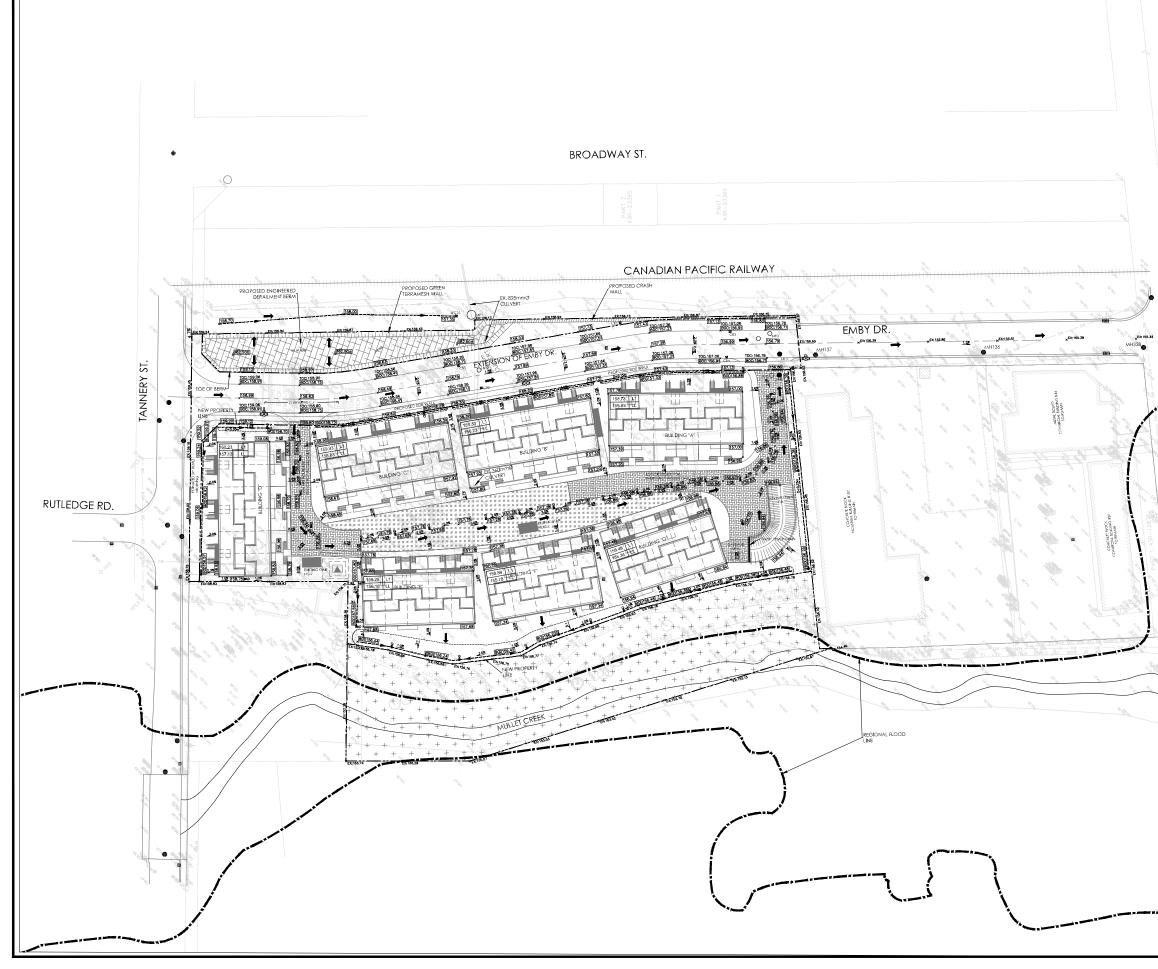
Interpolated				
Flow (US GPM)	Residual Pressure (psi)			
0	62.0			
100	60.8			
200	59.7			
300	58.5			
400	57.3			
500	56.1			
600	55.0			
683.5	54.0			
784	55.3			
884	56.7			
983.3	58.0			
1000	57.8			
1707	47.2			
2000	42.8			
3000	27.8			
3522	20.0			



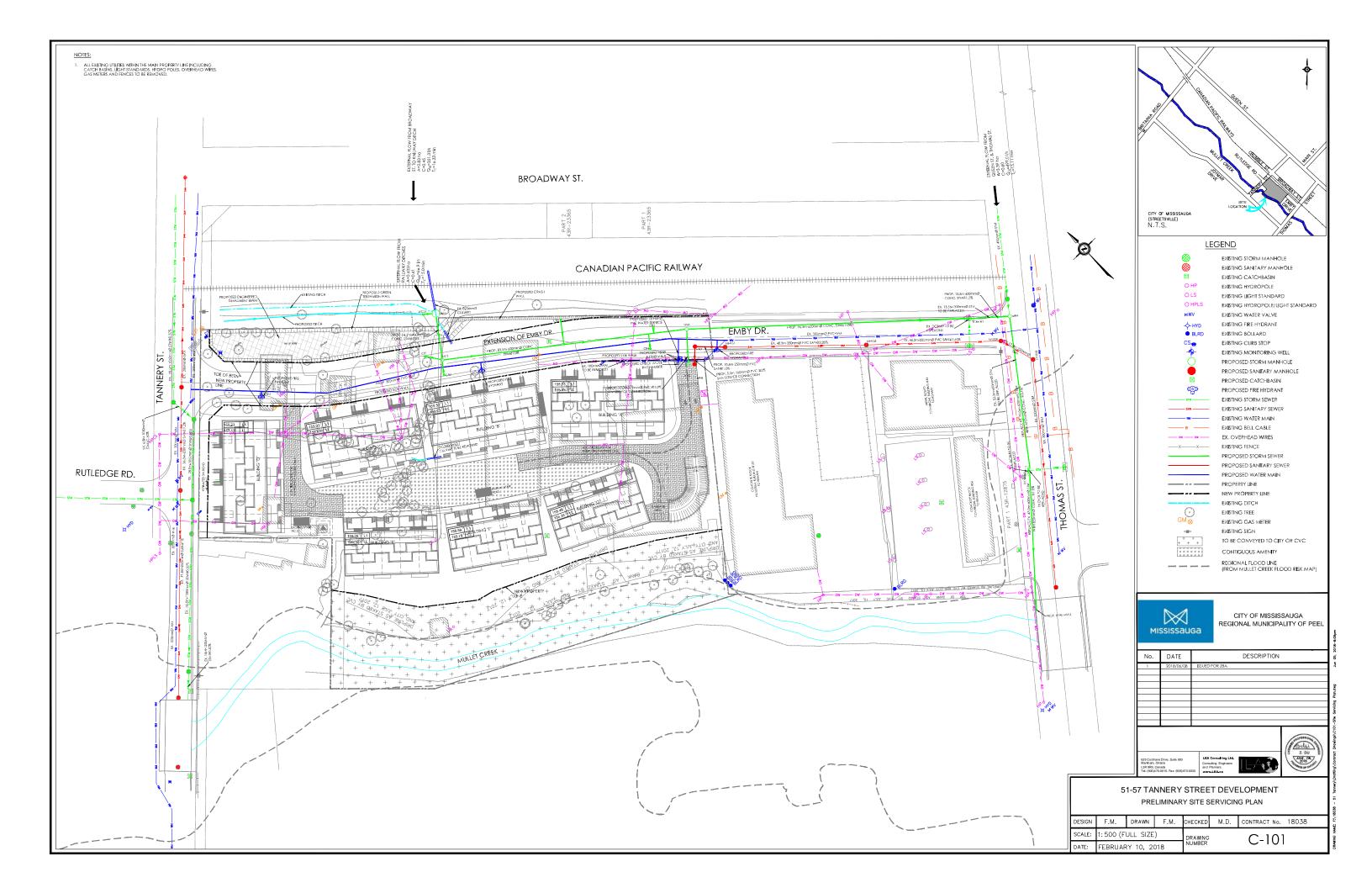


Appendix F


Figures and Drawing



(11"x17" / 279 x 431 mm)



(11"x17" / 279 x 431 mm)

	Provide a second
THOMAS ST.	LEGEND ● PROPOSED STORM MANHOLE ● PROPOSED SANITARY MANHOLE ■ PROPOSED CATCHBASIN ● PROPOSED FIRE HYDRANT ● EXISTING STORM MANHOLE ● EXISTING SANTARY MANHOLE ● EXISTING SANTARY MANHOLE ● EXISTING SANTARY MANHOLE ● EXISTING CATCHBASIN O HP EXISTING HUDROPOLE/LIGHT STANDARD O HPLS EXISTING HUDROPOLE/LIGHT STANDARD ● HYD EXISTING CURB TOP ● HYD EXISTING CURB STOP ● HYD EXISTING CURB STOP ● EXISTING FIRE HYDRANT EXISTING FENCE ● HYD EXISTING FENCE ● HYD EXISTING FENCE ● ROPORSED DICH EXISTING SURVEY ELEVATION ■ KISTING SURVEY ELEVATION EXISTING SURVEY ELEVATION ▼ EXISTING SURVEY ELEVATION ¥158.32 ■ FOROSED BOTTOM OF CURB ELEVATION ▼ EXISTING GAS METER <td< th=""></td<>
	CITY OF MISSISSAUGA REGIONAL MUNICIPALITY OF PEEL
	RAWN F.M. CHECKED M.D. CONTRACT No. 18038

