

The Odan/Detech Group Inc. P: (905) 632-3811 F: (905) 632-3363 5230, SOUTH SERVICE ROAD, UNIT 107 BURLINGTON, ONTARIO, L7L 5K2 www.odandetech.com

PROPOSED RESIDENTIAL TOWNHOUSE DEVELOPMENT 2532 ARGYLE ROAD CITY OF MISSISSAUGA

PROJECT No. : 18201

FUNCTIONAL SERVICING & STORMWATER MANAGEMENT REPORT

Prepared For:

Plazacorp Investments Ltd.

Prepared By:

The Odan/Detech Group Inc.

Original: October 19th, 2018

TABLE OF CONTENTS

DESCRIPTION

1.0	INTRODUCTION	3
2.0	SCOPE OF WORK	3
3.0	SANITARY SEWERS	4
4.0	WATER DISTRIBUTION	7
5.0	STORM WATER MANAGEMENT & DRAINAGE PROPOSAL	14
i)	Background Information & Existing Infrastructure	14
ii)	Design Criteria	17
iii)	Proposed Drainage & Allowable Discharge Flow Rate	17
iv)	Post Development Flow Analysis	24
v)	Water Balance	27
vi)	Water Quality	27
6.0	CONCLUSIONS	
7.0	REFERENCES	

LIST OF FIGURES

Figure 1 - Excerpt from Argyle Road storm drainage plan showing area in site with allocation	16
Figure 2 - XPSWMM HGL Plot showing 10-Year Post-Development HGL	22
Figure 3 - Post-Development Visual OTTHYMO Model (2-Year Storm Flows)	25
Figure 4 - Post-Development Visual OTTHYMO Model (10-Year Storm Flows)	25

LIST OF TABLES

TABLE 1 – Pre-Development Sanitary Flow	4
TABLE 2 – Post-Development Sanitary Flow	4
TABLE 3 – Total Water Demand	
TABLE 4 – Allowable Flow Rate	
TABLE 5 - Catchment Characteristics for the Post-Developed Site	24
TABLE 6 - Summary of Stormwater Control & Storage Scenarios	25
TABLE 7 - Summary	

page

APPENDIX A

Existing Site Site Plan & Statistics Aerial view of Site and surrounding area by architectureunfolded

APPENDIX B

Argyle Road storm sewer design sheet Visual OTTHYMO Model Output 2-year storm, 10-year storm & 100-year storm

APPENDIX C

Functional Servicing Plan Functional Grading Plan

1.0 INTRODUCTION

The property under study is a 0.661 Ha (1.6 acre) site located at 2532 Argyle Road in the City of Mississauga. The site is bound by the following:

- Argyle Road to the east
- An existing residential highrise development to the north
- A landscaped area within the adjacent highrise development to the west
- Existing detached houses to the south and on the opposite side of Argyle Road

Refer to the Key Plan in Appendix A for the site's layout and adjacent developments.

The site presently comprises three existing detached houses in three separate lots.

It is proposed to demolish the three existing houses. It is proposed to construct a townhouse development comprising a common one-level below-grade parking structure and four blocks of four-storey stacked townhouses with a total of 92 townhouse units. Refer to the architectural Site Plan in Appendix A.

For detailed topography of the existing site conditions, as of January 15, 2017, refer to the topographic survey prepared by R. Avis Surveying Inc.

This report evaluates the serviceability of the site with respect to sanitary waste water, water and storm water management (SWM) and will implement the City of Mississauga's SWM requirements and criteria.

2.0 SCOPE OF WORK

THE ODAN/DETECH GROUP INC. was retained by **Plazacorp Investments Ltd.** to review the Site, collect data, evaluate the Site for the proposed commercial use and present the findings in a Functional Servicing and Storm Water Management Report in support of a Zoning Bylaw Amendment application. The scope of work in brief involves the following:

- a) Collecting existing servicing drawings from the CITY in order to establish availability and feasibility of Site servicing;
- b) Meetings/conversations with CITY Engineers and Design Team.
- c) Evaluation of the data and presentation of the findings in a FSR and Storm Water Management Design Brief in support of the Zoning Bylaw Amendment application.

3.0 SANITARY SEWERS

i) Existing Infrastructure

There is an existing 250mm sanitary sewer flowing southerly beneath Argyle Road adjacent to the site's east frontage. This sewer continues easterly beneath Dunbar Road and then discharges into a 675mm sanitary sewer – which is assumed to be the trunk sewer – at the intersection of Dunbar Road and Rugby Road.

ii) Proposed Sanitary Servicing

The proposed townhouse development will be serviced for sanitary flows by a proposed 150mm sanitary service connection to the 250mm sanitary sewer beneath Argyle Road.

Sanitary flow calculations are based on the following criteria provided in the Region of Peel's manual: *Public Works Design, Specifications & Procedures Manual – Linear Infrastructure – Sanitary Sewer Design Criteria (Rev. July 2009).*

- flow rate = 302.8 L/person/day per capita
- Infiltration to be 0.0002m^{3/}sec/ha
- for residential areas, population of 3.5 persons per unit is to be used (row dwellings)
- The Harmon formula will be used for the peaking factor

The pre-development sanitary flows are as follows. Refer to the detailed calculation on the following pages.

TABLE 1 – Pre-Development Sanitary Flow									
Component	Population (P)	Average Flow (I/s)	Peak Sanitary Flow (l/s)	Inflow & Infiltration (I/s)	Total Flow (I/s)				
Ex 3 x DTH 33		0.12	0.50	0.13	0.64				

The post-development sanitary flows are as follows. Refer to the detailed calculation on the following pages.

A unit population of 3.5 persons/unit has been adopted in the Post-Development flow calculation, rather than the Region standard of 175 persons/Ha for townhouses, because the Region standard would result in a population of approximately 1.0 person/unit for the proposed development. This is not realistic, therefore a unit population of 3.5 persons/unit has been used as this was used in other similar developments in Mississauga.

TABLE 2 – Post-Development Sanitary Flow									
Component	Population (P)	Average Flow (l/s)	Peak Sanitary Flow (l/s)	Inflow & Infiltration (I/s)	Total Flow (I/s)				
PROP TH's	322	1.13	4.59	0.13	4.72				

The peak sanitary flow from the proposed development is **4.72 L/s**, as shown above.

RESIDENTIAL SANITARY FLOW CALCULATIONS

Sanitary flow calculations as per Region of Peel Public Works Design Criteria Manual - Sanitary Sewer PROJECT: 2532 Argyle Road Residential Townhouse Development SCENARIO: PRE-DEVELOPMENT

0.661

COMMERCIAL SITE AREA (ha) =

RESIDENTIAL SITE AREA (ha) = 0.661

TOTAL SITE AREA (ha) =

LAND USE	NUMBER OF UNITS	SITE AREA, (ha)	GROSS FLOOR AREA, m2	TOTAL POPULATION	TOTAL DAILY FLOW (LITERS)	AVERAGE DAILY FLOW I/sec	PEAKING FACTOR, M	TOTAL FLOW FROM LAND USE, l/sec
Single family (>10m frontage), using 50 person/hectare Single family (<10m frontage), using 70 persons/hectare Semi-Detached, using 70 persons/hectare		0.66		33 0 0	10008 0 0	0.12 0.00 0.00	4.35 4.50 4.50	0.50 0.00 0.00
Row Dwellings, using 175 persons/hectare Apartments, using 475				0	0	0.00	4.50	0.00
persons/hectare				0	0	0.00	4.50	0.00
RESIDENTIAL Townhomes, using 3.5 persons/unit				0	0	0.00	4.50	0.00
TOTAL RESIDENTIAL								0.50
COMMERCIAL, Using 50 persons/ha				0	0	0.00	4.50	0.00
TOTAL COMMERCIAL								0.00
	0			0				

TOTAL

Q = (MqP/86400) + A * I (L/sec)

Q1= total flow from Residential Land Use (L/sec) Q2= total flow from Commercial Land Use (L/sec) Qinfil = total flow from infiltration (L/sec) Qtot = total flow (Land use + infiltration)

V1= Total Volume from Land Use in liters

where : P is population

V1=

q = 302.8 L/person/day for proposed residential

10008

A = gross site area

i = 0.20 L/sec/ha (infiltration rate)

Peaking Factor M = 1 + [14 / (4 + (P/1000, 1/2))]

Q1=

Q2=

Qinfil

Qtot

0.50 0.00

0.13

RESIDENTIAL SANITARY FLOW CALCULATIONS

Sanitary flow calculations as per Region of Peel Public Works Design Criteria Manual - Sanitary Sewer PROJECT: 2532 Argyle Road Residential Townhouse Development SCENARIO: POST-DEVELOPMENT

COMMERCIAL SITE AREA (ha) =

RESIDENTIAL SITE AREA (ha) = 0.661

TOTAL SITE AREA (ha) =	0.661
------------------------	-------

LAND USE	NUMBER OF UNITS	SITE AREA, (ha)	GROSS FLOOR AREA, m2	TOTAL POPULATION	TOTAL DAILY FLOW (LITERS)	AVERAGE DAILY FLOW I/sec	PEAKING FACTOR, M	TOTAL FLOW FROM LAND USE, l/sec
Single family (>10m frontage), using 50 person/hectare				0	0	0.00	4.50	0.00
Single family (<10m frontage), using 70 persons/hectare				0	0	0.00	4.50	0.00
Semi-Detached, using 70 persons/hectare				0	0	0.00	4.50	0.00
Row Dwellings, using 175 persons/hectare				0	0	0.00	4.50	0.00
Apartments, using 475 persons/hectare				0	0	0.00	4.50	0.00
RESIDENTIAL Townhomes, using 3.5 persons/unit	92			322	97502	1.13	4.07	4.59
TOTAL RESIDENTIAL								4.59
COMMERCIAL, Using 50 persons/ha				0	0	0.00	4.50	0.00
TOTAL COMMERCIAL								0.00
	92			0				

TOTAL

Q = (MqP/86400) + A * I (L/sec)

Q1= total flow from Residential Land Use (L/sec) Q2= total flow from Commercial Land Use (L/sec) Qinfil = total flow from infiltration (L/sec) Qtot = total flow (Land use + infiltration) where : P is population

V1=

q = 302.8 L/person/day for proposed residential

97502

A = gross site area

i = 0.20 L/sec/ha (infiltration rate)

V1= Total Volume from Land Use in liters

Peaking Factor M = 1 + [14 / (4 + (P/1000,1/2))]

Q1=

Q2=

Qinfil

Qtot

4.59

0.00

0.13

4.72

4.0 WATER DISTRIBUTION

Design Considerations

There is an existing 300mm ductile iron watermain beneath Argyle Road adjacent to the site's east frontage. There is also an abandoned 150mm watermain beneath Argyle Road. Refer to the Functional Servicing Plan for the layout of the existing bordering watermains. They also appear on the following Fire Separation Distance Plan.

It is proposed to connect to the existing 300mm watermain for domestic water and fire protection. Refer to the Functional Servicing Plan for the proposed domestic water and fire services. The proposed incoming fire service is to be connected to the sprinklers provided in the underground parking garage and a proposed private hydrant within the private laneway. Refer to the Functional Servicing Plan. The proposed townhouses will not be sprinklered. They will be served by hydrants as follows.

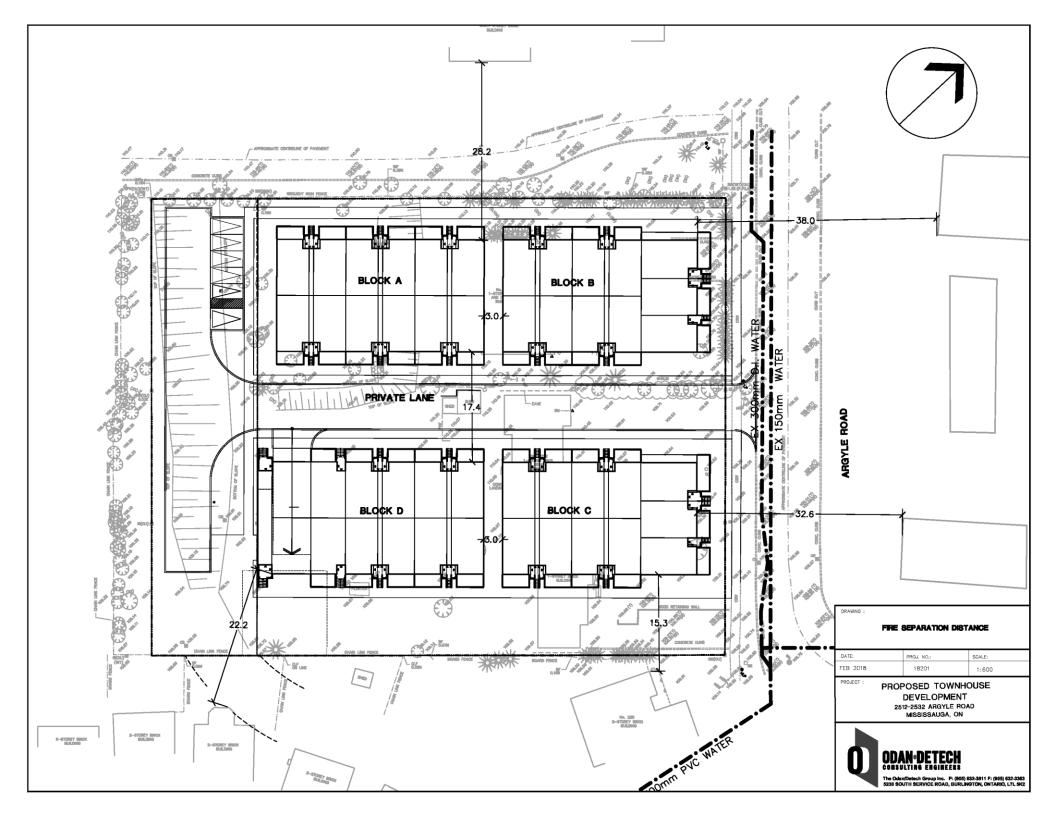
The proposed townhouse units will be served for fire protection by the existing hydrant on Dunbar Road adjacent to the site's southeast corner. Townhouse Blocks A and D are more than 90m from the existing hydrant and therefore require a new hydrant within the site. A new hydrant is proposed as shown on the Functional Servicing Plan.

The unit rate and peaking factors of water consumption, minimum pipe size and allowable pressure in line were established from the City Design Manual Standards. The pressures and volumes must be sufficient for peak hour conditions and under fire conditions as established by the Ontario Building Code 2006. The minimal residual pressure under fire conditions is 140 kpa. (or 20.3 psi).

The water demand for the proposed townhouse development is as follows. Domestic flow calculation criteria is given Tables 1 and 2 in the Region of Peel's *Public Works Watermain Design Criteria* manual (2009). The criteria is as follows. Table 2 in the Region manual is adopted as the criteria in this development as it is the more stringent criteria intended for new development.

a)	Average Day domestic demand -	using 409L/cap/day (322 persons – Table 2)	1.5 L/sec
b)	Max day demand -	2.0 x daily demand	3.0 L/sec
c)	Peak hour demand -	3.0 x daily demand	4.5 L/sec
d)	Fire flow as per FUS 1999 manual		333 L/sec

TABLE 3 – Total Water Demand


	L/sec	USGM
Max Day Demand	3.0	48
Fire Flow Demand (TH Block D)	333	5019
Total Water Demand	336	5067

The following assumptions are made in the following Fire Underwriters' Survey fire flow calculation.

- The proposed townhouse blocks (above-grade) are of wood-frame construction
- The Fire Underwriters' Survey calculation considers above-grade floors, not below-grade floors. The above-grade townhouse units are not sprinklered, therefore the FUS calculation is completed accordingly.
- The building's contents (residences) will be non-combustible in nature
- The setbacks from the adjacent buildings are shown on the following Fire Separation Distance Plan

Townhouse Block D has the largest fire flow demand and is taken as the development's fire flow demand. Refer to the following FUS calculations.

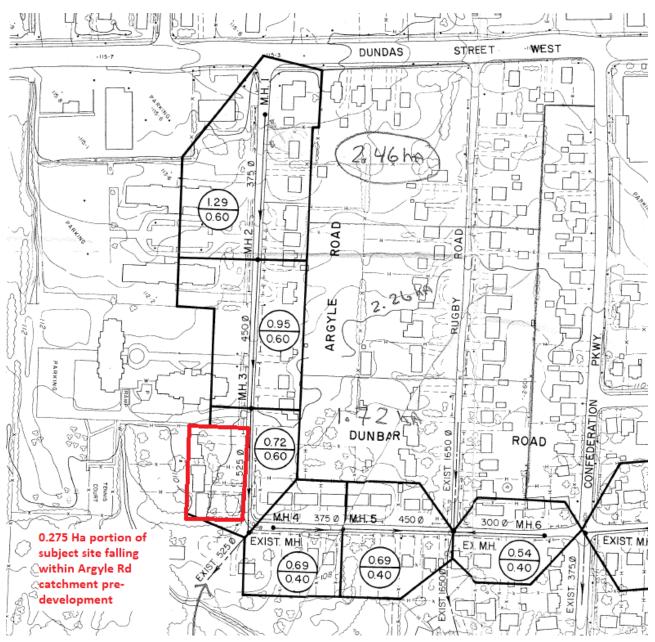
The Region is requested to provide boundary conditions with which to conclude the available flow in the receiving watermain. Hydrant flow tests will be provided in the future.

WATER SUPPLY FOR PUBLIC FIRE PROTECT GUIDE FOR DETERMINATION OF REQUIRE			/RITERS S	URVEY						
F = 220 x C x √ A Where:									Coefficient related to construction	o type of
<i>F</i> = required fire flow in liters per minute									1.5	Wood Frame
C= Coefficient related to the type of constr	uction								1	Ordinary
A = the total floor area in square meters (excluding basements) in the building										Non
considered									0.8	combustible
									0.6	Fire Resistive
LOCATION:	2532 Argy	/le Road -	Block A			PROJECT:	2532 Argyle	Road, Missi		
OBC OCCUPANCY:	Residentia	ıl				PROJECT No	18201			
BUILDING FOOT PRINT (m2):	562				_				Contents	Charge
# OF STOREYS	4								Non-Combustible	-25%
		4							limited Combustible	-15%
									Combustible	0%
CONSTRUCTION CLASS:		Wood	Frame						Free Burning	15%
					-				Rapid Buring	25%
AUTOMATED SPRINKLER PROTECTION NFPA 13 sprinkler standard	no	Credit 0%	Total	-						
Standard Water Supply	no	0%	0%							
Fully Supervised System	no	0%								
		0%								
CONTENTS FACTOR:		Non C	ombustik	ole		CHARGE:	-20%		Separation	Charge
EXPOSURE 1 (south) TH Block D	Distar	ice to Exp	osure Bu	- · ·		17	15%		0-3 m	25%
EXPOSURE 2 (east) TH Block C	Distar	ice to Exp	Lengti osure Bu	h - Height ilding (m)		3			3.1 -10 m 10.1 - 20 m	20% 15%
				h - Height			25%		20.1 - 30 m	10%
EXPOSURE 3 (west) NA	Distar	ice to Exp	osure Bu	ilding (m) h - Height		>45	0%		30.1 - 45 > 45 m	5% 0%
EXPOSURE 4 (north) EX Apartment Bldg	Distar	ice to Exp	osure Bu	-		28	10%		× 45 m	070
			Lengtl	n - Height			1078			
						Total:	50%	no more than 75%		
ARE BUILDINGS CONTIGUOUS:	Yes]								
FIRE RESISTANT BUILDING	Are vertical	openings an	d exterior v	vertical com	municati	ons protecte	d with a minir	mum one (1)	i No]
CALCULATIONS	C =	1.5		Wood F	rame					,
	A =	2248	m2					9	STOREY AREAS m2	Semi-UG
	F =	15646	L/min							1st
Round to Nearest 1000 L/min	F =	16000	L/min	must be	e > 200	0 L/min				2nd
CORRECTION FACTORS:									562	3rd
OCCUPANCY		-3200	L/min							
FIRE FLOW ADJUSTED FOR OCCUPANCY		12800	L/min							
REDUCTION FOR SPRINKLER EXPOSURE CHARGE		0 6400	L/min L/min							
			_,							
REQUIRED FIRE FLOW	F =	19200	L/min							
Round to Nearest 1000 L/min	F =	19000	L/min	5019	usgm					
	F =	317	L/sec							
									L	1

WATER SUPPLY FOR PUBLIC FIRE PROTECT GUIDE FOR DETERMINATION OF REQUIRE			VRITERS S	URVEY						
F = 220 x C x √ A Where:									Coefficient related to construction	o type of
<i>F</i> = required fire flow in liters per minute									1.5	Wood Frame
C= Coefficient related to the type of constr	uction								1.5	Ordinary
A = the total floor area in square meters										Non
(excluding basements) in the building considered									0.8	combustible
										Fire
LOCATION:	2532 Arg	yle Road -	Block B		Р	ROJECT:	2532 Argyle	Road, Missi	0.6 ssauga	Resistive
OBC OCCUPANCY:	Residenti					ROJECT No		·	0	
BUILDING FOOT PRINT (m2):	527				ſ	NOJECI NO	10201		Contents	Charge
	4								Non-Combustible	-25%
# OF STOREYS									limited	-15%
									Combustible Combustible	-13%
CONSTRUCTION CLASS:		Wood	Frame	1					Free Burning	15%
CONSTRUCTION CLASS:		weed	Tranc						Rapid Buring	25%
AUTOMATED SPRINKLER PROTECTION		Credit	Total							
NFPA 13 sprinkler standard	no	0%								
Standard Water Supply	no	0%	0%							
Fully Supervised System	no	0% 0%								
CONTENTS FACTOR:		Non C	Combustik	le		CHARGE:	-20%			I
EXPOSURE 1 (south) TH Block C	Dista	nce to Exp	osure Bui	ilding (m)	Г	17			Separation 0-3 m	Charge 25%
	Diota			n - Height			15%		3.1 -10 m	20%
EXPOSURE 2 (east) Ex House	Dista	nce to Exp		- · ·		38	5%		10.1 - 20 m	15%
EXPOSURE 3 (west) TH Block A	Dista	nce to Exp	-	n - Height ilding (m)		3			20.1 - 30 m 30.1 - 45	10% 5%
				n - Height		-	25%		> 45 m	0%
EXPOSURE 4 (north) Ex Apartment Bldg	Dista	nce to Exp		- · ·		26	10%			
			Lengu	n - Height		Total:	55%	no more		
						TOLAI.	5570	than 75%		
ARE BUILDINGS CONTIGUOUS:	Yes									
FIRE RESISTANT BUILDING	Are vertical	openings an	nd exterior v	ertical commu	inicatio	ns protecte	d with a minir	num one (1)	No]
CALCULATIONS	C =	1.5	_	Wood Fra	ime					1
	A =	2108	m2					9	TOREY AREAS m2	Semi-UG
	F =	15151	L/min							1st
Round to Nearest 1000 L/min	F =	15000	L/min	must be >	2000	L/min				2nd
CORRECTION FACTORS:									527	3rd
OCCUPANCY		-3000	L/min							
FIRE FLOW ADJUSTED FOR OCCUPANCY		12000	L/min							
REDUCTION FOR SPRINKLER		0	L/min							
EXPOSURE CHARGE		6600	L/min							
REQUIRED FIRE FLOW	F =	18600	L/min							
Round to Nearest 1000 L/min	F =	19000	L/min	5019 u	sgm					
	F =	317	L/sec							
					_				L	J

WATER SUPPLY FOR PUBLIC FIRE PROTEC GUIDE FOR DETERMINATION OF REQUIR			VRITERS S	URVEY					
F = 220 x C x √ A Where:								Coefficient related to construction	o type of
<i>F</i> = required fire flow in liters per minute								1.5	Wood Frame
C= Coefficient related to the type of const	ruction							1.5	Ordinary
A = the total floor area in square meters									Non
(excluding basements) in the building considered								0.8	combustible
			_					0.6	Fire Resistive
LOCATION:	2532 Arg	yle Road -	Block C		PROJECT:	2532 Argyle	Road, Missi		Resistive
OBC OCCUPANCY:	Residenti	al			PROJECT No	18201			
BUILDING FOOT PRINT (m2):	527							Contents	Charge
	4							Non-Combustible	-25%
# OF STOREYS								limited	-15%
								Combustible Combustible	-13%
CONSTRUCTION CLASS:	[Wood	Frame					Free Burning	15%
	L							Rapid Buring	25%
AUTOMATED SPRINKLER PROTECTION		Credit	Total	_					
NFPA 13 sprinkler standard	no	0%							
Standard Water Supply	no	0%	0%						
Fully Supervised System	no	0% 0%							
CONTENTS FACTOR:		Non C	Combustik		CHARGE:	-20%			
CONTENTS FACTOR.		Non e	ombustic		CHARGE.	2070		Separation	Charge
EXPOSURE 1 (south) Ex House	Dista	nce to Exp		- · ·	15	0%		0-3 m	25%
EXPOSURE 2 (east) Ex House	Dista	nce to Exp	-	h - Height ilding (m)	32			3.1 -10 m 10.1 - 20 m	20% 15%
EAF 030NE 2 (east) EA House	Dista			n - Height	52	15%		20.1 - 30 m	10%
EXPOSURE 3 (west) TH Block D	Dista	nce to Exp			3	25%		30.1 - 45	5%
EXPOSURE 4 (north) TH Block B	Dista	nce to Exp	-	h - Height ilding (m)	17			> 45 m	0%
				n - Height		15%			
					Total:	55%	no more than 75%		
		7							
ARE BUILDINGS CONTIGUOUS:	Yes								
FIRE RESISTANT BUILDING	Are vertical	openings an	nd exterior v	vertical communica	itions protecte	d with a minir	num one (1)	No	
CALCULATIONS	C =	1.5		Wood Frame					_
	A =	2108	m2				S	TOREY AREAS m2	
	F =	15151	L/min						Semi-UG 1st
Round to Nearest 1000 L/min	F =	15000	L/min	must be > 20	00 L/min			527	2nd
CORRECTION FACTORS:								527	3rd
OCCUPANCY	Y	-3000	L/min						
FIRE FLOW ADJUSTED FOR OCCUPANCY		12000	L/min						
REDUCTION FOR SPRINKLEF	ર	0	L/min						
EXPOSURE CHARGI	E	6600	L/min						
REQUIRED FIRE FLOW	F =	18600	L/min						
Round to Nearest 1000 L/min	F =	19000	, L/min	5019 usgn	n				
	F =	317	L/sec	U					
					-4				J

WATER SUPPLY FOR PUBLIC FIRE PROTECT GUIDE FOR DETERMINATION OF REQUIRE			/RITERS S	URVEY					
F = 220 x C x √ A Where:								Coefficient related to construction	o type of
<i>F</i> = required fire flow in liters per minute								1.5	Wood Frame
C= Coefficient related to the type of constr	uction							1.5	Ordinary
A = the total floor area in square meters									Non
(excluding basements) in the building considered								0.8	combustible
									Fire
LOCATION:	2532 Arg	yle Road -	Block D		PROJECT:	2532 Argyle	Road, Missi	0.6 ssauga	Resistive
OBC OCCUPANCY:	Residenti				PROJECT No				
BUILDING FOOT PRINT (m2):	562				PROJECTING	10201		Contents	Charge
	4	-						Non-Combustible	-25%
# OF STOREYS	-							limited	
								Combustible	-15%
		144	F					Combustible	0%
CONSTRUCTION CLASS:		Wood	Frame					Free Burning	15% 25%
AUTOMATED SPRINKLER PROTECTION		Credit	Total					Rapid Buring	23%
NFPA 13 sprinkler standard	no	0%							
Standard Water Supply	no	0%	0%						
Fully Supervised System	no	0% 0%							
		0%							
CONTENTS FACTOR:		Non C	Combustib	le	CHARGE:	-20%		Separation	Charge
EXPOSURE 1 (south) Ex House	Dista	nce to Exp		- · ·	22	10%		0-3 m	25%
EXPOSURE 2 (east) TH Block C	Dista	nce to Exp	-	n - Height ilding (m)	3			3.1 -10 m 10.1 - 20 m	20% 15%
	Dista			n - Height	5	25%		20.1 - 30 m	10%
EXPOSURE 3 (west) N/A	Dista	nce to Exp	osure Bu	ilding (m)	>45	10%		30.1 - 45	5%
EXPOSURE 4 (porth) TH Plack A	Dicto	nco to Evn	-	n - Height ilding (m)	17			> 45 m	0%
EXPOSURE 4 (north) TH Block A	Dista	nce to Exp		n - Height	17	15%			
			-	-	Total:	60%	no more		
		_					than 75%		
ARE BUILDINGS CONTIGUOUS:	Yes								
FIRE RESISTANT BUILDING	Are vertical	openings an	nd exterior v	ertical communica	tions protecte	d with a minir	num one (1) l	No	
CALCULATIONS	C =	1.5		Wood Frame					
	A =	2248	m2				S	TOREY AREAS m2	Semi-UG
	F =	15646	L/min					562	
Round to Nearest 1000 L/min	F =	16000	L/min	must be > 200	00 L/min				2nd
CORRECTION FACTORS:								562	3rd
OCCUPANCY		-3200	L/min						
FIRE FLOW ADJUSTED FOR OCCUPANCY		12800	L/min						
REDUCTION FOR SPRINKLER		0	L/min						
EXPOSURE CHARGE		7680	L/min						
REQUIRED FIRE FLOW	F =	20480	L/min						
Round to Nearest 1000 L/min	F =	20000	, L/min	5283 usgm	ı				
	F =	333	L/sec	0					
					4				


5.0 STORM WATER MANAGEMENT & DRAINAGE PROPOSAL

i) Background Information & Existing Infrastructure

Presently the following existing separated storm sewers are adjacent to the subject site. Refer to the Functional Servicing Plan and the Pre-Development Drainage Plan on the following page for the existing storm sewers adjacent to the subject site and the existing site drainage patterns.

- There is an existing 2400mm x 3600mm at 2.0% box culvert conveying Mary Fix Creek in an approximately 17m wide easement in the west side of the subject site. This culvert commences at an inlet north of the site and south of Dundas Street. The operating condition of this culvert – which provides major system storm outlet for the subject site – defines the manner in which major storms are addressed in the site's stormwater quantity controls.
 - 1.1. The culvert was constructed in the 1970's and 1980's to provide conveyance for major storms, evidently based on hydrological calculations available at the time.
 - 1.2. A *HEC-RAS* floodplain model of Mary Fix Creek was completed in 2000 by Credit Valley Conservation (CVC), thereby establishing the reaches of Mary Fix Creek upstream of the inlet to this culvert in a CVC regulated area. *The subject site is not presently in the regulated area.*
 - 1.2.1. Aside: the existing *HEC-RAS* analysis does not include the section of Mary Fix Creek in the culvert within the subject site, therefore the operating condition of the existing culvert in the 100-year storm cannot be concluded on the basis of that analysis.
 - 1.3. CVC staff are presently undertaking a new hydrologic and hydraulic analysis of the Mary Fix Creek floodplain which is conveyed by the subject culvert within the site. The analysis will determine present flow condition of the culvert in the critical 100-year storm. CVC staff have stated that the analysis is to be completed late-2018.
 - 1.3.1. Further to CVC direction in anticipation of CVC's future analysis The Odan/Detech Group undertook an independent analysis of the subject culvert and surface conveyances relative to the 100-year storm. The preliminary results were provided in a memo titled *Site Flood Analysis* by The Odan/Detech Group Group, dated June 25, 2018.
 - 1.3.1.1. The June 25/2018 memo addresses flow conditions in the subject 2400mm x 3600mm culvert and on the surface which are relevant for site grading and stormwater management design. There are two critical scenarios/flow conditions which were modelled:
 - Scenario 1: scenario where flows leaving the existing storm pond north of Dundas Street are considered to be attenuated by the pond flow at culvert inlet is **74.2** L/s.
 - Scenario 2: scenario where flows are not considered as attenuated flow at culvert inlet is **43.1 L/s**.

- 1.3.1.2. The hydrographs for the two scenarios were provided by CVC from their ongoing hydrological study and are provided in Appendix B of the June 25/2018 *Site Flood Analysis* memo.
 - 1.3.1.3. The results of The Odan/Detech Group's flood conveyance analysis are provided in the two foregoing scenarios in Tables 1 and 2 (page 27) of the memo. It was generally concluded that the subject culvert is flowing at or near full in either scenario and that there is a spill onto the surface in the scenario where the flows are unattenuated (Scenario 1). The spill onto the surface results in stormwater from the culvert passing through the subject site on the surface at a flow depth of up to 0.48 m as shown in Table 1 of the June 25/18 memo.
- 1.3.1.4. It has not presently been concluded which scenario will apply to this site if CVC's analysis is completed and registered before this development's zoning is approved; whether a spill condition is deemed to exist on the basis of the upstream stormwater not being attenuated by the pond or else if the stormwater is attenuated leaving the pond, whereby all stormwater is conveyed by the culvert. The site's design has been conservatively prepared to address both scenarios.
- 2. There is an existing 525mm storm sewer flowing southerly beneath Argyle Road, which discharges into the foregoing culvert downstream of the subject site.
 - 2.1. This sewer was designed for the 10-year storm with a C-value of 0.60, based on sewer design sheets and catchment plans provided by the City of Mississauga.
 - 2.2. A 0.275 Ha portion of the site was allocated to drain into this sewer based on the excerpt from the sewer's drainage plan, shown in Figure 1, below.
- 3. Design criteria for storm drainage design based on the foregoing conveyances are discussed below.

Figure 1 - Excerpt from Argyle Road storm drainage plan showing area in site with allocation

ii) Design Criteria

The City of Mississauga's *Development Requirements Manual (Effective September 2016)* provides criteria for stormwater management design. Table 2.01.03.03c therein states that developments in the Mary Fix Creek watershed should control 10-year post-development to 2-year pre-development storms. Note 1 on that table states that storm sewer capacity constraints may govern. Note 2 on that table states that pre-development C-value should be no greater than 0.50.

City staff have stated that 5mm rainfall event retention is required and that a best-effort to implement LID should be provided.

City staff have stated that stormwater quality control shall be provided by way of development charges, therefore no quality control measures are specified.

Design storm data for the City of Mississauga 2 year, 10 year and 100 year storms are shown below.

$$i_2 = \frac{610}{(t_c + 4.6)^{0.78}}$$
, $i_{10} = \frac{1010}{(t_c + 4.6)^{0.78}}$, $i_{100} = \frac{1450}{(t_c + 4.9)^{0.78}}$

i

t

where:

intensity (mm/hr)time of concentration (15min)

iii) Proposed Drainage & Allowable Discharge Flow Rate

The proposed development will drain storm flows to two outlets, and the pre-development or allowable discharge to each is established below based on the relevant criteria for each outlet.

- 1. Existing 3600mm x 2400mm culvert in easement.
 - a. The western area of the development (western/rear drive aisle area; area of easement) will drain into this culvert by overland flow into the two existing catchbasins (EX CB1 and EX CB2).
 - b. This is necessary to maintain surface flow conveyance for spill/flood water from Mary Fix Creek if the governing criteria is Scenario 1 (above) where a spill occurs through the site. The site has conservatively been designed to accommodate the Scenario 1 spill scenario. Design considerations arising from Scenario 1 condition:
 - i. The topography is such that the spill/flood water flows through the site, from external of the site, approximately from the northwest to southwest corner.
 - ii. It is not possible to control only the subject site's runoff in isolation in this scenario because there would be significant flows entering the site from elsewhere and it is therefore not feasible to control only the subject site's runoff among the flood/spill-water also passing through the site in Scenario 1.

- 2. Existing 525mm Argyle Road storm sewer.
 - a. There is allocation in the Argyle Road storm sewer for a portion of the subject site as evidenced in Figure 1. The site will drain into this sewer based on the existing allocation, the sewer's capacity and the criteria for quantity control prescribed by the City of Mississauga and described above.

The site's allowable discharge rate into the two foregoing outlets is as follows in Table 4. The design criteria for the discharge to the Argyle Road storm sewer is as follows.

- 1. The 2-year pre-development flow with C=0.50, in accordance with the foregoing City criteria (as per Table 4), as well as:
- Receiving storm sewer capacity maintaining the pre-development flow conditions in the receiving 525mm storm sewer beneath Argyle Road (as per the below discussion and sewer design sheets)

TABLE 4 – Allowable F	low Rate			
Receiving Outlet	Run-off Coefficient	Rainfall Intensity (mm/hr)	Area (ha)	Site Allowable Discharge (L/s)
Argyle Road 525mm storm sewer	0.50	59.9 mm/hr (2-Y Storm)	0.546 Ha	45.5 (2-Y Storm)
3600mm x 2400mm		59.9 mm/hr (2-Y Storm)	0.386 Ha	19.3 L/s (2-Y)
Mary Fix Creek Culvert	0.30*	140.7 mm/hr (100-Y Storm)	(Catchment EX-A)*	45.3 L/s (100-Y)

*Refer to the Pre-Development Catchment Plan on the following page for Catchment EX-A, the portion of the site which drained into the Mary Fix Creek Culvert pre-development.

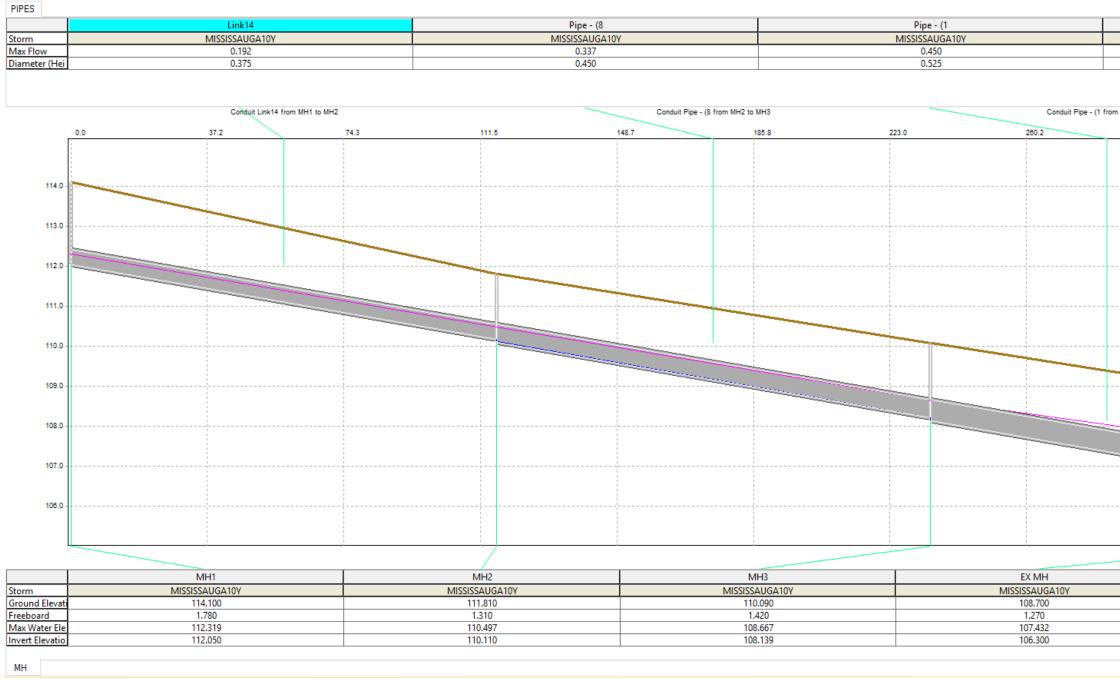
Note that the foregoing allowable release rate to the Argyle Road 525mm sewer is based on an area of 0.546 Ha, rather than the site's total area of 0.661 Ha. This is because the use of the site's total area (0.661 Ha) in this calculation would result in the site's impact on the receiving storm sewer infrastructure being greater than in pre-development conditions.

Refer to the storm sewer design sheets on the following pages showing the pre-development and post-development impact on the receiving storm sewer in 10-year storms. The storm sewer was originally designed to convey the 10-year storm based on the storm sewer design sheet provided by City staff, provided here in Appendix B.

By the foregoing controlled release rate criteria, the proposed development causes no additional impact on the receiving Argyle Road storm sewers. The receiving segments are flowing at a lesser percentage of capacity in post-development as compared to pre-development conditions.

As seen in the following storm sewer design sheets, the 450mm downstream pipe segment is flowing at 120% of it's capacity in post-development conditions. The sewer was therefore modelled using *XPSWMM 2017.1.1* by XP Solutions to identify the existing surcharging. The catchment areas were inputted as shown on the sewer design sheets.

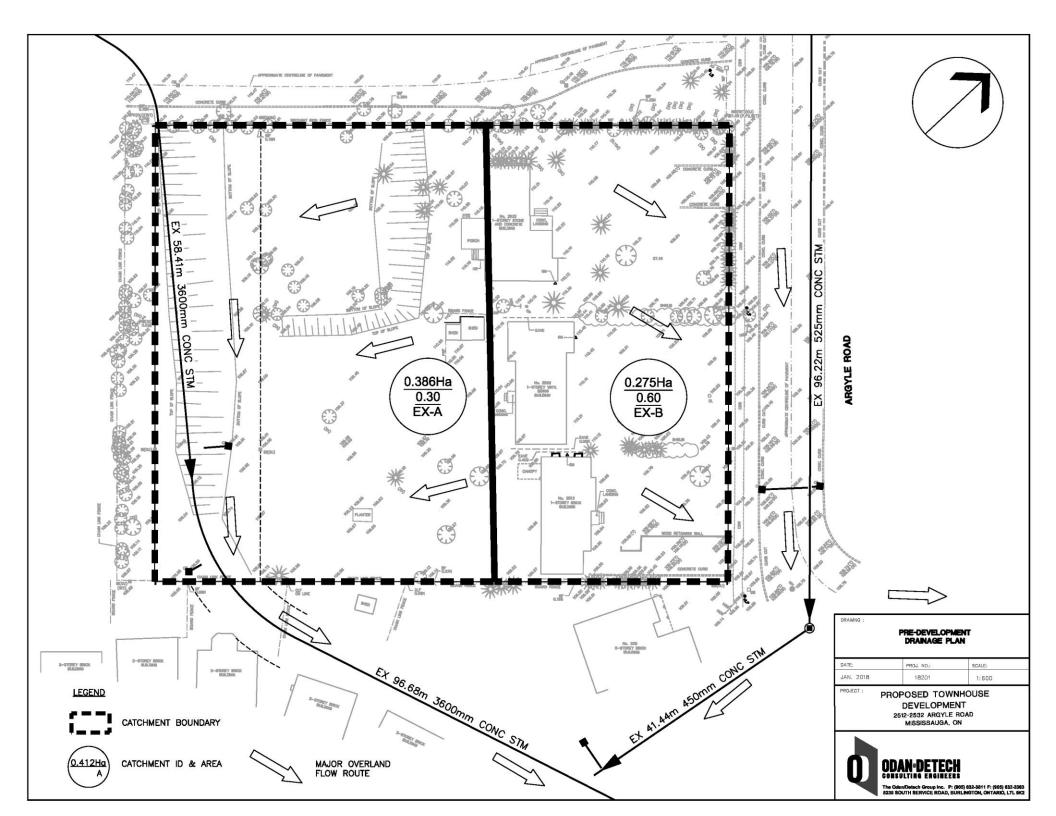
The HGL plot generated by XPSWMM, Figure 2, below, shows that there is minor surcharging at *EX MH*, downstream of the subject site, in the existing and proposed condition. The storm sewer post-dates the houses on Argyle Road therefore it is assumed that any foundation drains that the houses might have are not connected to the storm sewer. It is additionally noted that no laterals into the storm sewer from houses appears on the storm sewer's plan-profile drawing (City drawing no. C-28466). On this basis, the surcharging does not pose a risk of basement flooding.


The proposed development's controlled discharge rate to the 525mm storm sewer beneath Argyle Road will be 45.5 L/s based on the foregoing calculations and discussion.

The *Pre-Development Drainage Plan* on the following page shows the pre-development drainage patterns in accordance with the City Argyle Road storm sewer drainage plan.

Site location:	Argyle Road, Mississa	uga														ODAN •D	ETECU	
Ref# PN 18201																CONSULTING	ENGINEERS	
															Pipe			
	Locatio			Segment Tributary Area	Accumulative Tributary Area	Time of Concentration	10-year Rainfall Intensity	Segment Catchment Area C-Value	Segment A x C	Accumulative A x C	Accumulative 10-Year Storm Flow	Length	Size	Slope	Shape	Full Flow Capacity	Full Flow Velocity	% Full
Segment Storm	Localio	US	DS	(Ha)	(Ha)	(minutes)	(mm/hr)	Alea C-Value	(Ha)	(Ha)	(L/s)	Length	D	Siope	Shape	Qcap	Velocity	70 F UII
Trib ID	Street Name	Node	Node									(m)	(mm)	(%)		(L/s)	(m/s)	Q(d)/Qcap
	External Downstrean	n Storm Sewers																
	Argyle Rd	MH1	MH2	1.29	1.29	15.000	99	0.60	0.77	0.77	213	116.00	375	1.60	circle	221.78	2.01	96.21%
	Argyle Rd	MH2	MH3	0.95	2.24	15.963	96	0.60	0.57	1.34	357	118.00	450	1.60	circle	360.63	2.27	98.97%
	Argyle Rd	MH3	EXMH	0.72	2.96	16.830	92	0.60	0.43	1.78	457	96.00	525	1.60	circle	543.99	2.51	83.95%
	Argyle Rd	EXMH	Culvert	-	-	17.467	90	0.60	0.00	1.78	446	41.40	450	1.69	circle	370.64	2.33	120.43%
Flow Calculation	on Criteria																	
Tow Calculation	onterna																	
Q=2.78CiA																		
Mississauga 10	-Year Storm IDF dat	a:																
10 = 1010.00 / (4	4.60 + t) ^{0.78}																	
n=0.013																		
	Area and C-value a	s aivon in City o	f Mississourga	Drawing: Argul		Pd Storm Drai		Aay 1001										

Site location:	Argyle Road, Mississa	uga														OD AND	стгош	
Ref# PN 18201		ugu				1				1	1				U	CONSULTING	E I EG M E N G I N E E R S	
Ret# PN 18201															-			
	1	1	[1				1		1	1	í				1		
															Pipe			<u> </u>
		1	1	Segment	Accumulative		10-year	Segment			Accumulative				Tipe			
				Tributary	Tributary	Time of	Rainfall			Accumulative						Full Flow	Full Flow	
0	Locati	on US	DS	Area	Area	Concentration	Intensity	Area C-Value	AxC	AxC	Storm Flow	Length	Size D	Slope S	Shape	Capacity	Velocity	% Full
Segment Storm Trib ID	Street Name	Node	Node	(Ha)	(Ha)	(minutes)	(mm/hr)		(Ha)	(Ha)	(L/s)	(m)	(mm)	(%)		Qcap (L/s)	(m/s)	Q(d)/Qca
												()	()	(12)		(= +)	(, 2)	
	External Downstream																	
	Argyle Rd	MH1	MH2	1.29	1.29	15.000	99	0.60	0.77	0.77	213	116.00	375	1.60	circle	221.78	2.01	96.21%
	Argyle Rd	MH2	MH3	0.95	2.24	15.963	96	0.60	0.57	1.34	357	118.00	450	1.60	circle	360.63	2.27	98.97%
Subject Site Trib	Argyle Rd	MH3	EX MH	0.55	0.55	16.830	60	0.50	0.28	0.28	46							
Argyle Rd Trib	Argyle Rd	MH3	EXMH	0.55	2.66	16.830	92	0.60	0.28	1.60	40	96.00	525	1.60	circle	543.99	2.51	83.86%
37																		
	Argyle Rd	EXMH	Culvert		-	17.467	90	0.60	0.00	1.60	447	41.40	450	1.69	circle	370.64	2.33	120.58%
Flow Calculation	on Criteria																	
Q=2.78CiA																		
Mississauga 10	-Year Storm IDF da	ta:																
110 = 1010.00 / (4	4.60 + t) ^{0.78}																	
n=0.013																		
N	1																	
Note: I ributary	Area and C-value a	s given in City o	t MISSISSauga	Drawing: Argyl	ə ĸd Dunbar	Ra. Storm Draii	nage Areas, N	1ay 1991										


Figure 2 - XPSWMM HGL Plot showing 10-Year Post-Development HGL

Pipe - (43
MISSISSAUGA10Y
0.449
0.450

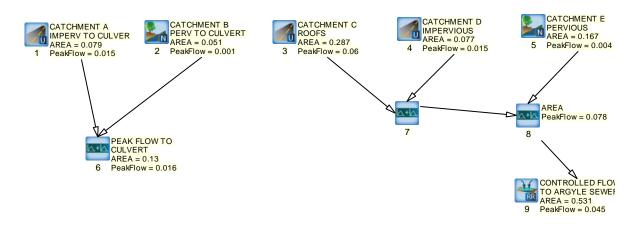
n MH3 to EX MH	Conduit Pipe - (43 from EX MH	to OUTLET
297.3	334.5	371.7
		·
10-Y HGL		
10-T HOL		

OUTLET
MISSISSAUGA10Y
108.400
2.370
106.029
105.600

iv) Post Development Flow Analysis

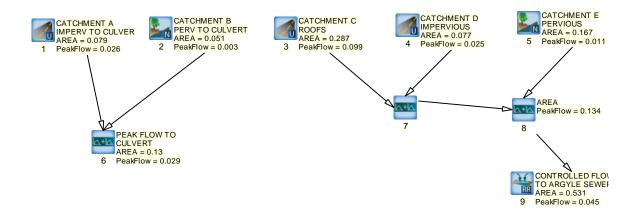
The proposed development will control the post development flows to the allowable flow rate calculated above. On-site stormwater storage will be required for the portion of the site draining to the Argyle Road 525mm culvert (Catchment Areas 'C', 'D' and 'E'). The site grading has been designed such that the portion of the site draining to the Mary Fix Creek 3600mm x 2400mm culvert produces no more runoff than in pre-development conditions, therefore no attenuation or storage is proposed for this catchment (Catchment Areas 'A' and 'B').

Refer to the Post-Development Catchment Plan on the following page for the post-development catchment areas.


The adjacent developments and the adjacent Argyle Road have self-contained storm drainage and do not drain into the subject site, with the exception of major system flood/spill water that might enter and pass through the western portion of the site in Scenario 1, above. Runoff from adjacent developments is therefore not considered in the development's stormwater calculations.

Visual OTTHYMO 2.3.2. will be used to model and determine the detention volume required. For drainage areas with significant imperviousness the calculation of effective rainfall in Visual OTTHYMO is accomplished using the "Standhyd" method. This method is used in urban watersheds to simulate runoff by combining two parallel standard unit hydrographs resulting from the effective rainfall intensity over the pervious and impervious surfaces. For pervious surfaces, losses are calculated using the SCS modified CN method.

The following parameters were used in Visual OTTHYMO to characterize the post development catchment areas.


TABLE 5 - Catch	ment Ch	aracteristics	for the	Post-Develo	ped Site			
Area I.D.	Area (ha)	Hydrograph Method	% impervious	imperviousness directly connected %	Loss Method for Pervious Area	CN for Pervious Area	Initial Abstraction for Pervious (mm)	Time to peak (T _p)
A – Impervious (to culvert)	0.079	StandHyd	90	90	SCS	80	1	-
B – Pervious (to culvert)	0.051	NashHyd	-	-	SCS	80	5	0.11
C - Roofs	0.287	StandHyd	99	99	SCS	80	1	-
D - Impervious	0.077	StandHyd	90	90	SCS	80	1	-
E - Pervious	0.167	NashHyd	-	-	SCS	80	5	0.11

The Visual OTTHYMO Model showing flows in 2-year and 10-year storms is as follows. Refer to the Visual OTTHYMO output in Appendix B for further details.

Figure 3 - Post-Development Visual OTTHYMO Model (2-Year Storm Flows)

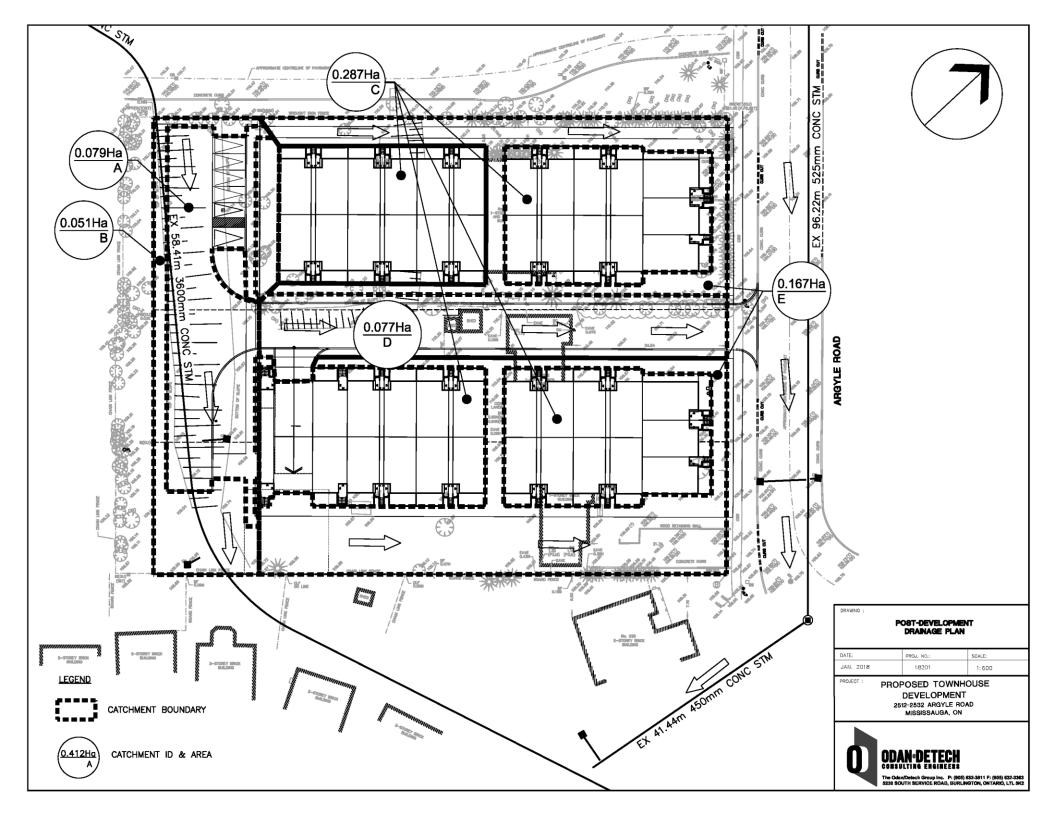

The discharge criteria is thus satisfied as follows.

TABLE 6 - Summary	of Stormwater C	Control & Storage Scenario	OS	
Discharge Outlet	Storm	Allowable Release Rate (L/s) (Table 4)	Proposed Release Rate (L/s)	Stormwater Storage Volume
Mary Fix Creek	2-Year	19.3	16	N/A
culvert	600mm x 2400mm		43	N/A
Argyle Road 525mm storm sewer	10-Year	45.5	45	53 m ³

TABLE 6 - Summary of Stormwater Control & Storage Scenarios

As shown above, no stormwater attenuation or storage is required to meet discharge criteria by overland flow into the Mary Fix Creek culvert – Catchment Areas 'A' and 'B'.

Stormwater falling on Catchment Areas 'C', 'D' and 'E' will be controlled to the allowable release rate and subsequently 53m³ of storage will be required. A stormwater storage tank will be provided accordingly as shown on the Functional Servicing Plan.

v) Water Balance

City staff have stated that the criteria for this site is to retain 5mm rainfall events on the site.

A strategy will be developed at the SPA stage whereby 5mm rainfall events will be retained on site. The site will comprise landscaped areas which will require irrigation – a potential source of water reuse. Greywater reuse is another feasible mechanism for stormwater reuse, to be developed in the future at the SPA stage.

vi) Water Quality

City staff have stated that stormwater quality may be addressed by development charges.

6.0 CONCLUSIONS

From the foregoing investigation, the site is serviceable utilizing existing sanitary, storm and watermain infrastructure within and adjacent to the site. Storm water management can be accommodated with on-site storage as described in this report.

The following table summarizes the SWM and Servicing components of the proposed development.

TABLE 7 - Summary

	Proposed Development
Peak Sanitary Discharge (L/s)	4.72
Proposed Sanitary Service	150mm @ 2.0%
Receiving Sanitary Sewer	250mm sanitary sewer – Argyle Road
Development Water Demand (Fire + Domestic)	5067 USGM
Proposed Fire Service	150mm
Proposed Domestic Service	Branch 100mm
Allowable release rate from site (L/s)	TBC – table 4
Stormwater Quality	Not applicable
Quantity Control	Orifice pipe (to be designed at SPA)

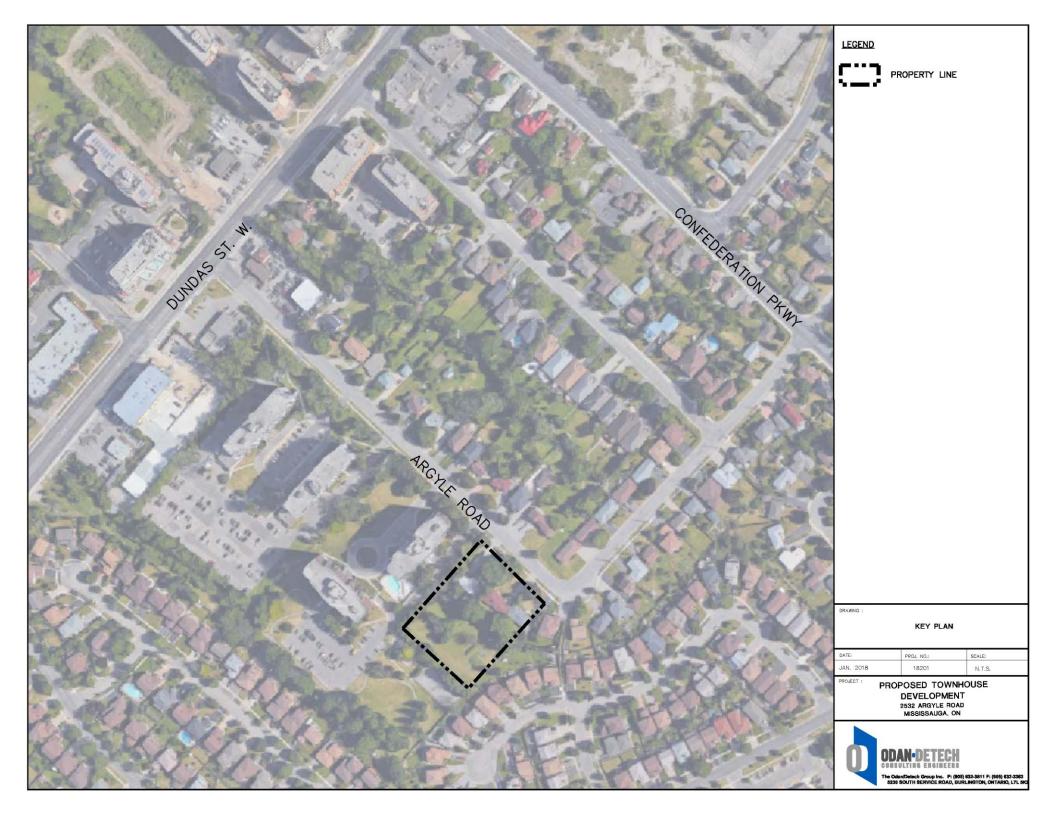
7.0 REFERENCES

- 1. Region of Peel "Public Works Design Criteria Manual Sanitary Sewer", 2009.
- 2. Region of Peel "Public Works Design Criteria Manual Watermain", 2009.
- 3. Storm water Management Planning and Design Manual, Ontario Ministry of the Environment, March 2003.
- 4. New Jersey Storm Water Best Management Practices Manual, April 2004.
- 5. Visual OTTHYMO v2.0 Reference Manual, July 2002

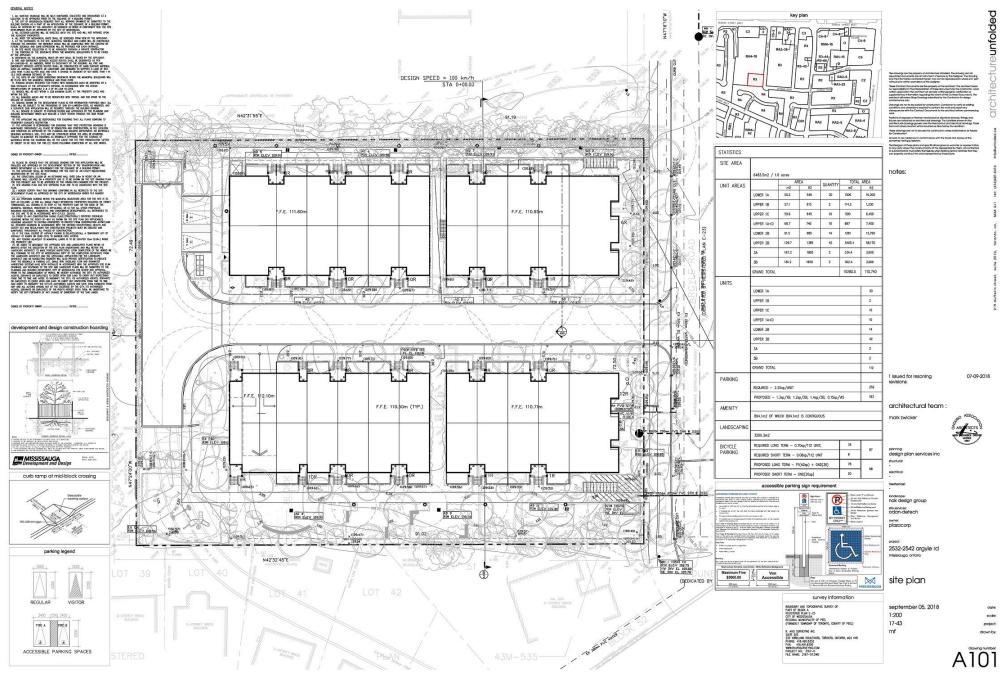
Respectfully Submitted; The Odan Detech Group Inc.

Daniel Bancroft, P.Eng.

John Krpan, MSCE, P.Eng.


APPENDIX A

Existing Site


Aerial view of Site and surrounding area

Site Plan & Statistics

by architectureunfolded

PROJECT No. 18201 File No. 18201 FSR Rev0.1

THE ODAN/DETECH GROUP INC.

APPENDIX B

Argyle Road Storm Sewer design sheet Visual OTTHYMO Model Output (2-Year, 10-Year & 100-Year storms)

SUBDIVISION AL CONSULTANT MAJOR DRAINAG	E ARE					1: (`	CITY OF MISSISSAUGA SHEET NO OF										24	DATE <u>ARK 1919</u>				
LOCATION OF SECTION	FROM UPSTREAM	TO DOWNSTREAM	ADJACENT CONTRIBUTARY AREA	RUNOFF COEFFICIENT		ACCUMULATIVE AREA DRAINED BY SECTION	ACCUMULATIVE AREA TIMES RUNOFF COFFICIENT FOR SECTION	FLOW TIME TO SECTION (FROM EXTREME UPSTREAM INLET)	INITIAL TIME OF CONCENTRATION AT EXTREME UNSTREAM INILET	TIME OF CONCENTRATION AT UPSTEAM END OF SECTION	INTENSITY OF RAINFALL	OUANTITY OF FLOW TO BE ACCOMMODATED IN SECTION.	TYPE OF PIPE	MANNINGS ROUGINESS COEFFICIENT	SI.OPE	DIAMETER	LENGTH OF SECTION	VELOCITY OF FLOW WITH PIPE FLUWING	CAPACITY OF PIPE FLOWING FULL	PIPE INVERT AT UPSTREAM M.II.	PIPE INVERT AT DOWNSTREAM MH	TIME OF FLOW
	MH≄	Mŀ:≉	Δ.	CA	AaxCa	۵ = ٤۵۵	AxC= EdaxCa	101	1	1c=1c+1c1	1	0=1AC 360		n	S	D	L	l v	0			1=-
REYLE RO	1.	2	(ha)	0.60	0.77	(ha) 1.29	0.77	(min)	(min) 15	min 15	mm/hr	m3/sec			%	mm	m	1	SEC		m	min
NKOTLE KD		2	1:29	0.60	3. []	1.69	10.11		15	15	99	.2.13	CONIC .	.013	1.60	375	116	2.03	.231	112.05	110.19	0.9
i (-	3	0.95	0.60	0.57	2:24	1.34	0.95	15	15.95	96	.357	ŋ	ų	1.60	450	118	2.29	. 376	110.11	108.22	0.8
Ц .	3	EXIST	0.72	0.60	0.43	2.96	1.77	0.86	15.95	16.81	92	.452		0	1.60	52.5	96	2.54	.568	103,14	106.60	0.6
										2												
DUNGAR RO	4	5	0.69	0.40	0.28	0.60	0.28	-	15	15	99	.077	CONC.	1013	0.5	375	55	1.13	.12.9	106.83	106.55	0.8
U	5	Exist	0.69	0.40	0.28	1.38	0.56	0.81	15	15.81	96	.149	ц	iş.	0.5	450	90	1.28	.210	106.47	106.02	1.1
n	6	EXIST	0.54	0.4-0	2.22	0.54	0.22	-	15	15	cyc	.061	CONCI	.013	0.5	300	75	0.98	.071	106.76	106.38	1.2
		T				1.1-					00				~ 5	~~~~~				10774	101.01	1.6'
ł		EXIST	1.15	0.40	0.46	1.15	0.46		15	15	99	.127	COUC.	1.013	0.5	515		1.13	.129	101.26	106.81	1.6
	-		1																			
												-										F
																						-

-

Visual OTTHYMO Output (2-year, 10-year & 100-year storm) _____ V V SSSSS U U Ι А L SS U Ū A A V v I T. V V I SS U U AAAAA L SS U U A A L SS V V Т I SSSSS UUUUU A A LLLLL VV OOO TTTTT TTTTT H Н Ү У М М 000 T H H Y M M OOO H H Y M M O O H H Y M M OOO H H Y M M OOO Т 0 0 0 0 т 000 Т Т Developed and Distributed by Clarifica Inc. Copyright 1996, 2007 Clarifica Inc. All rights reserved. ***** DETAILED OUTPUT ***** Input filename: C:\Program Files (x86)\Visual OTTHYMO 2.3.3\voin.dat Output filename: P:\2018\18201\Visual OTTHYMO\Rev0.1\18201 site swm\post dev.out Summary filename: P:\2018\18201\Visual OTTHYMO\Rev0.1\18201 site swm\post dev.sum DATE: 8/31/2018 TIME: 11:44:14 AM USER · COMMENTS: _____ _____ **** ** SIMULATION NUMBER: 1 ** ******* _____ | CHICAGO STORM | IDF curve parameters: A= 610.000 B= 4.600 C= .780 | Ptotal= 33.44 mm | _____ used in: INTENSITY = A / (t + B)^C Duration of storm = 4.00 hrs Storm time step = 10.00 min Time to peak ratio = .33TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN mm/hr hrs mm/hr hrs mm/hr hrs mm/hr hrs 2.24 1.17 16.92 2.17 5.18 3.17 2.56 1.33 75.36 2.33 4.43 3.33 3.00 1.50 22.14 2.50 3.88 3.50 3.67 1.67 11.74 2.67 3.46 3.67 4.80 1.83 8.14 2.83 3.14 3.83 7.21 2.00 6.30 3.00 2.87 4.00 hrs mm/hr 2.65 .17 .33 2.47 2.31 .50 .67 2.17 2.05 .83 3.14 | 0.1 2.87 | 4.00 1.00 1.95 _____ _____ | CALIB | CALIB | | NASHYD (0002) | Area (ha)= .05 Curve Number (CN)= 80.0 |ID= 1 DT=10.0 min | Ia (mm)= 5.00 # of Linear Res.(N)= 3.00 ----- U.H. Tp(hrs)= .20 Unit Hyd Qpeak (cms)= .010 .001 (i) PEAK FLOW (cms) = PEAK FLOW (cms) = .001 TIME TO PEAK (hrs) = 1.500 RUNOFF VOLUME (mm) = 8.550 TOTAL RAINFALL (mm) = 33.439 RUNOFF COEFFICIENT = .256 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. _____ ------

ID= 1 DT= 5.0 min	Area (r Total Imp	na) = .08 (%) = 90.00) Dir.C	onn.(%)=	90.00
Surface Area Dep. Storage Average Slope Length Mannings n	(ha) = (mm) = (%) = (m) =	PERVIOUS .07 1.00 1.00 22.90 .013	.01 1.00 2.00 40.00	(i)	
NOTE: RAINFA	LL WAS TRAN	ISFORMED TO) 5.0 MI	N. TIME ST	TEP.
				OCDADU	
	RAIN		AIN TIM	E RAIN	I TIME RAIN I hrs mm/hr I 3.08 2.65 I 3.17 2.65 I 3.25 2.47 I 3.33 2.47 I 3.50 2.31 I 3.50 2.31 I 3.67 2.17 I 3.67 2.15 I 3.83 2.05 I 3.92 1.95 I 4.00 1.95
Max.Eff.Inten.(mm over (Storage Coeff. (Unit Hyd. Tpeak (Unit Hyd. peak (<pre>n/hr) = min) min) = min) = cms) =</pre>	75.36 5.00 1.18 (ii) 5.00 .33	23.15 5.00 4.46 5.00 .23	(ii)	
PEAK FLOW (TIME TO PEAK (RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIEN					DTALS* .015 (iii) 1.33 30.28 33.44 .91
(i) CN PROCEDUR CN* = 80 (ii) TIME STEP (THAN THE ST (iii) PEAK FLOW D CALIB NASHYD (0005) D= 1 DT=10.0 min	0.0 Ia = (DT) SHOULD (ORAGE COEFF DOES NOT INC	Dep. Stora BE SMALLEN TICIENT. CLUDE BASEN	age (Abov OR EQUAL TLOW IF AN	e) Y.	(CN) = 80.0 .(N) = 3.00
	U.H. Tp(hr	rs)= .20)		
NOTE: RAINFA	LL WAS TRAN	ISFORMED TO) 10.0 MI	N. TIME ST	TEP.
			NEMED HYET		
.167 .333 .500 .667	RAIN mm/hr 2.24 1 2.56 1 3.00 1 3.67 1	hrs mm, .167 16. .333 75. .500 22.	AIN TIM hr hr 92 2.16 36 2.33 14 2.50 74 2.66	E RAIN s mm/hr 7 5.18 3 4.43 0 3.88 7 3.46	TIME RAIN hrs mm/hr 3.17 2.65
hrs .167 .333 .500 .667	RAIN mm/hr 2.24 1 2.56 1 3.00 1 3.67 1 4.80 1 7.21 2	TIME RA hrs mm, .167 16 .333 75 .500 22 .667 11 .833 8 2.000 6	AIN TIM hr hr 92 2.16 36 2.33 14 2.50 74 2.66	E RAIN s mm/hr 7 5.18 3 4.43 0 3.88 7 3.46	TIME RAIN hrs mm/hr 3.17 2.65 3.33 2.47 3.50 2.31 3.67 2.17

CALIB						
STANDHYD (0004) D= 1 DT= 5.0 min	Area	(ha) =	.08			
D= 1 DT= 5.0 min	Total 1	Imp(%)= 90	.00	Dir. Conn.	. (%) = 9	0.00
		THEFT	DI			
Surface Area Dep. Storage Average Slope Length Mannings n	(h -) -	IMPERVIOUS	PE	01 SRVIOUS)	
Den Storage	(112) = (mm) =	1 00		1.00		
Average Slope	(11111) = (%) =	1 00		2 00		
Length	(m) =	22.70		40 00		
Mannings n	=	.013		.250		
NOTE: RAINFA	ALL WAS '	TRANSFORMED	ТО	5.0 MIN. 1	FIME STE	IP.
				D HYETOGRA		
						TIME RAIN
						hrs mm/hr
.083	2.24	1 1 167	16.92	2.083	5.18	3.08 2.65 3.17 2.65
.107	2.24	1 1 250	10.92	2.10/	0.10	2.00
.200	2.50	1 1 333	75.36	1 2 333	4.43	3 33 2 47
.333	2.00	1 1 417	22 1/	1 2 017	3 88 1	3.25 2.47 3.33 2.47 3.42 2.31
.41/	3 00	1 1.500	22.14	2.500	3.88	3.50 2.31
.583	3.67	1.583	11.74	1 2.583	3.46 1	3.50 2.31 3.58 2.17 3.67 2.17
.667	3.67	1.667	11.74	2.667	3.46	3.67 2.17
.750	4.80	1.750	8.14	2.750	3.14	3.75 2.05
.833	4.80	1.833	8.14	2.833	3.14 I	3.75 2.05 3.83 2.05 3.92 1.95
.917	7.21	1.917	6.30	2.917	2.87	3.92 1.95
1.000	7.21	2.000	6.30	3.000	2.87	4.00 1.95
Max.Eff.Inten.(mr over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	n/hr)=	75.36		21.70		
over	(min)	5.00		5.00		
Storage Coeff.	(min) =	1.18 (ii)	4.46 (ii))	
Unit Hyd. Tpeak	(min) =	5.00		5.00		
Unit Hyd. peak	(cms) =	.33		.23		
						ALS*
PEAK FLOW	(CmS) =	.01		.00	•	015 (iii) .33
TIME TO PEAK	(mrs) = (mm) =	1.33		10 07	30	
TOTAL RAINFALL	(mm) =	32.44		33 44	33	
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIEN	NT =	.97		.33	00	.91
*** WARNING: STORAGE						
(i) CN PROCEDUR	RE SELEC'	TED FOR PER'	VIOUS	LOSSES:		
		a = Dep. Sto				
(ii) TIME STEP	(DT) SHO	ULD BE SMAL	LEROF	R EQUAL		
THAN THE ST	FORAGE CO	DEFFICIENT.				
(iii) PEAK FLOW I	DOES NOT	INCLUDE BAS	SEFLOW	V IF ANY.		
CALIB STANDHYD (0003)	Arco	$(b_{2}) =$	29			
D= 1 DT= 5.0 min				Dir. Conn	.(%)= 9	9.00
		-				
Surface Area	(ba) =	IMPERVIOUS)	
Surface Area Dep. Storage	(na) =	.28		.00 1.00		
Dep. Storage Average Slope	(mm) =	1.00		2.00		
	(m) =	1.00 43.70 .013		40.00		
Length	() -	.013		.250		
Length Mannings p	-	.013		.200		
Length Mannings n			1	08.49		
Max Eff Inten (mr	n/hr)=	75.36				
Max Eff Inten (mr	m/hr)= (min)	75.36 5.00		5.00		
Max Eff Inten (mr	m/hr)= (min) (min)=	75.36 5.00 1.74 (:	ii)	5.00 3.00 (ii))	
Max Eff Inten (mr	n/hr) = (min) (min) = (min) =	75.36 5.00 1.74 (: 5.00	ii)	3.00 (ii) 5.00)	
Max Eff Inten (mr	n/hr) = (min) (min) = (min) = (cms) =	75.36 5.00 1.74 (: 5.00 .32	ii)	3.00 (ii))	
Max.Eff.Inten.(mr over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	(min) (min) = (min) = (cms) =	5.00 1.74 (5.00 .32	ii)	3.00 (ii) 5.00 .28	*TOI	'ALS*
Max.Eff.Inten.(mr over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	(min) (min) = (min) = (cms) =	5.00 1.74 (: 5.00 .32		3.00 (ii) 5.00 .28 .00	*TOI	060 (iii)
Max.Eff.Inten.(mr over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK	<pre>(min) (min) = (min) = (cms) = (cms) = (hrs) =</pre>	5.00 1.74 (: 5.00 .32		3.00 (ii) 5.00 .28 .00	* TOI 1	060 (iii) .33
Max.Eff.Inten.(mr over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME	<pre>(min) (min) = (min) = (cms) = (cms) = (hrs) = (mm) =</pre>	5.00 1.74 (1 5.00 .32 .06 1.33 32.44		3.00 (ii) 5.00 .28 .00 1.33 10.97	*TOI 1 32	060 (iii) 33 21
Max.Eff.Inten.(mr over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL	<pre>(min) (min) = (min) = (cms) = (cms) = (hrs) = (mm) = (mm) =</pre>	5.00 1.74 (1 5.00 .32 .06 1.33 32.44 33.44		3.00 (ii) 5.00 .28 .00 1.33 10.97 33.44	* TOT 1 32 33	060 (iii) .33 2.21 3.44
Max.Eff.Inten.(mr over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME	<pre>(min) (min) = (min) = (cms) = (cms) = (hrs) = (mm) = (mm) =</pre>	5.00 1.74 (1 5.00 .32 .06 1.33 32.44 33.44		3.00 (ii) 5.00 .28 .00 1.33 10.97	* TOT 1 32 33	060 (iii) 33 21

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

FUNCTIONAL SERVICI					
CN* = 80.				e)	
(ii) TIME STEP (D THAN THE STO			OR EQUAL		
(iii) PEAK FLOW DO			LOW IF ANY	ζ.	
ADD HYD (0006)					
1 + 2 = 3	AREA (ba)	QPEAK (cms)	(brs)	R.V. (mm)	
ID1= 1 (0002) + ID2= 2 (0001)	: .05	.001	1.50	8.55	
+ ID2= 2 (0001)	: .08	.015	1.33	30.28	
ID = 3 (0006)					
NOTE: PEAK FLOWS	DO NOT INCL	JDE BASEFI	LOWS IF AN	WY.	
ADD HYD (0007)					
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.	
TD1- 1 (0004)	(ha)	(cms)	(hrs)	(mm)	
ID1= 1 (0004) + ID2= 2 (0003)	: .29	(cms) .015 .060	1.33	32.21	
ID = 3 (0007)	===========				
NOTE: PEAK FLOWS	DO NOT INCL	JDE BASEFI	JOWS IF AD	NI.	
ADD HYD (0008) 1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.	
	(ha)	(cms)	(hrs)	(mm)	
ID1= 1 (0005)	: .17	(cms) .004 .074	1.50	8.40	
+ ID2= 2 (0007)	: .36 ========	.074	1.33	31.81	
ID = 3 (0008)					
NOTE: PEAK FLOWS	DO NOT INCL	JDE BASEFI	LOWS IF AN	VY.	
RESERVOIR (0009)					
IN= 2> OUT= 1 DT= 5.0 min	OUTFLOW	STORAGE	I OUTI	FLOW ST	ORAGE
	(cms)	(ha.m.)	(cr	ns) (ł	na.m.)
	.0000	.0000	.(0451 0000	.0055
	.0450	.0001	.(0000	.0000
				TPEAK	R.V.
INFLOW : ID= 2 (00	()	na) 531	(cms)	(hrs)	(mm) 24.33
OUTFLOW: ID= 1 (00		531	.045	1.42	
PEAK	FLOW RI	EDUCTION	[0011+/0in]	l(%)= 57 (7
TIME	SHIFT OF PI	EAK FLOW	(1	nin)= 5.0	00
MAXI	MUM STORAGI	E USED	(ha	.m.)= .(0019

CHICAGO STORM	IDF curve p	parameter			
Ptotal= 55.37 mm			B= 4 C=	.780	
	used in:	INTENSIT	x = A /	(t + B)^C	
	Duration of				
	Storm time Time to pea			LN	
				_	
TIME					TIME RAIN hrs mm/hr
.17	3.71 1	.17 28.0	02 2.1	7 8.58	3.17 4.39

		••••			
.33	4.23	1.33 124.	77 2.33	7.33 3.33 6.42 3.50 5.74 3.67 5.19 3.83 4.75 4.00	4.08
.50	4.97	1.50 36.	55 2.50	6.42 3.50	3.82
. 67	6.07	1.67 19.4	13 2.67	5.74 3.67	3.60
.83	7.95	1.83 13.4	17 2.83	5.19 3.83	3.40
1.00	11.94	2.00 10.4	13 3.00	4.75 4.00	3.22
CALIB		())	G	(0))	
NASHYD (0002) ID= 1 DT=10.0 min	Area	(na) = .05	Curve Num	der (CN) = 80.0	
1D= 1 D1=10.0 min	Id II II mp	(mm) = 5.00	# OI LINE	ar $\text{Res.}(N) = 5.00$	
	0.m. 1p	(1115)20			
Unit Hyd Qpeak	(cms) =	.010			
PEAK FLOW	(cms) =	.003 (1)			
TIME TO PEAK RUNOFF VOLUME	$(\operatorname{IITS}) = 1$				
RUNDEE VOLUME	(mm) = 21				
TOTAL RAINFALL RUNOFF COEFFICIE					
RUNOFF COEFFICIE	IN I —	. 392			
(i) PEAK FLOW DO	ES NOT INC	CLUDE BASEFLO	V IF ANY.		
CALIB					
STANDHYD (0001)	Area	(ha) = .08			
ID= 1 DT= 5.0 min	Total In	np(%)= 90.00	Dir. Conn	.(%)= 90.00	
			DEDITOR	`	
Curfoor Arres	(ba) —	IMPERVIOUS	PERVIOUS (i)	
Surface Area Dep. Storage Average Slope Length Mannings p	(11d) = (mm) =	.07	.01		
Average Slope	(1000) =	1.00	2 00		
Length	(m) =	22 90	40 00		
Mannings n	(111) =	.013	.250		
		.010	.200		
NOTE: RAINE	ALL WAS TH	RANSFORMED TO	5.0 MIN.	TIME STEP.	
		TRANSFOR			
				RAIN TIME	
hrs	mm/hr	hrs mm/l	nr hrs	mm/hr hrs	mm/hr
.083	3.71	1.083 28.0	JZ Z.083		4.39
.10/	J./1	1 250 124	77 2.107	7 33 3 25	4.39
.200	4 23	1 333 124	77 2.230	7 33 3 33	4 08
. 417	4.97	1.417 36.0	55 2.417	6.42 3.42	3.82
.500	4.97	1.500 36.	65 2.500	6.42 3.50	3.82
.583	6.07	1.583 19.4	13 2.583	5.74 3.58	3.60
. 667	6.07	1.667 19.4	13 2.667	5.74 3.67	3.60
.750	7.95	1.750 13.4	17 2.750	5.19 3.75	3.40
.833	7.95	1.833 13.4	17 2.833	5.19 3.83	3.40
.917	11.94	1.917 10.4	43 2.917	4.75 3.92	3.22
1.000	11.94	2.000 10.4	13 3.000	<pre>mm/hr hrs 8.58 3.08 8.58 3.17 7.33 3.25 7.33 3.33 6.42 3.42 6.42 3.42 6.42 3.50 5.74 3.58 5.74 3.58 5.74 3.67 5.19 3.75 5.19 3.83 4.75 3.92 4.75 4.00</pre>	3.22
Mov Eff Inton (m	m (h m) =	124 77	52 44		
Max.Ell.lilen.(M	(min)	±24.// 5.00	52.44		
Storage Coeff	(min) =	97 (ii)	3 65 (11)	
Unit Hvd Theek	(min) =	5.00	5.00	1	
over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	(cms) =	.34	.25		
Jen Lean				*TOTALS*	
PEAK FLOW	(cms) =	.02	.00	.026 (iii)	1
TIME TO PEAK	(hrs) =	1.33	1.33	1.33	
TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL	(mm) =	54.37	25.08 55.37	51.43 55.37	
TOTAL RAINFALL	(mm) =	55.37			
RUNOFF COEFFICIE	NT =	.98	.45	.93	
**** WARNING: STORAG	E COEFF 1	S SMALLER TH	AN TIME STEP	!	
WANNING: SIORAG	I	JULIAN IN	IN LINE SIEP	•	
(i) CN PROCEDU					
		= Dep. Storad			
(ii) TIME STEP THAN THE S			OK EQUAL		
(iii) PEAK FLOW			OW TE ANY		
(TTT) IDDI(IDOW	2010 101 1	LIGHOUL DAGET			
CALIB	3	(h-) - 17	Course N	(OT) 00 0	
NASHYD (0005)	Area	(na)= .17	Curve Num	per (CN) = 80.0	

ID= 1 DT=10.0 min Ia (mm)= U.H. Tp(hrs)=	5.00 # of Linear Res.(N) = 3.00
NOTE: RAINFALL WAS TRANSFORM	
TIME RAIN TIME hrs mm/hr hrs .167 3.71 1.167 .333 4.23 1.333 .500 4.97 1.500 .667 6.07 1.667 .833 7.95 1.833	ANSFORMED HYETOGRAPH RAIN TIME RAIN TIME RAIN mm/hr hrs mm/hr hrs mm/hr 28.02 2.167 8.58 3.17 4.39 124.77 2.333 7.33 3.33 4.08 36.65 2.500 6.42 3.50 3.82 19.43 2.667 5.74 3.67 3.60 13.47 2.833 5.19 3.83 3.40 10.43 3.000 4.75 4.00 .00
Unit Hyd Qpeak (cms)= .032	
PEAK FLOW (cms) = .011 (i) TIME TO PEAK (hrs) = 1.500 RUNOFF VOLUME (mm) = 21.336 TOTAL RAINFALL (mm) = 54.828 RUNOFF COEFFICIENT = .389	
(i) PEAK FLOW DOES NOT INCLUDE BAS	SEFLOW IF ANY.
CALIB STANDHYD (0004) Area (ha)= ID= 1 DT= 5.0 min Total Imp(%)= 9	.08 00.00 Dir. Conn.(%)= 90.00
	JS PERVIOUS (i) .01 1.00 2.00 40.00 .250
NOTE: RAINFALL WAS TRANSFORM	ED TO 5.0 MIN. TIME STEP.
TIMERAIN TIMEhrsmm/hr hrs.0833.71 1.083.1673.71 1.167.2504.23 1.250.3334.23 1.333.4174.97 1.417.5004.97 1.500.5836.07 1.583.6676.07 1.667.7507.95 1.750.833.91711.94 1.00011.94 2.000	ANSFORMED HYETOGRAPH RAIN TIME RAIN TIME RAIN mm/hr hrs mm/hr hrs mm/hr 28.02 2.083 8.58 3.08 4.39 28.02 2.167 8.58 3.17 4.39 124.77 2.250 7.33 3.25 4.08 124.77 2.333 7.33 3.33 4.08 36.65 2.500 6.42 3.42 3.82 36.65 2.500 6.42 3.50 3.60 19.43 2.583 5.74 3.58 3.60 19.43 2.667 5.74 3.67 3.60 13.47 2.750 5.19 3.75 3.40 10.43 2.917 4.75 3.92 3.22 10.43 3.000 4.75 4.00 3.22
<pre>Max.Eff.Inten.(mm/hr) = 124.77</pre>	5.00 (ii) 3.64 (ii) 5.00 .25 *TOTALS* .00 .025 (iii) 1.33 1.33 25.08 51.43 55.37 55.37 .45 .93 ER THAN TIME STEP!
<pre>(i) CN TROUBDARE DENERTIES FOR IT CN* = 80.0 Ia = Dep. 5 (ii) TIME STEP (DT) SHOULD BE SMA THAN THE STORAGE COEFFICIENT (iii) PEAK FLOW DOES NOT INCLUDE F</pre>	Storage (Above) ALLER OR EQUAL 5.

FUNCTIONAL	SERV		EPURI					
CALIB STANDHYD (ID= 1 DT= 5.	0 min	Total	(ha)= Imp(%)=	= .29 = 99.00	Dir. Co	onn.(%)=	99.00	
Surface Dep. Sto Average Length Mannings	Area rage Slope n	(ha) = (mm) = (%) = (m) = =	IMPERV 1. 1. 43. .(/IOUS .28 .00 .00 .70)13	PERVIOUS .00 1.00 2.00 40.00 .250	(i)		
Unit Hyd	. peak	(cms) =		.33				
PEAK FLO TIME TO RUNOFF V TOTAL RA RUNOFF C	W PEAK OLUME INFALL OEFFICIE	(cms) = (hrs) = (mm) = (mm) = ENT =	1. 54. 55.	.10 .33 .37 .37 .98	.00 1.33 25.08 55.37 .45	*	TOTALS* .099 (iii) 1.33 54.06 55.37 .98	
***** WARNING								
C (ii) TI TH	N* = 8 ME STEP AN THE S	30.0 1 (DT) SHO STORAGE O	Ia = Dep DULD BE COEFFICI	D. Storaç SMALLER IENT.	JS LOSSES: je (Above or Equal Low if Any	:)		
 ADD HYD (0006)							
1 + 2 = 	3 = 1 (000)2):	AREA (ha) .05	QPEAK (cms) .003	TPEAK (hrs) 1.50 1.33	R.V. (mm) 21.69		
+ ID2 ===	= 2 (000	01):	.08	.026	1.33	51.43		
					1.33 Lows if An			
ADD HYD (1 + 2 =	0007) 3		AREA (ha)	QPEAK (cms)	TPEAK (hrs) 1.33 1.33	R.V. (mm)		
ID1 + ID2	= 1 (000))4):	.08	.025	1.33	51.43		
===					1.33			
					LOWS IF AN			
ID1 + ID2	3 = 1 (000 = 2 (000)5):)7):	(ha) .17 .36	(cms) .011 .124	TPEAK (hrs) 1.50 1.33	(mm) 21.34 53.51		
					1.33			
NOTE: P	EAK FLOW	VS DO NOI	r inclui	DE BASEFI	LOWS IF AN	Υ.		
RESERVOIR (IN= 2> O DT= 5.0 mi	0009) UT= 1 n	OUTH (cn .(FLOW ns))000	STORAGE (ha.m.) .0000	OUTF (cm	'LOW 1s) 451	STORAGE (ha.m.) .0055	
					PEAK	TPEAK		

		(ha)	(cms)	(hrs)	
INFLOW : ID= 2 (0) OUTFLOW: ID= 1 (0)		.531 .531	.134 .045	1.33 1.50	43.20 43.21
TIM	E SHIFT OF	PEAK FLOW	N [Qout/Qin](N (mi	n)= 10.00	
MAX	IMUM STOR.	AGE USEI) (ha.m	.)= .005	3

***************	*****				
CHICAGO STORM Ptotal= 79.41 mm	IDF curv	e paramete	ers: A=1450.0 B= 4.9 C= .7	00	
	used in:	INTENSI	TY = A / (t		
	Duration	of storm	= 4.00 hrs		
		me step peak ratio	= 10.00 min		
		-			
TIME hrs	mm/hr	hrs mm	n/hr hrs	mm/hr	TIME RAIN hrs mm/hr
.17 .33	5.34 6.10	1.17 40	0.65 2.17 5.31 2.33	12.41	3.17 6.33 3.33 5.89
	7.17	1.50 53	3.15 2.50	9.28	3.50 5.51
.67 .83	8.77 11.49	1.67 28 1.83 19	8.20 2.67 9.53 2.83	8.28 7.49	3.50 5.51 3.67 5.18 3.83 4.89
					4.00 4.64
CALIB				1 (21)	
NASHYD (0002) ID= 1 DT=10.0 min	Area (. Ia (!	na)= .(mm)= 5.0)5 Curve Nu)0 # of Lin	mber (CN ear Res.(N) = 80.0
	U.H. Tp(h	rs)= .2	20		
Unit Hyd Qpeak (d	cms)= .	010			
PEAK FLOW (0	cms)= .	006 (i)			
TIME TO PEAK () RUNOFF VOLUME	nrs) = 1.	500			
TOTAL RAINFALL	(mm) = 39. (mm) = 79.	085 409			
RUNOFF COEFFICIEN	r = .	492			
(i) PEAK FLOW DOES	S NOT INCL	UDE BASEFI	JOW IF ANY.		
CALIB					
STANDHYD (0001)	Area (ha)= .0	8	(0) 00	
ID= 1 DT= 5.0 min	Total Imp	(%)= 90.0	JU Dir. Con	n.(%)= 90	.00
Surface Area	(ha)=	PERVIOUS	PERVIOUS (.01	i)	
Dep. Storage	(mm) =	1.00	1.00		
Average Slope Length	(%) = (m) =	1.00 22.90	2.00 40.00		
Mannings n	=	.013	.250		
NOTE: RAINFAL	LL WAS TRA	NSFORMED 1	5.0 MIN.	TIME STEP	
	_	TRANSF	ORMED HYETOG	RAPH	
TIME	RAIN	TIME F	RAIN TIME	RAIN	TIME RAIN
hrs .083	mm/hr 5.34		n/hr hrs 0.65 2.083	mm/hr 12.41	hrs mm/hr 3.08 6.33
.167	5.34 6.10	1.167 40	0.65 2.167 5.31 2.250	12.41 10.59	3.17 6.33
.250	6.10 6.10		5.31 2.333	10.59	3.25 5.89 3.33 5.89
.417	7.17 7.17		8.15 2.417 8.15 2.500	9.28 9.28	3.42 5.51 3.50 5.51
.583	8.77	1.583 28	8.20 2.583	8.28	3.58 5.18
.667 .750	8.77 11.49		8.20 2.667 9.53 2.750	8.28 7.49	3.67 5.18 3.75 4.89
.833	11.49	1.833 19	0.53 2.833	7.49	3.83 4.89
.917	17.30	1.917 15	5.10 2.917	6.86	3.92 4.64

FUNCTIONAL SERVIC	JING REPORT			
1.000	17.30 2.000	15.10 3.000	6.86 4.00	4.64
Max.Eff.Inten.(m	m/hr) = 176.31	92.61		
over	(min) = .84 (min) = .84 (min) = .34	5.00		
Storage Coeff. Unit Hyd Theak	(min) = .84 (min) = 5.00	(11) 3.18 (11	1)	
Unit Hyd. peak	(cms) = .34	.27		
			TOTALS	
PEAK FLOW	(cms) = .03	.00 1.33 43.32 79.41	.037 (iii) 1.33)
TIME TO PEAK RUNOFF VOLUME	(hrs) = 1.33 (mm) = 78.41	43.32	74.89	
TOTAL RAINFALL	(mm) = 79.41 NT = .99	79.41	79.41	
RUNOFF COEFFICIE	NT = .99	.55	.94	
***** WARNING: STORAG	E COEFF. IS SMALL	ER THAN TIME STEI	2!	
	RE SELECTED FOR P			
	0.0 Ia = Dep. 3 (DT) SHOULD BE SM			
	FORAGE COEFFICIEN			
(iii) PEAK FLOW	DOES NOT INCLUDE	BASEFLOW IF ANY.		
				-
CALIB NASHYD (0005) ID= 1 DT=10.0 min	3	17 0		
NASHYD (0005) TD= 1 DT=10 0 min	Area (ha)= Ta (mm)=	.1/ Curve Nur 5.00 # of Line	nder $(CN) = 80.0$ ear Res. $(N) = 3.00$	
	U.H. Tp(hrs)=	.20	Sur 1(05. (N) 5.00	
NOTE: RAINF.	ALL WAS TRANSFORM	ED TO 10.0 MIN.	TIME STEP.	
		ANSFORMED HYETOGI		DATM
TIME	RAIN TIME	RAIN TIME	RAIN TIME	RAIN mm/br
.167	5.34 1.167	40.65 2.167	mm/hr hrs 12.41 3.17	6.33
.333	6.10 1.333	176.31 2.333	10.59 3.33 9.28 3.50 8.28 3.67	5.89
.500	7.17 1.500	53.15 2.500	9.28 3.50	5.51
. 833	11.49 1.833	28.20 2.867 19.53 2.833	7.49 3.83	4.89
1.000	17.30 2.000	15.10 3.000	7.49 3.83 6.86 4.00	.00
Unit Hyd Qpeak				
PEAK FLOW	(cms) = .021 (i)		
TIME TO PEAK	(hrs) = 1.500	/		
RUNOFF VOLUME TOTAL RAINFALL	(mm) = 38.507			
RUNOFF COEFFICIE	NT = .490			
(i) PEAK FLOW DO	ES NOT INCLUDE BA	SEFLOW IF ANY.		
CALIB				
STANDHYD (0004)	Area (ha)=	.08		
ID= 1 DT= 5.0 min		90.00 Dir. Con	n.(%)= 90.00	
	TMDEDUTO	US PERVIOUS (:	:)	
Surface Area		,	L /	
Dep. Storage	(mm) = 1.00	1.00		
Average Slope	(%) = 1.00			
Length Mannings n	(m) = 22.70 = .013			
mannings n	013	.200		
NOTE: RAINE	ALL WAS TRANSFORM	ED TO 5.0 MIN.	TIME STEP.	
		ANSFORMED HYETOGI		
TIME				RAIN
hrs .083	mm/nr hrs 5.34 1 083	um/nr hrs 40.65 2 083	mm/hr hrs 12.41 3.08	mm/hr 6.33
.167	5.34 1.167	40.65 2.167		6.33
.250	6.10 1.250	176.31 2.250	10.59 3.25	5.89
.333	6.10 1.333	176.31 2.333	10.59 3.33	5.89
.417 .500	/.1/ 1.417 7 17 1 500	53.15 2.417 53.15 2.500	9.28 3.42 9.28 3.50	5.51 5.51
.583	8.77 1.583	28.20 2.583	8.28 3.58	5.18
.667	8.77 1.667	28.20 2.667	8.28 3.58 8.28 3.67	5.18
.750	11.49 1.750	19.53 2.750	7.49 3.75	4.89

.833 11.49 1.833 12.83 1.283 7.49 1.82 4.69 .937 17.30 1.2.00 15.10 2.2.17 6.86 3.22 4.64 Max.Eff.Inten.(mm/hr)= 176.31 92.61 5.00 5.10 Unit Byd. peak (min)= 5.00 5.10 1.01 1.01 Unit Byd. peak (min)= 5.34 .77 "TOTALS" PEAK FLOW (cms)= .03 .00 .036 (111) THE TO PEAK (brs)= 1.33 1.33 1.33 NUMOF COEFFICIENT .59 .55 .54 ***** WARNING: STORAGE COFF. IS SMALLER THAN TIME STEP! (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (1) CN PROCEDURE SELECTED FOR PERVIOUS CONCLUSED (1) CN PROCEDURE SELECTED FOR PERVIOUS (1) THEM THE STORAGE COFFICIENT. (111) THAT HE STORAGE COFFICIENT. (111) THAN THE STORAGE COFFICIENT. .013 .020 .00 (111) THAN THE STORAGE COFFICIENT. .013 .230 JUD- 107- 5.0 min) TOTAL ANOR .020 .00 Surface Area (ha)= .24	TONOTIONAL									
<pre>PERK FLOW (cms)= .03 .00 .00 .03 (111) TINNET VOILUNE (hrs)= 78.11 1.33 1.33 1.33 TOTAL SATURATING (cms)= 79.41 79.41 79.41 NUNDEF COEFFICIENT = .99 .55 .94 ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (1) CN PROCEDURE SELECTED FOR FERVIOUS LOSSES: (CN * = 80.0 I a = Dep. Storage (Above) (1) TIME STEP (27) SHOLD BE SMALLER OR EQUAL TIMA THE STORAGE COEFF.CIENT. (1) THE STEP (27) SHOLD BE SMALLER OR EQUAL TIMA THE STORAGE COEFF.CIENT. (1) THE STEP (27) SHOLD BE SMALLER OR EQUAL TIMA THE STORAGE COEFF.CIENT. (2) * = 80.0 I a = Dep. Storage (Above) (1) THE STEP (27) SHOLD BE SMALLER OR EQUAL TIMA THE STORAGE COEFF.CIENT. (2) * * ********************************</pre>		.83 .91 1.00	3 11.4 7 17.3 0 17.3	9 1.83 0 1.91 0 2.00	33 19. 17 15. 10 15.	53 2.83 10 2.91 10 3.00	3 7.4 7 6.8 0 6.8	9 6 6	3.83 3.92 4.00	4.89 4.64 4.64
<pre>PERK FLOW (cms)= .03 .00 .00 .03 (111) TINNET VOILUNE (hrs)= 78.11 1.33 1.33 1.33 TOTAL SATURATING (cms)= 79.41 79.41 79.41 NUNDEF COEFFICIENT = .99 .55 .94 ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (1) CN PROCEDURE SELECTED FOR FERVIOUS LOSSES: (CN * = 80.0 I a = Dep. Storage (Above) (1) TIME STEP (27) SHOLD BE SMALLER OR EQUAL TIMA THE STORAGE COEFF.CIENT. (1) THE STEP (27) SHOLD BE SMALLER OR EQUAL TIMA THE STORAGE COEFF.CIENT. (1) THE STEP (27) SHOLD BE SMALLER OR EQUAL TIMA THE STORAGE COEFF.CIENT. (2) * = 80.0 I a = Dep. Storage (Above) (1) THE STEP (27) SHOLD BE SMALLER OR EQUAL TIMA THE STORAGE COEFF.CIENT. (2) * * ********************************</pre>	Max.Eff.I Storage C Unit Hyd. Unit Hyd.	nten.(1 over oeff. Tpeak peak	<pre>mm/hr) = (min) (min) = (min) = (cms) =</pre>	176. 5. 5.	.31 .00 .84 (ii) .00 .34	92.61 5.00 3.17 5.00 .27	(ii)			
<pre>***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (1) CN FROCEDURE SELECTED FOR FERVIOUS LOSSES; CN * = 80.0 I a = Dep. Storage (Above) (1) TIME STEP (COFFICIENT. THAN THE STORAGE COEFFICIENT. (11) PEAR FLOW DOES NOT INCLUDE BASELEO N IP ANY</pre>	PEAK FLOW TIME TO P RUNOFF VO TOTAL RAI RUNOFF CO	EAK LUME NFALL EFFICI	(cms) = (hrs) = (mm) = (mm) = ENT =	1. 78. 79.	.03 .33 .41 .41 .99	.00 1.33 43.32 79.41 .55	*	TOTAI .03 1.3 74.8 79.4	S* 6 (iii) 3 9 1 4	
CN* = 80.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOLD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. (called to the storage of the stor										
<pre>CALLE STANHAPD (0003) Area (ha) = .29 ID = 1 DT = 5.0 min Total Imp(%) = 99.00 Dir. Conn.(%) = 99.00 Dep. Storage (mm) = 1.00 I.00 Average Slope (%) = 1.00 2.00 Length (m) = 43.70 40.00 Mannings n = .013 .250 Max.Eff.Inten.(mm/hr) = 176.31 463.07 over (min) 5.00 5.00 Unit Hyd. peak (ms) = .33 .31 PEAK FLOW (cms) = .14 0.0 .1400 (iii) TIME TO PEAK (hrs) = 1.33 1.33 1.33 RUNOFF VOLUME (mm) = 78.41 43.32 78.05 TOTAL RAINFALL (mm) = 79.41 79.41 79.41 RUNOFF COEFFICIENT = .99 .55 .98 ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN FROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 80.0 I a = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD E SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. </pre>	CN (ii) TIM THA	* = E STEP N THE	80.0 (DT) SH STORAGE (Ia = Dep DULD BE COEFFICI	D. Stora SMALLER IENT.	ge (Abov OR EQUAL	e)			
ID= 1 DT= 5.0 min Total Imp(%) = 99.00 Dir. Conn.(%) = 99.00 IMPERVIOUS PERVIOUS (i) Surface Area (na)= .28 .00 Average Slope (%) = 1.00 1.00 Mannings n = .013 .250 Max.Eff.Inten.(mm/hr) = 176.31 463.07 over (min) 5.00 5.00 Unit Hyd. Tpeak (mn)= 1.24 (ii) 2.13 (ii) Unit Hyd. peak (mn)= .33 .31 PEAK FLOW (cms)= .14 .00 .140 (iii) TIME FO FEAK (hrs)= 1.33 1.33 RUNOFF VOLUME (mm)= TOTAL STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN FROCEDURE SELECTED FOR PERVIOUS LOSES: .01 CN = 80.0 I = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BASEFLOW IF ANY. IDI= 1 (0002): .08 .037 1.33 74.99 IDI= 1 (0006): .13 .043 1.33 74.89 IDI= 1 (0006): .13 .043 1.33 74.89 IDI = 3 (0006): .13 .043 1.33 74.89 IDI = 1 (0004): .08 .0	CALIB									
Surface Area (ha) = .28 .00 Dep. Storage (mm) = 1.00 1.00 Average Slope (%) = 1.00 2.00 Length (m) = 43.70 40.00 Mannings n = .013 .250 Max.Eff.Inten.(mm/hr) = 176.31 463.07 over (min) 5.00 5.00 Unit Hyd. peak (min) = 1.24 (ii) 2.13 (ii) Unit Hyd. peak (ms) = .14 .00 .140 (iii) THE TO PEAK (hrs) = .13 1.33 1.33 EUNOFF VOLUME (mm) = 78.41 43.32 78.05 TOTAL RAINFALL (mm) = 79.41 79.41 RUNOFF COEFFICIENT = .99 .55 .98 ****** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 80.0 Ia = DEp. Storage (Above) (ii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 	ID= 1 DT= 5.0	min	Total				onn.(%)=	99.	00	
<pre>Max.Eff.Inten.(mm/hr) = 176.31 463.07</pre>				IMPERV 1. 1. 43. .(/IOUS .28 .00 .00 .70)13	PERVIOUS .00 1.00 2.00 40.00 .250	(i)			
<pre>PEAK FLOW (cms)= .14 .00 .140 (iii) TIME TO PEAK (hrs)= 1.33 1.33 1.33 RUNOFF VOLUME (mm)= 78.41 43.32 78.05 TOTAL RAINFALL (mm)= 79.41 79.41 79.41 RUNOFF COEFFICIENT = .99 .55 .98 ****** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:</pre>	Max.Eff.I Storage C Unit Hyd. Unit Hyd.	nten.(1 over oeff. Tpeak peak	<pre>mm/hr) = (min) (min) = (min) = (cms) =</pre>	176. 5. 1. 5.	.31 .00 .24 (ii) .00 .33	463.07 5.00 2.13 5.00 .31	(ii)	momat	0.4	
<pre>****** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 80.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. </pre>	PEAK FLOW TIME TO P RUNOFF VO TOTAL RAI RUNOFF CO	EAK LUME NFALL EFFICII	(cms) = (hrs) = (mm) = (mm) = ENT =	1. 78. 79.	.14 .33 .41 .41 .99	.00 1.33 43.32 79.41 .55	*	.14 1.3 78.0 79.4	90 (iii) 33 5 1 88	
CN* = 80.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 										
ADD HYD (0006) 1 + 2 = 3 AREA QPEAK TPEAK R.V. 	CN (ii) TIM THA	* = E STEP N THE	80.0 (DT) SH STORAGE (Ia = Dep DULD BE COEFFICI	D. Stora SMALLER IENT.	ge (Abov OR EQUAL	e)			
ADD HYD (0006) 1 + 2 = 3 AREA QPEAK TPEAK R.V. 										
+ ID2= 2 (0001): .08 .037 1.33 74.89 	ADD HYD (0 1 + 2 = 	006) 3 	02):	(ha)	(cms)	(hrs)	(mm)			
NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	+ ID2=	2 (00	01):				74.89			
ADD HYD (0007) 1 + 2 = 3 AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) ID1= 1 (0004): .08 .036 1.33 74.89 + ID2= 2 (0003): .29 .140 1.33 78.05										
1 + 2 = 3 AREA QPEAK TPEAK R.V. 	NOTE: PE	AK FLO	WS DO NO'	r inclui	DE BASEF	LOWS IF AN	NY.			
	1 + 2 =	3		AREA (ha)	QPEAK (cms)	TPEAK (hrs)	R.V. (mm)			
	+ ID2=	2 (00								
								•		

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ADD HYD (0008) 1 + 2 = 3 ID1= 1 (0005): + ID2= 2 (0007):	(ha) .17	(cms) .021	(hrs) 1.50	(mm) 38.51	
ID = 3 (0008):					
NOTE: PEAK FLOWS DO N	OT INCLU	DE BASEFI	OWS IF AN	Υ.	
	cms) .0000	(ha.m.) .0000	(cm .0	'LOW STOR Is) (ha. 451 . 000 .	m.) 0055
INFLOW : ID= 2 (0008) OUTFLOW: ID= 1 (0009)	(h .5	a) (31	cms) .195	TPEAK (hrs) 1.33 1.58	(mm) 64.89
TIME SHI	FT OF PE	AK FLOW	(n	(%)= 23.23 min)= 15.00 m.)= .010	5

FINISH

APPENDIX C

Functional Servicing Plan Functional Grading Plan