

90 WEST BEAVER CREEK ROAD, SUITE #100, RICHMOND HILL, ONTARIO L4B 1E7 · TEL (416) 754-8515 · FAX (905) 881-8335

MISSISSAUGA BARRIE OSHAWA NEWMARKET GRAVENHURST PETERBOROUGH HAMILTON TEL: (705) 721-7863 TEL: (905) 542-7605 TEL: (905) 440-2040 TEL: (905) 853-0647 TEL: (705) 684-4242 TEL: (905) 440-2040 TEL: (905) 777-7956 FAX: (705) 721-7864 FAX: (905) 542-2769 FAX: (905) 725-1315 FAX: (905) 881-8335 FAX: (705) 684-8522 FAX: (905) 725-1315 FAX: (905) 542-2769

A REPORT TO GREAT GULF HOMES LIMITED

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

PROPOSED RESIDENTIAL DEVELOPMENT

6611 SECOND LINE WEST

CITY OF MISSISSAUGA

Reference No. 1512-S086E

October 30, 2017

DISTRIBUTION

3 Copies - Great Gulf Homes Limited

LIMITATIONS OF LIABILITY

This report was prepared by Soil Engineers Ltd. for the account of Great Gulf Homes Limited and their designated agents, financial institutions and government agencies. Use of the report is subject to the conditions and limitations of the contractual agreement. The material in it reflects the judgement of Laila Torabansari, M.Sc., Samuel Lee, B.Sc. and Eleni Girma Beyene, P.Eng., QP_{ESA} in light of the information available at the time of preparation. Any uses which a Third Party makes of this report, and/or any reliance on decisions to be made based on it, are the responsibility of such Third Parties. Soil Engineers Ltd. accepts no responsibility for damages, if any, suffered by any Third Party as a result of decisions made or actions based on this report.

One must understand that the mandate of Soil Engineers Ltd. is to obtain readily available past and present information pertinent to the subject site and to analyze representative soil and groundwater samples for a Phase Two Environmental Site Assessment only. No other warranty or representation, expressed or implied, as to the accuracy of the information included or intended by this assessment. Site conditions, environmental or otherwise, are not static and this report documents site conditions observed at the time of the last sampling.

It should be noted that the information supplied in this report may not be sufficient to obtain approval for disposal of excess soil or materials generated during construction.


TABLE OF CONTENTS

1.0	EXEC	UTIVE SUMMARY	
2.0	INTRO	DDUCTION	3
	2.1	Site Description	
	2.2	Property Ownership	
	2.3	Current and Proposed Future Uses	
	2.4	Applicable Site Condition Standards	4
3.0	BACK	GROUND	
	3.1	Physical Setting.	
	3.2	Past Investigations	
4.0	SCOPI	E OF THE INVESTIGATION	
	4.1	Overview of Site Investigation	
	4.2	Media Investigated	
	4.3	Phase One Conceptual Site Model	
	4.4	Deviations From Sampling and Analysis Plan	10
	4.5	Impediments	
5.0	INVES	STIGATION METHOD	11
	5.1	General	
	5.2	Drilling and Excavating	
	5.3	Soil Sampling	
ž.	5.4	Field Screening Measurements	14
	5.5	Groundwater: Monitoring Well Installation	
	5.6	Groundwater: Field Measurement of Water Quality Parameters	15
	5.7	Groundwater: Sampling	
	5.8	Sediment: Sampling	
	5.9	Analytical Testing	
	5.10	Residue Management Procedures	16
	5.11	Elevation Surveying	
	5.12	Quality Assurance and Quality Control Measures	17
6.0	REVIE	EW AND EVALUATION	19
	6.1	Geology	
	6.2	Groundwater: Elevations and Flow Direction	20
	6.3	Groundwater: Hydraulic Gradients	
	6.4	Fine-Medium Soil Texture	
	6.5	Soil: Field Screening	
	6.6	Soil Quality	

TABLE OF CONTENTS (Cont'd)

	6.7	Groundwa	ter Quality	23
	6.8	Sediment (Quality	26
	6.9	Quality As	surance and Quality Control Results	26
		6.9.1	Field Quality Assurance/Quality Control Samples	27
		6.9.2	Sample Handling in Accordance with the Analytical Protocol	28
		6.9.3	Certification of Results	
		6.9.4	Data Validation	
		6.9.5	Data Quality Objectives	29
	6.10	Phase Two	Conceptual Site Model	
		6.10.1	Description and Assessment	
		6.10.1.1	Areas where Potentially Contaminating Activity Has Occurred	30
		6.10.1.2	Areas of Potential Environmental Concern	
		6.10.1.3	Subsurface Structures and Utilities	
		6.10.2	Physical Setting	31
		6.10.2.1	Stratigraphy	
		6.10.2.2	Hydrogeological Characteristics	
		6.10.2.3	Approximate Depth to Bedrock	
		6.10.2.4	Approximate Depth to Water Table	
		6.10.2.5	Section 41 or 43.1 of the Regulation	
		6.10.2.6	Soils Placed On, In or Under the Phase Two Property	
		6.10.2.7	Proposed Building and Other Structures	
		6.10.3	Contamination In or Under the Phase Two Property	
		6.10.3.1	Area Where Contaminants are Present	
		6.10.3.2	Contaminants Associated with Each Area	34
		6.10.3.3	Medium in which Each Contaminant were Found	34
		6.10.3.4	Description and Assessment of the Area Where Contaminant Foun	d 34
		6.10.3.5	Distribution of Contaminants	
		6.10.3.6	Reasons for Discharge	36
		6.10.3.7	Migration of Contaminants	
		6.10.3.8	Climatic or Meteorological Conditions Influencing Contaminant	
			Distribution of Migration	36
		6.10.3.9	Soil Vapour Intrusion into Buildings	
		6.10.4	Potential Exposure Pathways and Receptors	
		6.10.4.1	Release Mechanisms	
		6.10.4.2	Contaminant Transport Pathway	37
		6.10.4.3	Receptors	
		6.10.4.4	Receptor Exposure Point	37
		6.10.4.5	Routes of Exposure	38
7.0	CONCI	LUSIONS		39
8.0	REFER	ENCES		42

iv

TABLES

Monitoring Well Installation Details	Table I
Water Levels	: Table II
Soil Data	Table III
Groundwater Data	Table IV
Soil Maximum Concentration Data	Table V
Groundwater Maximum Concentration Data	Table VI
<u>FIGURES</u>	
Site Location Plan Dr	rawing No. 1
Borehole and Monitoring Well Location Plan Dr	rawing No. 1
Lateral Soil Delineation	
Shallow Groundwater Contour PlanDr	
Location of Cross-Section Key Plan Dr	
Location of Cross-Section Control Cross-Section Dr.	
Vertical Soil Delineation	
Human and Ecological Receptor Conceptual Site Model Dr	rawing No. 8
APPENDICES	
Sampling and Analysis Plan.	Appendix 'A'
Borehole Logs	Appendix 'B'
Certificate of Analysis (Soil Samples)	
Certificate of Analysis (Groundwater)	Appendix 'D'
Remediation	Appendix 'E'
Property Survey Plan	
Troperty Survey Flutt	Tippenuix I

EXECUTIVE SUMMARY

Soil Engineers Ltd. (SEL) was retained by Great Gulf Homes Limited to carry out a Phase Two Environmental Site Assessment (Phase Two ESA), as defined by Ontario Regulation (O. Reg.) 153/04, as amended. The subject property is located at 6611 Second Line West, in the City of Mississauga (hereinafter referred to as "the subject site").

The purpose of the Phase Two ESA was to determine the soil and groundwater quality at the subject site, as related to the environmental concerns identified in our Phase One Environmental Site Assessment (Phase One ESA) for the subject site.

The field work for the investigation conducted in two stages: the first stage consisted of soil and groundwater sampling from boreholes/test pits and monitoring wells at selected locations and the second stage consisted soil remediation along with confirmation soil sampling program at the subject site.

Soil and groundwater samples were submitted for chemical analysis in accordance with the Ministry of the Environment and Climate Change (MOECC) Table 1, Full Depth Background Site Condition Standards, for Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use, in accordance with "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (EPA), dated April 15, 2011 (Table 1 Standards).

A review of the soil and groundwater results of the first stage of the investigation indicates that impacted surface soils with Lead and Chromium VI in excess of the Table 1 Standards at the test pit location TP1 (eastern section of the subject site) and Lead, Molybdenum and Chromium VI at testpit location TP4 (southern section of the subject site). The remaining analyzed soil and groundwater samples of the initial stage investigation for the tested parameters meet Table 1 Standards. A soil remedial action was required at the eastern and southern sections of the subject site in order to bring the subject site into compliance with the Table 1 Standards.

Subsequently, the impacted soil was excavated and removed from the southern and eastern sections of the subject site and disposed off-site. Upon completion of the removal of impacted soil, confirmatory soil testing program was conducted. The delineation program was conducted concurrently with confirmation testing program.

A review of the analytical results of the confirmation testing program of the Phase Two ESA indicates the confirmation soil samples meet the Table 1 Standards.

Based on the findings of the Phase Two ESA, it is our opinion that the property is suitable for the proposed development. No further environmental investigation is recommended at this time.

2.0 **INTRODUCTION**

Soil Engineers Ltd. (SEL) was retained by Great Gulf Homes Limited to carry out a Phase Two Environmental Site Assessment (ESA), as defined by Ontario Regulation (O. Reg.) 153/04, as amended by O. Regs. 366/05, 66/08, 511/09, 245/10, 179/11, 269/11 and 333/13, herein referred to as O. Reg. 153/04. The subject property is located at 6611 Second Line West, in the City of Mississauga (hereinafter referred to as "the subject site").

The purpose of the Phase Two ESA was to determine the soil and groundwater quality at the subject site, as related to the environmental concerns identified in our Phase One Environmental Site Assessment (Phase One ESA).

2.1 Site Description

The subject site, rectangular in shape and approximately 0.81 ha (2.0 ac) in area, is located approximately 230 m to the north side of Highway 401 and east of Second Line West, in the City of Mississauga. The Property Identification Number (PIN) is part of PIN 13213-3809 (LT). The legal description of the subject site is part lot 9, concession 2, west of Hurontario Street, City of Mississauga, Regional Municipality of Peel on the proposed survey plan dated and signed by John F.G. Young, Ontario Land Surveyor, on January 25, 2016.

The subject site and neighboring properties have been mainly used for residential purposes. The subject site has been used for residential purpose since 1953. The neighbouring properties consist mainly of residential buildings and wooded areas to the north, residential properties to the southeast and east; and natural conservation area to the west and south.

An Area of Natural Scientific Interest (ANSI) is located within 30 m from the subject site boundary. The ground surface is descends towards the south.

The Property Survey Plan is attached in Appendix.

2.2 **Property Ownership**

This Phase Two ESA was commissioned to address the environmental concerns in accordance with our proposal dated April 8, 2016 (Revised). The investigation was approved by Mr. Shaun Joffe of Great Gulf Homes Limited. The subject site owner and our client can be contacted at:

Great Gulf Homes Limited 3751 Victoria Park Avenue Toronto, Ontario M1W 3Z4

Attention: Mr. Shaun Joffe

2.3 <u>Current and Proposed Future Uses</u>

The subject site has been used for residential purpose since 1953. A residential development is being proposed for the subject site. It is anticipated that the new development will be provided with municipal services meeting urban standards.

2.4 Applicable Site Condition Standards

SEL has selected the applicable assessment criteria from Ontario Regulation 153/04, as amended including Ont. Reg. 511/09, made under the Environmental Protection Act, June 1, 2004, to assess the analytical data from the submitted soil samples. The following information was used to select the appropriate criteria:

- The subject site is considered to be sensitive due to an Area of Natural Scientific Interest (ANSI) located within 30 m to the west and south side of the subject site.
- The property is not a shallow soil property, as the bedrock was not encountered within 7.6 m below ground surface (mbgs) during the investigation. Therefore, the subject site is not a shallow soil property
- A water well was observed on the subject site.
- No water body is located at the subject site or within 30 m of the subject site.

- Full depth background condition is to be used in this assessment.
- The intended property use of the subject site is residential.
- No grain size analysis has been performed and, therefore, the coarse textured soil standards are automatically applied.

Based on the above considerations, the Ministry of the Environment and Climate Change (MOECC) Table 1, Full Depth Background Site Condition Standards, for Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use (Table 1 Standards) under part XV.I of EPA has been selected for evaluating the environmental conditions at the subject site.

4

BACKGROUND

3.1 Physical Setting

Based on the information obtained from our Phase One ESA, the general physical setting of the subject site is summarized below:

The subject site is located within the residential area in the City of Mississauga. The neighbouring properties consist mainly of residential buildings and wooded areas to the north, residential properties to the southeast and east; and natural conservation area to the west and south.

The subject site is located in the City of Mississauga, on Halton Hill Deposits, which predominantly consist of silt to silty clay matrix, high in matrix carbonate content and clast poor. The subject site is located on the Georgian Bay formation. The formation rock consists of shale, limestone, dolostone and siltstone.

The subject site is adjacent to two roadways, Harmony Hill to the north and Second Line west to the south side, and Area of Natural Scientific Interest (ANSI) is located to the south side of the subject site. The ground surface descends towards the south.

The subject site is located in the larger hydrogeological region known as Southern Ontario Lowlands. A Watershed Map provided by the Credit Valley Conservative Authority shows the subject site is located within the Norval to Port Credit Sub-watershed. which is part of the Credit Valley Watershed.

Based on the Ministry of Natural Resources Natural Features Map and the City of Brampton Natural Resources Map, there is an ANSIs located within 30 m to the south side of the subject site.

3.2 **Past Investigations**

The following previous investigation reports for the subject site were reviewed as part of this Phase Two ESA:

- A Geotechnical Investigation report, Reference No. 0210-S044, dated 2002.
- Phase One Environmental Site Assessment (Phase One ESA) report, Reference No.
 1512-S086E, dated January 27, 2016

Geotechnical Investigation (2002)

In 2002, a geotechnical investigation consisting of 5 boreholes was carried out on the subject site. Based on the findings of the geotechnical investigation, beneath a layer of topsoil fill, 5 to 30 cm thick, and/or a layer of silty clay fill or granular fill, the site is underlain by a layer of firm to hard, generally very stiff silty clay till.

Phase One ESA (2016)

The Phase One ESA identified the following Areas of Potential Environmental Concern (APECs) at the subject site:

- APEC 1: Potential surface soil impact due to unknown environmental quality of fill material on the subject site. #30. Importation of fill material of unknown quality
- APEC 2: Potential soil and groundwater impact due to some truck trailers, which were parked on the subject site. #11. Commercial trucking and container terminals
- APEC 3: Potential soil and groundwater impact due to a former underground storage fuel tank on the subject site. #28. Gasoline and associated products in fixed storage

SCOPE OF THE INVESTIGATION

4.1 Overview of Site Investigation

The purpose of this investigation (Phase Two ESA) is to assess the soil and groundwater quality at the subject site, as related to the environmental concern raised in the findings of our Phase One ESA. This Phase Two ESA was conducted in general conformance with the CSA Standard Z769-00 and O. Reg. 153/04 as amended.

The site investigation for the Phase Two ESA was carried out in two stages:

- The first stage (initial investigation) consisted of soil and groundwater sampling from boreholes/test pits and monitoring wells as related to the environmental concerns identified in our Phase One ESA.
- The second stage (soil remediation along with confirmation testing program) consisted of field superivision of impacted soil removal and soil sampling from the margins of the remedial excavations at the southern and eastern sections of the subject site based on the findings of the first stage investigation.

The scope of work for this investigation is outlined below:

- Locate the underground and overhead utilities.
- Conduct three (3) boreholes to depths ranging from 3.0 mbgs to 7.6 mbgs and five (5) hand dug test pits to depths of 0.5 mbgs.
- Collect representative soil samples from the boreholes and test pits.
- Undertake field examination of the retrieved soil samples for visual and olfactory evidence of potential contamination.
- Undertake soil vapour measurements for the retrieved soil samples using a combustible gas detector (RKI Eagle) in methane elimination mode, calibrated with hexane and having a minimum detection level of 2 ppm (parts per million by volume).
- Install monitoring wells in three (3) boreholes for groundwater observation, sampling and testing.

- Conduct of groundwater monitoring and collect groundwater samples from monitoring wells for chemical testing.
- Carry out analytical testing program on selected soil samples and groundwater samples (including QA/QC samples) for one or more of the following parameters: petroleum hydrocarbons (PHCs), volatile organics compounds (VOCs), and/or metals and inorganics parameters (M&I).
- Review the analytical results for the tested soil and groundwater samples using applicable Site Condition Standards.
- Soil and groundwater re-sampling and retesting at selected sampling location to vertify the concentrations of contaminants of concerns.
- Undertake field supervision and documentation of the removal of impacted surface soil
 from southern and eastern section of the subject site, based on the findings of first
 stage investigation.
- Conduct delineation and confirmation testing program which includes collection of thirteen (13) soil samples from the margins of the remedial excavation pit for analysis of metal and/or inorganic parameters.
- Review the analytical results of the submitted confirmatory soil samples using the applicable Site Condition Standards.
- Prepare a Phase Two ESA report presenting the findings of the investigation

The rationale for the selection of borehole/test pit and monitoring well locations is presented in the Sampling and Analysis Plans, Appendix A.

4.2 <u>Media Investigated</u>

Based on the findings of the Phase One ESA, soil and groundwater media were investigated during the Phase Two ESA in accordance with the Sampling and Analysis Plans provided in Appendix 'A'. Sediment were not identified as potentially contaminated media in our Phase One ESA. Consequently, no sediment investigation was conducted as part of this Phase Two ESA.

Boreholes were advanced using a conventional drill rig equipped with flight augers and split-spoon samplers. The hand-dug test pits were advanced using a steel spade. Soil samples were logged in the field and head space vapour screening was conducted for all retrieved soil samples using a combustible gas detector (RKI Eagle) in methane elimination mode, calibrated with hexane and having a minimum detection level of 2 ppm (parts per million by volume).

Groundwater monitoring wells were installed in selected boreholes. The monitoring wells were constructed using 50 mm-diameter flush-joint threaded PVC monitoring well supplies, and were completed with 3.0 m in length intake screens. Groundwater sampling was conducted using dedicated low-density polyethylene (LDPE) tubing and disposable bailers, and laboratory-supplied containers (prepared with preservative for the analysis being conducted). The samples scheduled for analysis of metals were filtered on-site through a 0.45 micron filter as part of the sampling process.

4.3 Phase One Conceptual Site Model

A plan, illustrating the features of the subject site and surrounding areas within 250 m from the subject site boundaries including the locations of potentially contaminating activities (PCAs), is presented on Drawing No. 1.

4.4 <u>Deviations From Sampling and Analysis Plan</u>

No deviations from the sampling and analysis plans were encountered.

4.5 **Impediments**

No impediments were encountered during the investigation for the Phase Two ESA.

INVESTIGATION METHOD

5.1 General

The Phase Two ESA was carried out in accordance with the Sampling and Analysis Plans provided in Appendix 'A' and in accordance with the SEL Standard Operating Procedures.

The Phase Two ESA consisted of conducting five (5) boreholes to depths ranging from 3.0 mbgs to 7.6 mbgs, three (3) hand dug test pits to a depth of 0.5 mbgs, installation of monitoring wells in three (3) selected boreholes, field measurements, collection of soil and groundwater samples from the sampling locations for chemical analysis, and excavation and removal of impacted soil. The soil and groundwater samples were assessed for the potential contamination with respect to the APECs identified by our Phase One ESA.

The sampling and decontamination procedures were conducted in accordance with the "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", May 1996, revised in December 1996, as amended by O. Reg. 511/09.

Laboratory analytical methods, protocols and procedures were carried out in accordance with the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", dated March 9, 2004, amended as of July 1, 2011, in accordance with O. Reg. 511/09 and O. Reg. 269/11.

5.2 **Drilling and Excavating**

Prior to the field work, the underground utilities were located and marked out in the field by representatives of the major utility companies through Ontario One Call and a private locator (C.L. Underground Locates).

The field work of the investigation for the Phase Two ESA was carried out, between July 14, 2016 and August 31, 2017 in two stages:

- The first stage was part of the initial investigation and consisted of conducting three (3) boreholes/shallow boreholes and monitoring wells (designated as BH/MW 1 to BH/MW 3, TP4 and TP5), to depths ranging from 3.0 mbgs to 7.6 mbgs and five (5) hand dug test pits (designated as TP 1 to TP3) to a depth of 0.5 mbgs. The sampling locations were placed within the areas of potential environmental concerns based on the findings of the Phase One ESA.
- The second stage was conducted after the removal of the impacted soil from the area from TP1 to TP4 of the first stage investigation and consisted of collection of a total of thirteen (13) soil samples and two (2) duplicate samples (designated as Wall 1-1, Wall 2-2, Wall 3-3, Wall 4, Wall 5, Wall 6, Wall 7, Floor 1, Floor 2-1, Floor 3, Floor 4 and Floor 5, Dup-1 and Dup) from the margins of the remedial excavations at depths ranging from 0.7 mbgs to 2.0 mbgs, for delineation and confirmation testing. Details of soil remediation including confirmation soil testing are discussed in the remediation appendix.

The sampling locations of the investigation are shown on Drawing No. 2.

The boreholes were advanced on using a conventional truck-mounted drill rig, equipped with continuous flight augers and sampling rods, supplied by a specialist drilling contractor, DBW Drilling Limited. The hand-dug test pits were advanced using a steel spade. Soil samples from the boreholes were recovered at regular intervals, using split spoon sampler and from the test pits to depths of 0.5 mbgs using the steel spade.

The drilling, excavating and soil sampling equipment are decontaminated prior to initial use, between the sampling locations and at the completion of field activities. The drilling excavating and sampling equipments are manually scrubbed with a brush using a phosphate-free solution and power washed to remove any adhered soil, foreign material and potential contaminant.

The field work was monitored by a Soil Engineers Ltd. environmental technician who recorded the findings and observations.

9

5.3 **Soil: Sampling**

Soil samples from the boreholes were retrieved at regular intervals, using a stainless steel split-spoon sampler. Soil samples from the test pits were retrieved using a steel spade. Prior to recovering a sample, the sampling equipment was brushed clean using a solution of phosphate-free detergent and distilled water, and each discrete sample was handled by the sampler with new disposable gloves in order to avoid the risk of cross-contamination between the samples. Each soil sample was split with part of the sample sealed in a laboratory-prepared glass jar and stored in a cooler with ice, and the remainder of the sample sealed in a double sealable bag for vapour measurement and soil classification. A small amount of the soil sample was retrieved by a disposable 'T' shaped Terracore sampler and the soil samples from the Terracore sampler were stored in methanol vials for F1 and VOCs analyses.

The subsoil conditions indicate a layer of topsoil fill, and/or a layer of silty clay fill or granular fill, the subject site is underlain by a layer of silty clay till at various depths and locations.

Detailed descriptions of the encountered subsurface conditions are presented on the Borehole Logs provided in Appendix 'B'.

Based on the soil vapour measurements and visual and olfactory observations, representative worst case soil samples from the boreholes and test pits were selected and sent to the laboratory for chemical analyses.

5.4 Field Screening Measurements

The headspace vapour concentrations were measured using a portable RKI Eagle gas detector, TYPE 101 (Serial Number: E091015) set to include flammable gases with the exception of methane (methane elimination mode), and having a minimum detection level of 2 ppm (parts per million by volume). Prior to taking the measurements, the instrument was calibrated to hexane standards for both ppm and LEL according to the instruction manual for the instrument. Our technician was trained by the supplier for the proper calibration procedure. The instrument is calibrated or tuned up by the supplier (Pine Environmental Service Inc.) seasonally.

The results of the soil vapour measurement are presented in the Borehole Log, Appendix 'B'.

The representative worst case soil samples based on the soil vapour measurements and visual and olfactory observations were selected from the boreholes and test pits, and sent to the laboratory for chemical analyses.

5.5 **Groundwater: Monitoring Well Installation**

A total of three (3) monitoring wells were installed at the subject site by DBW Drilling Limited. The monitoring wells were constructed using 50 mm-diameter PVC casing, 3.0 m screen in length at the bottom of the borehole. A PVC riser, capped at the top, was installed from the screen section and extended above the top grade. A sand pack, consisting of clean silica sand, was placed around the screened zone with a bentonite seal placed above the sand pack. The top of each monitoring well was sealed with concrete to approximately 0.3 mbgs.

The underground riser was protected by a flush-mounted or monument protective casings, and they sealed into ground with concrete. The details of the monitoring well construction are provided on the Borehole Logs in Appendix 'B' and in Table I.

The monitoring wells installed at the subject site were instrumented with dedicated LDPE tubing to facilitate the well development, purging and sampling programs.

Groundwater development was performed. The monitoring wells have been developed to remove any fluids that may have been introduced into the well during drilling and to remove particles that may have become entrained in the well and filter pack (three well casing volumes of groundwater in each well). Purged water was contained and stored at the subject site for future disposal).

5.6 Groundwater: Field Measurement of Water Quality Parameters

Groundwater monitoring and purging was conducted at the subject site on July 21, 2016. Water level measurements and water temperature were taken using a water level meter (Dipper-T) equipped with a thermometer. Groundwater observations were recorded for colour, clarity, the presence or absence of free product/surface sheen and any odour present during purging the wells. The water level measuring device was cleaned after each measurement using Alconox solution and water, followed by a distilled water rinse and a methanol rinse, in order to prevent cross-contamination between monitoring wells.

The records of groundwater level measurement and observations are presented in Table II.

5.7 **Groundwater: Sampling**

The well development was conducted on July 21, 2016. A minimum of three (3) well casing volumes of groundwater from each well was purged to ensure potential contamination from drilling was flushed out of the system. Purged water was contained and stored at the subject site for future disposal.

Groundwater sampling was conducted on July 22, 2016, August 14, 2016, May 29, 2017, August 10 and 31, 2017 after purging and allow the water to stabilize. The groundwater purging and sampling activities were carried out using dedicated LDPE tubing and disposable bailers. Groundwater samples were collected into laboratory-supplied containers, prepared

with preservative for the analysis being conducted. The groundwater samples scheduled for analyses of metals were filtered on-site through a 0.45 micron filter as part of the sampling process.

5.8 **Sediment: Sampling**

Sediment was not assessed as part of this Phase Two ESA.

5.9 Analytical Testing

The soil and groundwater samples were analysed by SGS Environmental Services (SGS) and Maxxam Analytics (Maxxam). SGS and Maxxam are accredited by Canadian Association for Laboratory Accreditation (CALA) in accordance with ISO/IEC 17025:2005 – "General Requirements for the Competence of Testing and Calibration Laboratories" for all the parameters analysed during this investigation.

5.10 Residue Management Procedures

Excess soil generated from the drilling program for the investigation was stored at the subject site in metal barrels. Groundwater purged from the monitoring wells was stored in containers, using a separate container for each well. The metal barrels and containers are clearly marked and stored temporarily at the subject site for later disposal.

5.11 **Elevation Surveying**

The ground surface and groundwater elevations at the monitoring well locations were surveyed using a grade laser surveying equipment. The elevations of the boreholes were established using a catch basin on Harmony Hill as a benchmark (BM). The geodetic elevation of the BM is 176.21 m, which is located approximately 7 m north of the subject site. The elevations at the boreholes locations are presented in the borehole log in Appendix 'B'.

5.12 Quality Assurance and Quality Control Measures

The soil and ground water Sampling and Analysis Plan, provided in Appendix 'A', was prepared and executed based on the findings of our Phase One ESA.

The Phase Two ESA was carried out in accordance with the Sampling and Analysis Plan and in accordance with the SEL Standard Operating Procedures.

The sampling and decontamination procedures were conducted in accordance with the "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", May 1996, revised December 1996, as amended by O. Reg. 511/09.

Laboratory analytical methods, protocols and procedures were carried out in accordance with the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", dated March 9, 2004, amended as of July 1, 2011, in accordance with O. Reg. 511/09 and O. Reg. 269/11.

Field observations were made and documented in a field notebook in accordance with generally accepted practices and with the procedures developed and utilized by SEL.

SEL field sampling QA/QC protocols, applied to the investigation, are as follows:

- The collection of at least one field duplicate sample per site for every sampling media (where three or more such samples are collected).
- Where volatile organic chemical analysis is required, the collection of discrete samples directly into laboratory-prepared sample vials and immediate placement into a cooler with ice to maintain the temperature at less than 10 °C for transport to the laboratory.
- The use of dedicated equipment (bailers, Waterra tubing, etc.) for groundwater sampling at different monitors and the thorough cleaning of soil sampling equipment between sample locations.

- If trace organics in the collected samples are anticipated (organic chemicals with a concentration of less than 1 μg/g in soil and 1 μg/L in groundwater), precautions are made to avoid any possible cross-contamination (eliminating bare hand or latex glove contacts with the soil or water; soil sampling equipment used for the collection of trace organics are cleaned using a phosphate-free detergent and water, followed by a distilled water rinse between sampling locations.
- The inclusion of one trip blank for water samples per site (where three or more samples are collected) for VOC parameters; the bottles containing the trip blank are prepared by the laboratory; QA/QC samples are kept in the cooler on ice for the duration of the sampling event, and returned to the laboratory for analyses.

The results for the field duplicate and trip blank samples are discussed later in Section 6 of this report.

REVIEW AND EVALUATION

6.1 Geology

Detailed descriptions of the encountered subsurface conditions are presented on the Borehole Logs provided in Appendix 'B'. The subsoil conditions indicate a layer of topsoil fill, and/or a layer of silty clay fill or granular fill, the subject site is underlain by a layer of silty clay till at various depths and locations. No bedrock was encountered during the Phase Two ESA.

The descriptions of the strata, encountered at the borehole locations, are briefly discussed below.

Topsoil / Topsoil Fill

Topsoil or Topsoil fill, approximately 0.05 m to 0.3 m in thickness, is contacted at the ground surface of the boreholes and test pits.

Silty Clay Fill

A silty clay fill was encountered below the topsoil fill at the borehole and testpit locations. The fill contains gravel, extending to depths ranging from 0.5 mugs to 3.8 mbgs.

Silty Clay Till

Silty clay till deposit was encountered below the silty clay fill. The boreholes were terminated in the silty clay till deposit at depths ranging from 1.5 mbgs to 7.6 mbgs.

Hydrogeology

On completion of the drilling, water level was recorded at depths of 4.2, 2.04 and 3.4 mbgs in the borehole BH/MW 1, BH/MW 2 and BH/MW 3, respectively.

6.2 **Groundwater: Elevations and Flow Direction**

Three (3) monitoring wells were installed at the selected borehole locations during the field investigation for the Phase Two ESA on July 14, 2016. Groundwater records were documented during the groundwater monitoring/purging round on July 21, 2016.

On July 21, 2016 during groundwater monitoring round, water levels were recorded at depths of 5.6 mbgs, 3.1 mbgs and 4.7 mbgs at BH/MW1, BH/MW2 and BH/MW3, respectively. The corresponding water table elevations are 171.7 masl, 174.0 masl and 172.1 masl (meters above sea level).

The ground elevations of the monitoring wells were surveyed using a grade laser surveying equipment. Water level measurements and water temperature were taken using a water level meter (Dipper-T). The top of the well casings was used as the reference point to determine the groundwater table. The measurements were reduced to static elevations based on the monitoring well survey data. Shallow groundwater levels were used to determine the groundwater flow direction. Based on the measured groundwater levels, the groundwater flow direction appears to be towards the south. No free product or surface sheen was observed in any of the monitoring wells.

The groundwater levels measured in the monitoring wells are summarized in Table II. The shallow groundwater contours and interpreted groundwater flow direction are shown on Drawing No. 4.

6.3 Groundwater: Hydraulic Gradients

Based on the groundwater levels measured on July 21, 2016, the horizontal hydraulic gradient for the investigated aquifer within the glacial till deposit at the subject site is between 0.046 m/m and 0.071 m/m (average 0.059 m/m).

6.4 <u>Fine-Medium Soil Texture</u>

No grain size analysis was performed as part of the Phase Two ESA.

6.5 Soil: Field Screening

Head space vapour screening was conducted for all retrieved soil samples using a combustible gas detector (RKI Eagle) in methane elimination mode, calibrated with hexane and having a minimum detection level of 2 ppm (parts per million by volume).

Soil vapour readings from 0 ppmv to 20 ppmv were recorded for collected soil samples.

6.6 Soil Quality

The soil sampling and testing program was carried out in two stages. Representative "worst case" soil samples during the first and second stage investigation was selected based on the soil vapour measurements and visual and olfactory observations. The selected soil samples were submitted to the laboratory for chemical analyses of petroleum hydrocarbons (PHCs), volatile organic compounds (VOCs), and/or metals and/or inorganic parameters.

The soil test results were reviewed using the Table 1, Full Depth Background Site Condition Standards, for Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use (Table 1 Standards), as published in the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (EPA), April 15, 2011.

Soil quality data containing results of the chemical analyses for the tested soil samples is presented in Table III. Maximum concentrations of the tested parameters in soil are presented in Table V.

The Certificates of Analyses for the soil samples are presented in Appendix 'C'.

The findings of the soil test results are summarized below:

Petroleum Hydrocarbons (PHCs)

Three (3) soil samples were submitted for analysis of PHCs. The test results indicate the tested soil samples were below the laboratory reported detection limits and meet the Table 1 Standards.

Volatile Organic Compounds (VOCs)

Three (3) soil samples and one (1) duplicate sample were submitted for analysis of VOCs. The test results indicate the tested soil samples were below the laboratory reported detection limits and meet the Table 1 Standards.

Metals and Inorganics (M&I)

Eight (8) original soil samples and one (1) duplicate sample were submitted for analysis of metal and inorganic parameters. The concentrations of metals and inorganic parameters in the tested soil samples meet the Table 1 Standards, with the exception of Lead, Chromium VI and Molybdenum concentrations in two of the tested soil samples (TP 1 and TP4/2). Details of the exceeding parameters are presented in table below:

Sample ID	Exceeded Parameters	Result (ug/g)	Table 1 Standards (ug/g)
TP1	Lead	240	120
	Chromium VI	0.8	0.66
TP4/2	Lead	1400	120
	Chromium VI	2.2	0.66
	Molybdenum	2.5	2
TP5/2	Cyanide	0.07	0.051

An additional samples (TP-S') were retrieved in the vicinity of TP5 within 2 m radius from the location of TP5/2 at depths ranging from 0.3 mbgs to 0.6 mbgs. The analytical result of TP-S' indicated that the concentrations of the cyanide are less than 0.01 ug/g. The averaged concentration of the cyanide in the sample TP5/2 and TP-S' are 0.04 ug/g, respectively, which meet the Table 1 Standards.

During the second stage investigation (after the removal of impacted soil from the areas between TP1 and TP4), a total of thirteen (12) original soil samples and two (2) duplicate samples were obtained from the margins of the remedial excavations area as part of delineation and confirmation testing program. The samples were submitted for analysis of metals. The test results indicate the tested soil samples during the second stage investigation meet the Table 1 Standards.

6.7 **Groundwater Quality**

Groundwater samples collected from monitoring wells MW1, MW2 and MW3 were submitted to the laboratory for analyses of one or more of the following parameters: PHCs, VOCs, and metals and inorganics.

The groundwater analytical results were reviewed using the Table 1 Standards.

Groundwater quality data containing results of the chemical analyses for the tested groundwater samples are presented in Table IV. Maximum concentrations of the tested parameters in groundwater are presented in Table VI.

A copy of Certificate of Analysis for the groundwater samples is presented in Appendix 'D'.

The findings of the groundwater analytical results are summarized below:

Petroleum Hydrocarbons (PHCs)

Three (3) original groundwater samples from the monitoring wells were submitted for analysis of PHCs. The analytical results indicate that the concentrations of PHC parameters in the tested groundwater samples meet the Table 1 Standards, with the exception of F3 in one water sample (MW2) with the F3 concentration of 1410 ug/l in comparison with the Table 1 Standards of 500 ug/l. MW2 is located in the northern portion of the subject site. Subsequently, two rounds of water sampling and testing were conducted to verify the concentration of F3 in water at MW2 location. Details of the results are presented in table below:

MW2	1st round	2nd round	3rd round	
Sampling Date	Jul. 22, 2016	Aug. 14, 2016	May 29, 2016	Table 1 Standards
PHC (F3)	1410	<200	<200	500

A review of the additional water testing at MW2 location indicates the concentration of F3 meet the Table 1 Standards. The analytical results of the subsequent groundwater testings confirmed that there is no PHCs impact at MW2 location. Therefore, the PHC (F3) fraction initially detected in the groundwater at MW2 location was considered to be anomalous.

Volatile Organic Compounds (VOCs)

Three (3) original groundwater samples and one (1) duplicate groundwater sample from the monitoring wells and one (1) trip blank sample were submitted for analysis of VOCs. The analytical results indicate that the concentrations of VOC parameters meet the Table 1 Standards in the tested groundwater samples and the trip blank sample, with the exception of Tetrachloroethylene in one water sample (MW1) with the tetrachloroethylene concentration of 5.5 ug/l in comparison with the Table 1 Standards of 0.5 ug/l. MW1 is located in the northeastern portion of the subject site. Subsequently, two rounds of water sampling and testing were conducted to verify the concentration of F3 in water at MW2 location. Details of the results are presented in table below:

MW1	1st round	2nd round	3rd round	
Sampling Date	Jul. 22, 2016	Aug. 14, 16	Jul. 10, 2017	Table 1 Standards
Tetrachloroethylene	5.5	<0.5	<0.2	0.5

The analytical result of the second and third rounds groundwater testing program indicate the samples meet the Table 1 Standards. Therefore, the tetrachloroethylene initially detected in the groundwater at MW1 locations were considered to be anomalous.

Metals and Inorganics (M&I)

Three (3) original groundwater samples and one (1) field duplicate sample were submitted for analyses of metals and inorganics. The analytical results indicate the concentrations of metals and inorganics in the tested groundwater samples meet the Table 1 Standards, with the exception of several metals parameters (Arsenic, Beryllium, Chromium, Cobalt, Copper, Lead, Nickel, Vanadium and Mercury) in three water samples (MW1, MW2 and/or MW3). Subsequently, a total of two additional rounds of the groundwater sampling and testing were conducted to vertify the concentration of metals at MW1, MW2 and MW3 locations. Details of the results are presented in table below:

MW1	1st round	2nd round	3rd round	
Sampling Date	July 22, 2016	August 14, 2016	May 29, 2017	Table 1 Standards
Cobalt	12.7	2.97	0.5	3.8
Mercury	0.41	<0.1	<0.1	0.1

MW2	1st round	2nd round	3rd round	
Sampling Date	July 22, 2016	August 14, 2016	May 29, 2017	Table 1 Standards
Cobalt	3.92	0.636	<0.5	3.8
Copper	5.78	0.84	<1.0	5
Lead	3.17	0.02	<0.5	1.9

MW3	1st round	2nd round	3rd round	
Sampling Date	July 22, 2016	May 29, 2017	August 31, 2017	Table 1 Standards
Arsenic	18.9	13.1	8.6	13
Beryllium	1.27	< 0.007	<0.5	0.5
Chromium	16.7	0.21	<5.0	11
Cobalt	19.5	0.925	<0,5	3.8
Copper	166	0.34	0.58	5
Lead	28.2	0.04	<0.5	1.9
Nickel	26.3	0.6	1.0	14
Vanadium	28.4	0.17	<0.5	3.9

The analytical result of the additional rounds groundwater testing program indicate the samples meet the Table 1 Standards. The analytical results of the subsequent groundwater testings confirmed that there is no metals impact at MW1, MW2 and MW3 locations. Therefore, the metals (Arsenic, Beryllium, Chromium, Cobalt, Copper, Lead, Nickel and Vanadium) initially detected in the groundwater at MW1, MW2 and MW3 locations were considered to be anomalous.

6.8 **Sediment Quality**

Sediment was not assessed as part of this investigation.

6.9 Quality Assurance and Quality Control Results

The Phase Two ESA was carried out in accordance with the Sampling and Analysis Plans and in accordance with the SEL Standard Operating Procedures.

The sampling and decontamination procedures were conducted in accordance with the "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", May 1996, revised December 1996, as amended by O. Reg. 511/09.

Laboratory analytical methods, protocols and procedures were carried out in accordance with the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", dated March 9, 2004, amended as of July 1, 2011, in accordance with O. Reg. 511/09 and O. Reg. 269/11 (herein referred to as Analytical Protocol).

6.9.1 Field Quality Assurance/Quality Control Samples

A total of four (4) field duplicate soil samples and two (2) field duplicate groundwater samples were collected and submitted for chemical analysis. Details of duplicate sampling and analysis are presented in the Table below:

Duplicate Sample ID	Original Sample ID	Media	Test Conducted
DUP 1	BH3/9	Soil	VOCs
DUP 2	TP3	Soil	M&I
Dup-1	Floor 1	Soil	Metals
Dup	Floor 2-1	Soil	Metals
DupW1	MW3	Groundwater	Metals
Dupl	MW2	Groundwater	VOCs

The result of the analysis of the field duplicate sample is similar to the results for the original sample and relative percent differences for the detectable tested parameters are within acceptable range. However, the relative percent differences could not be calculated between the original and duplicate samples in the situation where the original and/or duplicate samples were below the reported laboratory detection limits.

Trip Blank

A total of two (2) trip blank samples were submitted to the laboratory for analysis of VOCs. The trip blank samples were found to be below the reported laboratory detection limits.

There was no issue with the trip blanks that were shipped with the batches of the groundwater samples submitted for analysis.

The Certificates of Analysis for the QA/QC samples are included in Appendices 'C' and 'D',

6.9.2 Sample Handling in Accordance with the Analytical Protocol

The samples analyzed as part of the Phase Two ESA were handled in accordance with the analytical protocol with respect to holding time, preservation method, storage requirement and sample container type.

6.9.3 Certification of Results

Based on the review of the QA/QC sample results for the soil and groundwater samples of this investigation, the Chain of Custody forms and the laboratory Certificate of Analysis, it is certified that:

- All Certificates of Analysis or Analytical Reports received pursuant to Section 47(2) of O. Reg. 153/04, as amended, comply with Section 47(3) of O. Reg. 153/04, as amended.
- A Certificate of Analysis or Analytical Report was received for each sample submitted for analysis.

Copies of all Certificates of Analysis are included in Appendices 'C' and 'D'.

6.9.4 **Data Validation**

The Analytical Protocol establishes Acceptance Limits for use when assessing the reliability of data reported by analytical laboratories including maximum holding times for the storage of samples/sample extracts between collection and analysis, analytical methods, field and/or laboratory quality assurance samples, recovery ranges for spiked samples and surrogates, Reporting Detection Limits (RDLs, mandatory maximum method detection limits) and precision required when analyzing laboratory replicate and spiked samples. The review of the data in the Certificate of Analysis indicates:

ž

- All samples/sample extracts were analyzed within their applicable holding times using approved analytical methods.
- The Reported Detection Limits were met for all tested parameters.
- The result of the laboratory duplicate samples is similar to the results for the original sample and relative percent differences for the detectable tested parameters are within the acceptable range.

6.9.5 Data Quality Objectives

In conclusion, the overall quality of field data did not affect decision making and the overall objectives of the investigation were met.

6.10 Phase Two Conceptual Site Model

The Phase Two Conceptual Site Model is prepared based on the findings of the Phase One ESA and this Phase Two ESA.

6.10.1 Description and Assessment

The subject site, rectangular in shape and approximately 0.81 ha (2.0 ac) in area, is located at approximately 230 m to the north side of Highway 401 and east of Second Line West, in the City of Mississauga. The Property Identification Number (PIN) is part of PIN 13213-3809 (LT). The legal description of the subject site is part lot 9, concession 2, west of Hurontario Street, City of Mississauga, Regional Municipality of Peel on the proposed survey plan dated and signed by John F.G. Young, Ontario Land Surveyor, on January 25, 2016.

6.10.1.1 Areas where Potentially Contaminating Activity Has Occurred

Potentially Contaminating Activities (PCAs) were identified at the subject site and in the Phase One Study Area based on the records review, interviews and site reconnaissance. The areas of PCAs along with the corresponding list in Table 2 Schedule D of O. Reg. 153/04 are summarized below:

On-site PCAs:

- Fill material of unknown quality was located at the subject site. #30. Importation of fill material of unknown quality
- Truck trailers were parked at the subject site. #11. Commercial trucking and container terminals
- A former fuel underground storage tank was located at the subject site. #28. Gasoline and associated products in fixed storage

6.10.1.2 Areas of Potential Environmental Concern

The following Areas of Potential Environmental Concern (APECs) were identified at the subject site:

APEC 1: Potential soil impact in the fill material of unknown quality at the subject site.

APEC 2: Potential soil and groundwater impact due to truck trailers parked at the subject site.

APEC 3: Potential soil and groundwater impact due to a former underground storage fuel tank located at the subject site.

The PCAs and APECs are shown in the Drawing No. 2.

6.10.1.3 Subsurface Structures and Utilities

At the time of the assessment, the subject site is occupied by one residence building. There are underground utilities located in vicinity of the residential building.

Contaminant, Boron (Lean, Chromium VI and Molybdenum) was identified in the fill material at the subject site. Since no subsurface structures or utilities was not located at the location of the cotnamination, no subsurface structures or utilities with potential to affect contaminants distribution or transport are identified at the subject site.

6.10.2 Physical Setting

6.10.2.1 Stratigraphy

The subject site is located in the City of Mississauga, on Halton Hill Deposits, which predominantly consist of silt to silty clay matrix, high in matrix carbonate content and clast poor. The subject site is located on the Georgian Bay formation. The formation rock consists of shale, limestone, dolostone and siltstone.

The field investigation for this Phase Two ESA consisted of three (3) boreholes to depths ranging from 3.0 mbgs to 7.6 mbgs and five (5) hand dug test pits to depths of 0.5 mbgs. The subsoil conditions, at the borehole and test pit location indicate beneath a layer of topsoil fill, and/or a layer of silty clay fill or granular fill, the site is underlain by a layer of silty clay till at various depths and locations. No bedrock was encountered during the Phase Two ESA.

6.10.2.2 <u>Hydrogeological Characteristics</u>

The subject site is located in the larger hydrogeological region known as Southern Ontario Lowlands. A Watershed Map provided by the Credit Valley Conservative Authority shows the subject site is located within the Norval to Port Credit Sub-watershed. which is part of the Credit Valley Watershed. The ground surface is relatively flat, and the grade at the subject site generally descends towards the south.

Three (3) monitoring wells were installed at selected borehole locations during the field investigation for this Phase Two ESA. Based on the groundwater records on July 21, 2016, the groundwater flow direction appears to be to the south. The shallow groundwater contours and interpreted groundwater flow direction are shown on Drawing No. 5.

Based on the groundwater records on July 21, 2016, the horizontal hydraulic gradient for the investigated aquifer at the subject site is 0.046 m/m and 0.071 m/m (average 0.059 m/m).

6.10.2.3 Approximate Depth to Bedrock

Bedrock was not encountered at the subject site during the investigation of the Phase Two ESA and during our previous geotechnical investigation. Based on information acquired through the Bedrock Cross Section Viewer (Ontario Geological Survey, 2010), the depth to bedrock at the subject site is approximately 143 metres below ground surface.

6.10.2.4 Approximate Depth to Water Table

Based on the groundwater records of July 21, 2016, the approximate depth to the water table at the subject site ranges from 3.1 mbgs to 5.6 mbgs.

6.10.2.5 Section 41 or 43.1 of the Regulation

The subject site is within an area of natural significance due to the Area of Natural Scientific Interests (ANSIs) located within 30 m from the subject site boundary. The analytical testing indicated the pH of the tested soil samples is between 5 and 9. Therefore, Section 41 of the regulation (Site Condition Standards, Environmental Sensitive Areas) applies to the subject site.

The subject site is not a shallow soil property, as the bedrock was not encountered within 2 mbgs during the investigation. There is no water body at the subject site or within 30 m from the subject site boundaries. Therefore, Section 43.1 of the Ontario Regulation 153/04 (Site Condition Standards, Shallow Soil Property or Water Body) does not apply to the subject site.

6.10.2.6 Soils Placed On, In or Under the Phase Two Property

The findings of the Phase One ESA indicate fill material at the subject site based on the review of the previous geotechnical investigation. The encountered fill material was assessed during the Phase Two ESA.

6.10.2.7 Proposed Building and Other Structures

The subject site is not a shallow soil property, as the bedrock was not encountered within 2 mbgs during the investigation. There is no water body at the subject site or within 30 m from the subject site boundaries. Therefore, Section 43.1 of the Ontario Regulation 153/04 (Site Condition Standards, Shallow Soil Property or Water Body) does not apply to the subject site.

6.10.3 Contamination In or Under the Phase Two Property

Based on the findings of the Phase One ESA, contaminants of potential concern in the soil and groundwater with respect to the identified Areas of Potential Environmental Concern (APECs) at the subject site were assessed during the Phase Two ESA.

Based on the information obtained from the Phase One ESA and Phase Two ESA, the Ministry of the Environment and Climate Change (MOECC) Table 1, Full Depth Background Site Condition Standards, for Residential/Parkland/Institutional/Industrial/Commercial/ Community Property Use (Table 1 Standards) under Part XV.1 of EPA has been selected for assessing the soil and groundwater condition at the subject site.

6.10.3.1 Area Where Contaminants are Present

The site investigation of the Phase Two ESA identified impacted surface soil with some parameters of metals exceeding Table 1 Standards, at the locations of TP1 (eastern section of the subject site) and TP4 (southern section of the subject site).

The remaining analysed soil and groundwater samples of the site investigation meet the Table 1 Standards.

The figures showing the lateral and vertical boundary of impacted soil is given on Drawing Nos. 3 to 7.

6.10.3.2 Contaminants Associated with Each Area

The contaminants, at concentrations above Table 1 Standards, found during the site investigation for the Phase Two ESA consisted of the following parameters: Lead, Chromium VI and Molybdenum.

6.10.3.3 Medium in which Each Contaminant were Found

Contaminants, Lead, Chromium VI and Molybdenum were identified in the surface soil at the depths ranging from 0.3 to 0.6 mbgs at TP1 and TP4 locations at concentrations above the Table 1 Standards.

6.10.3.4 Description and Assessment of the Area Where Contaminant Found

During the site investigation of the Phase Two ESA, soil samples retrieved from the boreholes and test pits conducted at the subject site were analyzed for the parameters of petroleum hydrocarbons (PHCs), volatile organic compounds (VOCs), and metals and inorganics (M&I).

Based on the review of the analytical results of the site investigation, the surface soil at TP1 and TP4 locations at the depths ranging from 0.3 mbgs to 0.6 mbgs was found to contain contaminants of Lead, Chromium VI and Molybdenum in excess of the Table 1 Standards.

Details of the soil exceedance are tabulated below:

Sample ID	Exceeded Parameters	Result (ug/g)	Table 1 Standards (ug/g)	
TP1	Lead	240	120	
	Chromium VI	0.8	: 0.66	
TP4/2	Lead	1400	120	
	Chromium VI	2.2	0.66	
	Molybdenum	2.5	2	

The remaining analyzed soil samples of the site investigation for the tested parameters meet Table 1 Standards. A soil remedial action was required in the area between TP1 and TP4 in order to bring the impacted areas, into compliance with the Table 1 Standards.

Subsequently, the impacted surface soil was excavated and removed from the area of TP1 and TP4 located at the eastern and southern section of subject site, respectively, and disposed offsite. The confirmation sampling program was conducted concurrently with the delineation program.

A review of the analytical results of the confirmation testing program of the Phase Two ESA indicates the confirmation soil samples meet the Table 1 Standards.

6.10.3.5 Distribution of Contaminants

Contaminants, Lead, Chromium VI and Molybdenum, were identified in the surface soil at the depths ranging from 0.3 mbgs to 0.6 mbgs at the locations of TP1 (eastern section of the subject site) and TP4 (southern section of the subject site) locations at concentrations above the Table 1 Standards. Based on the delineation and confirmation soil testing program, the impacted soil in the vicinity of TP1 and TP4 at the eastern and southern section of the subject site is approximately 6.5 m by 45 m in area, extending up to a depth of 2.0 mbgs.

6.10.3.6 Reasons for Discharge

The subject site has been used for residential purpose. Therefore, the presence of Lead, Chromium VI and Molybdenum impact at the subject site is most likely related to the poor quality of fill material at the subject site.

6.10.3.7 Migration of Contaminants

The soil impact at the locations of TP1 and TP4 was related to parameters of metals identified in the surface soil to a maximum depth of 2.0 mbgs. Based on the findings of the field investigation for the Phase Two ESA, the approximate depth to the water table at the subject site ranges from 3.1 mbgs to 5.6 mbgs which is below the impacted area. Consequently, no migration of contaminants is expected from the area of potential environmental concern.

6.10.3.8 <u>Climatic or Meteorological Conditions Influencing Contaminant Distribution of Migration</u>

As the impact at the subject site was related to metals and identified in the surface soil, climatic or meteorological conditions are not anticipated to influence the distribution or migrations of contaminants.

6.10.3.9 Soil Vapour Intrusion into Buildings

No soil vapour intrusion is anticipated at the subject site, as the identified impacted surface soil was related to metals.

6.10.4 Potential Exposure Pathways and Receptors

The human and ecological receptor conceptual model is presented in Drawing No. 8.

6.10.4.1 Release Mechanisms

Contaminants, Lead, Chromium VI and Molydibium, in excess of the Table 1 Standards, were identified in soil layer near the surface at the subject site. The release of the identified contaminants was likely related to the poor quality of fill material at the subject site.

6.10.4.2 Contaminant Transport Pathway

The impact at the locations of TP1 and TP4 were identified in surface soil to a maximum depth of 2.0 mbgs. In addition, no subsurface structures or buried utilities were at close to these locations. Therefore, no contaminant transport pathways were identified.

6.10.4.3 Receptors

With respect to the identified impact, potential receptors located on, in or under the subject site are workers on-site, site vegetation, burrowing animals and soil organisms.

The impacted surface soil has subsequently been remediated; no potential receptors are anticipated at present.

6.10.4.4 Receptor Exposure Point

Prior to the removal of the impacted surface soil, the receptor exposure points for the contaminant found at the subject site is soil based contamination.

The impacted surface soil has subsequently been remediated; no receptor exposure points are anticipated at present.

6.10.4.5 Routes of Exposure

The routes of exposure for the identified soil impact at the subject site would be dermal contact, ingestion and/or inhalation. As no significant ecological habitat was identified at the subject site, the risk to ecological receptors is expected to be minimal. Workers may have come into contact with soil during remediation excavation, but this is expected to be minimal as excavation equipment was used to remove the impacted surface soil from the subject site. Therefore, the exposure to impacted soil is expected to be minimal.

Furthermore, the impacted soil was excavated and removed from the subject site and no routes of exposure are anticipated at present.

CONCLUSIONS

The purpose of the Phase Two ESA was to determine the soil and groundwater quality at the subject site, as related to the following Areas of Potential Environmental Concerns (APECs) identified in our Phase One ESA:

APEC 1: Potential soil impact in the fill material of unknown quality at the subject site.

APEC 2: Potential soil and groundwater impact due to truck trailers parked at the subject site.

APEC 3: Potential soil and groundwater impact due to a former underground storage fuel tank located at the subject site.

The findings of the field investigation and analytical results of the Phase Two ESA summarized below:

- The field investigation for this Phase Two ESA was carried out in two stages:
 - o The first stage (initial investigation) consisted of soil sampling from three (3) boreholes to depths ranging from 3.0 mbgs to 7.6 mbgs and five (5) hand dug test pits to depths of 0.5 mbgs and water sampling from three monitoring wells, to determine the quality of the soil and groundwater as related to the environmental concern identified in our Phase One ESA.
 - The second stage (further investigation) was conducted after the removal of the impacted soil from the area between TP1 and TP4 of the first stage investigation and consisted of soil remediation along with soil confirmation sampling from the margins of the remedial excavation, at depths ranging from 1.5 mbgs to 2.0 mbgs. Delineation program was conducted in conjunction with confirmation sampling program.
- The subsoil conditions indicate a layer of topsoil fill and/or a layer of silty clay fill or granular fill, the site is underlain by a layer of silty clay till at various depths locations.

- Head space vapour screening was conducted for all retrieved soil samples using a combustible gas detector (RKI Eagle) in methane elimination mode, calibrated with hexane and having a minimum detection level of 2 ppmv (parts per million by volume). Soil vapour readings of 0 ppmv to 20 ppmv were recorded for all collected soil samples.
- Based on the soil vapour measurements and visual and olfactory observations,
 representative "worst case" soil samples were selected from each borchole and test pits
 of the first stage investigation for chemical analyses of PHCs, VOCs and metals and/or inorganic parameters.
- Groundwater samples collected from the monitoring wells were submitted for analysis of PHCs, VOCs, and metals and inorganic parameters.
- As part of the QA/QC program for the Phase Two ESA, QC samples in the form of field duplicate and trip blank samples were analysed. Field duplicate samples were collected in the field for metals and/or inorganics and VOCs in soil, and for VOCs and metals in groundwater. Two (2) trip blanks for VOCs were shipped with the batches of the groundwater samples submitted for analysis.
- The analytical test results were reviewed using the Table 1 Full Depth Background Site Condition Standards, for Residential/ Parkland/Institutional/Industrial/Commercial/ Community Property Use (Table 1 Standards), as published in the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (EPA), April 15, 2011.
- The test results of the first stage investigation indicate an exceedance of Table 1
 Standards for contaminants of Lead, Chromium VI and Molybdium in sample TP1
 (located at the eastern section of the subject site) and sample TP4/2 (located at the southern section of the subject site).
- Subsequently, the impacted soil was excavated and removed from the area of TP1 and TP4 and disposed off-site. Details of soil remediation is discussed in the remediation appendix.
- The test results of the second stage investigation indicate all the confirmatory soil samples meet the Table 1 Standards. The delineation program was conducted concurrently with confirmatory testing program during the second stage investigation.

- The result of the analysis of the duplicate samples is similar to the results for the
 original sample and relative percent differences for the detectable tested parameters are
 within acceptable range. However, the relative percent differences could not be
 calculated between the original and duplicate samples in the situation where the
 original and/or duplicate samples were below the reported laboratory detection limit.
- The result of the trip blank sample indicates that the sample was below the reported laboratory detection limit. There was no issue with the trip blank that was shipped with the batch of the groundwater samples submitted for analysis.

A review of the analytical results of the first and second stage investigation for the Phase Two ESA indicates the final test results meet the Table 1 Standards.

Based on the findings of the Phase Two ESA, it is our opinion that the property is suitable for the proposed development. No further environmental investigation is recommended at this time.

SOIL ENGINEERS LTD.

Laila Torabansari, M.Sc.

Samuel Lee, B.Sc.

Eleni Girma Beyene, P.Eng., QP_{ESA}

LT/SL/EGB:lt

REFERENCES

MOE. "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", May 1996, revised December 1996, as amended by O. Reg. 511/09.

MOE. "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", dated March 9, 2004, amended as of July 1, 2011, in accordance with O. Reg. 511/09 and O. Reg. 269/11.

MOE. "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (EPA), April 15, 2011.

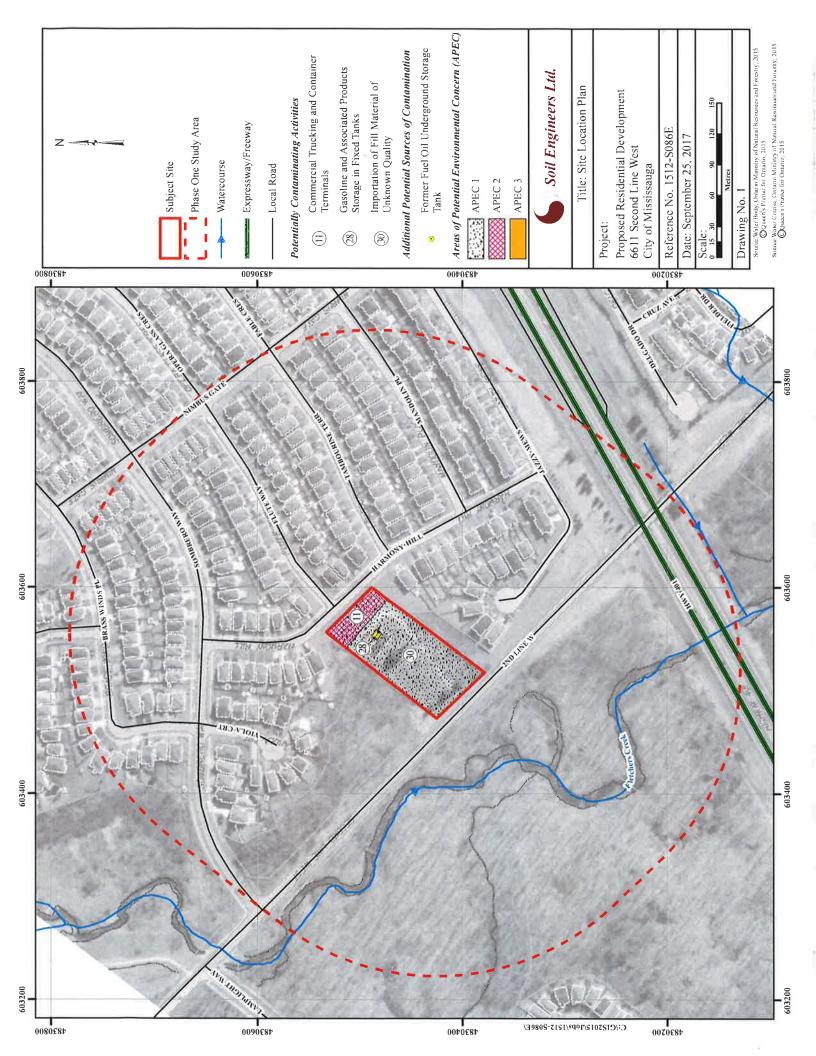
Soil Engineers Ltd.

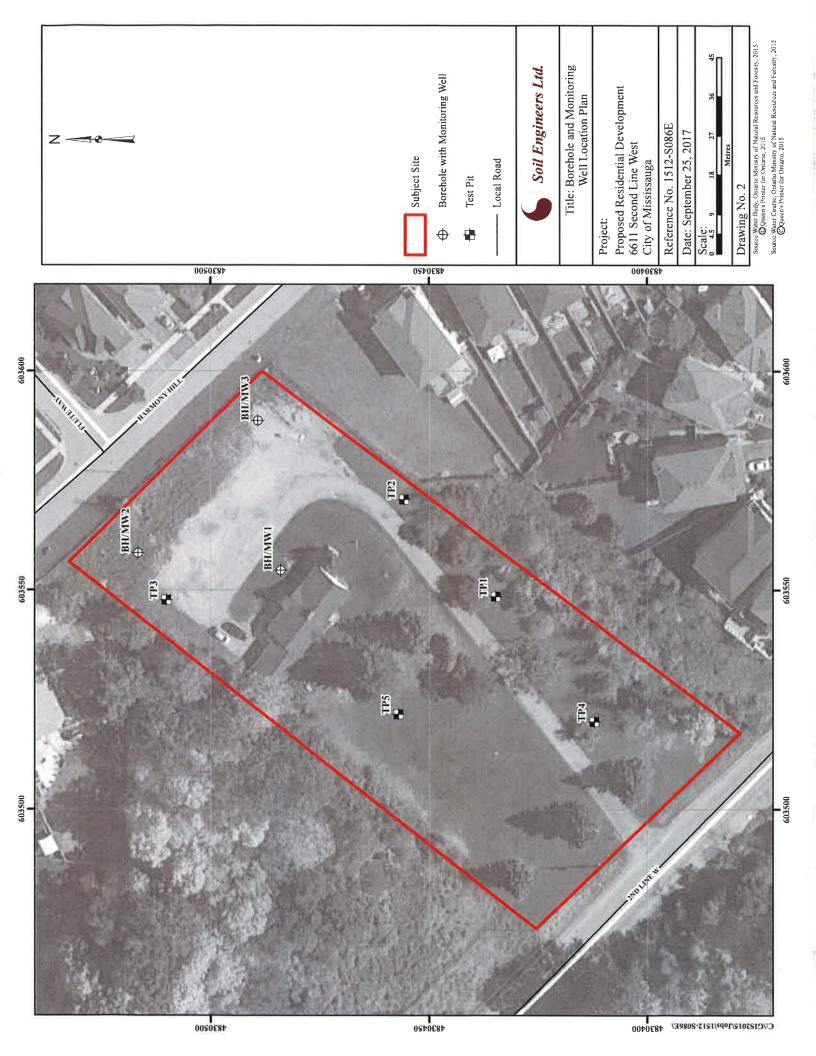
CONSULTING ENGINEERS

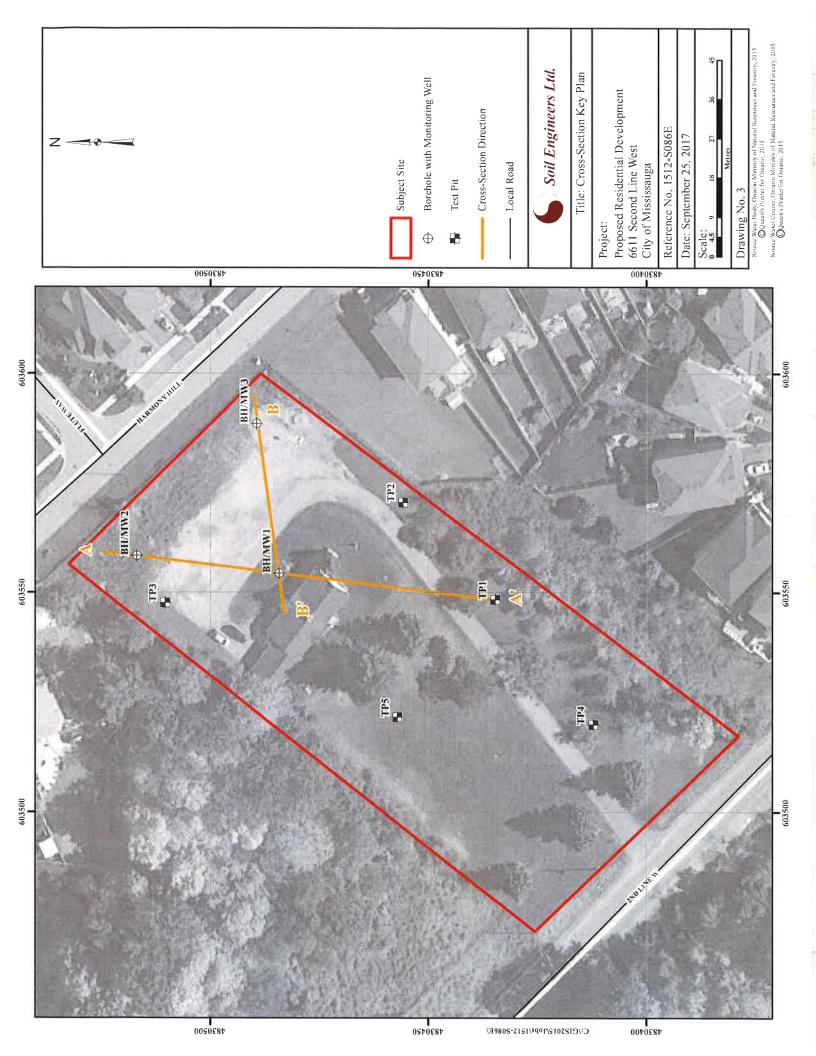
GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE

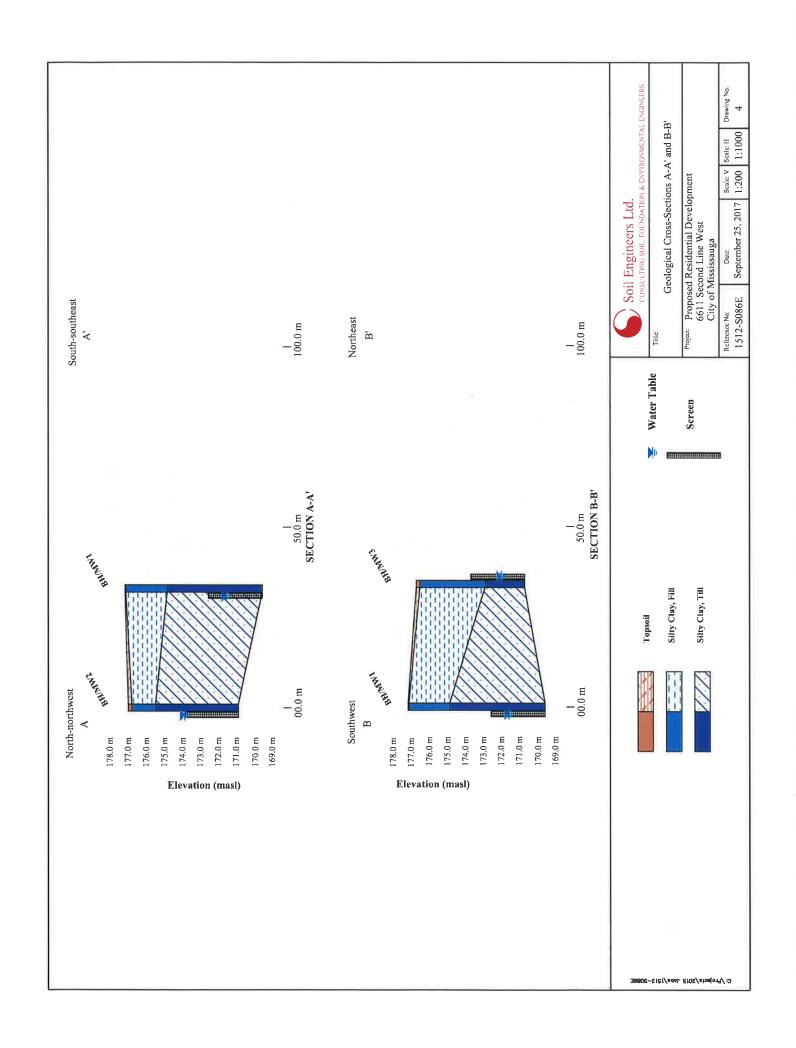
90 WEST BEAVER CREEK ROAD, SUITE #100, RICHMOND HILL, ONTARIO L4B 1E7 · TEL (416) 754-8515 · FAX (905) 881-8335

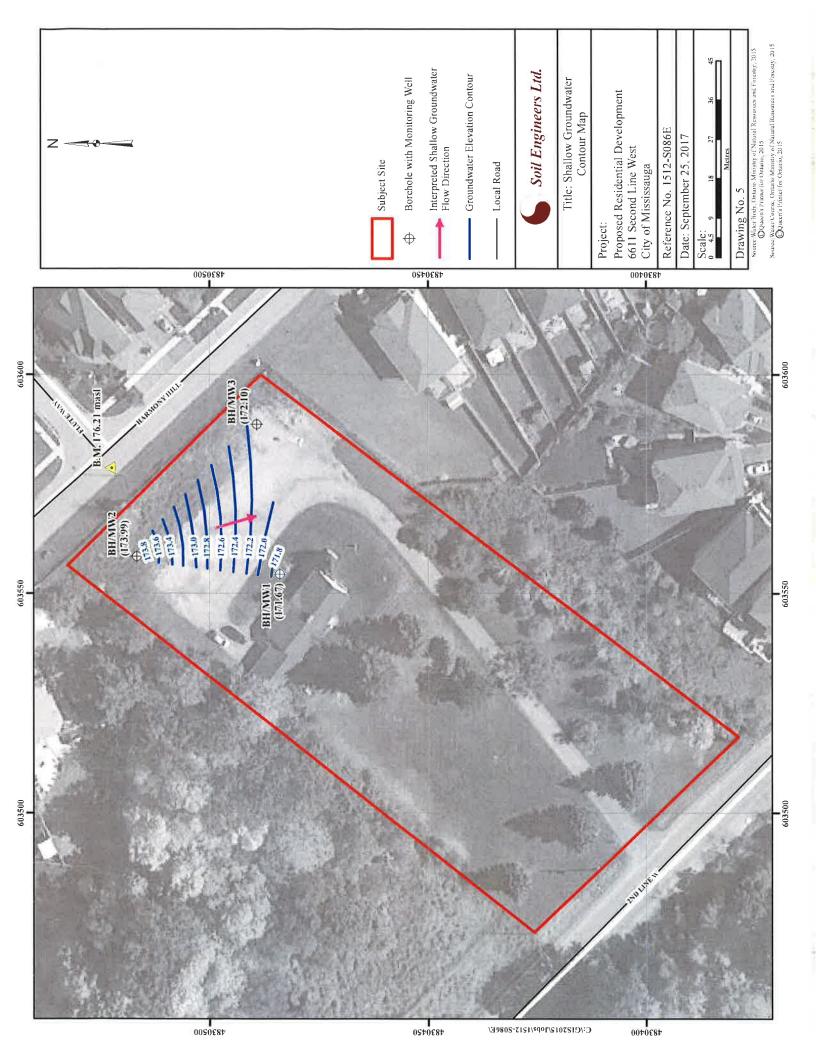
ţ

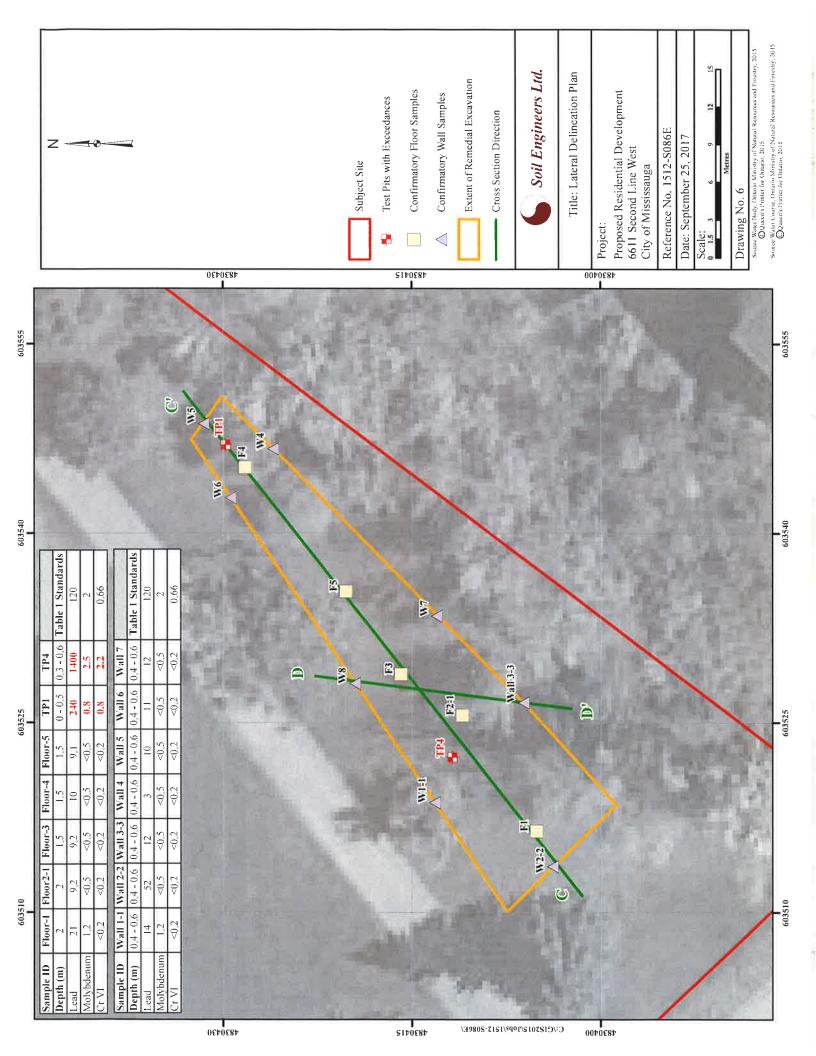

 BARRIE
 MISSISSAUGA
 OSHAWA
 NEWMARKET
 GRAVENHURST
 PETERBOROUGH
 HAMILTON

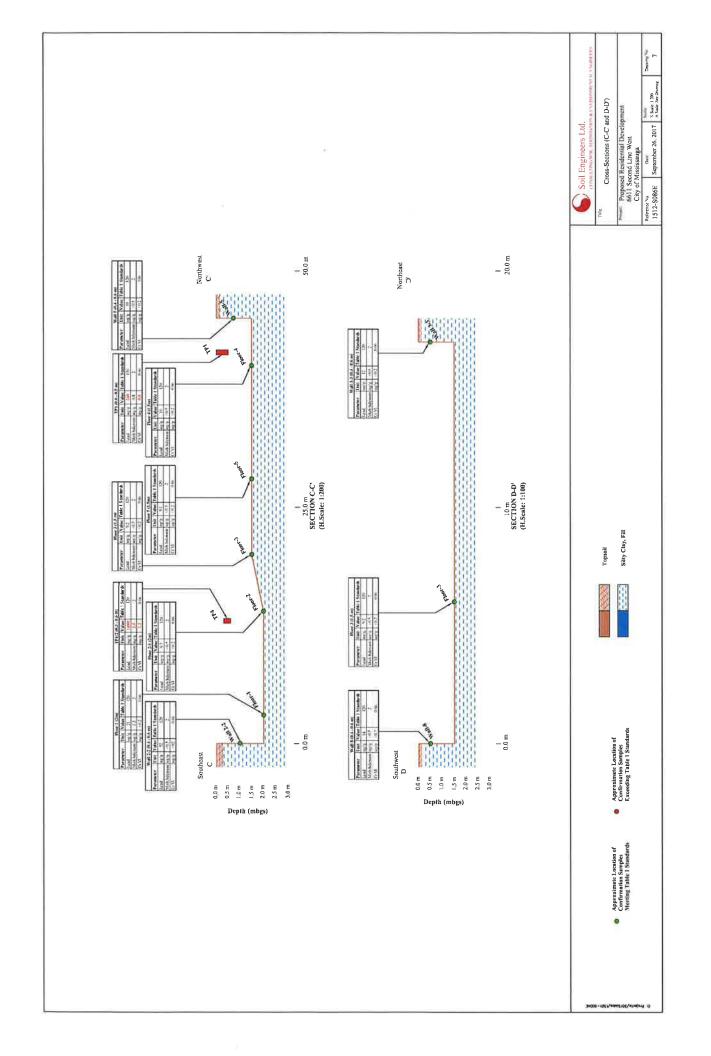

 TEL: (705) 721-7863
 TEL: (905) 542-7605
 TEL: (905) 440-2040
 TEL: (905) 853-0647
 TEL: (705) 684-4242
 TEL: (905) 440-2040
 TEL: (905) 777-7956

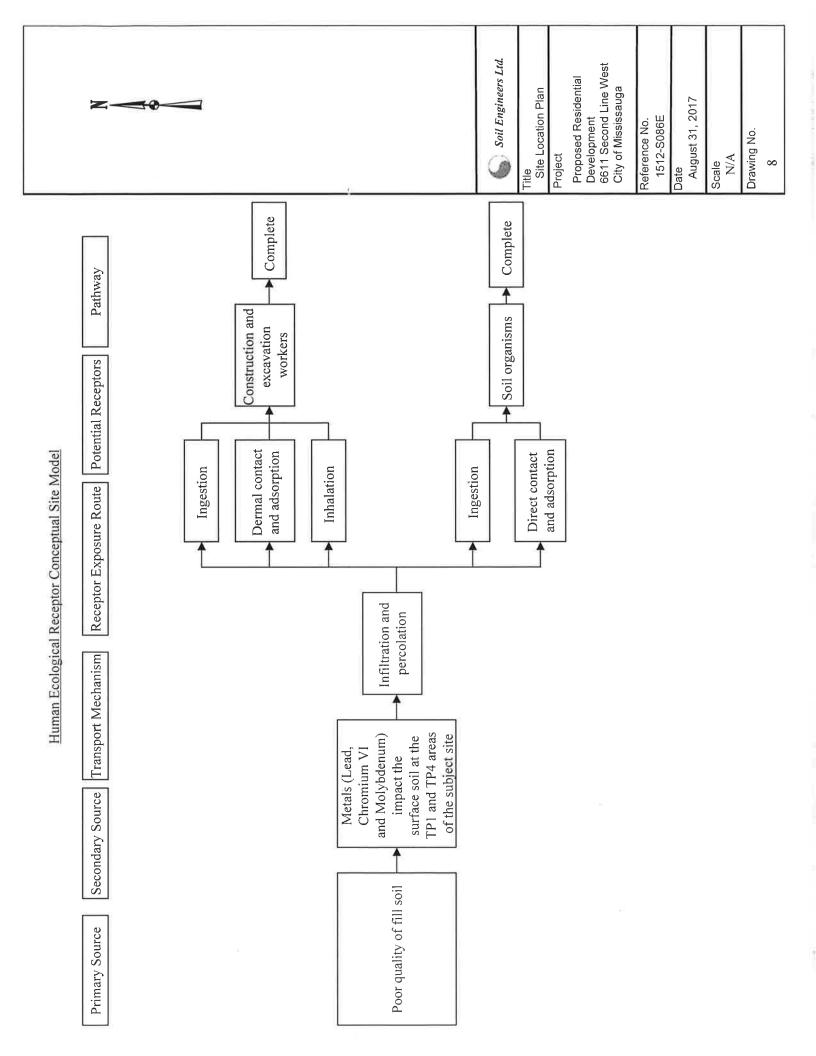

 FAX: (705) 721-7864
 FAX: (905) 542-2769
 FAX: (905) 725-1315
 FAX: (905) 881-8335
 FAX: (705) 684-8522
 FAX: (905) 725-1315
 FAX: (905) 542-2769

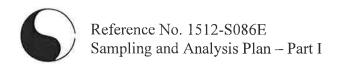

FIGURES


REFERENCE NO. 1512-S086E








90 WEST BEAVER CREEK ROAD, SUITE #100, RICHMOND HILL, ONTARIO L4B 1E7 · TEL (416) 754-8515 · FAX (905) 881-8335

MISSISSAUGA **OSHAWA** NEWMARKET GRAVENHURST PETERBOROUGH HAMILTON TEL: (705) 721-7863 TEL: (905) 542-7605 TEL: (905) 440-2040 TEL: (905) 853-0647 TEL: (905) 777-7956 TEL: (705) 684-4242 TEL: (905) 440-2040 FAX: (705) 721-7864 FAX: (905) 542-2769 FAX: (905) 725-1315 FAX: (905) 881-8335 FAX: (705) 684-8522 FAX: (905) 542-2769 FAX: (905) 725-1315

APPENDIX 'A'

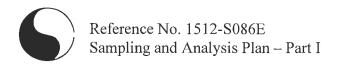
SAMPLING AND ANALYSIS PLANS

REFERENCE NO. 1512-S086E

This Sampling and Analysis Plan is prepared for the Phase Two Environmental Site Assessment (Phase Two ESA) as defined by Ontario Regulation (O. Reg.) 153/04, as amended. The subject property is located approximately 230 m to the north side of Highway 401 and east of Second Line West, in the City of Mississauga. (hereinafter referred to as "the subject site").

The Sampling and Analysis Plan is based on the findings of our Phase One Environmental Site Assessment (Phase One ESA, Reference No. 1512-S086E, dated January 27, 2016).

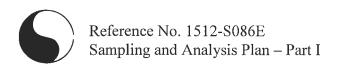
1) OBJECTIVE


The objective of the initial investigation of the Phase Two ESA was to determine the soil and groundwater quality at the subject site, as related to the following Areas of Potential Environmental Concerns (APECs) at the subject site:

APEC 1: Potential soil impact in the fill material of unknown quality at the subject site.

APEC 2: Potential soil and groundwater impact due to truck trailers parked at the subject site.

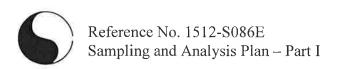
APEC 3: Potential soil and groundwater impact due to a former underground storage fuel tank located at the subject site.


ij,

2) **SCOPE OF WORK**

The scope of work for the initial investigation of the Phase Two ESA includes:

- Locate the underground and overhead utilities.
- Conduct three (3) boreholes to depths ranging from 3.0 mbgs to 7.6 mbgs and five (5) hand dug test pits to depths of 0.5 mbgs.
- Collect representative soil samples from the boreholes and test pits.
- Undertake field examination of the retrieved soil samples for visual and olfactory evidence of potential contamination.
- Undertake soil vapour measurements for the retrieved soil samples using a combustible gas detector (RKI Eagle) in methane elimination mode, calibrated with hexane and having a minimum detection level of 2 ppm (parts per million by volume).
- Install monitoring wells in three (3) boreholes for groundwater observation, sampling and testing.
- Conduct of groundwater monitoring and collect groundwater samples from monitoring wells for chemical testing.
- Carry out analytical testing program on selected soil samples and groundwater samples (including QA/QC samples) for one or more of the following parameters: petroleum hydrocarbons (PHCs), volatile organics compounds (VOCs), and/or metals and inorganics parameters.
- Review the analytical results for the tested soil and groundwater samples using applicable Site Condition Standards.
- Undertake further activities of Phase Two ESA such as soil and groundwater re-sampling and testings, delineation, remediation, confirmation testings etc. (if required), based on the analytical results of the submitted soil samples. If further Phase Two ESA activities other than re-sampling and testing are required, a second sampling and analysis plan is to be prepared.
- Prepare a Phase Two ESA report presenting the findings of the investigation.



3) RATIONALE FOR BOREHOLE / TEST PITS/ MONITORING WELL LOCATIONS

The rationale for the selection of the borehole, test pits and monitoring well locations is presented in the table below:

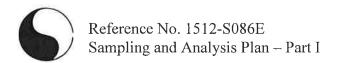
Areas of Potential Environmental Concerns (APECs)	Borehole / Monitoring Well ID.
APEC 1: Potential soil impact in the fill material	TP1 to TP5
of unknown quality at the subject site.	
APEC 2: Potential soil and groundwater impact	BH/MW2 and BH/MW3
due to truck trailers parked at the subject site.	
APEC 3: Potential soil and groundwater impact	BH/MW1
due to a former underground storage fuel tank	
located at the subject site.	

The location of proposed sampling locations for the Phase Two ESA is shown in Drawing No. 2.

4) SOIL AND GROIUNDWATER SAMPLES (INCLUDING QA/QC SAMPLES) ANALYTICAL SCHEDULE

A summary of soil and groundwater samples (including QA/QC samples) to be submitted is presented in the table below:

Soil Sample (QA/QC samples)

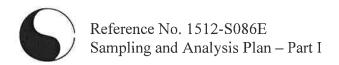

Borehole / Test Pit	Metals and Inorganics	PHC	VOC
BH 1	1	1	1
BH 2	1	1	1
BH 3	1	1	1
TP 1	1	:(-)	-
TP 2	1	2票:	-
TP 3	1	3 ¥ 3	=
TP 4	1	3 ± ;	-
TP 5	1	/¥	=
Field Duplicate	3	0 # 6	1

Groundwater Sample (QA/QC samples)

Monitoring Well	Metals and Inorganics	PHC	VOC
MW 1	1	1	1
MW 2	1	1	1
MW3	1	1	1
Field Duplicate	1	9≨8	1
Trip Blank		8 .	2

5) SOIL AND GROUNDWATER SAMPLING PROCEDURES

Soil Engineers Ltd.'s (SEL) Standard Operation Procedures (SOPs) will be followed throughout the field investigation (sampling, decontamination of equipment, observation and documentation) including the field QA/QC program. SEL SOPs are presented in Section 7 of this sampling and analysis plan.



6) <u>DATA QUALITY OBJECTIVES</u>

San:pling and decontamination procedures including QA/QC program should be carried out in accordance with:

- = SEL SOPs, as presented in Section 7.
- The "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", May 1996, revised December 1996, as amended by O. Reg. 511/09.

Laboratory analytical methods, protocols and procedures should be carried out in accordance with the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", dated March 9, 2004, amended as of July 1, 2011, in accordance with O. Reg. 511/09 and O. Reg. 269/11.

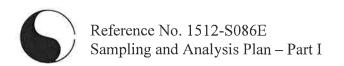
7) <u>STANDARD OPERATING PROCEDURES (SOPs)</u>

7.1) Borehole Drilling

The purpose of borehole drilling is to provide access to subsurface soils at specified locations and depths. Soil borings also allow for installation of groundwater monitoring wells.

7.1.1) Underground Utilities

Prior to drilling, the public utility service (One Call) and private utility services are contacted. The underground utility services are located and marked out in the field.


7.1.2) Drilling Methods

Direct Push Drilling (i.e. Geoprobe, Powerprobe, Pionjar, etc.)

The direct push drilling machine is a hydraulically powered hammer/ram sampling device. The unit is designed so that the weight of the vehicle provides the majority of downward force. The hydraulics, with the aid of a percussion hammer, push lengths of specially modified 54 mm (2.125 inch) outside diameter (OD), hardened steel rod into the ground. The rod is advanced to target sampling depth is reached. The steel rod has been specially modified for specific types of sample collection.

Flight-Auger Drilling

The flight-auger drilling machine is a hydraulically powered feed and retract system that provides 28,275 pounds (12,826 kg) of retract force and 18,650 pounds (8,460 kg) of down pressure. The 183 cm (72 inch) stroke, hydraulic vertical drive system has no chains or cables which can stretch. It is equipped with hollow-stem augers. It is extended to pre-determined sampling intervals using conventional drilling methods, at which time a decontaminated 51 mm

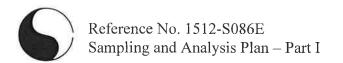
split-spoon sampler is extended ahead of the lead auger to collect a soil sample. The split-spoon sampler is then brought to surface and opened, exposing the soil core sample.

Hand Dug Test Pit

4

The hand-dug test pits were hand-dug using shovel. Prior to digging and sampling at each test pit location, the shovel was brushed clean using a solution of phosphate-free detergent and distilled water.

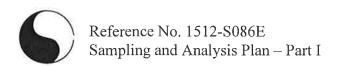
7.1.3) Occupational Health and Safety


Prior to drilling, the site is inspected to ensure that no potentially hazardous material is present near/around the drilling area. Safety procedures are reviewed and a safety check of the equipment is conducted including locating the emergency stop button on the drill rig, checking personal protective equipment (hard hats, safety shoes, eye/ear protection), locating the first aid kit and confirming the location of the nearest hospital, and verifying the standard procedure in case of injury.

7.1.4) Drilling Spoils

Excess soil generated during sampling and drilling procedure is stored at the site in metal barrels. If the analytical results indicate the soil is contaminated, a licensed disposal company is notified to collect the barrels of soil for proper disposal.

7.1.5) Borehole Abandonment


After drilling, logging and/or sampling, boreholes will be backfilled by the method described below:

- Bentonite is thoroughly mixed into the grout within the specified percentage range. The tremie grout is usually placed into the hole; however, for selected boreholes (e.g., shallow borings well above the water table) at certain sites, the grout may be allowed to free fall, taking care to ensure the grout does not bridge and form gaps or voids in the grout column.
- The volume of the borehole is calculated and compared to the grout volume used during grouting to aid in verifying that bridging did not occur.
- When using a tremie to place grout in the borehole, the bottom of the tremie is submerged into the grout column and withdrawn slowly as the hole fills with grout. If allowing the grout to free fall (and not using a tremie), the grout is poured slowly into the boring. The rise of the grout column is visually monitored or sounded with a weighted tape.
- If the method used to drill the boring utilized a drive casing, the casing is slowly extracted during grouting such that the bottom of the casing does not come above the top of the grout column.
- During the grouting process, no contaminating material (oil, grease, or fuels from gloves, pumps, hoses, et. al) is permitted to enter the grout mix and personnel wear personal protective equipment as specified in the Project Health and Safety Plan.
- Following grouting, barriers are placed over grouted boreholes as the grout is likely to settle in time, creating a physical hazard. Grouted boreholes typically require at least a second visit to 'top off' the hole.
- The surface hole condition should match the pre-drilling condition (asphalt, concrete, or smoothed flush with native surface), unless otherwise specified in the project work plans.

7.1.6) Subsurface Obstruction

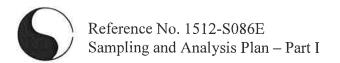
Where refusal to drilling occurs due to rock, foundation or underground services, the borehole is relocated within 2.0 m downstream from the original borehole location.

7.2) Soil Sampling

7.2.1) Introduction

Soil sampling is conducted in accordance with the "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario, May 1996" as revised December 1996 (MOE Guidance Manual) and as amended by O. Reg. 366/05, 66/08, 511/09, 245/10, 179/11, 269/11 and 333/13. The sampling procedures are described herein.

Drilling Rig Decontamination


Geoprobe

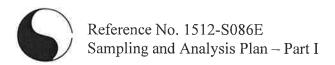
One-time use Shelby tube (thin-walled) samples are recovered from the boreholes in clear disposable PVC liners to prevent cross-contamination.

CME 55

Drilling equipment such as drill rigs, augers, drill pipes, drilling rods and split-spoons are decontaminated prior to initial use, between borehole locations and at the completion of drilling activities. The drilling equipment is manually scrubbed with a brush using a phosphate-free solution and thoroughly steam cleaned and/or power washed to remove any foreign material and potential contaminants.

In addition, the spilt-spoon sampler and any sub-sampling equipment is decontaminated prior to each usage. Various solutions are used for sampling equipment decontamination as described below:

- Phosphate-free soap solution (i.e., Alconox), tap water and distilled water are used for suspected petroleum hydrocarbon soil sampling.
- A reagent-grade methanol solution and distilled water are used for suspected VOCs soil sampling. The reinstate waste is collected.
- Reagent-grade 10% nitric acid solution and distilled water are used for suspected metals soil sampling. The reinstate waste will be collected.


7.2.2) Sample Logging and Field Screening

Samples are typically collected at 1.5 m intervals in the overburden. Tactile examination of the samples is made to classify the soil, and a log is recorded for each borehole detailing the physical characteristics of the soil including colour, soil type, structure, and any observed staining or odour. The organic vapour readings, the moisture content of the samples as determined in the laboratory, the groundwater and cave-in levels measured at the time of investigation, and the groundwater monitoring well construction details are given on the borehole logs.

7.2.3) Field Screening and Calibration Procedures

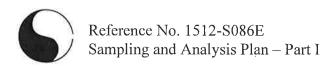
The soil samples are classified based on physical characteristics including colour, soil type, moisture, and visible observation of staining and/or odour. In addition, the organic vapour reading for each soil sample is determined using a gas detector. Based on the overall soil physical characteristics, representative soil sample are selected for chemical analysis.

The organic vapour readings are measured using a portable RKI Eagle gas detector, TYPE 101 (Serial Number: E091015) set to include all gases, and having a minimum detection of 2 ppm. Prior to measurement, the detector is calibrated using a Hexane 40% LEL gas. The allowable range of calibration is 38% to 42%.

7.2.4) Soil Sampling

The soil from the disposable sampler liner is handled using new disposable gloves in order to avoid the risk of cross-contamination between the samples. Sufficient amounts of the soil samples are placed into clean glass jars with Teflon lined lids for analyses for Polychlorinated Biphenyls, Polyaromatic Hydrocarbons, moisture content, medium to heavy PHCs, and Metals and Inorganics.

Small amounts of the soil samples are collected using a disposable 'T'-shaped Terracore sampler and stored in methanol or sodium bisulfate vials for light PHCs (CCME F1) and VOCs analysis, respectively; the remainder of the samples is placed into a sealable bag for vapour measurement and soil classification. The samples are stored in an insulated container with ice after sampling and during shipment to the laboratory.


The minimum requirements for the number, type and frequency of field quality control are given below:

i. Field Duplicates: At least 1 field duplicate sample is collected and submitted for laboratory analysis for every 10 soil samples that are collected to ensure the soil sampling technique is accurate.

7.3) Well Installation

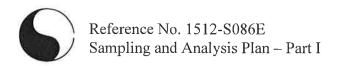
7.3.1) Introduction

The well installation procedures are described herein.

7.3.2) Screen and Riser Pipe

Monitoring wells are constructed from individually wrapped 38 or 50 mm inside diameter (ID) schedule 40 polyvinyl chloride (PVC) flush threaded casing equipped with O-rings. The screen consists of casing material which is factory slotted (slot width = 0.25 mm) to permit the entry of water into the well. The bottom of the screens are equipped with threaded end caps. The appropriate number of risers are coupled with the screen section(s) via threaded joints to construct the well. The top of the wells are tightly capped using a locking well cap, which prevents the infiltration of surface water and foreign material into the well and also provides security. A watertight, traffic-rated protective casing is installed over each monitoring well within a concrete pad extending approximately 0.5 mbgs. No PVC cements or other solvent based cements are used in the construction of the monitoring wells.

7.3.3) Well Materials Decontamination


Dedicated sampling equipment, such as submersible pumps, are decontaminated prior to installation inside monitoring wells.

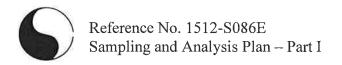
Where factory-cleaned, hermetically sealed materials are used, no decontamination is conducted.

Setting Screen, Riser Casings and Filter Materials

At total depth, the soil cuttings are removed through circulation or rapidly spinning the augers prior to constructing the well. The drill pipe and bit or centre bit boring is removed. The well construction materials are then installed inside the open borehole or through the centre of the drive casing or augers.

After the monitoring well assembly is lowered to the bottom of the borehole, the filter pack is added until its height is approximately two feet above the top of the screen, and placement is verified. The filter pack is then surged using a surge block or swab in order to settle the pack material and reduce the possibility of bridging.

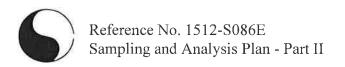
Setting Seals and Grouting


Once the top of the filter pack is verified to be in the correct position, a bentonite seal is placed above the filter pack. The seal is allowed to hydrate for at least one hour before proceeding with the grouting operation.

After hydration of the bentonite seal, grout is then pumped through a tremie pipe and filled from the top of the bentonite seal upward. The bottom of the tremie pipe should be maintained below the top of the grout to prevent free fall and bridging. When using drive casing or hollow-stem auger techniques, the drive casing/augers should be raised in incremental intervals, keeping the bottom of the drive casing/augers below the top of the grout. Grouting will cease when the grout level has risen to within approximately one to two feet of the ground surface, depending on the surface completion type (flush-mount versus above-ground). Grout levels are monitored to assure that grout taken into the formation is replaced by additional grout.

Capping the Wells

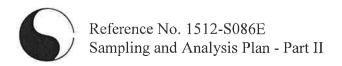
For above-ground completions, the protective steel casing will be centered on the well casing and inserted into the grouted annulus. Prior to installation, a 2-inch deep temporary spacer may be placed between the PVC well cap and the bottom of the protective casing cover to keep the protective casing from settling onto the well cap. A minimum of 24 hours after grouting should elapse before installation of the concrete pad and steel guard posts for above-ground completions, or street boxes or vaults for flush mount completions. For above-ground completions, a concrete pad, usually 3-foot by 3-foot by 4-inch thick, is constructed at ground surface around the protective steel casing. The concrete is sloped away from the protective casing to promote surface drainage from the well.


For flush-mount (or subgrade) completions, a street box or vault is set and cemented in position. The top of the street box or vault will be raised slightly above grade and the cement sloped to grade to promote surface drainage away from the well.

7.3.4) Documentation of Monitoring Well Configuration

The following information is recorded:

- Length of well screen
- Total depth of well boring
- Depth from ground surface to top of grout or bentonite plug in bottom of borehole (if present)
- Depth to base of well string
- Depth to top and bottom of well screen


This Sampling and Analysis Plan is prepared for a second stage investigation (soil remediation along with delineation and confirmation soil testings program) the Phase Two Environmental Site Assessment (Phase Two ESA) as defined by Ontario Regulation (O. Reg.) 153/04, as amended. The subject property is located approximately 230 m to the north side of Highway 401 and east of Second Line West, in the City of Mississauga (hereinafter referred to as "the subject site").

This Sampling and Analysis Plan is based on the findings of the first stage investigation of the Phase Two ESA, as part of the confirmation testing program after the removal of the impacted soil from the eastern and southern portions of the subject site. The findings of the preliminary investigations and the current investigation are incorporated into the Phase Two ESA report.

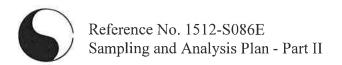
1) **OBJECTIVE**

The objective of this investigation of the Phase Two ESA was to further characterize the remaining soil in the vicinity of TP1 and TP4/2 located at the eastern and southern portions of subject site, upon the removal of the identified impacted soil. The impacted soil in the vicinity of TP1 and TP4/2 are connected.

Prior to the soil sampling at this stage of investigation, the impacted soil from the vicinity of TP1 and TP4/2 at the subject site was excavated and removed for off-site disposal, based on the findings of our first stage investigation of the Phase Two ESA.

2) **SCOPE OF WORK**

The scope of work for this investigation of the Phase Two ESA includes:


- Undertake field supervision and document the removal of the previously identified impacted surface soil from the northeastern portion of the subject site, based on the findings of our preliminary investigation.
- Conduct confirmation testing program which includes collection of soil samples and duplicate soil samples from the margin of the remedial excavation pit for analysis of metals.
- Review the analytical results of the submitted soil samples using the applicable Site Condition Standards.
- The findings of the initial investigation and the current investigation will be incorporated into the Phase Two ESA report.

3) RATIONALE FOR SAMPLING LOCATIONS

Soil samples and field duplicate samples are to be collected from the margin of the remedial excavation for confirmation testing program. The number of soil samples for metal analysis are to be determined in the field based on the final area.

4) SOIL SAMPLES (INCLUDING QA/QC SAMPLES) ANALYTICAL SCHEDULE

Confirmation soil samples (including QA/QC samples) are to be submitted for metals analysis.

5) SOIL SAMPLING PROCEDURES

Soil Engineers Ltd.'s (SEL) Standard Operation Procedures (SOPs) will be followed throughout the field investigation (sampling, decontamination of equipment, observation and documentation) including the field QA/QC program. SEL SOPs are presented in Section 7 of this sampling and analysis plan.

6) DATA QUALITY OBJECTIVES

Sampling and decontamination procedures including QA/QC program should be carried out in accordance with:

- SEL SOPs, as presented in Section 7.
- The "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", May 1996, revised December 1996, the Ministry of the Environment (MOE) Guidance Manual, as amended by O. Reg. 511/09.

Laboratory analytical methods, protocols and procedures should be carried out in accordance with the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", dated March 9, 2004, amended as of July 1, 2011, in accordance with O. Reg. 511/09 and O. Reg. 269/11.

100 NUGGET AVENUE, TORONTO, ONTARIO M1S 3A7 • TEL: (416) 754-8515 • FAX: (416) 754-8516

BARRIE	MISSISSAUGA	OSHAWA	NEWMARKET	GRAVENHURST	PETERBOROUGH	HAMILTON
TEL: (705) 721-7863	TEL: (905) 542-7605	TEL: (905) 440-2040	TEL: (905) 853-0647	TEL: (705) 684-4242	TEL: (905) 440-2040	TEL: (905) 777-7956
FAX: (705) 721-7864	FAX: (905) 542-2769	FAX: (905) 725-1315	FAX: (416) 754-8516	FAX: (705) 684-8522	FAX: (905) 725-1315	FAX: (905) 542-2769

TABLES

REFERENCE NO. 1512-S086E

ķ

Monitoring Well ID.

Bentonite Plug (m)

Ground Depth to Elevation of Field Observations

MAV1 177.27 5.6 171.67 None Blear Shear or Free Product MAV2 177.89 3.1 173.99 None Blear None MAV3 178.6 4.7 172.1 None Blear None		Elevation (masl)	Elevation Groundwat Groundwat (masi) er (masi)	Groundwat er (masl)		held	ried Coservations
177.27 5.6 171.67 None Blear N 177.09 3.1 173.99 None Blear N 176.8 4.7 172.1 None Blear N					Odour	Colour	Sheen or Free Product
177,09 3,1 173,99 None Bitear N 176,8 4,7 172,1 None Bitear N	MW/1	177.27	5.6	171.67	None	Blear	None
176,8 4,7 172,1 None Blear	Mw2	177.09	3,1	173.99	None	Blear	None
	MW3	176.8	4.7	172.1	None	Blear	None

Table III-A: Soil Data - Inorganic Parameters

Sample ID	BH1/3	BH2/2	BH3/5	TP1	TP2	TP3	TP4/2	TP5/2	TP5/3	Dup2	
Sample Depth (mbgs*)	1.5-2.0	0.8-1.5	3.0-3.8	0.0-0.5	0.0-0.5	0.0-0.5	0.3-0.6	0.3-0.9	0.9-1.5	0.0-0.5	Toblo 1 Chandardata
Sample Date	14-Jul-16	able I Stalldalus									
Laboratory ID	(B)	10	12	15	16	17	18	19	21	20	
Antimony	< 0.8	< 0.8	× 0.8	< 0.8	× 0.8	< 0.8	< 0.8	< 0.8	1	<0.8	13
rsenic	6.4	4.3	4.8	4 3	4.3	6.4	4.7	4.5	1	5.2	138
Sarium	7.8	44	45	65	69	72	63	62		76	220
Beryllium	0.75	0.47	9.0	0.48	0.5	0.19	0.22	0.68	1	0.2	2.5
Cadmium	0.11	60.0	60.0	0.46	0.37	0.23	1.1	0.12	***	0.26	1.2
Chromium	19	13	18	17	15	8.7	22	18	1	60	70
Shromium VI	< 0.2	< 0.2	< 0.2	0.8	0.5	< 0.2	2.2	< 0.2	1	<0.2	0.86
Sobalt	15	9.3	13	8.3	7.8	5.9	5.4	12	1	6.1	21
Copper	42	28	35	33	30	44	57	35	1	46	92
ead	9,3	9	7.5	240	66	18	1400	14	I	19	120
Aercury	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	1	<0.05	0.27
Aolybdenum	0.4	0.4	0.5	8.0	9.0	0.8	2.5	0.4	1	0.8	2
Vickel	31	19	26	18	17	12	16	25	1	13	82
Selenium	1.1	0.7	0.8	0.8	0.9	2.1	1.5	< 0.7	1	2.1	1.5
Silver	0.02	0.02	0.03	0.08	0.07	0.04	0.11	0.04	1	0.04	0.5
hallium	0.14	0.1	0.14	0.11	0.12	0.1	90.0	0.14	1	0.11	
/anadium	24	18	23	20	22	13	21	23	1	13	88
Zinc	59	40	53	110	100	120	280	58	1	150	290
Conductivity (ms/cm)	0.17	0.15	0.16	0.18	0.18	0.15	0.12	0.2	***	0.15	0.57
Sodium Adsorption Ratio	0.22	0.28	0.3	0.08	0.07	0.23	60.0	0,16	i	0.25	2.4
Syanide, Free	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.07	I	<0.05	0.051
Boron (Total)	8	7	10	ю	(Q)	S	ß	7	1	ISO.	36
Jranium	0.66	0.39	0.52	0.41	0.4	0.34	0.36	0.47	1	0.37	2.5
H. 2:1 CaCi2 Extraction	7.67	7.78	7.85	7.55	7.48	8.04	7.95	7.14	7.46	803	MA

metres below ground surface Table 1, Full Depth Background Site Condition Standards

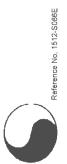


Table III-A: Soil Data - Inorganic Parameters

Sample ID	L TP-S'	Wall 1	Wall2	Wall3	Wall4	Wall5	Wall6	Wall7	Wall8	Wall1-1	
Sample Depth (mbgs*)	0.3-0.9	0.4 - 0.8	04-06	0.4-0.6	0.4-0.6	0.4-0.6	0.4-0.6	0.4-0.6	0.4 - 0.6	0.4 - 0.6	
Sample Date	19-Ma-17	2017	18-May-17	18-May-17	18-May-17	18-May-17	18-May-17	18-May-17		19-May-17 19-May-17	able Standards
Laboratory ID	16	EKL261	EKL262	EKL264	B7A3406	B7A3405	B7A3406	B7H8922	B7H8922	B7B2790	
Antimony	***	0.53	0.49	1	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	1.3
Arsenic		5.6	5	3,7	4,8	5.1	5.7	7.2	7.4	8 4	18
Barium	1	94	120	52	63	69	64	09	69	61	220
Beryllium	1	0.84	0.49	0.3	0.76	0.69	0.78	-	11	0.62	25
Sadmium	1	0.33	0.57	0.93	<0.10	<0.10	<0.10	<0.10	<0.10	0.16	12
Chromium	***	24	15	24	20	19	21	28	26	18	70
Chromium VI	***	<0.2	<0.2	1.1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.66
Cobalt	L	12	80	9	13	12	14	14	16	1	21
Copper		32	31	50	35	37	42	52	54	28	92
ead	1	130	180	1000	34	10	11	12	14	14	120
Jercury		0.1	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.27
Molybdenum		69 0	0 83	2.1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	22
lickel		26	17	18	25	25	26	31	33	20	82
Selenium	1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	1.5
Silver	ŧ	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.5
hallium	1	0.19	0.16	0.31	0.15	0.13	0 16	0.2	0.19	0.13	-
/anadium	ŧ	34	25	22	29	27	28	38	36	31	96
Inc	ŧ	110	110	250	62	56	90	73	70	61	290
Conductivity (ms/cm)	ľ		1	1		-	****	ŧ		I	0.57
Sodium Adsorption Ratio		3	-			377	1	1	1	1	2.4
Oyanide, Free	0.01	-	i	***	1	i	i	1	ı	I	0.051
Boron (Total)	-	8 2	5.4	5.2	8 4	89	ത	7.2	8 1	<5.0	36
Jranium	***	0.67	0.52	0.4	0.47	0.58	0.49	0.52	0.54	0.46	2.5
pH 2:1 CaCl2 Extraction	-	-	***	:	1	i	i	I	:		MA

* metres betting ground surface ** Table 1, Full Depth Background Sile Condition Standards

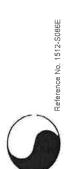


Table III-A: Soil Data - Inorganic Parameters

Sample ID	Wall 2-2	VVGIDA	Toble 1
Sample Depth (mbgs*)	0.4-0.6	0.4 - 0.6	ů
Sample Date	19-May-17	19-May-17	,
Laboratory ID	B7B2790	B7B2790	-
Antimony	<0.20	<0.20	1.3
Arsenic	6.4	8	18
Barium	99	80	220
Beryllium	99 0	0.79	2,5
Cadmium	0.14	0.12	1.2
Chromium	21	24	70
Shromium VI	<0.2	<0.2	99 0
Sobalt	12	13	21
opper	38	35	92
ead	52	12	120
Mercury	<0.050	<0.050	0.27
Molybdenum	<0.50	<0.50	2
Nickel	25	28	82
Selenium	<0.50	<0.50	1.5
Silver	<0.20	<0.20	0.5
halfium	0.15	0.15	1
/anadium	29	30	98
Zinc	79	70	290
Conductivity (ms/cm)	***	***	0.57
Sodium Adsorption Ratio		-	2,4
Cyanide, Free	-	-	0,051
Boron (Total)	7.8	7.6	36
Uranium	0.56	9:0	2.5
pH. 2:1 CaCi2 Extraction	***		NN

TABLES

Table III-B: Soil Data - Petroleum Hydrocarbon Compounds (PHCs)

The second secon				the state of the s
Sample ID	BH1/5	BH2/8	BH3/8	Toble 4
Depth (mbgs)*	3.0-3.5	53-58	5.5-6.0	C+Oppos
Sample Date	14-Jul-16	14-Jul-16	14-Jul-16	signing .
Laboratory ID	တ	11	13	
Benzene	< 0.02	< 0.02	< 0.02	0.02
Toluene	< 0.05	< 0.05	< 0.05	0.2
Ethylbenzene	< 0.05	< 0.05	< 0.05	0.05
Xylene Mixture	< 0.05	< 0.05	< 0.05	0.05
F1 (C6-C10)	< 10	< 10	< 10	25
F2 (C10-C16)	< 10	< 10	< 10	10
F3 (C16-C34)	< 50	< 50	77	240
F4 (C34-C50)	< 50	< 50	< 50	120

melres below ground surface
* Table 1, Full Depth Background Site Condition Standards

Depth (mbgs*) Sample Date Laboratory ID Acetone Benzene Bronnddrohoromethane	BH1/5	BH2/8	BH3/9	Dup 1	
Sample Date Laboratory ID Acelone Benzene Benzene	3.0-3.5	5.3-5.8	5.5-6.0	5.5-6.0	Table 1
Laboratory ID Acetone Benzene Benzene	14-Jul-16	14-Jul-16	14-Jul-16	14-Jul-16	Standards
Acetone Benzene Bromodichloromethane	6	11	13	14	
Benzene Bromodichloromethane	< 0.5	< 0.5	< 0.5	< 0.5	0,5
Bromodichloromethane	< 0.05	< 0.05	< 0.05	< 0.05	0.02
Dromoform	< 0.05	< 0.05	< 0.05	< 0.05	0.05
	< 0.05	< 0.05	< 0.05	< 0.05	0.05
Bromomethane	< 0.05	< 0.05	< 0.05	< 0.05	0.05
Carbon Tetrachloride	< 0.05	< 0.05	< 0.05	< 0.05	0.05
Chlorobenzene	< 0.05	< 0.05	< 0.05	< 0.05	0.05
Chloroform	< 0.05	< 0.05	< 0.05	< 0.05	0.05
Dibromochloromethane	< 0.05	< 0.05	< 0.05	< 0.05	0.05
2-Dichlorobenzene	< 0.05	< 0.05	< 0.05	< 0.05	0 05
3-Dichlorobenzene	< 0.05	< 0.05	< 0.05	< 0.05	0.05
1 4-Dichlorobenzene		< 0.05	< 0.05	< 0.05	0.05
1.1-Dichloroethane	< 0.05	< 0.05	< 0.05	< 0.05	0.05
2-Dichloroethane	< 0.05	< 0.05	< 0.05	< 0.05	0.05
1-Dichloroethylene	< 0.05	< 0.05	< 0.05	< 0.05	0.05
Cis-1 2-Dichloroethylene	< 0 03	< 0.03	< 0.03	< 0.03	0.05
Trans-1, 2-Dichloroethylene	< 0.03	< 0.03	< 0.03	< 0.03	0 05
1.2-Dichloropropane	< 0.05	< 0.05	< 0.05	< 0.05	0 05
Ethylbenzene	< 0.05	< 0.05	< 0.05	< 0.05	0 05
Ethylene Dibromide	<0.05	<0.05	<0.05	<0.05	0.05
Wethyl Ethyl Ketone	< 0.5	<05	< 0.5	< 0.5	0.5
Methylene Chloride	< 0.5	< 0.5	< 0.5	< 0.5	0 05
Methyl Isobutyl Ketone	< 0.05	< 0.05	< 0.05	< 0.05	0.5
Methyl-t-Butyl Ether	< 0.05	< 0.05	< 0.05	< 0.05	0.05
Styrene	< 0.05	< 0.05	< 0.05	< 0.05	0.05
1.1.1.2-Tetrachloroethane	< 0.05	< 0.05	< 0.05	< 0.05	0.05
1,1,2,2-Tetrachloroethane	< 0.05	< 0.05	< 0.05	< 0.05	0.05
Toluene	< 0.05	< 0.05	< 0.05	< 0.05	0.2
Tetrachloroethylene	< 0.05	< 0.05	< 0.05	< 0.05	0.05
1.1.1-Trichloroethane	< 0.05	< 0.05	< 0.05	< 0.05	0.05
1.1.2-Trichloroethane		< 0.05	< 0.05	< 0.05	0.05
Trichloroethylene	< 0.05	< 0.05	< 0.05	< 0.05	0.05
Vinyi Chloride	<0.02	<0.02	<0.02	<0.02	0 02
Xylenes Mixtures	<0.02	<0.02	<0.02	<0.02	0.05
Dichlorodifluoromethane	< 0.05	< 0.05	< 0.05	< 0.05	0.05
Hexane(n)	< 0.05	< 0.05	< 0.05	< 0.05	0.05
Trichlorofluoromethane	< 0.05	< 0.05	< 0.05	< 0.05	0.25
1.3-Dichloropropene (cis + trans)	< 0.05	< 0.05	< 0.05	< 0.05	0.05

 1,3-Dichloropropene (as + trans)
 < 0,05</td>
 < 0,05</td>
 < 0,05</td>

 * metres below ground surface
 * Table 1, Full Depth Background Site Condition Standards

Table IV: Groundwater Data - Inorganic Parameters

Sample ID	MW1	NW2	MW3	MW1	MW2	MW3	MW1	MWZ	MW3	MW3	
Sample Depth/Screen Depth (m)	4,6-7.6	3.1-6.1	3.0-6.0	4,6-7.8	3.1-6.1	3.0-6.0	46-7.6	3,1-6,1	3.0-6.0	3.0-6.0	Toklo 4 Otendard
Sample Date	22-Jul-16	22-Jul-16	22-Jul-16	14-Aug-16	14-Aug-16	14-Aug-16	29-May-17	29-May-17	Ci	lw	rable i Standards
Laboratory ID	7	80	0	7	80	o	ELP260	ELP261	ELP262	FAU207	
ntimony	< 0.02	< 0.02	< 0.02	0.75	0.13	0,3	<0.50	<0.50	0.54	0.54	1.5
Arsenic	7,7	1.5	18.9	3.3	0.4	13.1	<1.0	<1.0	8.6	4.7	13
Barium	548	68.8	95.8	127	29.1	47.4	65	21	40	38	610
Beryllium	0.074	0.084	1.27	< 0.007	< 0.007	< 0.007	<0.50	<0.50	<0.50	<0.50	0.5
Boron	276	116	565	286	134	565	140	84	610	620	1700
Sadmium	0.376	0.068	0.256	0.02	0.015	0.012	<0.10	<0.10	<0.10	<0.10	0.5
Chromium	0.4	2.69	16.7	0.27	0.43	0.21	<5.0	<5.0	<5.0	<5.0	=
hromium VI	< 0.2	03	< 02	1	1	< 0.2	i	i	-	1	25
Cobalt	12.7	3.92	19.5	2.97	0.636	0.925	<0.50	<0.50	0.58	0.64	90
Copper	1.74	5.78	166	0.4	0.84	0.34	1.3	0,1>	<1.0	4.5	w
ead	0.05	3.17	28.2	0.07	0.02	0.04	<0.50	<0.50	<0.50	<0.50	0.1
(ercury	0.41	< 0.01	< 0.01	<0.1		< 0.01	<0.1	٠	34		0 1
folybdenum	4.56	2 06	2 29	6 16	3.11	4 36	3.2	41	4.7	5.2	23
Vickel	123	46	26.3	26	2	9.0	15	1.2	<1.0	<1.0	14
Sodium	34600	25600	34500	1		-		1	1	1	490000
Selenium	0.81	0,43	0.27	2.35	0.57	0.07	<2.0	<2.0	<2.0	<2.0	ĸ
Silver	< 0 002	0 003	0.008	< 0.002	< 0.002	< 0 002	<0.10	<0.10	<0.10	<0.10	0.3
hallium	0.047	0.052	0.091	0.014	0.021	0.013	<0.050	<0.050	<0.050	<0.050	0.5
/anadium	0.54	1.88	28.4	0.29	0 14	0 17	<0.50	<0.50	<0.50	<0.50	3.9
inc	S	12	89	<2	4	2	<5.0	<5.0	<5.0	<5.0	160
Syanide, Free	< 2	< 2	< 2	****	i	<2	1	ı	ı	I	ما
Chloride (mg/L)	8900	42000	13000	1	1	0066	ı	1	ı	ı	790000
raniim	8 48	6.47	254	5.08	12 0	C	0 4	C		2.0	c

** Table 1, Full Depth Background Site Condition Standards

Table IV: Groundwater Data - Inorganic Parameters

Sample ID	MW1	DUP-W1	
Sample Depth/Screen Depth (m)	4.6-7.6	30-60	Table 1
Sample Date	31-Aug-17	29-May-17	Standards
Laboratory ID	FAU206	ELP263	
Antimony		<0.50	10
Arsenic		9.2	13
Barıum	*	41	610
Beryllium		<0.50	0.5
Boran		620	1700
Cadmium		<0.10	0.5
Chromium		<5.0	11
Chromium VI	2.50	,	25
Cobalt		0.67	38
Copper		<1.0	ro.
ead		<0.50	1.9
Aercury	<0.1		0.1
Molybdenum	(ē	4.7	23
vickel	*	<1.0	14
Sodium	(*)	ř	490000
Selenium	•	<2.0	ιΩ
Silver	٠	<0.10	03
hallium	3.5	<0.050	0.5
/anadium	Ä	<0.50	8
Zinc	•	<5.0	160
Cyanide, Free	î	ř	2
Chloride (mg/L)	,		790000
Transism.		1.4	σ

Table IV: Groundwater Data - Petroleum Parameters

Sample ID	MW1	MW2	MW2	MW2	MW3	
Sample Depth/Screen Depth (m)	4.6-7.6	3 1-6 1	3.1-6.1	3.1-6.1	3 0-6 0	Table 1
Sample Date	28-Jul-16	22-Jul-16	14-Aug-16	29-May-17	22-Jul-16	Standards
Laboratory ID	2	ထ	ω	80	o	
Benzene	1	< 0.5	< 0.5	< 0.5	< 0.5	0.5
Taluene	****	< 0.5	< 0.5	< 0.5	< 0.5	0.8
thylbenzene	-	< 0.5	< 0.5	< 0.5	< 0.5	0.5
Kylene Mixture	1	< 0.5	< 0.5	< 0.5	< 0.5	72
F1 (C6-C10)	<25	< 25	<25	<25	< 25	420
F2 (C10-C16)	<100		<100	<100	< 100	150
F3 (C16-C34)	<200	1410	<200	<200	236	900
F4 (C34-C50)	<200	< 200	<200	<200	< 200	200

Table IV: Groundwater Data - Volatile Organic Compounds (VOCs)

Sample ID	MW2	MW3	BLANK	:
Sample Depth/Screen Depth (m)	31-61	30-60		Stondards
Sample Date	29-May-17	17-Aug-17	17-Aug-17	Standards
Laboratory ID	80	o		
Acetone	× 30	< 30	< 30	2700
Jenzene	< 0.5	< 0.5	< 0.5	0.5
Bromodichloromethane	< 0.5	< 0.5	< 0.5	2
Bromoform	< 0.5	< 0.5	< 0.5	5
Bromomethane	< 0.5	< 0.5	< 0.5	0.89
Carbon Tetrachloride	<0.2	<0.2	<0.2	0.2
Chlorobenzene	<0.5	<0.5	<0.5	0.5
Chloroform	<0.5	<0.5	<0.5	71
Dibromochloromethane	2	2	Çi	2
.2-Dichlorobenzene	< 0.5	< 0.5	< 0.5	0.5
.3-Dichlorobenzene	< 0.5	< 0.5	< 0.5	0.5
4-Dichlorobenzene	< 0.5	< 0.5	< 0.5	0.5
1-Dichloroethane	< 0.5	< 0.5	< 0.5	0.5
.2-Dichloroethane	< 0.5	< 0.5	< 0.5	0.5
1-Dichloroethylene	< 0.5	< 0.5	< 0.5	0.5
Cis-1, 2-Dichloroethylene	< 0.5	< 0.5	< 0.5	1.6
rans-1,2-Dichloroethylene	< 0.5	< 0.5	<05	1.6
2-Dichloropropane	< 0.5	< 0.5	< 0.5	0.5
Ethylbenzene	< 0.5	< 0.5	< 0.5	0.5
Ethylene Dibromide	< 0.2	< 0.2	< 0.2	0.2
Methyl Ethyl Ketone	< 20	< 20	< 20	400
Methylene Chloride	<0.5	<0.5	<0.5	ŀΩ
Methyl Isobutyl Ketone	<20	<20	<20	640
Methyl-t-Butyl Ether	<2.0	<20	<2.0	15
Styrene	<0.50	<0.50	<0.50	0.5
.1,1,2-Tetrachloroethane	<0.50	<0.50	<0.50	11
.1.2.2-Tetrachloroethane	<0.50	<0.50	<0.50	0.5
oluene	<0.5	<0.5	<0.5	0.8
etrachloroethylene	<0.5	<0.5	<0.5	0.5
1 1-Trichloroethane	<0.5	<0.5	<0.5	0.5
1.2-Trichloroethane	<0.5	<0.5	<0.5	0.5
richloroethylene	<0.5	<0.5	<0.5	0.5
/Inyl Chloride	<0.2	<0.2	<0.2	0.5
Xylene Mixture	<0.5	<0.5	<0.5	72
Dichlorodifluoromethane	<20	<2.0	<2.0	590
Hexane(n)	o [>	<10	<1.0	D.
Inchlorofluoromethane	<5.0	<5.0	<5.0	150
	1			

* Table 1, Full Depth Background Site Condition Standards

Table IV: Groundwater Data - Volatile Organic Compounds (VOCs)(Rounds Second and Third)

Sample ID Sample Deoth/Screen Deoth (m)	48-78	46.76	4 6-7 6	BLANK	Table 1
	14-Aug-16		10-Aug-17	10-Aug-17	Standards
Laboratory ID	1	7	EXZ716	EXZ717	
Acetone	52	22	<10	<10	2700
Benzene	<0.50	<0.20	<0.20	<0.20	0.5
Bromodichloromethane	<0.50	<0.50	<0.50	<0.50	2
Bromoform	<0.50	<1.0	<1.0	<1.0	2
Bromomethane	<0.5	<0.50	<0.50	<0.50	0.89
Carbon Tetrachlonde	<2.0	<0.20	<0.20	<0.20	0.2
Chlorobenzene	<0.50	<0.20	<0.20	<0.20	0.5
Chloroform	<0.50	<0.20	<0.20	<0.20	2
Dibromochloromethane	<2.0	<0.50	<0.50	<0.50	2
2-Dichlorobenzene	< 0.50	<0.50	<0.50	<0.50	0.5
1,3-Dichlorobenzene	< 0.50	<0.50	<0.50	<0.50	0.5
4-Dichlorobenzene	< 0.50	<0.50	<0.50	<0.50	0.5
1-Dichloroethane	< 0.50	<0.20	<0.20	<0.20	0.5
2-Dichloroethane	< 0.50	<0.50	<0.50	<0.50	0.5
,1-Dichloroethytene	< 0.50	<0.20	<0.20	<0.20	0.5
Dis-1, 2-Dichloroethylene	<0.50	<0.50	<0.50	<0.50	16
rans-1.2-Dichloroethylene	<0.50	<0.50	<0.50	<0.50	1.6
2-Dichloropropane	<0.50	<0.20	<0.20	<0.20	0.5
Ethylbenzene	<0.20	<0.20	<0.20	<0.20	0.5
Ethylene Dibromide	<0.20	<0.20	<0.20	<0.20	0.2
Methyl Ethyl Ketone	<10	<10	<10	<10	400
Methylene Chloride	<2.0	<20	<20	<2.0	w
Methyl Isobutyl Ketone	<5.0	<50	<50	<5.0	640
Methyl-t-Butyl Ether	<0.50	<0.50	<0.50	<0.50	15
Styrene	<0.50	<0.50	<0.50	<0.50	0.5
1.1.2-Tetrachloroethane	<0.50	<0.50	<0.50	<0.50	-
1.2.2-Tetrachloroethane	<0.50	<0.50	<0.50	<0.50	0.5
oluene	<0.50	<0.20	<0.20	<0.20	0.8
Tetrachloroethylene	<0.50	<0.20	<0.20	<0.20	0.5
1.1-Trichloroethane	<0.50	<0.20	<0.20	<0.20	0.5
1.2-Trichloroethane	<0.50	<0.50	<0.50	<0.50	0.5
Inchlaroethylene	<0.50	<0.20	<0.20	<0.20	0.5
Jinyi Chloride	20	<0.20	<0.20	<0.20	0.5
Kylene Mixture	<0.50	0.29	<0.20	<0.20	72
Dichlorodifluoromethane	<0.50	<1.0	<1.0	<1.0	590
Hexane(n)	V	<1.0	<1.0	<1.0	'n
Trichlorofluoromethane	¢2	<0.50	<0.50	<0.50	150
Fanority and anonomorphisms - Francis	-05 US	<0.50	<0.50	<0.50	14.0

Table V – Maximum Concentration (Soil) Summary of Inorganics

		Max.Conc.		Sample
Parameter	Unit		Sample ID	Depth
Antimony	6/6n	<0.2	I	
Arsenic	5/6n	7.4	Wall8	0.4-0.6
Barium	ō/ōn	ထ	Wall3-3	0.4-0.6
Beryllium	na/a	1.1	Wall8	0.4-06
Cadmium	6/60	<0.1	1	1
Chromium	ng/gn	28	Wall7	0.4+0.6
Chromium VI	D/DIN	<0.2	1	1
Cobalt	g/gn	16	Wali8	0.4 - 0.6
Copper	ua/a	54	Wall8	0.4-0.6
Lead	p/pn	52	Wall2-2	0.4-06
Wercury	p/pn	<0.05	1	
Molybdenum	6/6n	<0.5		1
Nickel	חמ/מ	33	Wail8	0.4-0.6
Selenium	ng/g	<0.5	1	i
Silver	6/6n	<0.2		1
Thallium	na/a	0.2	Wall7	0.4-0.6
Vanadium	חמ/ס	38	Wall7	0.4-0.6
Zinc	na/a	79	wall2-2	0.4-0.6
Conductivity	mS/cm	ŧ	-	1
Sodium Adsorption Ratio		***	-	1
Cyanide, Free	ng/a	**	İ	***
Boron (Total)	na/a	9.3	Wall6	0.4 - 0.6
Uranium	6/Bn	-	-	

*Max. Conc. - Maximum Concentration

Table V – Maximum Concentration (Soil) Summary of CCME F1-F4

		Wax.Collc.		Sampling
Parameter	Cuit	•	Sample ID	Sample ID Depth (m)
F1 (C6-C10)	J/gri	<10		i
F2 (C10-C16)	na/L	<10	ï	i
F3 (C16-C34)	na/L	22	BH3/6	5.5-6.0
F4 (C34-C50)	hg/L	<50	i	i

*Max. Conc. - Maximum Concentration

Table V – Maximum Concentration (Soil) Summary of VOCs

		MAX.COTIC.		Sampling
Parameter	Unit	•	Sample ID	Depth (m)
Acetone	6/61	<0.05	*	i
Benzene	p/gu	<0.05	1	1
Bromodichloromethane	p/gri	<0.05		-
Bromoform	p/pri	<0.05	i	1
Bromomethane	Б/БП	<0.05	1	
Carbon Tetrachloride	Б/БП	<0.05		1
Chlorobenzene	na/a	<0.05	1	2000
Chlaroform	D/61	<0.05	****	1
Dibromochloromethane	B/Bri	<0.05	1	-
1.2-Dichlorobenzene	p/gri	<0.05	4	1
1.3-Dichlorobenzene	g/gri	<0.05	-	-
1,4-Dichlorobenzene	p/pri	<0.05	1	1
1,1-Dichloroethane	המ/מ	<0.05	1	ŧ
1.2-Dichloroethane	חמ/ם	<0.05	1	1
1.1-Dichloroethylene	מס/ם	<0.05	i	ı
Cis-1.2-Dichloroethylene	מאַמו	<0.03	ı	1
Trans-1.2-Dichloroethylene	מ/מת	<0.03	:	**
1,2-Dichloropropane	na/a	<0.05	-	
Ethylbenzene.	5/6rl	<0.05		i
Ethylene Dibromide	מ/מת	<0.05	***	1
Methyl Ethyl Ketone	ō/pri	<0.5	-	***
Methylene Chloride	p/pri	<0.5	***	1
Methyl Isobutyl Ketone	B/6ri	<0.05	*	4
Methyl-t-Butyl Ether	D/Bri	<0.05	ı	i
Styrene	מ/מת	<0.05		ł
Vinyi Chloride	מאַסל	<0.02		i
Xylenes Mixtures	מ/מת	<0.02	-	177
Dichlorodifluoromethane	па/а	<0.05	:	1
Hexane(n)	ng/a	<0.05	***	1
Trichlorofluoromethane	6/6/	<0.05	200	i
1 3. Dichloropropaga (cis ± trans)	0/011	2000		

^{*}Max. Conc. - Maximum Concentration

Table VI – Maximum Concentration (Groundwater) Summary of CCME F1-F4

		Max.Conc.		Sampling
Parameter	Unit	•	Sample ID	Sample ID Depth (m)
(C6-C10)	Da/L	<25	i	i
(C10-C16)	ng/L	<100		1
(C16-C34)	J/ort	<200	i	-
(C34-C50)	µg/L	<200	***	***

Table VI – Maximum Concentration (Groundwater) Summary of Inorganics

		Max.Conc.		Sampling
Parameter	Unit		Sample ID	Depth (m)
Antimony	ng/L	-	MW3	3.0-6.0
Arsenic	J/6n	8.6	MW3	3.0-6.0
Barium	ng/L	548	MW1	46-76
Beryllium	na/L	<0.5	****	***
Boron	ng/L	565	MW3	3.0-6.0
Cadmium	Ug/L	0.37	MW1	4.6-7.6
Chromium	Ug/L	0.43	MW2	3.1-6.1
Chromium VI	ng/L	0.3	MW2	3.1-6.1
Cobalt	ngy	0.92	MW3	3.0-6.0
Copper	UQ/L	4.5	MW3	3.0-6.0
Lead	ng/L	0.07	MW1	4.6-7.6
Wercury	ng/L	<0.1	MW1	4.6-7.6
Molybdenum	T/Gn	6.16	MW1	4.6-7.6
Nickei	J/Bn	12.3	MW1	46-76
Sodium	ng/L	34600	MW1	4.6-7.6
Selenium	T/an	2.35	MW1	4.6-7.6
Silver	LIDO/L	0.008	MW3	3.0-6.0
Thallium	1/bn	60.0	MW3	3.0-6.0
Vanadium	T/Bn	0.29	MW1	4.6-7.6
Zinc	na/L	68	MW3	3.0-6.0
Chloride	J/on	42000	MW2	3.1-6.1
Cyanide, Free	T/Bn	<2	MW3	3.0-6.0
Uranium	ug/L	8 45	INVIN	4.6-7.6

"Max Conc. - Maximum Concentration

TABLES

Table VI – Maximum Concentration (Groundwater)

Parameter	Unit	Wax.conc	Sample ID	Sampling Depth (m)
Acetone	J/dri	52	MW1	
Benzene	1/6ri	<0.5	1	ı
Bromodichioromethane	ng/L	<0.5	-	
Bromoform	µg/L	<0.5		355
Bromomethane	J/an	<0.5	1	1
Carbon Tetrachloride	ng/L	<0.5		
Chlorobenzene	ng/L	<0.5		-
Chloroform	Da/L	<0.5	1	1
Dibromochloromethane	J/6n	<0.5	1	1
1,2-Dichlorobenzene	J/Bri	<0.5	ł	1
1 3-Dichlorobenzene	J/Bri	<0.5	****	***
1.4-Dichlorobenzene	J/Br/	<0.5	i	i
1,1-Dichloroethane	LIG/L	<0.5	ı	1
2-Dichloroethane	ug/L	<0.5	1	1
1.1-Dichloroethylene	J/Br/	<0.5	****	-
Dis-1.2-Dichloroethylene	J/Br/L	<0.5	1	
Гrans-1,2-Dichloroethylene	µg/L	<0.5	***	1
1.2-Dichloropropane	J/Br/	<0.5		
Sthylbenzene	ug/L	<0.5	1	-
Invlene Dibromide	J/B/L	<0.2	*	***
Methyl Ethyl Ketone	J/Bri	<20		
Methylene Chloride	J/B/L	2	***	
Methyl Isobutyl Ketone	ng/L	\$		1
Methyl-t-Butyl Ether	J/ort	<0.5	ı	i
Styrene	ng/L	<0.5	ı	1
i.1.1.2-Tetrachloroethane	μg/L	<0.5	1	1
1.1.2.2-Tetrachloroethane	ng/L	<0.5	***	
Foluene	J/Gri	<0.5	****	
l'etrachloroethylene	hgy	<0.5	-	2000
1,1,1-Trichloroethane	J/dr	<0.5	****	***
1.1.2-Trichloroethane	na/L	<0.5	***	***
Trichloroethylene	J/on	<0.5	1	1
Vinyi Chloride	µg/L	<5		***
Total Xylenes	ng/L	0.29	MW1	3.1-6.1
Dichlorodifluoromethane	ng/L	<2	-	300
Hexane(n)	J/pri	>	****	****
Inchlorofluoromethane	LIG/L	<5	1	i
Canny + 200 ononononality 1	110/1	505	****	

*Max. Conc. - Maximum Concentration

90 WEST BEAVER CREEK ROAD, SUITE #100, RICHMOND HILL, ONTARIO L4B 1E7 · TEL (416) 754-8515 · FAX (905) 881-8335

MISSISSAUGA OSHAWA NEWMARKET GRAVENHURST PETERBOROUGH **HAMILTON** BARRIE TEL: (705) 721-7863 TEL: (905) 542-7605 TEL: (905) 440-2040 TEL: (905) 853-0647 TEL: (905) 777-7956 TEL: (705) 684-4242 TEL: (905) 440-2040 FAX: (705) 721-7864 FAX: (905) 542-2769 FAX: (905) 725-1315 FAX: (905) 881-8335 FAX: (705) 684-8522 FAX: (905) 725-1315 FAX: (905) 542-2769

APPENDIX 'B'

BORHEOLE LOGS

REFERENCE NO. 1512-S086E

LOG OF BOREHOLE NO.: 1

FIGURE NO.:

1

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Split-Spoon

PROJECT LOCATION: 6611 Second Line West

City of Mississauga

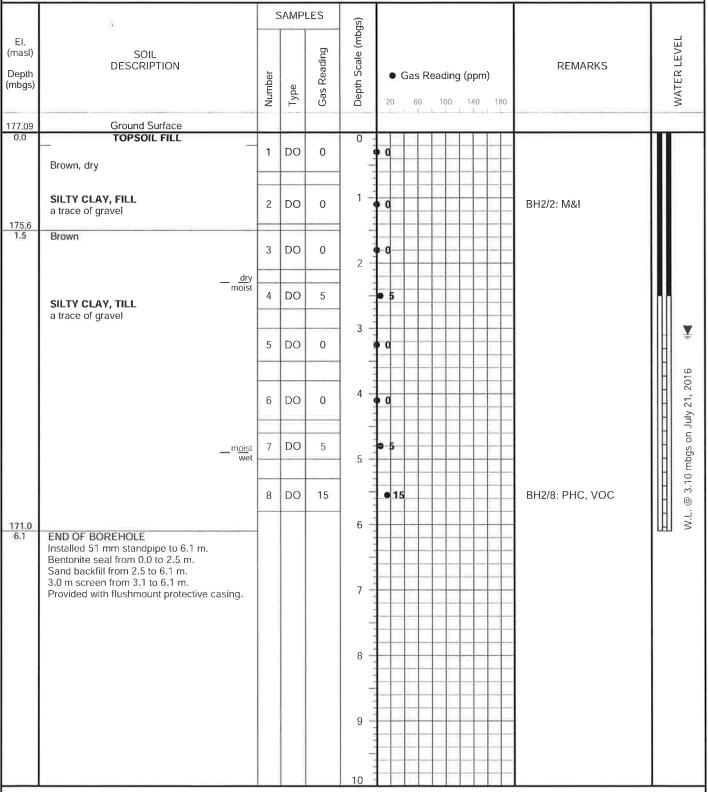
DRILLING DATE: July 14, 2016

			SAN	/IPLES	gs)	
EI. (masl) Depth (mbgs)	SOIL DESCRIPTION	- N	Typo	Gas Reading	Depth Scale (mbgs)	• Gas Reading (ppm) 20 60 100 140 180
177,27	Ground Surface 5 cm TOPSOIL					
0,0	Brown		D	0 5	0 -	• 5
	SILTY CLAY, FILL a trace of gravel	dry	2 D	0 20	1 -	• 20
175.0		dry moist	3 D	0 15	2 -	● 15 BH1/3: M&I
175.0 2.3			4 D	0 10		- ● 10
			5 D	O 20	3 -	●20 BH1/5: PHC, VOC
	SILTY CLAY, TILL	brown grey (6 D	0 10	4 -	•10
			7 D	0 10	5 -	• 10
	-	wet {	3 D	0 10		•10
					6 -	11. 2016
		į,) D	O 15	7 -	● 15
169.7 7.6	END OF BOREHOLE Installed 51 mm standpipe to 7.6 m. Bentonite seal from 0.0 to 4.0 m. Sand backfill from 4.0 to 7.6 m. 3.0 m screen from 4.6 to 7.6 m. Provided with flushmount protective casin	ng.			8 -	• 15
					10	

LOG OF BOREHOLE NO.: 2

FIGURE NO .:

2


PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Split-Spoon

PROJECT LOCATION: 6611 Second Line West

City of Mississauga

DRILLING DATE: July 14, 2016

LOG OF BOREHOLE NO.: 3

FIGURE NO.:

3

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Split-Spoon

PROJECT LOCATION: 6611 Second Line West

City of Mississauga

DRILLING DATE: July 14, 2016

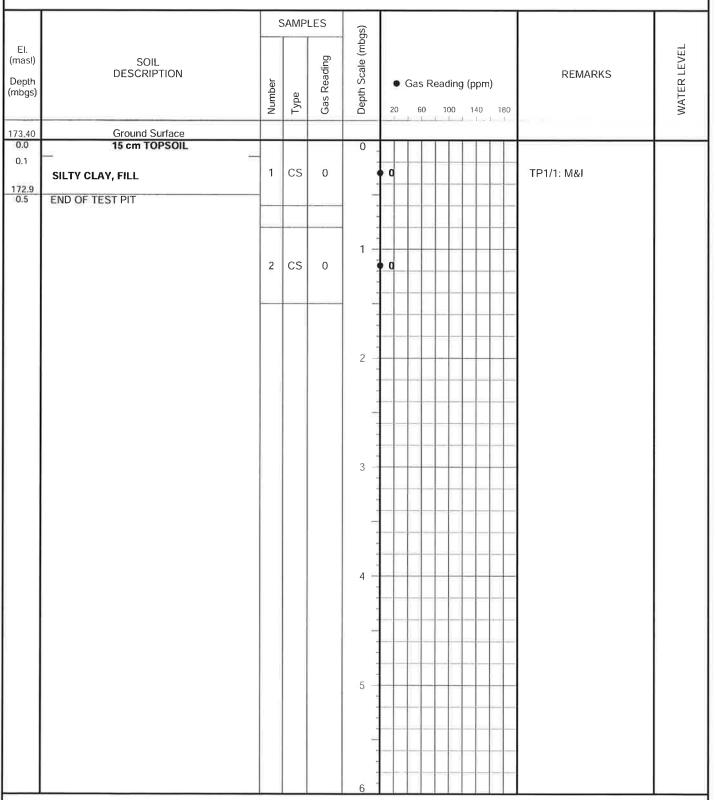
			SAMP	LES	gs)	
EI. (masl) Depth (mbgs)	SOIL DESCRIPTION	Number	Туре	Gas Reading	Depth Scale (mbgs)	• Gas Reading (ppm) 20 60 100 140 180 REMARKS REMARKS
176.80	Ground Surface					
0.0	20 cm TOPSOIL Brown	1	DO	5	0	5 5
	SILTY CLAY, FILL	2	DO	15	1 -	• 15
	a trace of gravel dry moist	3	DO	15	2 -	e 15
		4	DO	15		●15
		5	DO	20	3 -	●20 BH3/5: M&I
173.0 3.8	Grey, moist	6	DO	20	4 -	- • 20
	SILTY CLAY, TILL a trace of gravel	7	DO	20	5 -	• 20
		9	DO	20		◆20 BH3/9: PHC, VOC
6.0	END OF BOREHOLE Installed 51 mm standpipe to 6.0 m. Bentonite seal from 0.0 to 2.4 m. Sand backfill from 2.4 to 3.0 m. 3 m screen from 3.0 to 6.0 m. Provided with monument protective casing.				8 -	W.L. @ 4.70 mbgs on J.

LOG OF BOREHOLE NO.: TP1

FIGURE NO.:

4

PROJECT DESCRIPTION: Proposed Residential Development


METHOD OF BORING: Hand-Dug

PROJECT LOCATION:

6611 Second Line West

City of Mississauga

DRILLING DATE: July 14, 2016

LOG OF BOREHOLE NO.: TP2

FIGURE NO.:

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Hand-Dug

PROJECT LOCATION: 6611 Second Line West

City of Mississauga

DRILLING DATE: July 14, 2016

			SAMP	LES	(St								14	
EI. (masl) Depth mbgs)	SOIL DESCRIPTION	Number	Туре	Gas Reading	Depth Scale (mbgs)	20	Gas					180	REMARKS	WATER LEVEL
75.90	Ground Surface 5 cm TOPSOIL													
0.0	- 5 cm TOPSOIL	-			0 _	П		П		П				
175.5	SILTY CLAY, FILL	1	CS	0		0							TP2/1: M&I	
75.5 0.5	END OF TEST PIT				-									
					-									
					1 -								1	
										İ	П			
							+							
							+	H		+	Н		-	
									+	H	Н		-	
					2 -	\vdash	+	+	+	+	H	+		
						1	-	-	+	-		-		
					:	\sqcup		_	4	-			-	
					-				_					
										1				
					3 -									
					-									
									Ť					
						H			t	T				
					4 -	\vdash	+	+	+	+	Н		-	
							-	-	+	-		-	-	
						H	-		+	H	H	-		
					-	\sqcup	_	-	-	-		_		
						\sqcup	_		4	-			-	
					5 -	Ц	1							
					-					Г				
											П			
					6					-	П			

LOG OF BOREHOLE NO.: TP3

FIGURE NO.:

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Hand-Dug

PROJECT LOCATION: 6611 Second Line West

City of Mississauga

DRILLING DATE: July 14, 2016

- 1			SAMP	LES	gs)		J.					-		
EI; (masI) Depth mbgs)	SOIL DESCRIPTION	Number	Type	Gas Reading	Depth Scale (mbgs)	• (20	Gas F	Read				10	REMARKS	WATER LEVEL
76,30 0.0	Ground Surface 10 cm TOPSOIL													
0.0	10 cm TOPSOIL				0									
0,1	SILTY CLAY, FILL	1	cs	0	-	• a								
175.8 0.5	END OF TEST PIT			0	-									
0,0	END OF TEST TH													
					1 -									
								-		-		-		
). E									
					2 -			-		-		_		
								1			Н	-		
					, -									
					3 -		+	+	+	-	H	-		
					15							-	}	
					=									
					-			H		4		_		
					4 -		+			+		-		
					(6									
					5									
*					15									
	4				5 -	H				+	H	\dashv		
					12									
					22									
					(c) 13-									

LOG OF BOREHOLE NO.: TP4

FIGURE NO.:

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Hand-Dug

PROJECT LOCATION: 6611 Second Line West

City of Mississauga

DRILLING DATE: July 14, 2016

		5	SAMPI	LES) (sf	
EI, masl) Depth mbgs)	SOIL DESCRIPTION	Number	Туре	Gas Reading	Depth Scale (mbgs)	● Gas Reading (ppm) 20 60 100 140 180
69.70 0.0	Ground Surface					
0.0	30 cm TOPSOIL FILL	1	cs	0	0	• a
		2	cs	0		TP4/2: M&I
	SILTY CLAY, FILL	3	cs	0	1 -	• c
		4	CS	0	2 -	• a
					-	-
		5	CS	0		
166.7 3.0	END OF TEST PIT				3 -	
					4 -	
					5 -	
						1
					=	

LOG OF BOREHOLE NO.: TP5

FIGURE NO.:

8

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Hand-Dug

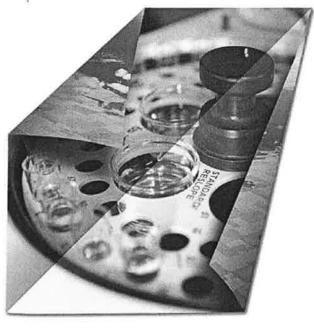
PROJECT LOCATION: 6611 Second Line West

City of Mississauga

DRILLING DATE: July 14, 2016

	ш		SAMP	LES	(sb	Γ								
EI. (masl) Depth (mbgs)	SOIL DESCRIPTION	Number	Type	Gas Reading	Depth Scale (mbgs)	1	•		ding			30	REMARKS	WATER LEVEL
171.80	Ground Surface													
171.80 0,0	30 cm TOPSOIL FILL	1	cs	0	0	• (1							
	_	2	cs	0	-	•) -							
	SILTY CLAY, FILL with topsoil and wood inclusions	3	cs	0	1 -		-							
		4	cs	0	2 -	• () -							
		5	CS	0		• (_			
		6	cs	0	3 -									
168 ₋ 1 3.7	END OF TEST PIT													
					4 -	1								
						1								
					5 -									
					6					_				

100 NUGGET AVENUE, TORONTO, ONTARIO M1S 3A7 • TEL: (416) 754-8515 • FAX: (416) 754-8516


BARRIE MISSISSAUGA **OSHAWA** NEWMARKET GRAVENHURST PETERBOROUGH HAMILTON TEL: (705) 721-7863 TEL: (905) 542-7605 TEL: (905) 440-2040 TEL: (905) 853-0647 TEL: (705) 684-4242 TEL: (905) 440-2040 TEL: (905) 777-7956 FAX: (705) 721-7864 FAX: (905) 542-2769 FAX: (905) 725-1315 FAX: (416) 754-8516 FAX: (705) 684-8522 FAX: (905) 725-1315 FAX: (905) 542-2769

APPENDIX 'C'

CERTIFICATE OF ANALYSIS (SOIL SAMPLES)

REFERENCE NO. 1512-S086E

SGS

FINAL REPORT

CA14367-JUL16 R

1512-5086E

Prepared for

FINAL REPORT

First Page

CLIENT DETAILS	S	LABORATORY DETAI	ILS
Client	Soil Engineers Ltd.	Project Specialist	Deanna Edwards, B.Sc, C.Chem
		Laboratory	SGS Canada Inc.
Address	100 Nugget Ave	Address	185 Concession St., Lakefield ON, K0L 2H0
	Scarborough, ON		
	M1S 3A7.		
Contact	Laila Torabansari	Telephone	705-652-2000
Telephone	416-754-8515	Facsimile	705-652-6365
Facsimile	416-754-8516	Email	deanna.edwards@sgs.com
Email	laila@soilengineersltd.com; ebeyene@soilengineersltd.com	SGS Reference	CA14367-JUL16
Project	1512-5086E	Received	07/15/2016
Order Number		Approved	07/21/2016
Samples	Soil (12)	Report Number	CA14367-JUL16 R
S-		Date Reported	07/21/2016

COMMENTS

This Report/Certificate cancels and supersedes the Report No.: CA14367-JUL16 R0 issued by: SGS Canada Inc.

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met,

nC6 and nC10 response factors within 30% of response factor for toluene; YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average; YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

Temperature of samples upon receipt 16,5 degrees C Cooling initiated by placing in working refrigerator Cooling agent added for transport Custody seal not present

SIGNATORIES

Deanna Edwards, B.Sc, C.Chem

searra Edwardo

SGS Canada Inc., 185 Concession St., Lakefield ON, K0L 2H0

t 705-652-2000 f 705-652-6365

CA14367-JUL16 R

FINAL REPORT

TABLE OF CONTENTS

First Page.	1
Index	2
Results	3-14
Exceedance Summary	15
Holding Time Summary	16-19
QC Summary	20-26
Legend	27
Approved	29 20

FINAL REPORT

RESULTS

	Sample	Number	8	9	10	11	
	Samp	le Name	BH1/3	BH1/5	BH2/2	BH2/8	
	Samp	le Matrix	Soil	Soil	Soil	Soil	
		npled By	Vincent	Vincent	Vincent	Vincent	
	Sam	ple Date	14/07/2016	14/07/2016	14/07/2016	14/07/2016	
Parameter	Units	RL	Result	Result	Result	Result	L1
					REG153 / SOIL / COA	RSE - TABLE 1 - Resid	dential/Parkland - UNDE
nione by IC							
lethod: EPA300/MA300-lons1.3 Intern	al ref.: ME-CA-(ENV)	IC-LAK-AN					
Chloride	µg/g	0.4	20		8.7	1227	
onductivity							
lethod: EPA 601 <mark>0/SM 2510 Internal</mark> re	f.: ME-CA-[ENV]EWI	-LAK-AN-	006				
Conductivity	mS/cm	0,002	0,17	1444	0.15		0,57
lyanide by SFA							
lethod: SM 4500 Internal ref.: ME-CA-	ENVISFA-LAK-AN-0	105					
Free Cyanide	μg/g	0.05	< 0.05	54440)	< 0.05	242	0.051
exavalent Chromium by IC							
***************************************	#	rnevenger .					
Sattone See 14 Kase 1860 Lintary at	ret.: ME-CA-IENVIIC	-LAK-AN-U	108				
lethod: EPA218.6/EPA3060A Internal							
Chromium VI	µg/g	0.2 E-LAK-AN	< 0.2	122	< 0,2	2116	0.66
Chromium VI	µg/g			(860)	< 0.2	(242)	0.66
Chromium VI lercury by CVAAS lethod: EPA 7471A/EPA 245 Internal r	µg/g ef.: ME- CA- [ENV]SP	E-LAK-AN	-004	w		2440	
Chromium VI lercury by CVAAS lethod: EPA 7471A/EPA 245 Internal r	µg/g ef.: ME- CA- [ENV]SP	E-LAK-AN	-004	1 -		2440	
Chromium VI lercury by CVAAS lethod: EPA 7471A/EPA 245 Internal n Mercury letais in Soil - Aqua-regia/ICP-MS	µg/g ef.: ME-CA-[ENV] SP µg/g	E-LAK- A N 0.05	-004 < 0.05	1		eec.	
Chromium VI fercury by CVAAS fethod: EPA 7471A/EPA 245 Internal r Mercury fetals in Soil - Aqua-regia/ICP-MS fethod: EPA 3050/EPA 200.8 Internal r	µg/g ef.: ME-CA-[ENV]SP µg/g ref.: ME-CA-[ENV]SF	E-LAK-AN 0,05 PE-LAK-AN	-004 < 0.05 I-005	- 1	< 0.05	7446	0,27
Chromium VI Iercury by CVAAS lethod: EPA 7471A/EPA 245 Internal n Mercury letais in Soil - Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Internal n Barium	µg/g ef.: ME-CA-[ENV]SP µg/g ref.: ME-CA-[ENV]SF µg/g	E-LAK-AN 0.05 PE-LAK-AN 0.01	-004 < 0,05 -005 78		< 0.05 44	***	0.27 220
Chromium VI fercury by CVAAS fethod: EPA 7471A/EFA 245 Internal n Mercury fetals in Soil - Aqua-regia/ICP-MS fethod: EPA 3050/EPA 200.8 Internal n Barium Beryllium	µg/g ef.: ME-CA-[ENV]SP µg/g ref.: ME-CA-[ENV]SF µg/g µg/g	E-LAK-AN 0,05 PE-LAK-AN 0,01 0,02	-004 < 0.05 -005 78 0.75	- 1	< 0.05 44 0.47	***	0.27 220 2.5
Chromium VI fercury by CVAAS fethod: EPA 7471A/EPA 245 Internal r Mercury fetals in Soil - Aqua-regia/ICP-MS fethod: EPA 3050/EPA 200.8 Internal r Barium Beryllium Boron	µg/g ef.: ME-CA-[ENV]SP µg/g ref.: ME-CA-[ENV]SF µg/g µg/g	E-LAK-AN 0,05 PE-LAK-AN 0,01 0,02 1	-004 < 0.05 I-005 78 0.75 8		< 0.05 44 0.47 7	344	0.27 220 2.5 36
Chromium VI fercury by CVAAS tethod: EPA 7471A/EFA 245 Internal r Mercury letals in Soil - Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Internal r Barium Beryllium Boron Cadmium	µg/g ef.: ME-CA-[ENV]SP µg/g ref.: ME-CA-[ENV]SF µg/g µg/g µg/g	E-LAK-AN 0,05 PE-LAK-AN 0,01 0,02 1 0,02	-004 < 0.05 -005 -78 -0.75 -8 -0.11		< 0.05 44 0.47 7 0.09	***	220 2.5 36 1.2
Chromium VI fercury by CVAAS fethod: EPA 7471A/EPA 245 Internal r Mercury fetals in Soil - Aqua-regia/ICP-MS fethod: EPA 3050/EPA 200.8 Internal r Barium Beryllium Boron	µg/g ef.: ME-CA-[ENV]SP µg/g ref.: ME-CA-[ENV]SF µg/g µg/g	E-LAK-AN 0.05 PE-LAK-AN 0.01 0.02 1 0.02 0.5	-004 < 0.05 -005 78 0.75 8 0.11		< 0.05 44 0.47 7 0.09 13	344	220 2.5 36 1.2
Chromium VI fercury by CVAAS tethod: EPA 7471A/EFA 245 Internal r Mercury letals in Soil - Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Internal r Barium Beryllium Boron Cadmium	µg/g ef.: ME-CA-[ENV]SP µg/g ref.: ME-CA-[ENV]SP µg/g µg/g µg/g µg/g µg/g	E-LAK-AN 0.05 PE-LAK-AN 0.01 0.02 1 0.02 0.5 0.01	-004 < 0,05 I-005 78 0.75 8 0.11 19		< 0.05 44 0.47 7 0.09 13 9.3	344 246 247	220 2.5 36 1.2 70 21
Chromium VI lercury by CVAAS lethod: EPA 7471A/EPA 245 Internal n Mercury letals in Soil - Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Internal n Barium Beryllium Boron Cadmium Chromium	µg/g ef.: ME-CA-[ENV]SP µg/g ref.: ME-CA-[ENV]SF µg/g µg/g µg/g µg/g	E-LAK-AN 0.05 PE-LAK-AN 0.01 0.02 1 0.02 0.5	-004 < 0.05 -005 78 0.75 8 0.11		< 0.05 44 0.47 7 0.09 13		220 2.5 36 1.2
Chromium VI Jercury by CVAAS Jethod: EPA 7471A/EFA 245 Internal interna	µg/g ef.: ME-CA-[ENV]SP µg/g ref.: ME-CA-[ENV]SP µg/g µg/g µg/g µg/g µg/g	E-LAK-AN 0.05 PE-LAK-AN 0.01 0.02 1 0.02 0.5 0.01	-004 < 0,05 I-005 78 0.75 8 0.11 19		< 0.05 44 0.47 7 0.09 13 9.3	200 200 200 200 200 200	220 2.5 36 1.2 70 21
Chromium VI fercury by CVAAS fethod; EPA 7471A/EFA 245 Internal r Mercury fetals in Soil - Aqua-regla/ICP-MS fethod; EPA 3050/EPA 200.8 Internal r Barium Beryllium Boron Cadmium Chromium Cobalt Copper	µg/g ef.: ME-CA-[ENV]SP µg/g ref.: ME-CA-[ENV]SF µg/g µg/g µg/g µg/g µg/g µg/g µg/g µg/g	E-LAK-AN 0.05 PE-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1	-004 < 0.05 -005 -78 -0.75 -8 -0.11 -19 -15 -42		< 0.05 44 0.47 7 0.09 13 9.3 28		220 2.5 36 1.2 70 21 92
Chromium VI lercury by CVAAS lethod: EPA 7471A/EFA 245 Internal r Mercury letals in Soil - Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Internal r Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead	µg/g ef.: ME-CA-[ENV]SP µg/g ref.: ME-CA-[ENV]SF µg/g µg/g µg/g µg/g µg/g µg/g µg/g µg/g µg/g	E-LAK-AN 0.05 PE-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1	-004 < 0.05 -005 -78 0.75 8 0.11 19 15 42 9.3		< 0.05 44 0.47 7 0.09 13 9.3 28 6.0	200 200 200 200 200 200	220 2.5 36 1.2 70 21 92 120
Chromium VI lercury by CVAAS lethod: EPA 7471A/EPA 245 Internal n Mercury letals in Soil - Aqua-regla/ICP-MS lethod: EPA 3050/EPA 200.8 Internal n Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum	μg/g ef.: ME-CA-[ENV]SP μg/g ref.: ME-CA-[ENV]SF μg/g μg/g μg/g μg/g μg/g μg/g μg/g μg/	E-LAK-AN 0.05 PE-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1	-004 < 0.05 78 0.75 8 0.11 19 15 42 9.3 0.4		< 0.05 44 0.47 7 0.09 13 9.3 28 6.0 0.4		0.27 220 2.5 36 1.2 70 21 92 120 2
Chromium VI Jercury by CVAAS Jethod; EPA 7471A/EFA 245 Internal r Mercury Jetals in Soil - Aqua-regia/ICP-MS Jethod; EPA 3050/EPA 200.8 Internal r Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel	µg/g ef.: ME-CA-[ENV]SP µg/g ref.: ME-CA-[ENV]SF µg/g	E-LAK-AN 0.05 PE-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1	-004 < 0,05 78 0,75 8 0,11 19 15 42 9,3 0,4 31		< 0.05 44 0.47 7 0.09 13 9.3 28 6.0 0.4 19	3-4 2-4 3-7 3-7 3-7 3-7 3-7 3-7 3-7 3-7 3-7 3-7	220 2.5 36 1.2 70 21 92 120 2
Chromium VI Jercury by CVAAS Jethod: EPA 7471A/EFA 245 Internal r Mercury Jetals in Soil - Aqua-regla/ICP-MS Jethod: EPA 3050/EPA 200.8 Internal r Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver	µg/g ef.: ME-CA-[ENV]SP µg/g ref.: ME-CA-[ENV]SP µg/g	E-LAK-AN 0.05 PE-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.1 0.01 0.02	-004 < 0.05 78 0.75 8 0.11 19 15 42 9.3 0.4 31 0.02		< 0.05 44 0.47 7 0.09 13 9.3 28 6.0 0.4 19 0.02		0.27 220 2.5 36 1.2 70 21 92 120 2 82 0.5
Chromium VI Iercury by CVAAS lethod: EPA 7471A/EPA 245 Internal n Mercury Ietals in Soil - Aqua-regia/ICP-MS Iethod: EPA 3050/EPA 200.8 Internal n Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium Uranium	µg/g ef.: ME-CA-[ENV]SP µg/g ref.: ME-CA-[ENV]SF µg/g	E-LAK-AN 0.05 PE-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.01 0.01 0.02 0.02	-004 < 0.05 78 0.75 8 0.11 19 15 42 9.3 0.4 31 0.02 0.14 0.66		< 0.05 44 0.47 7 0.09 13 9.3 28 6.0 0.4 19 0.02 0.10 0.39		0,27 220 2.5 36 1.2 70 21 92 120 2 82 0.5 1
letroury by CVAAS lethod; EPA 7471A/EPA 245 Internal in Mercury letals in Soil - Aqua-regia/ICP-MS lethod; EPA 3050/EPA 200.8 Internal is Barium Beryllium Boron Cadmium Chromium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium Uranium Vanadium	µg/g ef.: ME-CA-[ENV]SP µg/g E-LAK-AN 0.05 PE-LAK-AN 0.01 0.02 0.5 0.01 0.1 0.1 0.1 0.01 0.02 0.02 0.3	-004 < 0,05 78 0,75 8 0,11 19 15 42 9,3 0,4 31 0,02 0,14 0,66 24		< 0.05 44 0.47 7 0.09 13 9.3 28 6.0 0.4 19 0.02 0.10 0.39 18		220 2.5 36 1.2 70 21 92 120 2 82 0.5 1 2.5 86	
Chromium VI Iercury by CVAAS lethod: EPA 7471A/EPA 245 Internal n Mercury Ietals in Soil - Aqua-regia/ICP-MS Iethod: EPA 3050/EPA 200.8 Internal n Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium Uranium	µg/g ef.: ME-CA-[ENV]SP µg/g ref.: ME-CA-[ENV]SF µg/g	E-LAK-AN 0.05 PE-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.01 0.01 0.02 0.02	-004 < 0,05 78 0,75 8 0,11 19 15 42 9,3 0,4 31 0,02 0,14 0,66		< 0.05 44 0.47 7 0.09 13 9.3 28 6.0 0.4 19 0.02 0.10 0.39		0.27 220 2.5 36 1.2 70 21 92 120 2 82 0.5 1 2.5

	Samp San	Number le Name e Matrix npled By ple Date	8 BH1/3 Soil Vincent 14/07/2016	9 BH1/5 Soil Vincent 14/07/2016	10 BH2/2 Soil Vincent 14/07/2016	11 BH2/8 Soil Vincent 14/07/2016		
Parameter	Units	RL	Result	Result	Result	Result	L1	
Metals in Soil - Aqua-regia/ICP-MS (continu	ned)				REG153 / SOIL / COA	RSÉ - TABLE 1 - Resi	dential/Parkland - U	JNDEF
Aethod: EPA 3050/EPA 200.8 Internal rel		E-LAK-AI	N-005					
Selenium	µg/g	0.7	1.1		0.7	***	1.5	
<i>hoisture</i>								
Method: CCME Tier 1 Internal ref.: ME-C/	A-IENVIGC-LAK-AI	V-010						
Moisture Content	%	080	11.0	10.1	9,5	11,1		
etroleum Hydrocarbons (F1)								
Nethod: CCME Tier 1 Internal ref.: ME-C/	MERNAGOLI AKTAI	LA4n						
CCME F1 (C6-C10)	ha\a	10	Prof:	< 10	***	< 10	25	
CCME F1-BTEX (C6-C10)	μg/g	10	***	< 10	***	< 10		
CCME F2 (C10-C16) CCME F3 (C16-C34) CCME F4 (C34-C50) Chromatogram returned to baseline at nC50	µg/g µg/g µg/g Yes / No	10 50 50		< 10 < 50 < 50 YES		< 10 < 50 < 50 YES	10 240 120	
H								
Nethod: SM 4500 Internal ref.: ME-CA-{El	NVJEWL-LAK-AN-0	101						
рН	no unil	0.05	7.67	3507	7.78	***		
icdium adscrption ratio (SAR) lethod: MOE 4698e01/EPA 6010 Interna	I ref.: ME-CA-(ENV	1ARD-LAI	<-AN-021					
Sodium Adsorption Ratio		0.01	0,22	***	0,28	5000	2,4	
olatile Organics								
lethod: EPA 5035A/5030B/8260C Interna	al ref.: ME-CA-[EN	/JGC-LAK	-AN-004					
Acetone	ha\a	0.5		< 0.5	5550	< 0.5	0.5	
Bromomethane	hā/ā	0.05		< 0.05	696 S	< 0.05	0.05	
Carbon tetrachloride	µg/g	0_05		< 0.05	***	< 0.05	0.05	
Chlorobenzene	µg/g	0.05	***	< 0.05	***	< 0.05	0.05	
Chloroform	µg/g	0.05		< 0.05	***	< 0.05	0.05	
1,2-Dichlorobenzene	µg/g	0.05		< 0.05		< 0.05	0.05	
1,3-Dichlorobenzene	µg/g	0.05		< 0.05	990	< 0.05	0.05	
1,4-Dichlorobenzene	μg/g	0.05		< 0.05	***	< 0.05	0_05	

	Sample Nu	mber	8	9	10	11	
	Sample N	lame	BH1/3	BH1/5	BH2/2	BH2/8	
	Sample M	Astrix	Soil	Soil	Soil	Soil	
	Sample	d By	Vincent	Vincent	Vincent	Vincent	
	Sample	Date	14/07/2016	14/07/2016	14/07/2016	14/07/2016	
Parameter	Units	RL	Result	Result	Result	Result	L1
					REG153 / SOIL / COAF	RSE - TABLE 1 - Reside	enlial/Parkland - UNDEFI
olatile Organics (continued)							
Method: EPA 5035A/5030B/8260C	Internal ref.: ME-CA-[ENV]	3C-LAK	-AN-004				
				- 0.00		< 0.05	0.05
Dichlorodifluoromelhane	µg/g	0.05		< 0.05	***	- 0,00	0,00
	hā\ā hā\ā	0.05	3000	< 0.05	##Z	< 0.05	0.05
Dichlorodifluoromelhane					5024		

Dichlorodifluoromethane	µg/g	0.05		< 0.05		< 0.05	0.05
1,1-Dichloroethane	µg/g	0.05	(m)	< 0.05	##C	< 0.05	0.05
1,2-Dichloroethane	μg/g	0.05		< 0.05	775	< 0.05	0.05
1,1-Dichloroethylene	μg/g	0.05		< 0.05	***	< 0.05	0.05
trans-1,2-Dichloroethylene	µg/g	0.05		< 0.05	***	< 0.05	0.05
cis-1,2-Dichloroethylene	µg/g	0.05	***	< 0.05	***	< 0.05	0.05
1,2-Dichloropropane	μg/g	0.05		< 0.05	***	< 0.05	0.05
cis-1,3-dichloropropene	µg/g	0.03	2002	< 0.03		< 0.03	
Irans-1,3-dichloropropene	µg/g	0.03		< 0.03	***	< 0.03	
1,3-dichoropropene (total)	µg/g	0.05	000	< 0.05	***	< 0.05	0.05
Ethylenedibromide	µg/g	0,05		< 0.05		< 0.05	0.05
n-Hexane	μg/g	0.05		< 0.05	***	< 0.05	0.05
Methyl ethyl ketone	μg/g	0.5	346	< 0.5	***	< 0.5	0.5
Methyl isobutyl ketone	μg/g	0.5		< 0.5	***	< 0,5	0.5
Methyl-t-bulyl Ether	μg/g	0.05		< 0.05		< 0.05	0.05
Methylene Chloride	μg/g	0.05	200	< 0.05	 2	< 0.05	0.05
Slyrene	μg/g	0.05		< 0.05	7753	< 0.05	0.05
Tetrachloroethylene	µg/g	0.05	-	< 0.05	***	< 0.05	0.05
1,1,1,2-Tetrachloroethane	μg/g	0.05	***	< 0.05		< 0.05	0.05
1,1,2,2-Tetrachloroethane	µg/g	0.05	***	< 0.05	***	< 0.05	0.05
1,1,1-Trichloroethane	μg/g	0.05	5005	< 0.05	F465	< 0.05	0.05
1,1,2-Trichloroethane	μg/g	0.05		< 0.05	***	< 0.05	0.05
Trichloroethylene	μg/g	0.05		< 0.05		< 0.05	0.05
Trichlorofluoromethane	µg/g	0.05	242	< 0.05	777	< 0.05	0,25
Vinyl Chloride	μg/g	0.02		< 0.02	5553	< 0.02	0.02
Benzene	μg/g	0.02	366	< 0.02	***	< 0.02	0.02
Elhylbenzene	μg/g	0.05	***	< 0.05		< 0.05	0.05
Toluene	µg/g	0.05	2000	< 0.05	***	< 0.05	0.2
Xylene (total)	μg/g	0.05	58665	< 0.05	114	< 0.05	0.05
m/p-xylene	μg/g	0.05		< 0.05	***	< 0.05	
o-xylene	μg/g	0.05	:++0	< 0.05	***	< 0.05	
Bromodichloromethane	μg/g	0.05	200	< 0.05		< 0.05	0.05
Bromoform	µg/g	0.05	2222	< 0.05	888)	< 0.05	0.05
		0.05	***	< 0.05	***	< 0.05	0.05
Dibromochloromethane	ha/a	0.05					
Dibromochloromethane Surr 1,2-Dichloroethane-d4	µg/g Surr Rec %	0.05	***	97		99	

20160721 5 / 30

RESULTS

Sampled By Vincent Vincent Vincent Vincent	Sample By Vincent Vinc	•	e Matrix	Soil Vincent	Soil Vincent	Soil Vincent	Soil Vincent	
Sample Date 14/07/2016 14/07/2016 14/07/2016 14/07/2016								

REG153 / SOIL / COARSE - TABLE 1 - Residential/Parkland - UNDEFINED

Water Soluble Boron

Method: O.Reg. 153/04 | Internal ref.: ME-CA-[ENV] SPE-LAK-AN-003

W. O.H. D	
Water Soluble Boron $\mu g/g$ 0.5 < 0.5 < 0.5	

20160721 6 / 30

FINAL REPORT

RESULTS

	Sample	Number	12	13	14	15	
	Samp	ole Name	BH3/5	BH3/9	Dup 1	TP1	
	Samp	le Matrix	Soil	Soil	Soil	Soil	
		npled By	Vincent	Vincent	Vincent	Vincent	
		ple Date	14/07/2016	14/07/2016	14/07/2016	14/07/2016	
Parameter	Units	RL	Result	Result	Result	Result	L1
inions by IC					REG153 / SOIL / COA	RSÉ - TABLE 1 - Resid	dential/Parkland - UNDE
		ties concessors	1.004				
lethod: EPA300/MA300-lons1.3 In							
Chloride	рд/д	0.4	6,9			8,9	
N . (5. 24							
Conductivity							
lethod: EPA 6010/SM 2510 Interns							
Conductivity	mS/cm	0.002	0.16	***		0.18	0.57
yanide by SFA							
lethod: SM 4500 Internal ref.: ME⊣	CA-[ENV]SFA-LAK-AN-(005					
Free Cyanide	ha/a	0.05	< 0,05			< 0.05	0.051
lexavalent Chromium by IC							
lethod: EPA218.6/EPA3060A Inter	nal ref.: ME-CA-[ENV]IC	-LAK-AN-C	08				
	µg/g	0,2	< 0.2			8,0	0.66
ercury by CVAAS ethod: EPA 7471A/EPA 245 Intern	nal ref.: ME-CA-[ENV]SF	E-LAK-AN	-004				
Chromium VI lercury by CVAAS lethod: EPA 7471A/EPA 245 Internation					##	· 0.05	0.66
lercury by CVAAS lethod: EPA 7471A/EPA 245 Intern Mercury	nal ref.: ME-CA-[ENV]SF	E-LAK-AN	-004				
lercury by CVAAS lethod: EPA 7471A/EPA 245 Intern Mercury letals in Soil - Aqua-regia/ICP-MS	nal ref.: ME- CA- [ENV]SF µ9/9	PE-LAK-AN 0.05	-004 < 0.05				
lercury by CVAAS lethod: EPA 7471A/EPA 245 Internomber 1 Internomber 245 Inter	nat ref.: ME- CA- [ENV]SF µg/g nat ref.: ME-CA-[ENV]Sf	PE-LAK-AN 0.05 PE-LAK-AN	-004 < 0.05		###	< 0.05	0.27
lercury by CVAAS lethod: EPA 7471A/EPA 245 Internomental	nat ref.: ME- CA- [ENV]SF µ9/9 nat ref.: ME-CA-[ENV]SF µ9/9	PE-LAK-AN 0.05 PE-LAK-AN 0.01	-004 < 0.05 -005 45			< 0,05 65	0.27
lercury by CVAAS lethod: EPA 7471A/EPA 245 Internomental	nal ref.: ME-CA-[ENV]SF µ9/9 nal ref.: ME-CA-[ENV]SF µ9/9 µ9/9	PE-LAK-AN 0.05 PE-LAK-AN 0.01 0.02	-004 < 0.05 -005 45 0.60	***		< 0.05 65 0.48	0.27 220 2.5
letroury by CVAAS lethod: EPA 7471A/EPA 245 Internomental Internomenta	nal ref.: ME- CA- [ENV]SF µ9/9 nal ref.: ME-CA-[ENV]SF µ9/9 µ9/9 µ9/9	PE-LAK-AN 0.05 PE-LAK-AN 0.01 0.02 1	-004 < 0.05 -005 45 0.60 10			< 0.05 65 0.48 6	0.27 220 2.5 36
lercury by CVAAS lethod: EPA 7471A/EPA 245 Internomber Internomb	nal ref.: ME- CA- [ENV]SF µg/g nal ref.: ME-CA-[ENV]SF µg/g µg/g µg/g	PE-LAK-AN 0.05 PE-LAK-AN 0.01 0.02 1 0.02	-004 < 0.05 -005 45 0.60 10 0.09			< 0.05 65 0.48 6 0.46	220 2.5 36 1.2
lercury by CVAAS lethod: EPA 7471A/EPA 245 International	nat ref.: ME-CA-[ENV]SF µ9/9 nai ref.: ME-CA-[ENV]SF µ9/9 µ9/9 µ9/9 µ9/9	0.05 0.05 0.05 0.01 0.02 1 0.02 0.5	-004 < 0.05 -005 45 0.60 10 0.09			< 0.05 65 0.48 6 0.46 17	0.27 220 2.5 36 1.2 70
lercury by CVAAS lethod: EPA 7471A/EPA 245 Internomental	nal ref.: ME-CA-[ENV]SF	PE-LAK-AN 0.05 PE-LAK-AN 0.01 0.02 1 0.02 0.5 0.01	-004 < 0.05 -005 45 0.60 10 0.09 18 13			< 0.05 65 0.48 6 0.46 17 8.3	220 2.5 36 1.2 70 21
lercury by CVAAS lethod: EPA 7471A/EPA 245 Internomental	nal ref.: ME-CA-[ENV]SF µ9/9 nal ref.: ME-CA-[ENV]SF µ9/9 µ9/9 µ9/9 µ9/9 µ9/9 µ9/9 µ9/9	PE-LAK-AN 0.05 PE-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1	-004 < 0.05 45 0.60 10 0.09 18 13 35			< 0.05 65 0.48 6 0.46 17 8.3 33	220 2.5 36 1.2 70 21 92
letroury by CVAAS lethod: EPA 7471A/EPA 245 Internomental Internomenta	nal ref.: ME-CA-[ENV]SF µ9/9 nal ref.: ME-CA-[ENV]SF µ9/9 µ9/9 µ9/9 µ9/9 µ9/9 µ9/9 µ9/9 µ9/9	DE-LAK-AN 0.05 DE-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1	-004 < 0.05 45 0.60 10 0.09 18 13 35 7.5		200 200 200 200 200 200 200 200 200 200	< 0.05 65 0.48 6 0.46 17 8.3 33	220 2.5 36 1.2 70 21 92
letroury by CVAAS lethod: EPA 7471A/EPA 245 International Internationa	nat ref.: ME-CA-[ENV]SF µ9/9 nai ref.: ME-CA-[ENV]SF µ9/9 µ9/9 µ9/9 µ9/9 µ9/9 µ9/9 µ9/9 µ9/9	0.05 0.05 0.05 0.01 0.02 0.5 0.01 0.1 0.1	-004 < 0.05 45 0.60 10 0.09 18 13 35 7.5 0.5			< 0.05 65 0.48 6 0.46 17 8.3 33 248	0.27 220 2.5 36 1.2 70 21 92 120 2
ercury by CVAAS ethod: EPA 7471A/EPA 245 Internology etals in Soil - Aqua-regia/ICP-MS ethod: EPA 3050/EPA 200.8 Internology Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead	nal ref.: ME-CA-[ENV]SF µ9/9 nal ref.: ME-CA-[ENV]SF µ9/9 µ9/9 µ9/9 µ9/9 µ9/9 µ9/9 µ9/9 µ9/9 µ9/9	DE-LAK-AN 0.05 DE-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1	-004 < 0.05 45 0.60 10 0.09 18 13 35 7.5 0.5 26		200 200 200 200 200 200 200 200 200 200	< 0.05 65 0.48 6 0.46 17 8.3 33 240 0.8	220 2.5 36 1.2 70 21 92 120 2
ercury by CVAAS ethod: EPA 7471A/EPA 245 Internation Mercury etals in Soil - Aqua-regia/ICP-MS ethod: EPA 3050/EPA 200.8 Internation Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum	nat ref.: ME-CA-[ENV]SF µ9/9 nai ref.: ME-CA-[ENV]SF µ9/9 µ9/9 µ9/9 µ9/9 µ9/9 µ9/9 µ9/9 µ9/9	0.05 0.05 0.05 0.01 0.02 0.5 0.01 0.1 0.1	-004 < 0.05 45 0.60 10 0.09 18 13 35 7.5 0.5			< 0.05 65 0.48 6 0.46 17 8.3 33 248	0.27 220 2.5 36 1.2 70 21 92 120 2
ercury by CVAAS ethod: EPA 7471A/EPA 245 Internomental I	nal ref.: ME-CA-[ENV]SF µ9/9 nal ref.: ME-CA-[ENV]SF µ9/9 µ9/9 µ9/9 µ9/9 µ9/9 µ9/9 µ9/9 µ9/9 µ9/9	DE-LAK-AN 0.05 DE-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1	-004 < 0.05 45 0.60 10 0.09 18 13 35 7.5 0.5 26			< 0.05 65 0.48 6 0.46 17 8.3 33 240 0.8	220 2.5 36 1.2 70 21 92 120 2
ercury by CVAAS ethod: EPA 7471A/EPA 245 Internomental I	nal ref.: ME-CA-[ENV]SF µ9/9 nal ref.: ME-CA-[ENV]SF µ9/9	PE-LAK-AN 0.05 PE-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.1 0.1	-004 < 0.05 45 0.60 10 0.09 18 13 35 7.5 0.5 26 0.03			< 0.05 65 0.48 6 0.46 17 8.3 33 240 0.8 18 0.08	220 2.5 36 1.2 70 21 92 120 2 82 0.5
letroury by CVAAS lethod: EPA 7471A/EPA 245 International Internationa	nal ref.: ME-CA-[ENV]SF µ9/9 nal ref.: ME-CA-[ENV]SF µ9/9	PE-LAK-AN 0.05 PE-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.01 0.01	-004 < 0.05 45 0.60 10 0.09 18 13 35 7.5 0.5 26 0.03 0.14			< 0.05 65 0.48 6 0.46 17 8.3 33 240 0.8 18 0.08	0.27 220 2.5 36 1.2 70 21 92 120 2 82 0.5
letroury by CVAAS lethod: EPA 7471A/EPA 245 International Internationa	nat ref.: ME-CA-[ENV]SF µ9/9 nai ref.: ME-CA-[ENV]SF µ9/9 PE-LAK-AN 0.05 PE-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.1 0.01 0.02 0.02	-004 < 0.05 45 0.60 10 0.09 18 13 35 7.5 0.5 26 0.03 0.14 0.52			< 0.05 65 0.48 6 0.46 17 8.3 33 248 0.8 18 0.08 0.11	0.27 220 2.5 36 1.2 70 21 92 120 2 82 0.5 1 2.5	
letroury by CVAAS lethod: EPA 7471A/EPA 245 Internation Mercury letals in Soil - Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Internation Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium Uranium Vanadium	nal ref.: ME-CA-[ENV]SF	PE-LAK-AN 0.05 PE-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.01 0.02 0.02 0.3	-004 < 0.05 45 0.60 10 0.09 18 13 35 7.5 0.5 26 0.03 0.14 0.52 23			< 0.05 65 0.48 6 0.46 17 8.3 33 248 0.8 18 0.08 0.11 0.41 20	220 2.5 36 1.2 70 21 92 120 2 82 0.5 1 2.5 86

FINAL REPORT

RESULTS

	Sample	Number	12	13	14	15	
	•	e Name	BH3/5	BH3/9	Dup 1	TP1	
		e Matrix	Soil	Soil	Soil	Soil	
		pled By	Vincent	Vincent	Vincent	Vincent	
	Sam	ole Date	14/07/2016	14/07/2016	14/07/2016	14/07/2016	
Parameter	Units	RL	Result	Result	Result	Result	L1
3.1.1.2.0.4.4.3.4.0.4.4.4.4.4.4.4.4.4.4.4.4.4.4	13				REG153 / SOIL / COAF	RSE - TABLE 1 - Resi	dential/Parkland - UNDI
Vetals in Soil - Aqua-regia/ICP-MS (continu							
Method: EPA 3050/EPA 200,8 Internal re	f.: ME-CA-[ENV]SF						
Selenium	hā/ā	0.7	0,8			0.8	1.5
Acisture							
	A TENDOO LAICAN	1040					
dethod: CCME Tier 1 Internal ref.: ME-G		4-010		10.0	15.5		
Moisture Content	%		11,4	18.9	15,5	9.1	
Petroleum Hydrocarbons (F1)							
, ,	A FERRICO LAP A	J 040					
Vethod: COME Tier 1 Internal ref.: ME-C			*-	_ 10			25
CCME F1 (C6-C10)	µg/g	10	****	< 10			25
CCME F1-BTEX (C6-C10)	µg/g	10	****	< 10	***		
Section to the section of the sectio							
etroleum Hydrocarbons (F2-F4)							
lethod: CCME Tier 1 Internal ref.: ME-C	A-[ENV]GC-LAK-AI	4-01 0					
CCME F2 (C10-C16)	µg/g	10		< 10		(344)	10
CCME F3 (C16-C34)	μg/g	50	222	77		74445	240
CCME F4 (C34-C50)	µ9/9	50		< 50		2550	120
Chromatogram returned to baseline at	Yes / No	1	****	YES		***	
nC50							
Method: SM 4500 Internal ref.; ME-CA-[E	NV)EWL-LAK-AN-(
рН	no unit	0.05	7_85	***	***	7,55	
Sodium adscrption ratio (SAR)							
4ethod: MOE 4696e01/EPA 6010 Interns	il ref.: ME-CA-(ENV	JARD-LAI	(-AN-021				
Sodium Adsorption Ratio		0.01	0.30	3,000	**	0.08	2.4
/olatile Organics							
dethod: EPA 5035A/5030B/8260C Intern	al ref., ME-CA-[EN	/JGC-LAK	-AN-004				
againer mit and an and and and an interior	ha/a	0,5		< 0.5	< 0.5	****	0.5
Acelone		0.05		< 0.05	< 0.05		0.05
	hā/ā			< 0.05	< 0.05	0222	0.05
Acelone	hā\ā hā\ā	0.05					
Acetone Bromornethane		0.05		< 0.05	< 0.05	0,00000	0.05
Acetone Bromomethane Carbon tetrachloride	μg/g			< 0.05 < 0.05	< 0.05 < 0.05	· · · · · · · · · · · · · · · · · · ·	0,05
Acetone Bromornethane Carbon tetrachloride Chlorobenzene	µg/g µg/g	0.05					
Acetone Bromornethane Carbon tetrachloride Chlorobenzene Chloroform	h8\a h8\a h8\a	0.05 0.05		< 0.05	< 0.05	***	0,05
Acetone Bromornethane Carbon tetrachloride Chlorobenzene Chloroform 1,2-Dichlorobenzene	h8\8 h8\8 h8\8 h8\8	0.05 0.05 0.05		< 0.05 < 0.05	< 0.05 < 0.05	***	0.05 0.05

RESULTS

	Sample N	lumber	12	13	14	15	
	Sample	Name	BH3/5	BH3/9	Dup 1	TP1	
	Sample	Matrix	Soil	Soil	Soil	Soil	
	Samp	oled By	Vincent	Vincent	Vincent	Vincent	
	Sampl	e Date	14/07/2016	14/07/2016	14/07/2016	14/07/2016	
Parameter	Units	RL	Result	Result	Result	Result	L1

REG153 / SOIL / COARSE - TABLE 1 - Residential/Parkland - UNDEFINED

Volatile Organics (continued)

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-[ENV]GC-LAK-AN-004

Dichlorodifluoromethane	µg/g	0.05	P. C.	< 0.05	< 0.05	***	0.05
1,1-Dichloroethane	ha/a	0_05	1944	< 0.05	< 0.05	(944.1	0.05
1,2-Dichloroethane	µg/g	0.05		< 0.05	< 0.05	***	0.05
1,1-Dichloroethylene	µg/g	0.05	000	< 0.05	< 0.05	(***):	0,05
trans-1,2-Dichloroethylene	pg/g	0,05	page .	< 0.05	< 0.05	Y	0.05
cis-1,2-Dichloroethylene	µg/g	0.05	(500)	< 0.05	< 0.05		0,05
1,2-Dichloropropane	µg/g	0.05		< 005	< 0.05	-	0.05
cis-1,3-dichloropropene	µg/g	0.03	V220	< 0.03	< 0.03	***	
trans-1,3-dichloropropene	µg/g	0.03	2.5552	< 0.03	< 0.03	(****	
1,3-dichoropropene (lotal)	µg/g	0.05	(int)	< 0.05	< 0.05	****	0.05
Ethylenedibromide	µg/g	0,05	***	< 0.05	< 0.05		0.05
n-Hexane	µg/g	0.05	***	< 0.05	< 0.05	****	0.05
Methyl ethyl ketone	µg/g	0.5	7446	< 0.5	< 0.5	-	0.5
Methyl isobulyl ketone	µg/g	0.5		< 0.5	< 0.5		0,5
Methyl-t-butyl Ether	µg/g	0.05	***	< 0.05	< 0.05		0.05
Methylene Chloride	μg/g	0.05	***	< 0.05	< 0.05	444	0.05
Styrene	µg/g	0.05		< 0.05	< 0.05	1000	0.05
Tetrachloroethylene	μg/g	0.05	1996	< 0.05	< 0.05	***	0.05
1,1,1,2-Tetrachloroethane	μg/g	0.05	-11	< 0.05	< 0.05	-	0.05
1,1,2,2-Tetrachloroethane	µg/g	0.05	, 	< 0.05	< 0.05		0,05
1,1,1-Trichloroethane	μg/g	0.05	-	< 0.05	< 0.05	1244	0.05
1,1,2-Trichloroethane	µg/g	0.05		< 0.05	< 0.05	•••	0.05
Trichloroethylene	µg/g	0.05	3 44 6	< 0.05	< 0.05	:404	0.05
Trichlorofluoromethane	µg/g	0.05	1944	< 0.05	< 0.05	22	0,25
Vinyl Chloride	μg/g	0.02	***	< 0.02	< 0.02	****	0.02
Benzene	µg/g	0.02	20000	< 0.02	< 0.02	344	0.02
Ethylbenzene	µg/g	0.05	***	< 0.05	< 0.05		0.05
Toluene	µg/g	0.05	8888	< 0.05	< 0.05		0.2
Xylene (total)	µg/g	0.05	7666	< 0.05	< 0.05	****	0.05
n/p-xylene	µg/g	0.05		< 0.05	< 0.05		
o-xylene	µg/g	0.05	***	< 0.05	< 0.05		
Bromodichloromethane	µg/g	0.05		< 0.05	< 0.05		0.05
Bromoform	µg/g	0.05		< 0.05	< 0.05	1200	0.05
Dibromochloromethane	µg/g	0.05	***	< 0.05	< 0.05	1424	0.05
Surr 1,2-Dichloroethane-d4	Surr Rec %			96	97		
Surr 4-Bromofluorobenzene	Surr Rec %	4	****	94	94	3400	
Surr 2-Bromo-1-Chloropropane	Surr Rec %	-	566	82	82	See	

20160721 9 / 30

RESULTS							
	Sample	Number	12	13	14	15	
	Samp	le Name	BH3/5	BH3/9	Dup 1	TP1	
	Samp	le Matrix	Soil	Soil	Soil	Soil	
	Sar	npied By	Vincent	Vincent	Vincent	Vincent	
	Sam	ple Date	14/07/2016	14/07/2016	14/07/2016	14/07/2016	
Parameter	Units	RL	Result	Result	Result	Result	L1
					REG153 / SOIL / COA	RSE - TABLE 1 - Reside	ntial/Parkland - UNDEFINE
Water Soluble Boron							
Method: O.Reg. 153/04 Internal ref.:	ME-CA-[ENV] SPE-LAI	C-AN-003					
Water Soluble Boron	µ9/9	0.5	< 0.5	-892	112	< 0.5	

20160721 10 / 30

20160721

FINAL REPORT

RESULTS							
	Sample N	lumber	16	17	18	19	
	Sample	Name	TP2	TP3	TP4/2	TP5/2	
	Sample	Matrix	Soil	Soil	Soil	Soil	
	Samp	oled By	Vincent	Vincent	Vincent	Vincent	
	Sampl	e Date:	14/07/2016	14/07/2016	14/07/2016	14/07/2016	
Parameter	Units	RL	Result	Result	Result	Result	L1
					REG153 / SOIL / COAF	RSE - TABLE 1 - Resi	dential/Parkland - UN
nions by IC		ere i di sole di distribui					
lethod: EPA300/MA300-lons1.3 [ir		-					
Chloride	h8\8	0.4	13	11	6.6	2.0	
teneralerrakissika							
Conductivity	-1 C . 5 1 PP - 1 20 20 5 15 77 - 1 2 1	1 605 881	N/40				
fethod: EPA 6010/SM 2510 Intern				0.45	0.40	0.00	0.57
Conductivity	mS/cm	0.002	0.18	0,15	0,12	0.20	0.57
ranida ha OEA							
Syanide by SFA	The plant of the same and the same and	· ***					
flethod: SM 4500 Internal ref.; ME-			. 0.25	. 0.25	.0.00	222	0.051
Free Cyanide	ha/a	0,05	< 0.05	< 0.05	< 0.05	0,07	0.051
ethod: EPA218.6/EPA3060A Inte Chromium VI	rmal ref.; ME-CA-[ENV]IC-I	AK-AN-() 0.2	0,5	< 0.2	2.2	< 0,2	0.66
Chromium VI	h8/8	0.2	0,5	< 0.2	2.2	< 0,2	0.66
Chromium VI lercury by CVAAS lethod: EPA 7471A/EPA 245 Inter	µ9/g mal ref.: ME-CA-[ENV]SPE	0.2 -LAK-AN	0.5				
Chromium VI	h8/8	0.2	0,5	< 0.2 < 0.05	< 0.05	< 0,2 < 0,05	0.66
Chromium VI lercury by CVAAS lethod: EPA 7471A/EPA 245 Inter Mercury	µ9/g mal ref.: ME-CA-[ENV]SPE	0.2 -LAK-AN	0.5				
Chromium VI learcury by CVAAS lethod: EPA 7471A/EPA 245 Inter Mercury letals in Soil - Aqua-regia/ICP-MS	µ9/g mal ref.: ME-CA-{ENV}SPE µ9/g	0.2 -LAK-AN 0.05	0.5 -004 < 0.05				
Chromium VI ercury by CVAAS ethod: EPA 7471A/EPA 245 Inter Mercury etals in Soil - Aqua-regia/ICP-MS ethod: EPA 3050/EPA 200.8 Inter	µg/g mal ref.: ME-CA-[ENV]SPE µg/g mal ref.: ME- CA -[ENV]SPE	0.2 -LAK-AN 0.05 -LAK-AN	0,5 -004 < 0,05	< 0.05	< 0.05	< 0.05	0.27
Chromium VI lercury by CVAAS lethod: EPA 7471A/EPA 245 Inter Mercury letals in Soil - Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Intel Barium	μg/g mal ref.: ME-CA-[ENV]SPE μg/g rnal ref.: ME-CA-[ENV]SPE μg/g	0.2 -LAK-AN 0.05 -LAK-AN 0.01	0.5 -004 < 0.05 -005 69	< 0.05	< 0.05 63	< 0.05	0,27
Chromium VI lercury by CVAAS lethod: EPA 7471A/EPA 245 Inter Mercury letals in Soil - Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Inter Barium Beryllium	μ9/g mal ref.: ME-CA-[ENV]SPE μ9/g rnal ref.: ME-CA-[ENV]SPE μ9/g μ9/g	0.2 -LAK-AN 0.05 -LAK-AN 0.01 0.02	-004 < 0,05 -005 69 0.50	< 0.05 72 0.19	< 0.05 63 0.22	< 0.05 62 0.68	0.27 220 2.5
Chromium VI lercury by CVAAS lethod: EPA 7471A/EPA 245 Inter Mercury letals in Soil - Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Intel Barium Beryllium Boron	μ9/g mal ref.: ME-CA-[ENV]SPE μ9/g rnal ref.: ME-CA-[ENV]SPE μ9/9 μ9/9	0.2 -LAK-AN 0.05 -LAK-AN 0.01 0.02	0.5 -004 < 0.05 -005 69 0.50 6	< 0.05 72 0.19 5	< 0.05 63 0.22 5	< 0.05 62 0.68 7	220 2.5 36
Chromium VI lercury by CVAAS lethod: EPA 7471A/EPA 245 Inter Mercury letals in Soil - Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Inter Barium Beryllium Boron Cadmium	µ9/g mal ref.: ME-CA-[ENV]SPE	0.2 -LAK-AN 0.05 -LAK-AN 0.01 0.02 1 0.02	0.5 -004 < 0.05 -005 69 0.50 6	< 0.05 72 0.19 5 0.23	< 0.05 63 0.22 5 1.1	< 0.05 62 0.68 7 0.12	220 2.5 36 1.2
Chromium VI letroury by CVAAS lethod: EPA 7471A/EPA 245 Inter Mercury letals in Soil - Aqua-regis/ICP-MS lethod: EPA 3050/EPA 200.8 Intel Barium Beryllium Boron Cadmium Chromium	μg/g mal ref.: ME-CA-[ENV]SPE μg/g rnal ref.: ME-CA-[ENV]SPE μg/g μg/g μg/g μg/g μg/g μg/g	0.2 -LAK-AN 0.05 -LAK-AN 0.01 0.02 1 0.02 0.5	0.5 -004 < 0.05 -005 -050 -0.37 -15	<0.05 72 0.19 5 0.23 8.7	< 0.05 63 0.22 5 1.1 22	< 0.05 62 0.68 7 0.12	220 2.5 36 1.2
Chromium VI Itercury by CVAAS Itethod: EPA 7471A/EPA 245 Inter Mercury Itetals in Soil - Aqua-regia/ICP-MS Itethod: EPA 3050/EPA 200.8 Inter Barium Beryllium Boron Cadmium Chromium Cobalt	μ9/g mal ref.: ME-CA-[ENV]SPE μ9/9 rnal ref.: ME-CA-[ENV]SPE μ9/9 μ9/9 μ9/9 μ9/9 μ9/9 μ9/9 μ9/9	0.2 -LAK-AN 0.05 -LAK-AN 0.01 0.02 1 0.02 0.5 0.01	0.5 -004 < 0.05 -005 -005 -0.50 -6 -0.37 -15 -7.8	< 0.05 72 0.19 5 0.23 8.7 5.9	< 0.05 63 0.22 5 1.1 22 5.4	< 0.05 62 0.68 7 0.12 18 12	220 2.5 36 1.2 70 21
Chromium VI Idercury by CVAAS Idethod: EPA 7471A/EPA 245 Inter Mercury Idetals in Soil - Aqua-regia/ICP-MS Idethod: EPA 3050/EPA 200.8 Inter Barium Beryllium Boron Cadmium Chromium Cobalt Copper	μ9/g mal ref.: ME-CA-[ENV]SPE μ9/g rnal ref.: ME-CA-[ENV]SPE μ9/g μ9/g μ9/g μ9/g μ9/g μ9/g μ9/g μ9/g	0.2 -LAK-AN 0.05 -LAK-AN 0.01 0.02 1 0.02 0.5 0.01	0.5 -004 < 0.05 -005 -0.50 -0.37 -0.37 -0.8 -0.30	< 0.05 72 0.19 5 0.23 8.7 5.9 44	< 0.05 63 0.22 5 1.1 22 5.4 57	< 0.05 62 0.68 7 0.12 18 12 35	220 2.5 36 1.2 70 21
chromium VI ercury by CVAAS ethod: EPA 7471A/EPA 245 Inter Mercury etals in Soil - Aqua-regia/ICP-MS ethod: EPA 3050/EPA 200.8 Inter Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead	µ9/9 mal ref.: ME-CA-[ENV]SPE	0.2 -LAK-AN 0.05 -LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1	0.5 -004 < 0.05 -005 -09 0.50 6 0.37 15 7.8 30 99	<0.05 72 0.19 5 0.23 8.7 5.9 44 18	< 0.05 63 0.22 5 1.1 22 5.4 57 1400	< 0.05 62 0.68 7 0.12 18 12 35 14	220 2.5 36 1.2 70 21 92
chromium VI ercury by CVAAS ethod: EPA 7471A/EPA 245 Inter Mercury etals in Soll - Aqua-regia/ICP-MS ethod: EPA 3050/EPA 200.8 Intel Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum	μ9/9 mal ref.: ME-CA-[ENV]SPE μ9/9 mal ref.: ME-CA-[ENV]SPE μ9/9 μ9/9 μ9/9 μ9/9 μ9/9 μ9/9 μ9/9 μ9/	0.2 -LAK-AN 0.05 -LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1	0.5 -004 < 0.05 -005 -09 0.50 -0.37 -15 -7.8 -30 -99 0.6	72 0.19 5 0.23 8.7 5.9 44 18	< 0.05 63 0.22 5 1.1 22 5.4 57 1400	< 0.05 62 0.68 7 0.12 18 12 35 14 0.4	220 2.5 36 1.2 70 21 92 120 2
Chromium VI ercury by CVAAS ethod: EPA 7471A/EPA 245 Inter Mercury etals in Soil - Aqua-regia/ICP-MS ethod: EPA 3050/EPA 200.8 Intel Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel	μ9/g mal ref.: ME-CA-[ENV]SPE μ9/9 rnal ref.: ME-CA-[ENV]SPE μ9/9 μ9/9 μ9/9 μ9/9 μ9/9 μ9/9 μ9/9 μ9/	0.2 -LAK-AN 0.05 -LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1	0.5 -004 < 0.05 -005 -005 -005 -0.50 -0.37 -0.5 -0.8 -0.9 -0.6 -0.7	<0.05 72 0.19 5 0.23 8.7 5.9 44 18 0.8 12	< 0.05 63 0.22 5 1.1 22 5.4 57 1400 2.5	< 0.05 62 0.68 7 0.12 18 12 35 14 0.4 25	220 2.5 36 1.2 70 21 92 120 2
Chromium VI letroury by CVAAS lethod; EPA 7471A/EPA 245 Inter Mercury letals in Soil - Aqua-regia/ICP-MS lethod; EPA 3050/EPA 200.8 Inter Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver	μ9/g mal ref.: ME-CA-[ENV]SPE μ9/g mal ref.: ME-CA-[ENV]SPE μ9/g μ9/g μ9/g μ9/g μ9/g μ9/g μ9/g μ9/g	0.2 E-LAK-AN 0.05 E-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.1 0.01	0.5 -004 < 0.05 -005 -005 -0.50 -0.37 -15 -7.8 -30 -99 -0.6 -17 -0.07	<0.05 72 0.19 5 0.23 8.7 5.9 44 18 0.8 12 0.04	< 0.05 63 0.22 5 1.1 22 5.4 57 1400 2.5 16 0.11	< 0.05 62 0.68 7 0.12 18 12 35 14 0.4 25 0.04	220 2.5 36 1.2 70 21 92 120 2 82 0.5
Chromium VI Itercury by CVAAS Itethod: EPA 7471A/EPA 245 Inter Mercury Itetals in Soil - Aqua-regia/ICP-MS Itethod: EPA 3050/EPA 200.8 Inter Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium	µ9/9 mal ref.: ME-CA-[ENV]SPE µ9/9 mal ref.: ME-CA-[ENV]SPE µ9/9 0.2 -LAK-AN 0.05 -LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.1 0.01 0.02	0.5 -004 < 0.05 -005 -005 -005 -0.37 -15 -7.8 -30 -99 -0.6 -17 -0.07 -0.12	<0.05 72 0.19 5 0.23 8.7 5.9 44 18 0.8 12 0.04 0.10	< 0.05 63 0.22 5 1.1 22 5.4 57 1400 2.5 16 0.11 0.06	< 0.05 62 0.68 7 0.12 18 12 35 14 0.4 25 0.04 0.14	220 2.5 36 1.2 70 21 92 120 2 82 0.5	
Chromium VI lercury by CVAAS lethod: EPA 7471A/EPA 245 Inter Mercury letals in Soil - Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Inter Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium Uranium	μ9/9 mal ref.: ME-CA-[ENV]SPE μ9/9 mal ref.: ME-CA-[ENV]SPE μ9/9 μ9/9 μ9/9 μ9/9 μ9/9 μ9/9 μ9/9 μ9/	0.2 -LAK-AN 0.05 -LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.1 0.01 0.02 0.002	0.5 -004 < 0.05 -005 -005 -005 -0.50 -0.37 -15 -7.8 -30 -99 -0.6 -17 -0.07 -0.12 -0.40	<0.05 72 0.19 5 0.23 8.7 5.9 44 18 0.8 12 0.04 0.10 0.34	< 0.05 63 0.22 5 1.1 22 5.4 57 1400 2.5 16 0.11 0.06 0.36	< 0.05 62 0.68 7 0.12 18 12 35 14 0.4 25 0.04 0.14 0.47	220 2.5 36 1.2 70 21 92 120 2 82 0.5 1 2.5
Chromium VI Rercury by CVAAS Rethod: EPA 7471A/EPA 245 Inter Mercury Retals in Soil - Aqua-regia/ICP-MS Rethod: EPA 3050/EPA 200.8 Inter Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium Uranium Vanadium	μ9/g mal ref.: ME-CA-[ENV]SPE μ9/g rnal ref.: ME-CA-[ENV]SPE μ9/g μ9/g μ9/g μ9/g μ9/g μ9/g μ9/g μ9/g	0.2 LAK-AN 0.05 -LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.01 0.02 0.002 3	0.5 -004 < 0.05 -005 -09 0.50 6 0.37 15 7.8 30 99 0.6 17 0.07 0.12 0.40 22	<0.05 72 0.19 5 0.23 8.7 5.9 44 18 0.8 12 0.04 0.10 0.34 13	< 0.05 63 0.22 5 1.1 22 5.4 57 1400 2.5 16 0.11 0.06 0.36 21	< 0.05 62 0.68 7 0.12 18 12 35 14 0.4 25 0.04 0.14 0.47 23	220 2.5 36 1.2 70 21 92 120 2 82 0.5 1 2.5 86
Chromium VI Rercury by CVAAS Rethod: EPA 7471A/EPA 245 Inter Mercury Retals in Soil - Aqua-regia/ICP-MS Rethod: EPA 3050/EPA 200.8 Inter Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium Uranium Vanadium Zinc	μ9/g mal ref.: ME-CA-[ENV]SPE μ9/g mal ref.: ME-CA-[ENV]SPE μ9/g μ9/g μ9/g μ9/g μ9/g μ9/g μ9/g μ9/g	0.2 -LAK-AN 0.05 -LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.01 0.02 0.002 3 0.7	0.5 -004 < 0.05 -005 -005 -005 -0.50 -0.37 -15 -7.8 -30 -99 -0.6 -17 -0.07 -0.12 -0.40 -22 -100	<0.05 72 0.19 5 0.23 8.7 5.9 44 18 0.8 12 0.04 0.10 0.34 13 120	<0.05 63 0.22 5 1.1 22 5.4 57 1400 2.5 16 0.11 0.06 0.36 21 280	< 0.05 62 0.68 7 0.12 18 12 35 14 0.4 25 0.04 0.14 0.47 23 58	220 2.5 36 1.2 70 21 92 120 2 82 0.5 1 2.5 86 290
Alercury by CVAAS Alethod: EPA 7471A/EPA 245 Inter Mercury Metals in Soil - Aqua-regia/ICP-MS Alethod: EPA 3050/EPA 200.8 Intel Barium Beryllium Boron Cadmium Chromium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium Uranium Vanadium	μ9/g mal ref.: ME-CA-[ENV]SPE μ9/g rnal ref.: ME-CA-[ENV]SPE μ9/g μ9/g μ9/g μ9/g μ9/g μ9/g μ9/g μ9/g	0.2 LAK-AN 0.05 -LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.01 0.02 0.002 3	0.5 -004 < 0.05 -005 -09 0.50 6 0.37 15 7.8 30 99 0.6 17 0.07 0.12 0.40 22	<0.05 72 0.19 5 0.23 8.7 5.9 44 18 0.8 12 0.04 0.10 0.34 13	< 0.05 63 0.22 5 1.1 22 5.4 57 1400 2.5 16 0.11 0.06 0.36 21	< 0.05 62 0.68 7 0.12 18 12 35 14 0.4 25 0.04 0.14 0.47 23	220 2.5 36 1.2 70 21 92 120 2 82 0.5 1 2.5 86

11/30

	Sample	Number	16	17	18	19	
	Samp	le Name	TP2	TP3	TP4/2	TP5/2	
	•	le Matrix	Soil	Soil	Soil	Soil	
		npled By	Vincent	Vincent	Vincent	Vincent	
		ple Date	14/07/2016	14/07/2016	14/07/2016	14/07/2016	
Parameter	Units	RL	Result	Result	Result	Result	L1
Metals in Soil - Aqua-regia/ICP-MS (conti	nued)				REG153 / SOIL / COA	RSE - TABLE 1 - Reside	enlial/Parkland - UNDEFINI
Method: EPA 3050/EPA 200.8 Internal	ref.: ME-CA-[ENV]SF	E-LAK-A	V-005				
Selenium	ha\a	0.7	0.9	2.1	1.5	< 0.7	1.5
Moisture							
Method: CCME Tier 1 Internal ref.: ME-	CA-[ENV]GC-LAK-AI	N-010					
Moisture Content	%		6,3	2.4	4,3	17.7	
pH							
Method: SM 4500 Internal ref.: ME-CA-	[ENV]EWL-LAK-AN-(001					
рН	no unit	0,05	7.48	8.04	7.95	7.14	
Sodium adsorption ratio (SAR)							
Method: MOE 4696e01/EPA 6010 Inter	nal ref.: ME-CA-[EN\	/JARD-LA	K-AN-021				
Sodium Adsorption Ratio	****	0.01	0.07	0.23	0,09	0.16	2,4
Water Soluble Boron							
Method: O.Reg. 153/04 Internal ref.: ME	E-CA-[ENV] SPE-LAP	C-AN-003					
Water Soluble Boron	µg/g	0.5	< 0.5	< 0.5	< 0.5	< 0.5	

20160721 12 / 30

	Sample N	lumber	20	21	
	Sample		Dup 2	TP5/3	
	W.,	Matrix	Soil	Soil	
		pled By	Vincent	Vincent	
	Samp	le Date	14/07/2016	14/07/2016	
Perameter	Units	RL	Result	Result	L1
					REG153 / SOIL / COARSE - TABLE 1 - Residential/Parkland - UNDE
nions by IC					
lethod: EPA300/MA300-lons1.3 Inten	nal ref.: ME-CA-(ENV)I	C-LAK-AI	V-001		
Chloride	µg/g	0.4	11		
anductivity					
lethod: EPA 6010/SM 2510 Internal n	ef.: ME-CA-[ENV]EWL	LAK-AN-	006		
Conductivity	mS/cm	0.002	0.15	***	0,57
yanide by SFA					
lethod: SM 4500 Internal ref.: ME-CA	-IENVISFA-LAK-AN-OO)5			
Free Cyanide	µg/g	0.05	< 0.05	9226	0.051
(Unit age					
Chromium VI	hā/ā	0,2	< 0.2		0,66
Chromium VI	ha\a	0.2	< 0.2		0.66
	hâ\â	0.2	< 0.2		0,66
Chromium VI Hercury by CVAAS Hethod: EPA 7471A/EPA 245 Internal					0,66
ercury by CVAAS					0.66
fercury by CVAAS fethod: EPA 7471A/EPA 245 Internal	ref.: ME-CA-[ENV]SPE	E-LAK-AN	i-004		
fercury by CVAAS fethod: EPA 7471A/EPA 245 Internal	ref.: ME-CA-[ENV]SPE	E-LAK-AN	i-004		
lercury by CVAAS lethod: EPA 7471A/EPA 245 Internal Mercury letals in Soil - Aqua-regia/ICP-MS	ref.: ME-CA-[ENV]SPE µg/g	0.05	-004 < 0.05		
lercury by CVAAS lethod: EPA 7471A/EPA 245 Internal Mercury letals in Soil - Aqua-regia/ICP-MS	ref.: ME-CA-[ENV]SPE µg/g	0.05	-004 < 0.05		
lercury by CVAAS lethod: EPA 7471A/EPA 245 Internal Mercury letals in Soil - Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Internal	ref.: ME-CA-[ENV]SPE µg/g ref.: ME-CA-[ENV]SPI	E-LAK-AN 0.05 E-LAK-AN	-004 < 0.05		0.27
lercury by CVAAS lethod: EPA 7471A/EPA 245 Internal Mercury letals in Soil - Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Internal Barium	ref.: ME-CA-[ENV]SPE µg/g ref.: ME-CA-[ENV]SPI µg/g	0.05 	-004 < 0.05 J-005 76	-	0.27
lercury by CVAAS lethod: EPA 7471A/EPA 245 Internal Mercury letals in Soil - Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Internal Barium Beryllium	ref.: ME-CA-[ENV]SPE µg/g ref.: ME-CA-[ENV]SP! µg/g µg/g	0.05 LAK-AN 0.01 0.02	-004 < 0.05 J-005 76 0.20		0.27 220 2.5
lercury by CVAAS lethod: EPA 7471A/EPA 245 Internal Mercury letals in Soil - Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Internal Barium Beryllium Boron	ref.: ME-CA-[ENV]SPE	0.05 -LAK-AN 0.01 0.02	7-004 < 0.05 -005 -76 -0.20 -5	****	220 2.5 36
lercury by CVAAS lethod: EPA 7471A/EPA 245 Internal Mercury letals in Soll - Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Internal Barium Beryllium Boron Cadmium	ref.: ME-CA-[ENV]SPE µ9/9 ref.: ME-CA-[ENV]SPI µ9/9 µ9/9 µ9/9 µ9/9	0.05 -LAK-AN 0.01 0.02 1 0.02	4-004 < 0.05 J-006 76 0.20 5		220 2.5 36 1.2
lercury by CVAAS lethod: EPA 7471A/EPA 245 Internal Mercury letals in Soil - Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Internal Barium Beryllium Boron Cadmium Chromium	ref.: ME-CA-[ENV]SPE µg/g ref.: ME-CA-[ENV]SPI µg/g µg/g µg/g µg/g µg/g	0.05 -LAK-AN 0.01 0.02 1 0.02 0.5	-004 < 0.05 J-005 76 0.20 5 0.26 8.9		220 2.5 36 1.2
letroury by CVAAS lethod: EPA 7471A/EPA 245 Internal Mercury letals in Soil - Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Internal Barium Beryllium Boron Cadmium Chromium Cobalt	ref.: ME-CA-[ENV]SPE	0.05 -LAK-AN 0.01 0.02 1 0.02 0.5 0.01	7-004 < 0.05 76 0.20 5 0.26 8,9 6.1		220 2.5 36 1.2 70
lercury by CVAAS lethod: EPA 7471A/EPA 245 Internal Mercury letals in Soll - Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Internal Barium Beryllium Boron Cadmium Chromium Cobalt Copper	ref.: ME-CA-[ENV]SPE µ9/9 ref.: ME-CA-[ENV]SPI µ9/9 µ9/9 µ9/9 µ9/9 µ9/9 µ9/9	0.05 -LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1	4-004 < 0.05 76 0.20 5 0.26 8.9 6.1 46		220 2.5 36 1.2 70 21 92
letroury by CVAAS lethod: EPA 7471A/EPA 245 Internal Mercury letals in Soll - Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Internal Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead	ref.: ME-CA-[ENV]SPE µ9/9 ref.: ME-CA-[ENV]SP µ9/9 µ9/9 µ9/9 µ9/9 µ9/9 µ9/9 µ9/9 µ9/9	0.05 -LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1	4-004 < 0.05 76 0.20 5 0.26 8.9 6.1 46		0.27 220 2.5 36 1.2 70 21 92 120
letroury by CVAAS lethod: EPA 7471A/EPA 245 Internal Mercury letals in Soil - Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Internal Barium Beryllium Boron Cadmium Chromium Chromium Coball Copper Lead Molybdenum	ref.: ME-CA-[ENV]SPE	0.05 LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1	-004 < 0.05 76 0.20 5 0.26 8.9 6.1 46 19 0.8		0.27 220 2.5 36 1.2 70 21 92 120 2
letroury by CVAAS lethod: EPA 7471A/EPA 245 Internal Mercury letals in Soil - Aqua-regia/iCP-MS lethod: EPA 3050/EPA 200.8 Internal Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel	ref.: ME-CA-[ENV]SPE	0.05 LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1	7-004 < 0.05 76 0.20 5 0.26 8.9 6.1 46 19 0.8 13		220 2.5 36 1.2 70 21 92 120 2
letroury by CVAAS lethod: EPA 7471A/EPA 245 Internal Mercury letals in Soil - Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Internal Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver	ref.: ME-CA-[ENV]SPE pg/g ref.: ME-CA-[ENV]SPI pg/g 0.05 -LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.1 0.01	4-004 < 0.05 76 0.20 5 0.26 8,9 6.1 46 19 0.8 13 0.04		0.27 220 2.5 36 1.2 70 21 92 120 2 82 0.5	
letroury by CVAAS lethod: EPA 7471A/EPA 245 Internal Mercury letals in Soil - Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Internal Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium Uranium	ref.: ME-CA-[ENV]SPE µ9/9 ref.: ME-CA-[ENV]SPI µ9/9	0.05 LAK-AN 0.05 -LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.1 0.01 0.02 0.002	4-004 < 0.05 76 0.20 5 0.26 8.9 6.1 46 19 0.8 13 0.04 0.11		0.27 220 2.5 36 1.2 70 21 92 120 2 82 0.5
letroury by CVAAS lethod: EPA 7471A/EPA 245 Internal Mercury letals in Soil ~ Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Internal Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium Uranium Vanadium	ref.: ME-CA-[ENV]SPE	E-LAK-AN 0.05 E-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.01 0.02 0.02 0.3	7-004 < 0.05 76 0.20 5 0.26 8.9 6.1 46 19 0.8 13 0.04 0.11 0.37 13		0.27 220 2.5 36 1.2 70 21 92 120 2 82 0,5 1 2.5
letroury by CVAAS lethod: EPA 7471A/EPA 245 Internal Mercury letals in Soil - Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Internal Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium Uranium	ref.: ME-CA-[ENV]SPE µ9/9 ref.: ME-CA-[ENV]SPI µ9/9	0.05 LAK-AN 0.05 -LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.1 0.01 0.02 0.002	-004 < 0.05 76 0.20 5 0.26 8.9 6.1 46 19 0.8 13 0.04 0.11 0.37		220 2.5 36 1.2 70 21 92 120 2 82 0.5 1 2.5

RESULTS

	Sample	Number	20	21	
		le Name	Dup 2	TP5/3	
		le Matrix	Soit	Soil	
		npled By	Vincent	Vincent	
	Sam	ple Date	14/07/2016	14/07/2016	
Parameter	Units	RL	Result	Result	L1
Vetals in Soil - Aqua-regia/ICP-MS (c	antinuad)				REG153 / SOIL / COARSE - TABLE 1 - Residential/Parkland - UNDEFINE
Method: EPA 3050/EPA 200.8 Inter		DE LAM A	u nos		
Selenium		0.7	21		1.5
Selenium	µg/g	0.7	41		
Molsture					
Jethod: CCME Tier 1 [Internal ref.: I	ME-CA-[ENV]GC-LAK-A	N-010			
Moisture Content	%		1.8	16.8	
	%		1.8	16.8	
H		001	1.8	16.8	
PH		0.05	1.8 8.03	16.8 7.46	
oH Method: SM 4500 Internal ref.: ME-t pH	CA-[ENV]EWL-LAK-AN-				
oH Method: SM 4500 Internal ref.: ME-t pH Sodium adsorption ratio (SAR)	CA-[ENV]EWL-LAK-AN- no unit	0.05	8.03		
oH Method: SM 4500 Internal ref.: ME-t pH Sodium adsorption ratio (SAR)	CA-[ENV]EWL-LAK-AN- no unit	0.05	8.03		2.4
oH Method: SM 4500 Internal ref.: ME-ref. pH Sodium adsorption ratio (SAR) Method: MOE 4696e01/EPA 6010 In	CA-[ENV]EWL-LAK-AN- no unit nternal ref.: ME-CA-[ENV	0.05 /JARD-LAI	8.03 K-AN-021	7.46	2.4
oH Method: SM 4500 Internal ref.: ME-t pH Sodium adsorption ratio (SAR) Method: MOE 4696e01/EPA 6010 Internal ref.: ME-t Sodium Adsorption Ratio	CA-[ENV]EWL-LAK-AN- no unit nternal ref.: ME-CA-[ENV	0.05 /JARD-LAI	8.03 K-AN-021	7.46	2.4
oH Method: SM 4500 Internal ref.: ME-repH Sodium adsorption ratio (SAR) Method: MOE 4696e01/EPA 6010 In	CA-[ENV]EWL-LAK-AN- no unit nternal ref.: ME-CA-[ENV	0.05 //ARD-LAI 0.01	8.03 K-AN-021	7.46	2.4

20160721 14 / 30

EXCEEDANCE SUMMARY

				REG153 / SOIL /
				COARSE - TABLE
				1 -
				Residential/Parklan
				d - UNDEFINED
arameter	Method	Units	Result	L1
elenium	EPA 3050/EPA 200 ₄ 8	μg/g	2.1	1.50
ead	EPA 3050/EPA 200.8	µg/g	240	120
hromium VI	EPA218.6/EPA3060A	ha\a	0.8	0.66
elenium	EPA 3050/EPA 200.8	µg/g	2.1	1.50
ead	EPA 3050/EPA 200.8	µg/g	1400	120
lolybdenum	EPA 3050/EPA 200.8	µg/g	2.5	2
hromium VI	EPA218.6/EPA3060A	h8/a	2.2	0.66
yanide	SM 4500	µg/g	0.07	0.05

20160721 15 / 30

HOLDING TIME SUMMARY

20160721

HOLDING TIME SUMMARY					-		*	
Sample Name	QC Batch Reference	Sample Number	Sampled	Received	Extracted/ Prepared	Analysed	Holding Time	Approved
Anions by IC								
Method: EPA300/MA300-for	is1.3 Internal ref.: ME-CA-[E	NVJIC-LA	K-AN-001					
BH1/3	DIO0286-JUL16	8	07/14/2016	07/15/2016	07/19/2016	07/19/2016	08/13/2016	07/21/2016
BH2/2	DIO0286-JUL16	10	07/14/2016	07/15/2016	07/19/2016	07/19/2016	08/13/2016	07/21/2016
BH3/5	DIO0286-JUL 16	12	07/14/2016	07/15/2016	07/19/2016	07/19/2016	08/13/2016	07/21/2016
TP1	DIO0286-JUL16	15	07/14/2016	07/15/2016	07/19/2016	07/19/2016	08/13/2016	07/21/2016
TP2	DIO0286-JUL16	16	07/14/2016	07/15/2016	07/19/2016	07/19/2016	08/13/2016	07/21/2016
TP3	DIO0286-JUL16	17	07/14/2016	07/15/2016	07/19/2016	07/19/2016	08/13/2016	07/21/2016
TP4/2	DIO0286-JUL16	18	07/14/2016	07/15/2016	07/19/2016	07/19/2016	08/13/2016	07/21/2016
TP5/2	DIO0286-JUL16	19	07/14/2016	07/15/2016	07/19/2016	07/19/2016	08/13/2016	07/21/2016
Dup 2	DIO0286-JUL16	20	07/14/2016	07/15/2016	07/19/2016	07/19/2016	08/13/2016	07/21/2016
Conductivity								
Method: EPA 6010/SM 2510	Internal ref.: ME-CA-[ENV]	EWL-LAK-	AN-008					
BH1/3	EWL0254-JUL16	8	07/14/2016	07/15/2016	07/19/2016	07/19/2016	08/13/2016	07/20/2016
BH2/2	EWL0254-JUL16	10	07/14/2016	07/15/2016	07/19/2016	07/19/2016	08/13/2016	07/20/2016
BH3/5	EWL0254-JUL16	12	07/14/2016	07/15/2016	07/19/2016	07/19/2016	08/13/2016	07/20/2016
TP1	EWL0254-JUL16	15	07/14/2016	07/15/2016	07/19/2016	07/19/2016	08/13/2016	07/20/2016
TP2	EWL0254-JUL16	16	07/14/2016	07/15/2016	07/19/2016	07/19/2016	08/13/2016	07/20/2016
TP3	EWL0254-JUL16	17	07/14/2016	07/15/2016	07/19/2016	07/19/2016	08/13/2016	07/20/2016
TP4/2	EWL0254-JUL16	18	07/14/2016	07/15/2016	07/19/2016	07/19/2016	08/13/2016	07/20/2016
TP5/2	EWL0254-JUL16	19	07/14/2016	07/15/2016	07/19/2016	07/19/2016	08/13/2016	07/20/2016
Dup 2	EWL0254-JUL16	20	07/14/2016	07/15/2016	07/19/2016	07/19/2016	08/13/2016	07/20/2016
Cyanide by SFA								
,	ref.: ME-CA-[ENV]SFA-LAK-/	N-005						
BH1/3	SKA5035-JUL16	8	07/14/2016	07/15/2016	07/18/2016	07/19/2016	07/28/2016	07/24/2046
BH2/2	SKA5035-JUL16	10	07/14/2016		07/18/2016	07/19/2016		07/21/2016
BH3/5	SKA5035-JUL16	12	07/14/2016	07/15/2016	07/18/2016	07/19/2016	07/28/2016	07/21/2016
TP1	SKA5031-JUL16	15	07/14/2016	07/15/2016	07/18/2016	07/19/2016	07/28/2016 07/28/2016	07/21/2016 07/21/2016
TP2	SKA5031-JUL16	16	07/14/2016	07/15/2016	07/18/2016	07/19/2016		
TP3	SKA5035-JUL16	17	07/14/2016	07/15/2016	07/18/2016		07/28/2016	07/21/2016
TP4/2	SKA5035-JUL16	18	07/14/2016	07/15/2016	07/18/2016	07/19/2016 07/19/2016	07/28/2016	07/21/2016
TP5/2	SKA5031-JUL16	19	07/14/2016	07/15/2016	07/18/2016	07/19/2016	07/28/2016	07/21/2016
Dup 2	SKA5035-JUL16	20	07/14/2016	07/15/2016	07/18/2016	07/19/2016	07/28/2016	07/21/2016 07/21/2016
	010100000000000000000000000000000000000	20	0771472010	0111312010	017 10/2010	0771972010	0772072010	0772 1720 10
Hexavalent Chromium by IC								
vi∌thod: EPA218.6/EPA3060	IA Internal ref.: ME-CA-[EN\	/JIC-LAK-/	80G-NA					
BH1/3	DIO0302-JUL16	8	07/14/2016	07/15/2016	07/19/2016	07/20/2016	08/13/2016	07/21/2016
BH2/2	DIO0302-JUL16	10	07/14/2016	07/15/2016	07/19/2016	07/20/2016	08/13/2016	07/21/2016
BH3/5	DIO0302-JUL16	12	07/14/2016	07/15/2016	07/19/2016	07/20/2016	08/13/2016	07/21/2016
TP1	DIO0302-JUL16	15	07/14/2016	07/15/2016	07/19/2016	07/20/2016	08/13/2016	07/21/2016

16/30

HOLDING TIME SUMMARY

	QC Batch Reference	Sample Number	Sampled	Received	Extracted/ Prepared	Analysed	Holding Time	Approved
lexavalent Chromium by	IC (continued)						35	
Viethod: EPA218.6/EPA30	060A Internal ref.: ME-CA-[EN\	/JIC-LAK-	AN-008					
TP2	DIO0302-JUL16	16	07/14/2016	07/15/2016	07/19/2016	07/20/2016	08/13/2016	07/21/201
TP3	DIO0302-JUL16	17	07/14/2016	07/15/2016	07/19/2016	07/20/2016	08/13/2016	07/21/201
TP4/2	DIO0302-JUL16	18	07/14/2016	07/15/2016	07/19/2016	07/20/2016	08/13/2016	07/21/201
TP5/2	DIO0302-JUL16	19	07/14/2016	07/15/2016	07/19/2016	07/20/2016	08/13/2016	07/21/201
Dup 2	DIO0302-JUL16	20	07/14/2016	07/15/2016	07/19/2016	07/20/2016	08/13/2016	07/21/201
Mercury by CVAAS								
	245 Internal ref.; ME-CA-[ENV	JSPE-LAK	C-AN-004					
3H1/3	EHG0023-JUL16	8	07/14/2016	07/15/2016	07/18/2016	07/19/2016	08/11/2016	07/19/201
3H2/2	EHG0023-JUL16	10	07/14/2016	07/15/2016	07/18/2016	07/19/2016	08/11/2016	07/19/201
3H3/5	EHG0023-JUL16	12	07/14/2016	07/15/2016	07/18/2016	07/19/2016	08/11/2016	07/19/201
TP1	EHG0023-JUL16	15	07/14/2016	07/15/2016	07/18/2016	07/19/2016	08/11/2016	07/19/201
TP2	EHG0023-JUL16	16	07/14/2016	07/15/2016	07/18/2016	07/19/2016	08/11/2016	07/19/201
ГР3	EHG0023-JUL16	17	07/14/2016	07/15/2016	07/18/2016	07/19/2016	08/11/2016	07/19/201
TP4/2	EHG0023-JUL16	18	07/14/2016	07/15/2016	07/18/2016	07/19/2016	08/11/2016	07/19/201
ΓP5/2	EHG0023-JUL16	19	07/14/2016	07/15/2016	07/18/2016	07/19/2016	08/11/2016	07/19/201
Dup 2	EHG0023-JUL16	20	07/14/2016	07/15/2016	07/18/2016	07/19/2016	08/11/2016	07/19/201
	a/ICP-MS 100 8 I Internal ref · MF-CA-IF-NN	/ISPE-I AI	<-AN-005					
/lethod: EPA 3050/EPA 2	00.8 Internal ref.: ME-CA-[ENV	/JSPE-LA!	C-AN-005 07/14/2016	07/15/2016	07/18/2016	07/19/2016	01/10/2017	07/20/201
Vethod: EPA 3050/EPA 2 3H1/3	100.8 Internal ref.: ME-CA-[ENV	To the second	-	07/15/2016 07/15/2016	07/18/2016 07/18/2016	07/19/2016 07/19/2016	01/10/2017 01/10/2017	
Method: EPA 3050/EPA 2 3H1/3 3H2/2	00.8 Internal ref.: ME-CA-[EN\ EMS0071-JUL16	8	07/14/2016					07/20/201
Method: EPA 3050/EPA 2 3H1/3 3H2/2 3H3/5	00.8 Internal ref.: ME-CA-[EN\ EMS0071-JUL16 EMS0071-JUL16	8 10	07/14/2016 07/14/2016	07/15/2016	07/18/2016	07/19/2016	01/10/2017	07/20/201
Method: EPA 3050/EPA 2 3H1/3 3H2/2 3H3/5 TP1	EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16	8 10 12	07/14/2016 07/14/2016 07/14/2016	07/15/2016 07/15/2016	07/18/2016 07/18/2016	07/19/2016 07/19/2016	01/10/2017 01/10/2017	07/20/201 07/20/201 07/20/201
Method: EPA 3050/EPA 2 3H1/3 3H2/2 3H3/5 IP1	00.8 Internal ref.: ME-CA-[EN\ EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16	8 10 12 15	07/14/2016 07/14/2016 07/14/2016 07/14/2016	07/15/2016 07/15/2016 07/15/2016	07/18/2016 07/18/2016 07/18/2016	07/19/2016 07/19/2016 07/19/2016	01/10/2017 01/10/2017 01/10/2017	07/20/201 07/20/201 07/20/201 07/20/201
Method: EPA 3050/EPA 2 BH1/3 BH2/2 BH3/5 TP1 TP2	EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16	8 10 12 15 16	07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016	07/15/2016 07/15/2016 07/15/2016 07/15/2016	07/18/2016 07/18/2016 07/18/2016 07/18/2016	07/19/2016 07/19/2016 07/19/2016 07/19/2016	01/10/2017 01/10/2017 01/10/2017 01/10/2017	07/20/201 07/20/201 07/20/201 07/20/201
Method: EPA 3050/EPA 2 9H1/3 9H2/2 3H3/5 IP1 IP2 IP3 IP4/2	EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16	8 10 12 15 16	07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016	07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016	07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016	07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016	01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017	07/20/201 07/20/201 07/20/201 07/20/201 07/20/201
Method: EPA 3050/EPA 2 3H1/3 3H2/2 3H3/5 IP1 IP2 IP3 IP4/2	EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16	8 10 12 15 16 17	07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016	07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016	07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016	07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016	01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017	07/20/201 07/20/201 07/20/201 07/20/201 07/20/201 07/20/201
Method: EPA 3050/EPA 2 9H1/3 9H2/2 3H3/5 IP1 IP2 IP3 IP4/2 IP5/2 Dup 2	EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16	8 10 12 15 16 17 18 19	07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016	07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016	07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016	07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016	01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017	07/20/201 07/20/201 07/20/201 07/20/201 07/20/201 07/20/201
Method: EPA 3050/EPA 2 3H1/3 3H2/2 3H3/5 IP1 IP2 IP3 IP4/2 IP5/2 Dup 2	EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16	8 10 12 15 16 17 18 19 20	07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016	07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016	07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016	07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016	01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017	07/20/201 07/20/201 07/20/201 07/20/201 07/20/201 07/20/201 07/20/201
Method: EPA 3050/EPA 2 3H1/3 3H2/2 3H3/5 TP1 TP2 TP3 TP4/2 TP5/2 Dup 2 Moisture Method: CCME Tier 1 In	EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0083-JUL16	8 10 12 15 16 17 18 19 20	07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016	07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016	07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016	07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016	01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017	07/20/201 07/20/201 07/20/201 07/20/201 07/20/201 07/20/201
Method: EPA 3050/EPA 2 0H1/3 0H2/2 0H3/5 0P1 P2 P3 1P4/2 P5/2 dup 2 Soliature Method: CCME Tier 1 In	EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0083-JUL16 EMS0083-JUL16	8 10 12 15 16 17 18 19 20	07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016	07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016	07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016	07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016	01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017	07/20/2010 07/20/2010 07/20/2010 07/20/2010 07/20/2010 07/20/2010 07/20/2010 07/20/2010
Aethod: EPA 3050/EPA 2 3H1/3 3H2/2 3H3/5 P1 P2 P3 P4/2 P5/2 Oup 2 Solisture Sethod: CCME Tier 1 In	EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0083-JUL16 EMS0083-JUL16 EMS0083-JUL16	8 10 12 15 16 17 18 19 20	07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016	07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016	07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016	07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016	01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017	07/20/201 07/20/201 07/20/201 07/20/201 07/20/201 07/20/201 07/20/201
Alethod: EPA 3050/EPA 2 3H1/3 3H2/2 3H3/5 TP1 TP2 TP3 TP4/2 TP5/2 Dup 2 dethod: CCME Tier 1 In 3H1/3 3H1/5	EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0083-JUL16 EMS0083-JUL16 EMS0083-JUL16 EMS0083-JUL16 GCM0160-JUL16	8 10 12 15 16 17 18 19 20 <-AN-010 8	07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016	07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016	07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016	07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016	01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017	07/20/201 07/20/201 07/20/201 07/20/201 07/20/201 07/20/201 07/20/201 07/19/201
Aethod: EPA 3050/EPA 2 3H1/3 3H2/2 3H3/5 TP1 TP2 TP3 TP4/2 TP5/2 Dup 2 Anoisture Aethod: CCME Tier 1 In 8H1/3 3H1/5 3H2/2	EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0083-JUL16 EMS0083-JUL16 EMS0083-JUL16 GCM0160-JUL16 GCM0160-JUL16	8 10 12 15 16 17 18 19 20 <-AN-010 8 9	07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016	07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016	07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016	07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016	01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017	07/20/20: 07/20/20: 07/20/20: 07/20/20: 07/20/20: 07/20/20: 07/20/20: 07/20/20: 07/19/20: 07/19/20: 07/19/20:
Alethod: EPA 3050/EPA 2 3H1/3 3H2/2 3H3/5 TP1 TP2 TP3 TP4/2 TP5/2 Dup 2 Alethod: CCME Tier 1 In 3H1/3 3H1/5 3H2/2 3H3/5	EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0083-JUL16 EMS0083-JUL16 EMS0083-JUL16 GCM0160-JUL16 GCM0160-JUL16 GCM0160-JUL16	8 10 12 15 16 17 18 19 20 <-AN-010 8 9 10	07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016	07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016	07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016	07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016	01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2016 09/12/2016 09/12/2016	07/20/2010 07/20/2010 07/20/2010 07/20/2010 07/20/2010 07/20/2010 07/20/2010 07/19/2010 07/19/2010
Alethod: EPA 3050/EPA 2 3H1/3 3H2/2 3H3/5 TP1 TP2 TP3 TP4/2 TP5/2 Dup 2 Alethod: CCME Tier 1 In 3H1/3 3H1/5 3H2/2 3H2/8 3H3/5	EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0083-JUL16 EMS0083-JUL16 EMS0083-JUL16 GCM0160-JUL16 GCM0160-JUL16 GCM0160-JUL16 GCM0160-JUL16	8 10 12 15 16 17 18 19 20 AN-010 8 9 10 11	07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016	07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016	07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016	07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016	01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2016 09/12/2016 09/12/2016 09/12/2016	07/20/20:0 07/20/20:0 07/20/20:0 07/20/20:0 07/20/20:0 07/20/20:0 07/19/20:0 07/19/20:0 07/19/20:0 07/19/20:0 07/19/20:0 07/19/20:0
Method: EPA 3050/EPA 2 BH1/3 BH2/2 BH3/5 IP1 IP2 IP3 IP4/2 IP5/2 Oup 2	EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0071-JUL16 EMS0083-JUL16 EMS0083-JUL16 EMS0083-JUL16 GCM0160-JUL16 GCM0160-JUL16 GCM0160-JUL16 GCM0160-JUL16 GCM0160-JUL16	8 10 12 15 16 17 18 19 20 <-AN-010 8 9 10 11 12 13	07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016 07/14/2016	07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016 07/15/2016	07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016 07/18/2016	07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016 07/19/2016	01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2017 01/10/2016 09/12/2016 09/12/2016 09/12/2016 09/12/2016	07/20/20: 07/20/20: 07/20/20: 07/20/20: 07/20/20: 07/20/20: 07/20/20: 07/20/20: 07/19/20: 07/19/20: 07/19/20: 07/19/20: 07/19/20: 07/19/20:

HOLDING TIME SUMMARY

Reference	Sample Number	Sampled	Received	Extracted/ Prepared	Analysed	Holding Time	Approved
ef.: ME-CA-[ENV]GC-LAI	K-AN-010						
GCM0160-JUL16	16	07/14/2016	07/15/2016	07/18/2016	07/19/2016	09/12/2016	07/19/2016
GCM0160-JUL16	17	07/14/2016	07/15/2016	07/18/2016	07/19/2016	09/12/2016	07/19/2016
GCM0160-JUL16	18	07/14/2016	07/15/2016	07/18/2016	07/19/2016	09/12/2016	07/19/2016
GCM0160-JUL16	19	07/14/2016	07/15/2016	07/18/2016	07/19/2016	09/12/2016	07/19/2016
GCM0160-JUL16	20	07/14/2016	07/15/2016	07/18/2016	07/19/2016	09/12/2016	07/19/2016
GCM0160-JUL16	21	07/14/2016	07/15/2016	07/18/2016	07/19/2016	09/12/2016	07/19/2016
of.: ME-CA-[ENV]GC-LAI	K-AN-010						
GCM0159-JUL16	9	07/14/2016	07/15/2016	07/18/2016	07/19/2016	07/28/2016	07/20/2016
GCM0159-JUL16	11	07/14/2016	07/15/2016	07/18/2016	07/19/2016	07/28/2016	07/20/2016
GCM0159-JUL16	13	07/14/2016	07/15/2016	07/18/2016	07/19/2016	07/28/2016	07/20/2016
Y.: ME-CA-[ENV]GC-LAI	<-AN-010						
GCM0155-JUL16	9	07/14/2016	07/15/2016	07/18/2016	07/19/2016	07/28/2016	07/21/2016
GCM0155-JUL16	11	07/14/2016	07/15/2016	07/18/2016	07/19/2016	07/28/2016	07/21/2016
GCM0155-JUL16	13	07/14/2016	07/15/2016	07/18/2016	07/19/2016	07/28/2016	07/21/2016
ME-CA-JENVJEWL-LAK-A	AN-001						
ARD0048-JUL 16	В	07/14/2016	07/15/2016	07/18/2016	07/18/2016	08/13/2016	07/19/2016
							07/19/2016
							07/19/2016
	15	07/14/2016					07/19/2016
ARD0048-JUL16	16	07/14/2016	07/15/2016	07/18/2016	07/18/2016	08/13/2016	07/19/2016
ARD0048-JUL16	17	07/14/2016	07/15/2016	07/18/2016	07/18/2016	08/13/2016	07/19/2016
ARD0048-JUL16	18	07/14/2016	07/15/2016	07/18/2016	07/18/2016	08/13/2016	07/19/2016
ARD0048-JUL16	19	07/14/2016	07/15/2016	07/18/2016	07/18/2016	08/13/2016	07/19/2016
ARD0048-JUL16	20	07/14/2016	07/15/2016	07/18/2016	07/18/2016	08/13/2016	07/19/2016
ARD0048-JUL16	21	07/14/2016	07/15/2016	07/18/2016	07/18/2016	08/13/2016	07/19/2016
Internal ref.: ME-CA-[ENVJARO	LAK-AN-021					
	8	07/14/2016	07/15/2016	07/20/2016	07/20/2016	01/10/2017	07/20/2016
NA	10	07/14/2016	07/15/2016	07/20/2016	07/20/2016	01/10/2017	07/20/2016
NA	12	07/14/2016	07/15/2016	07/20/2016	07/20/2016	01/10/2017	07/20/2016
	15	07/14/2016	07/15/2016	07/20/2016	07/20/2016	01/10/2017	07/20/2016
	16	07/14/2016	07/15/2016	07/20/2016	07/20/2016	01/10/2017	07/20/2016
	GCM0160-JUL16 GCM0160-JUL16 GCM0160-JUL16 GCM0160-JUL16 GCM0160-JUL16 GCM0160-JUL16 GCM0150-JUL16 GCM0159-JUL16 GCM0159-JUL16 GCM0159-JUL16 GCM0155-JUL16 GCM0155-JUL16 GCM0155-JUL16 ARD0048-JUL16	Ef.: ME-CA-[ENV]GC-LAK-AN-010 GCM0160-JUL16 16 GCM0160-JUL16 18 GCM0160-JUL16 19 GCM0160-JUL16 20 GCM0160-JUL16 21 SF.: ME-CA-[ENV]GC-LAK-AN-010 GCM0159-JUL16 9 GCM0159-JUL16 11 GCM0159-JUL16 13 SF.: ME-CA-[ENV]GC-LAK-AN-010 ACM0159-JUL16 13 SF.: ME-CA-[ENV]GC-LAK-AN-010 ACM0159-JUL16 13 SF.: ME-CA-[ENV]GC-LAK-AN-010 ACM0155-JUL16 11 ACM0155-JUL16 11 ACM0155-JUL16 11 ACM0148-JUL16 15 ARD0048-JUL16 16 ARD0048-JUL16 15 ARD0048-JUL16 16 ARD0048-JUL16 17 ARD0048-JUL16 18 ARD0048-JUL16 19 ARD0048-JUL16 20 ARD0048-JUL16 20 ARD0048-JUL16 21 Internal ref.: ME-CA-[ENV]ARD 8 NA 10 NA 10 NA 12	ef.: ME-CA-[ENV]GC-LAK-AN-010 GCM0160-JUL16 16 07/14/2016 GCM0160-JUL16 18 07/14/2016 GCM0160-JUL16 19 07/14/2016 GCM0160-JUL16 20 07/14/2016 GCM0160-JUL16 21 07/14/2016 GCM0150-JUL16 9 07/14/2016 GCM0159-JUL16 11 07/14/2016 GCM0159-JUL16 13 07/14/2016 GCM0159-JUL16 11 07/14/2016 GCM0159-JUL16 13 07/14/2016 GCM0159-JUL16 13 07/14/2016 GCM0155-JUL16 9 07/14/2016 GCM0155-JUL16 10 07/14/2016 GCM0155-JUL16 10 07/14/2016 GCM0155-JUL16 11 07/14/2016 ARD0048-JUL16 10 07/14/2016 ARD0048-JUL16 10 07/14/2016 ARD0048-JUL16 10 07/14/2016 ARD0048-JUL16 10 07/14/2016 ARD0048-JUL16 16 07/14/2016 ARD0048-JUL16 17 07/14/2016 ARD0048-JUL16 18 07/14/2016 ARD0048-JUL16 18 07/14/2016 ARD0048-JUL16 19 07/14/2016 ARD0048-JUL16 19 07/14/2016 ARD0048-JUL16 19 07/14/2016 ARD0048-JUL16 19 07/14/2016 ARD0048-JUL16 19 07/14/2016 ARD0048-JUL16 19 07/14/2016 ARD0048-JUL16 20 07/14/2016 ARD0048-JUL16 21 07/14/2016 ARD0048-JUL16 21 07/14/2016 ARD0048-JUL16 21 07/14/2016 ARD0048-JUL16 21 07/14/2016 ARD0048-JUL16 21 07/14/2016 ARD0048-JUL16 21 07/14/2016 ARD0048-JUL16 21 07/14/2016 ARD0048-JUL16 21 07/14/2016 ARD0048-JUL16 21 07/14/2016 ARD0048-JUL16 21 07/14/2016 ARD0048-JUL16 21 07/14/2016 ARD0048-JUL16 21 07/14/2016 ARD0048-JUL16 21 07/14/2016	ef.: ME-CA-[ENV]GC-LAK-AN-010 GCM0160-JUL16 16 07/14/2016 07/15/2016 GCM0160-JUL16 18 07/14/2016 07/15/2016 GCM0160-JUL16 19 07/14/2016 07/15/2016 GCM0160-JUL16 20 07/14/2016 07/15/2016 GCM0160-JUL16 21 07/14/2016 07/15/2016 GCM0150-JUL16 21 07/14/2016 07/15/2016 GCM0159-JUL16 11 07/14/2016 07/15/2016 GCM0159-JUL16 11 07/14/2016 07/15/2016 GCM0159-JUL16 13 07/14/2016 07/15/2016 GCM0159-JUL16 13 07/14/2016 07/15/2016 GCM0159-JUL16 13 07/14/2016 07/15/2016 GCM0159-JUL16 13 07/14/2016 07/15/2016 GCM0155-JUL16 11 07/14/2016 07/15/2016 GCM0155-JUL16 11 07/14/2016 07/15/2016 GCM0155-JUL16 10 07/14/2016 07/15/2016 GCM0155-JUL16 10 07/14/2016 07/15/2016 ARD0048-JUL16 10 07/14/2016 07/15/2016 ARD0048-JUL16 10 07/14/2016 07/15/2016 ARD0048-JUL16 15 07/14/2016 07/15/2016 ARD0048-JUL16 16 07/14/2016 07/15/2016 ARD0048-JUL16 17 07/14/2016 07/15/2016 ARD0048-JUL16 18 07/14/2016 07/15/2016 ARD0048-JUL16 19 07/14/2016 07/15/2016 ARD0048-JUL16 19 07/14/2016 07/15/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016	SET: ME-CA-[ENV]GC-LAK-AN-010 GCM0160-JUL16 16 07/14/2016 07/15/2016 07/18/2016 GCM0160-JUL16 17 07/14/2016 07/15/2016 07/18/2016 GCM0160-JUL16 19 07/14/2016 07/15/2016 07/18/2016 GCM0160-JUL16 20 07/14/2016 07/15/2016 07/18/2016 GCM0160-JUL16 21 07/14/2016 07/15/2016 07/18/2016 GCM0160-JUL16 21 07/14/2016 07/15/2016 07/18/2016 GCM0150-JUL16 9 07/14/2016 07/15/2016 07/18/2016 GCM0159-JUL16 9 07/14/2016 07/15/2016 07/18/2016 GCM0159-JUL16 11 07/14/2016 07/15/2016 07/18/2016 GCM0159-JUL16 13 07/14/2016 07/15/2016 07/18/2016 GCM0159-JUL16 13 07/14/2016 07/15/2016 07/18/2016 GCM0159-JUL16 11 07/14/2016 07/15/2016 07/18/2016 GCM0159-JUL16 10 07/14/2016 07/15/2016 07/18/2016 GCM0159-JUL16 10 07/14/2016 07/15/2016 07/18/2016 GCM0159-JUL16 10 07/14/2016 07/15/2016 07/18/2016 GCM0159-JUL16 10 07/14/2016 07/15/2016 07/18/2016 GCM0159-JUL16 17 07/14/2016 07/15/2016 07/18/2016 ARD0048-JUL16 10 07/14/2016 07/15/2016 07/18/2016 ARD0048-JUL16 15 07/14/2016 07/15/2016 07/18/2016 ARD0048-JUL16 16 07/14/2016 07/15/2016 07/18/2016 ARD0048-JUL16 17 07/14/2016 07/15/2016 07/18/2016 ARD0048-JUL16 18 07/14/2016 07/15/2016 07/18/2016 ARD0048-JUL16 18 07/14/2016 07/15/2016 07/18/2016 ARD0048-JUL16 18 07/14/2016 07/15/2016 07/18/2016 ARD0048-JUL16 19 07/14/2016 07/15/2016 07/18/2016 ARD0048-JUL16 19 07/14/2016 07/15/2016 07/18/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 07/18/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 07/18/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 07/18/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 07/18/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 07/18/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 07/18/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 07/18/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 07/18/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 07/18/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 07/18/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 07/18/2016 ARD0048-JUL16 20 07/14/2016 07/15/2016 07/18/2016	### F.: ME-CA-[ENV]GC-LAK-AN-010 GCM0160-JUL16 16 07/14/2016 07/15/2016 07/18/2016 07/19/2018 GCM0160-JUL16 17 07/14/2016 07/15/2016 07/18/2016 07/19/2018 GCM0160-JUL16 19 07/14/2016 07/15/2016 07/18/2016 07/19/2016 GCM0160-JUL16 20 07/14/2016 07/15/2016 07/18/2016 07/19/2016 GCM0160-JUL16 21 07/14/2016 07/15/2016 07/18/2016 07/19/2016 GCM0160-JUL16 21 07/14/2016 07/15/2016 07/18/2016 07/19/2016 GCM0160-JUL16 9 07/14/2016 07/15/2016 07/18/2016 07/19/2016 GCM0159-JUL16 11 07/14/2016 07/15/2016 07/18/2016 07/19/2016 GCM0159-JUL16 13 07/14/2016 07/15/2016 07/18/2016 07/19/2016 GCM0159-JUL16 13 07/14/2016 07/15/2016 07/18/2016 07/19/2016 GCM0159-JUL16 13 07/14/2016 07/15/2016 07/18/2016 07/19/2016 GCM0159-JUL16 13 07/14/2016 07/15/2016 07/18/2016 07/19/2016 GCM0159-JUL16 9 07/14/2016 07/15/2016 07/18/2016 07/19/2016 GCM0159-JUL16 11 07/14/2016 07/15/2016 07/18/2016 07/19/2016 GCM0159-JUL16 13 07/14/2016 07/15/2016 07/18/2016 07/19/2016 GCM0159-JUL16 10 07/14/2016 07/15/2016 07/18/2016 07/19/2016 GCM0159-JUL16 13 07/14/2016 07/15/2016 07/18/2016 07/19/2016 GCM0159-JUL16 13 07/14/2016 07/15/2016 07/18/2016 07/19/2016 GCM0159-JUL16 13 07/14/2016 07/15/2016 07/18/2016 07/19/2016 GCM0159-JUL16 13 07/14/2016 07/15/2016 07/18/2016 07/19/2016 GCM0159-JUL16 13 07/14/2016 07/15/2016 07/18/2016 07/18/2016 ARD0048-JUL16 10 07/14/2016 07/15/2016 07/18/2016 07/18/2016 ARD0048-JUL16 15 07/14/2016 07/15/2016 07/18/2016 07/18/2016 ARD0048-JUL16 16 07/14/2016 07/15/2016 07/18/2016 07/18/2016 ARD0048-JUL16 16 07/14/2016 07/15/2016 07/18/2016 07/18/2016 ARD0048-JUL16 18 07/14/2016 07/15/2016 07/18/2016 07/18/2016 ARD0048-JUL16 18 07/14/2016 07/15/2016 07/18/2016 07/18/2016 ARD0048-JUL16 19 07/14/2016 07/15/2016 07/18/2016 07/18/2016 ARD0048-JUL16 18 07/14/2016 07/15/2016 07/18/2016 07/18/2016 ARD0048-JUL16 19 07/14/2016 07/15/2016 07/18/2016 07/18/2016 ARD0048-JUL16 19 07/14/2016 07/15/2016 07/18/2016 07/18/2016 ARD0048-JUL16 10 07/14/2016 07/15/2016 07/18/2016 07/18/2016 ARD0048-JUL16 10 07/14/2016 07	8f.: ME-CA-[ENV]GC-LAK-AN-010 GCM0160-JUL16 16 07/14/2016 07/15/2016 07/18/2016 07/19/2016 09/12/2016 GCM0160-JUL16 18 07/14/2016 07/15/2016 07/18/2016 07/19/2016 09/12/2016 GCM0160-JUL16 18 07/14/2016 07/15/2016 07/18/2016 07/19/2016 09/12/2016 GCM0160-JUL16 19 07/14/2016 07/15/2016 07/18/2016 07/19/2016 09/12/2016 GCM0160-JUL16 20 07/14/2016 07/15/2016 07/18/2016 07/19/2016 09/12/2016 GCM0160-JUL16 21 07/14/2016 07/15/2016 07/18/2016 07/19/2016 09/12/2016 GCM0150-JUL16 21 07/14/2016 07/15/2016 07/18/2016 07/19/2016 09/12/2016 GCM0159-JUL16 9 07/14/2016 07/15/2016 07/18/2016 07/19/2016 07/28/2016 GCM0159-JUL16 11 07/14/2016 07/15/2016 07/18/2016 07/19/2016 07/28/2016 GCM0159-JUL16 13 07/14/2016 07/15/2016 07/18/2016 07/19/2016 07/28/2016 GCM0159-JUL16 13 07/14/2016 07/15/2016 07/18/2016 07/19/2016 07/28/2016 GCM0159-JUL16 10 07/14/2016 07/15/2016 07/18/2016 07/19/2016 07/28/2016 GCM0159-JUL16 10 07/14/2016 07/15/2016 07/18/2016 07/19/2016 07/28/2016 GCM0159-JUL16 10 07/14/2016 07/15/2016 07/18/2016 07/19/2016 07/28/2016 GCM0159-JUL16 10 07/14/2016 07/15/2016 07/18/2016 07/19/2016 07/28/2016 GCM0159-JUL16 10 07/14/2016 07/15/2016 07/18/2016 07/19/2016 07/28/2016 GCM0159-JUL16 10 07/14/2016 07/15/2016 07/18/2016 07/19/2016 07/28/2016 GCM0159-JUL16 10 07/14/2016 07/15/2016 07/18/2016 07/18/2016 07/18/2016 GCM0159-JUL16 10 07/14/2016 07/15/2016 07/18/2016 07/18/2016 08/13/2016 ARD0048-JUL16 10 07/14/2016 07/15/2016 07/18/2016 07/18/2016 08/13/2016 ARD0048-JUL16 15 07/14/2016 07/15/2016 07/18/2016 07/18/2016 08/13/2016 ARD0048-JUL16 16 07/14/2016 07/15/2016 07/18/2016 07/18/2016 08/13/2016 ARD0048-JUL16 17 07/14/2016 07/15/2016 07/18/2016 07/18/2016 08/13/2016 ARD0048-JUL16 19 07/14/2016 07/15/2016 07/18/2016 07/18/2016 08/13/2016 ARD0048-JUL16 19 07/14/2016 07/15/2016 07/18/2016 07/18/2016 08/13/2016 ARD0048-JUL16 10 07/14/2016 07/15/2016 07/18/2016 07/18/2016 08/13/2016 ARD0048-JUL16 10 07/14/2016 07/15/2016 07/18/2016 07/18/2016 08/13/2016 ARD0048-JUL16 10 07/14/2016 07/15/2016 07/18/

20160721 18 / 30

HOLDING TIME SUMMARY

Sample Name	QC Batch Reference	Sample Number	Sampled	Received	Extracted/ Prepared	Analysed	Holding Time	Approved
Sodium adsorption ratio (SAI	R) (cantinued)							
Method: MOE 4696e01/EPA	6010 [Internal ref.: ME-CA-[ENVJARD	-LAK-AN-021					
TP4/2		18	07/14/2016	07/15/2016	07/20/2016	07/20/2016	01/10/2017	07/20/2016
TP5/2		19	07/14/2016	07/15/2016	07/20/2016	07/20/2016	01/10/2017	07/20/2016
Dup 2		20	07/14/2016	07/15/2016	07/20/2016	07/20/2016	01/10/2017	07/20/2016
Volatile Organics								
Method: EPA 5035A/5030B/6	\$260C Internal ref.: ME-CA-	[ENV]GC-	LAK-AN-004					
BH1/5	GCM0158-JUL16	9	07/14/2016	07/15/2016	07/18/2016	07/18/2016	07/28/2016	07/19/2016
BH2/8	GCM0158-JUL16	11	07/14/2016	07/15/2016	07/18/2016	07/18/2016	07/28/2016	07/19/2010
BH3/9	GCM0158-JUL16	13	07/14/2016	07/15/2016	07/18/2016	07/18/2016	07/28/2016	07/19/2016
Dup 1	GCM0158-JUL16	14	07/14/2016	07/15/2016	07/18/2016	07/18/2016	07/28/2016	07/19/2016
Water Soluble Boron								
Method: O.Reg. 153/04 Inte	emal ref.: ME-CA-[ENV] SPE-	LAK-AN-(003					
BH1/3	ESG0053-JUL16	8	07/14/2016	07/15/2016	07/18/2016	07/19/2016	01/10/2017	07/19/2016
BH2/2	ESG0053-JUL16	10	07/14/2016	07/15/2016	07/18/2016	07/19/2016	01/10/2017	07/19/2016
BH3/5	ESG0053-JUL16	12	07/14/2016	07/15/2016	07/18/2016	07/19/2016	01/10/2017	07/19/2016
TP1	ESG0053-JUL16	15	07/14/2016	07/15/2016	07/18/2016	07/19/2016	01/10/2017	07/19/2010
TP2	ESG0053-JUL16	16	07/14/2016	07/15/2016	07/18/2016	07/19/2016	01/10/2017	07/19/2016
TP3	ESG0053-JUL16	17	07/14/2016	07/15/2016	07/18/2016	07/19/2016	01/10/2017	07/19/2010
TP4/2	ESG0053-JUL16	18	07/14/2016	07/15/2016	07/18/2016	07/19/2016	01/10/2017	07/19/2016
TP5/2	ESG0053-JUL16	19	07/14/2016	07/15/2016	07/18/2016	07/19/2016	01/10/2017	07/19/2010

20160721 19 / 30

QC SUMMARY

Anions by IC

Method: EPA300/MA300-lons1,3 | Internal ref.: ME-CA-JENVIIC-LAK-AN-001

Parameter	QC batch	Units	IJ	Method	IdnQ	Duplicate	07	.CS/Spike Blank		Σ	Vatrix Spike / Ref.	نيد
	Reference			Blank	RPD	AC (%)	Spike	Recovery Limits (%)	y Limits	Spike Recovery	Recover (9	Recovery Limits (%)
						ĵ.	(%)	Low	High	(%)	Low	High
Chloride	DIO0286-JUL16	р/ви	0.40	<0.4	2	20	102	80	120	103	75	125

Conductivity

Nethod: EPA 6010/SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

	7.0											
	Reference			Blank	RPD	AC (%	Spike	Recovery Limits (%)	y Limits)	Spika Racovery	Recovery Limits (%)	y Límits
							(%)	Low	High	(%)	Low	High
Conductivity	EWL0254-JUL16	mS/cm	0.0020	0.01		10	66	011 06	110	ž		

Method: SM 4500 Internal ref: ME-CA-IENVISFA-LAK-AN-005

	Recovery Limits (%)	High	125	125
Matrix Spike / Ref.	Recover (%	Low	75	75
Ma	Spike Recovery	(%)	93	91
	Limits	High	120	120
LCS/Spike Blank	Recovery Limits (%)	Low	80	80
/SOT	Spike	(%)	89	86
Duplicate	AC	9	20	20
Dup	RPD		Q.	Q
Method	Blank		<0.05	<0.05
귎			0.050	0.050
Units			6/61	б/бл
QC batch	Reference		SKA5031-JUL16	SKA5035-JUL16
Parameter			Free Cyanide	Free Cyanide

QC SUMMARY

Hexavalent Chromium by IC

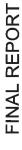
HENVICLAK-AN-008	
12	
~ «	
18.6/EPA3060	
Method: EPA2	

Parameter	QC batch	Units	굺	Method	Dut	Duplicate	27	LCS/Spike Blank		2	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC &	Spike	Recove (9	Recovery Limits (%)	Spike Recovery	Recovery Limits (%)	Limits
						(gr)	(%)	Low	High	(%)	Low	Hg.
Chromium VI	DIO0302-JUL16	<i>Б/</i> Бrl	0.20	<0.2	4	20	66	80	120	104	75	125
Medeling by CVAAS Method: EDA 7474 Aleba 24K 1 Informal 806 - 86E 20 A EDAN ROBE 1 AV AN OOA	E SAN SAN SAN SAN SAN SAN SAN SAN SAN SAN	Š										
Parameter	OC batch	Units	교	Method	Oup	Duplicate	LCS/Spik	LCS/Spike Blank		2	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC (%)	Spike Recovery (%)	Recovei (9	Recovery Limits (%) .cow High	Spike Recovery (%)	Recovery Limits (%) Law Hig	Limits High
Mercury	EHG0023-JUL16	6/6rl	0.050	<0.05	ω	50	101	80	120	68	70	130

Metals in aqueous samples - ICP-0ES

Meliod: MOE 4696601/EPA 6010 | Internal ref.: ME-CA-JENVISPE-LAK-AN-003

Parameter	QC batch	Units	귐	Method	Onb	Duplicate	27	LCS/Spike Blank		Ä	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC (%	Spike	Recovery (%)	Recovery Limits (%)	Spike Recovery	Recovery Limits (%)	y Limits
						(1)	(%)	Low	High	(%)	Low	High
SAR Calcium	ESG8010-JUL16	J/gm	0.020	<0.02	 -	20	86	80	120	06	70	130
SAR Magnesium	ESG8010-JUL16	mg/L	0:0030	<0.003	•	20	94	80	120	94	20	130
SAR Sodium	ESG8010-JUL16	mg/L	0,010	<0.01	•	20	92	80	120	96	70	130



QC SUMMARY

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-IENVISPE-LAK-AN-005

Parameter	QC batch	Units	묍	Method	Dup	Duplicate	SI	LCS/Spike Blank		Ň	Matrix Spike / Ref.	
	R efe rence			Blank	RPD	AC (%)	Spike	Recovery (%)	Recovery Limits (%)	Spike Recovery	Recovery Limits (%)	y Limits
						(_M)	Kecovery (%)	Low	High	(%)	Low	High
Silver	EMS0071-JUL16	6/6rl	0,010	<0.01	ιo	20	26	02	130	98	70	130
Arsenic	EMS0071-JUL16	в/вн	0.50	<0.5	2	20	26	70	130	66	20	130
Uranium	EMS0071-JUL16	6/6rl	0,0020	<0.002	ю	20	86	70	130	100	20	130
Vanadium	EMS0071-JUL16	₿/₿Ħ	ю	8	ო	20	26	70	130	93	70	130
Zinc	EMS0071-JUL16	6/61	0.70	2.0>	က	20	96	70	130	107	70	130
Barium	EMS0071-JUL16	6/6rl	0.010	<0.01	4	20	26	70	130	66	70	130
Beryllium	EMS0071-JUL16	₿/₿Ħ	0.020	<0.02	o	20	96	70	130	26	70	130
Boron	EMS0071-JUL16	6/6rl	-	7	10	20	105	70	130	822	70	130
Cadmium	EMS0071-JUL16	g/gu	0.020	<0.02	2	20	97	70	130	88	70	130
Cobalt	EMS0071-JUL16	6/6rl	0.010	<0.01	4	20	26	70	130	92	70	130
Сһготіип	EMS0071-JUL16	6/6rl	0.50	<0.5	17	20	86	70	130	100	70	130
Copper	EMS0071-JUL16	6/6rl	0.10	<0.1	Ω	20	86	70	130	105	70	130
Molybdenum	EMS0071-JUL16	Б/ВП	0.10	<0.1	2	20	100	70	130	104	70	130
Nickel	EMS0071-JUL16	6/61	0.10	<0.1	19	20	103	70	130	98	70	130
Lead	EMS0071-JUL16	6/6rl	0,10	<0.1	Ŋ	20	66	70	130	107	70	130
Antimony	EMS0071-JUL16	6/6rl	0.80	<0.8	Q	20	105	70	130	107	70	130
Selenium	EMS0071-JUL16	6/6rl	0.70	Z*0>	Q	20	26	70	130	66	70	130
Thallium	EMS0071-JUL16	6/61	0.020	<0.02	2	20	26	70	130	96	70	130

QC SUMMARY

Method: CCME Tier 1 | Internal ref.: ME-CA-IENVISC-LAK-AN-010 Petroleum Hydrocarbons (F1)

Parameter	QC batch	Units	럾	Method	Dup	Duplicate	21	LCS/Spike Blank		2	Matrix Spike / Ref.	
	Reference			Blank	RPD	Q (Spike	Recovery Limits (%)	very Limits (%)	Spike Recovery	Recovery Limits (%)	y Limits
						(g)	Kecovery (%)	Low	High	(%)	Low	High
CCME F1 (C6-C10)	GCM0159-JUL16	6/6rl	10	v-10	9	30	104	80	120	92	9	140
Petroleum Hydrocarbons (F2-F4)												
Method: CCME Tier 1 Internal ret: ME-CA-JENVIGG-LAK-AN-010	E-CA-TENVIGO-LAK-AN-01	0										
Parameter	QC batch	Units	교	Method	Dupl	Duplicate	CI	LCS/Spike Blank		2	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recovery Limits (%)	y Limits 6) High	Spike Recove:/ (%)	Recovery Limits (%)	y Limits

RPD	Q.	Q	Q.	
Method Blank	< 10	< 50	< 50	
굾	10	50	50	
Units	6/61	б/бл	6/6rl	
U.C batch Reference	GCM0155-JUL16	GCM0155-JUL16	GCM0155-JUL16	
Parameter	CCME F2 (C10-C16)	CCME F3 (C16-C34)	CCME F4 (C34-C50)	

High

Low

High

Low

%

140

09 09

114 114 114

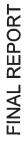
120 120

80 80

120 120

30 30 120

30

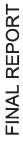

140

Nethod: SM 4500 | Internal ref.: ME-CA-IENVIEWIL-LAK-AN-001

	very Limits (%)	High	
Matrix Spike / Ref.	Recovery Limits (%)	Low	
Ms	Spike Recovery	(%)	
	/ Limits)	High	120
LCS/Spike Blank	Recovery Limits (%)	Low	80
ชา	Spike	(%)	100
Duplicate	AC (%)		20
JdnQ	RPD		0
Method	Blank		
묎			0.050
Units			no unit
QC batch	Reference		ARD0048-JUL16
Parameter			Hd

23/30

20160721


QC SUMMARY

Volatile Organics

Method: EPA 5035A/5030B/8280C | Internal ref.: ME-CA-/ENVISC-LAK-AN-004

Parameter	QC batch	Units	R	Method	Dup	Duplicate	ដ	LCS/Spike Blank		×	Matrix Spike / Ref.	
	Reference			Blank	RPD	¥ 8	Spike	Recovery (%)	Recovery Limits (%)	Spike Recovery	Recovery Limits (%)	y Limits
						(R)	(%)	Low	High	(%)	Low	High
1,1,1,2-Tetrachloroethane	GCM0158-JUL16	6/61	0.050	< 0.05	Q	50	63	09	130	9.1	20	140
1,1,1-Trichloroethane	GCM0158-JUL16	в/вн	0,050	< 0.05	Q	90	94	09	130	93	20	140
1,2-Dichloropropane	GCM0158-JUL16	6/6rl	0.050	< 0.05	QN	50	92	09	130	92	20	140
1,3-Dichlorobenzene	GCM0158-JUL16	6/6rl	0.050	< 0.05	N	50	94	09	130	06	20	140
1,4-Dichlorobenzene	GCM0158-JUL16	6/6rl	0.050	< 0.05	Q	20	93	09	130	88	20	140
Acetone	GCM0158-JUL16	6/6#	0.50	< 0.5	Q.	20	63	20	140	88	20	140
Benzene	GCM0158-JUL16	6/6rl	0.020	< 0.02	2	20	92	09	130	93	20	140
Bromodichloromethane	GCM0158-JUL16	₿/₿Ħ	0.050	< 0.05	Q	50	91	09	130	88	20	140
Bromoform	GCM0158-JUL16	6/6rl	0.050	< 0.05	Q.	20	88	09	130	81	20	140
Bromomethane	GCM0158-JUL16	B/Brl	0.050	< 0.05	Q	20	89	20	140	82	90	140
Carbon tetrachloride	GCM0158-JUL16	6/6rl	0.050	< 0,05	Q.	90	94	09	130	93	20	140
Chlorobenzene	GCM0158-JUL16	6/6rl	0.050	< 0.05	Q	20	93	09	130	92	50	140
СМогобогт	GCM0158-JUL16	6/6rl	0.050	< 0.05	Q	20	93	09	130	94	90	140
cis-1,2-Dichloroethylene	GCM0158-JUL16	6/6rl	0,050	< 0.05	Q	50	93	09	130	93	20	140
cis-1,3-dichloropropene	GCM0158-JUL16	g/gu	0.030	< 0.03	Q	90	94	09	130	88	90	140
Dibromochloromethane	GCM0158-JUL16	₽/gч	0,050	< 0.05	Q	50	91	09	130	98	20	140
Dichlorodifluoromethane	GCM0158-JUL16	6/6rl	0.050	< 0.05	Q	20	71	90	140	65	20	140
Ethylbenzene	GCM0158-JUL16	b/6rl	0.050	< 0.05	Q	50	693	09	130	85	20	140
Ethylenedibromide	GCM0158-JUL16	6/6rl	0.050	< 0.05	Q	50	91	09	130	68	20	140
n-Hexane	GCM0158-JUL16	6/6rl	0.050	< 0.05	2	50	86	09	130	87	20	140

i e

QC SUMMARY

Volatife Organics (continued)
Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA/ENV/GC-LAK-AN-004

Parameter	QC batch	Units	곱	Method	Dupl	Duplicate	ŭ	LCS/Spike Blank		2	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC 8	Spike	Recover (%)	Recovery Limits (%)	Spike Recovery	Recovery Limits (%)	y Limits
						(N)	(%)	Low	High	(%)	Low	High
m/p-xylene	GCM0158-JUL16	6/61	0.050	< 0.05	2	20	693	09	130	92	50	140
Methyl ethyl ketone	GCM0158-JUL16	₿/₿Ħ	0.50	< 0.5	Q	50	92	90	140	88	20	140
Methył isobutyl ketone	GCM0158-JUL16	6/6rl	0.50	< 0.5	Q	90	95	20	140	93	50	140
Methyl-t-butyl Ether	GCM0158-JUL16	6/6rl	0.050	< 0.05	Q	90	93	09	130	92	90	140
Methylene Chloride	GCM0158-JUL16	6/6rl	0.050	< 0.05	QN	90	93	09	130	06	20	140
o-xylene	GCM0158-JUL16	6/61	0.050	< 0.05	Q	90	91	09	130	06	50	140
Styrene	GCM0158-JUL16	Б/БП	0.050	< 0.05	Q.	50	93	09	130	91	20	140
Tetrachloroethylene	GCM0158-JUL16	6/6rl	0.050	< 0.05	QN.	20	94	09	130	93	20	140
Toluene	GCM0158-JUL16	6/6rl	0.050	< 0.05	Q	20	91	09	130	91	20	140
trans-1,2-Dichloroethylene	GCM0158-JUL16	6/6rl	0.050	< 0.05	Q	20	93	09	130	93	50	140
trans-1,3-dichloropropene	GCM0158-JUL16	6/6ri	0.030	< 0.03	Q	50	95	09	130	98	90	140
Trichloroethylene	GCM0158-JUL16	6/6rl	0.050	< 0.05	Q	20	94	09	130	66	20	140
Trichlorofluoromethane	GCM0158-JUL16	6/6rl	0.050	< 0.05	2	20	101	20	140	72	20	140
Vinyl Chloride	GCM0158-JUL16	6/6rl	0.020	< 0.02	9	20	84	90	140	84	20	140
1,1,2,2-Tetrachloroethane	GCM0158-JUL16	6/6/1	0.050	< 0.05	9	20	06	09	130	82	20	140
1,1,2-Trichloroethane	GCM0158-JUL16	6/6rl	0.050	< 0.05	9	20	91	09	130	06	90	140
1,1-Dichloroethane	GCM0158-JUL16	6/6rl	0.050	< 0.05	Q	50	93	09	130	93	20	140
1,1-Dichloroethylene	GCM0158-JUL16	6/61	0.050	< 0.05	Q	50	92	09	130	95	50	140
1,2-Dichlorobenzene	GCM0158-JUL16	6/6rl	0.050	< 0.05	Q	50	93	09	130	83	20	140
1,2-Dichloroethane	GCM0158-JUL16	6/61	0.050	< 0.05	Q	50	92	09	130	92	90	140

QC SUMMARY

Water Soluble Boron

Method: O.Red. 153/04 | Internal ref.: ME-CA-IENVI SPE-LAK-AN-003

Parameter	QC batch	Units	귎	Method	Dup	Duplicate	2	.CS/Spike Blank		Σ	Matrix Spike / Ref.	ب
	Reference			Blank	RPD	AC (%)	Spike	Recovery (%)	Recovery Limits (%)	Spike Recovery	Rесоvегу (%)	Recovery Limits (%)
							(%)	Low	High	(%)	Low	High
Water Soluble Boron	ESG0053-JUL16	6/6rl	0.50	<0.5	2	20	88	80	120	120	0,2	130

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike,

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable. Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered
- NA The sample was not analysed for this analyte
- ND Non Delect

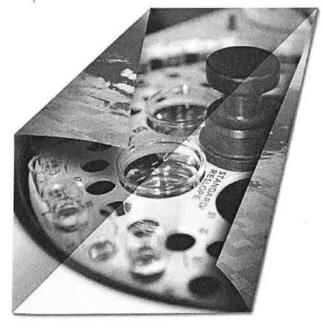
Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

20160721 27 / 30


のこの	Request for Laboratory Servi	Request for Laboratory Services and CHAIN OF CUSTODY	Z.
SGS Environmental Services	 Lakefield: 185 Concession St., Lakefield, ON K01. 2H0 London: 657 Consortium Court, London, ON, N6E 2S8 I 	- Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Toll Free: 877-747-7658 Fax: 705-652-6365 London: 657 Consortium Court, London, ON, N6E 288 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361 Web; www.ca.ses.com	Page 2 2
Received By: Rob wood	Laboratory Information Section - Lab use only	-Lab use only XXI FRIG	
Received Date (man/dd/yyyy); 7 \ 15 \ 6 (mm/dd/yy)		Cooling Agent Present X	LABLINS#
REPORT INFORMATION	INVOICE INFORMATION	PROJECT INFORMATION	ATION
Company: Sall Engineer (tel	(same as Report Information)		
Contact facile	Company:	Project # 1872-5086 F Site Location/ID;	ME KG/1 2 ralpal
Address CO Ninglet Aue	Contact:	AROUND T	REQUIRED
/// //	Address	TAT's are quoted in business days Samples received after 3pm or on	TAT's are quoted in business days (exclude statutory holidays & weekends), Samples received after 3pm or on weekends: TAT begins the next business day
Phone: 46 754 8515		RUSH TAT (Additional Charges May Apply) [] 1 Day	2 Days 3-4 Days
	Phone:	PLEASE CONFIRM RUSH FEASIBILITY WITH SCS REPRUSENTATIVE PRIOR TO SUBMISSION	SENTATIVE PRIOR TO SUBMISSION
Email: Hatter Costley it was feel	(Closes)	Specify Due Date: Rush Confirmation (f)	nation 11):
REGU	REGULATIONS	ORINKING WATER SAMPLES (POTABLE WATER FOR HUMAN CONSUMPTION) MUST BE	HUMAN CONSUMPTION) MUST BE
Regulation 153 (2011):	Other Regulations: Sewer By-Law:		R CHAIN OF CUSTODY
Table 2 IndiCom Coarse	PWQO MMFR Storm	ANALYSIS REQUESTED	
Table 3 Agri/Other Medium	CCME Other: Municipality:	s ls) VI)	
Tuble	MISA	ieta meta Cr	COMMENTS:
RECORD OF SITE CONDITION (RSC)	TYES NO	53 M dride i HWS (I 53 V	Preserved (P)
SAMPLE IDENTIFICATION	DATE TIME # OF SAMPLED BOTTLES MATRIX	PHC F1 D.Reg1! IICP & hyu D.Reg 1 Mehls	
102	S 1 meting		
2 702		\&\	
3 703		< > >	
2 134		×.	
6 D(802	V V V	×	
1 TP8/3	*	4	
10			
Observations/Comments/Special Instructions			
Sampled By (NAME): //Yucest Chory	Signature: CRC	Date: 14/87/16	(mm/dd/sy) Pink Copy - Client
Relinquished by (NANE):	Signature:	Date:	(mm/dd/55) Yellow & White Cops - SGS
Revision # 10 Date of Issue: 01 June, 2014			

SGS

SAMPLE INTEGRITY REPORT

Project Number:	8						
	ONTARIO REGI	JLATION 15	3/04				
SGS Sample ID Jul 14367.							
SGS Sample ID Jul 14367. Date / Time Sampled Jul 14116 Client Sample ID							
Client Sample ID	ALL						
Sam	ple Submission Genera	il Sample Integr	ity Violations				
Temperature >10 C upon receipt if not sampled same day							
No evidence of cooling trend initiated if sampled same day							
Chain of Custody not submitted							
Chain of Custody incomplete							
Chain of Custody not signed / dated							
Chain of Custody not a current version							
Bottles / Samples listed on CoC but not received							
Bottles / Samples received but not listed on the CoC							
Sample container received empty							
	Somple Specific Samp	11 11 11 11 11 11 11 11 11 11 11 11 11			N. Direct		
Sample received past hold time							
Incorrect preservation (including no preservation where required)			_				
Headspace present in VOC vial (aqueous)							
Sample(s) received frazen							
Bottle(s) broken or damaged in transport							
Discrepancy between sample label and chain of custody							
Analysis requirements absent / unclear							
Missing or incorrect sample label(s)							
Inappropriate sample container used							
Insufficient number of bottles received							
Insufficient sample volume							
Sample contains multiple phases							
	Sedime	_					
Groundwater samples contain visible sediment / particulate							
Groundwater contains greater than 1cm of sediment / particulate matter in bottle							
Additional Comments/Remarks:	72			0			
No issues upon receipt		Initials	_(203	_		

PF-CA-[ENV]GEN (AK AD 021 Date of Issue: 11-May-16 SGS

FINAL REPORT

CA15254-AUG16 R

1512-S086E

Prepared for

Soil Engineers Ltd.

First Page

CLIENT DETAILS	S	LABORATORY DETAIL	S
Client	Soil Engineers Ltd.	Project Specialist	Deanna Edwards, B.Sc, C.Chem
		Laboratory	SGS Canada Inc.
Address	100 Nugget Ave	Address	185 Concession St., Lakefield ON, K0L 2H0
	Scarborough, ON		
	M1S 3A7.		
Contact	Laila Torabansari	Telephone	705-652-2000
Telephone	416-754-8515	Facsimile	705-652-6365
Facsimile	416-754-8516	Email	deanna.edwards@sgs.com
Email	laila@soilengineersltd.com; ebeyene@soilengineersltd.com	SGS Reference	CA15254-AUG16
Project	1512-S086E	Received	08/15/2016
Order Number		Approved	08/19/2016
Samples	Soil (10)	Report Number	CA15254-AUG16 R
		Date Reported	08/19/2016

COMMENTS

Temperature of Samples uon receipt 23 degrees C

Cooling Agent Present

Custody seal not present

SIGNATORIES

Deanna Edwards, B.Sc, C.Chem

searra Edwardo

SGS Canada Inc 185 Concession St., Lakefield ON, K0L 2H0

t 705-652-2000 f 705-652-6365

www.sgs.com

CA15254-AUG16 R

FINAL REPORT

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-8
Exceedance Summary	9
Holding Time Summary	
QC Summary	14-18
Legend	19
Annexes	20-21

RESULTS

20160819

	Sample	Number	8	9	10	11		
		ple Name	TP1-1	TP1-2	TP1-3	TP1-4		
	Sam	ole Matrix	Soil	Soil	Soil	Soil		
	Sa	mpled By	Vincont	Vincont	Vincont	Vincont		
	San	nple Date	12/08/2016	12/08/2016	12/08/2016	12/08/2016		
Parameter	Units	RL	Result	Result	Result	Result	L1	L2
					= REG153 / SOIL / COAR REG153 / SOIL / COARSI			
Anions by IC								
Method: EPA300/MA300-lons1.3 Interna	al ref.: ME-CA-[ENV]IC-LAK-AI	V-001					
Chloride	ha/a	0,4	19	6.1	7.4	10		
Conductivity								
Method: EPA 6010/SM 2510 Internal ref	F - BARLO ALIENNARIAN	LAK-ANI	വാട					
Conductivity	rnS/cm	0.002	0.25	0,17	0.12	0.16	0.47	0,57
	moron	5,002	5,20	9,17	U, IZ	0,10	U ₁ -11	0,07
Dyanide by SFA								
Vethod: SM 4500 Internal ref.: ME-CA-[ENVISFA-LAK-AN-I	005						
Free Cyanide	µg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.051	0.05
fexavalent Chromium by IC								
Method: EPA218.6/EPA3060A Internal r	ef.: ME-CA-IENVIIC	LAK-AN-	208					
Chromium VI	ha\a	0.2	0.5	3.1	< 0.2	0.4	0.66	0,66
				100				
Mercury by CVAAS								
Wethod: EPA 7471A/EPA 245 Internal re	of ME-CAJENVISE	ELAV.AN	-004					
Mercury	pg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0,16	0.27
	P9'9	0,00	- 0,00	- 0.00	10.00	4 0,03	0,10	0,27
Metals in Soil - Aqua-regia/ICP-MS								
, ,	ef · MEJOAJENNASI	DELLANIAN	LOOS					
Method: EPA 3050/EPA 200.3 Internal re				85	90	76	210	220
Method: EPA 3050/EPA 200.3 Internal n Barium	μg/g	0.01	80	85	90	76	210	
Method: EPA 3050/EPA 200.3 Internal re	hā\ā hā\ā	0.01		0.66	0.70	0.65	2,5	220 2.5 36
Method: EPA 3050/EPA 200.3 Internal n Barium Beryllium Boron	ha\a ha\a ha\d	0.01 0.02 1	80 0.64 7	0.66 7	0.70	0.65	2,5 36	2.5 36
Aethod: EPA 3050/EPA 200.3 Internal n Barium Beryllium	ha\a ha\a ha\a	0,01 0.02 1 0,02	80 0.64 7 0.33	0.66 7 0.45	0.70 8 0.45	0.65 8 0.35	2.5 36	2.5 36 1.2
Method: EPA 3050/EPA 200.3 Internal n Barium Beryllium Boron Cadmium	ha\a ha\a ha\a ha\a	0,01 0.02 1 0,02 0.5	80 0,64 7 0,33 18	0.66 7 0.45 20	0.70 8 0.45 19	0.65 8 0.35 19	2,5 36 1 67	2.5 36 1.2 70
Aethod: EPA 3050/EPA 200.3 Internal n Barium Beryllium Boron Cadmium Chromium	ha\a ha\a ha\a ha\a ha\a	0.01 0.02 1 0.02 0.5 0.01	80 0.64 7 0.33	0.66 7 0.45 20 9.2	0.70 8 0.45 19 9.3	0.65 8 0.35 19 9.4	2.5 36 1 67	2.5 36 1.2 70 21
Method: EPA 3050/EPA 200.3 Internal re Barium Beryllium Boron Cadmium Chromium Cobalt	ha\a ha\a ha\a ha\a ha\a	0.01 0.02 1 0.02 0.5 0.01 0.1	80 0,64 7 0,33 18 8,1 28	0.66 7 0.45 20 9.2	0.70 8 0.45 19 9.3 30	0.65 8 0.35 19 9.4 32	2.5 36 1 67 19	2.5 36 1.2 70 21 92
Method: EPA 3050/EPA 200.3 Internal in Barium Beryllium Boron Cadmium Chromium Cobalt Copper	ha\a ha\a ha\a ha\a ha\a ha\a	0.01 0.02 1 0.02 0.5 0.01 0.1	80 0,64 7 0,33 18 8,1	0.66 7 0.45 20 9.2	0.70 8 0.45 19 9.3 30	0.65 8 0.35 19 9.4 32	2.5 36 1 67 19 62 45	2.5 36 1.2 70 21 92 120
Method: EPA 3050/EPA 200.8 Internal name of Barium Beryllium Boron Cadmium Chromium Cobalt Copper	h8/8 h8/9 h8/9 h8/9 h8/9 h8/8	0,01 0.02 1 0,02 0.5 0.01 0.1 0.1	80 0,64 7 0,33 18 8,1 28	0.66 7 0.45 20 9.2 32	0.70 8 0.45 19 9.3 30 150	0.65 8 0.35 19 9.4 32 77	2.5 36 1 67 19 62 45 2	2.5 36 1.2 70 21 92 120 2
Aethod: EPA 3050/EPA 200.8 Internal n Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum	ha\a ha\a ha\a ha\a ha\a ha\a ha\a ha\a	0.01 0.02 1 0.02 0.5 0.01 0.1	80 0,64 7 0,33 18 8,1 28 110 0,6	0.66 7 0.45 20 9.2 32 260	0.70 8 0.45 19 9.3 30 150 0.6 20	0.65 8 0.35 19 9.4 32 77 0.5	2.5 36 1 67 19 62 45 2 37	2.5 36 1.2 70 21 92 120 2
Method: EPA 3050/EPA 200.3 Internal meaning and the service of t	ha\a ha\a ha\a ha\a ha\a ha\a ha\a	0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1	80 0,64 7 0,33 18 8.1 28 110 0.6 18	0.66 7 0.45 20 9.2 32 260 0.7 19 0.09	0.70 8 0.45 19 9.3 30 150 0.6 20 0.09	0.65 8 0.35 19 9.4 32 77 0.5 19	2.5 36 1 67 19 62 45 2 37 0.5	2.5 36 1.2 70 21 92 120 2 82 0.5
Method: EPA 3050/EPA 200.3 Internal in Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver	ha\a ha\a ha\a ha\a ha\a ha\a ha\a ha\a	0,01 0.02 1 0,02 0.5 0.01 0.1 0.1 0.1 0.01	80 0,64 7 0,33 18 8,1 28 110 0,6 18 0,08 0,13	0.66 7 0.45 20 9.2 32 260 0.7 19 0.09 0.16	0.70 8 0.45 19 9.3 30 150 0.6 20 0.09 0.15	0.65 8 0.35 19 9.4 32 77 0.5 19 0.08 0.14	2.5 36 1 67 19 62 45 2 37 0.5	2.5 36 1.2 70 21 92 120 2 82 0.5
Method: EPA 3050/EPA 200.3 Internal in Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium	ha\a ha\a ha\a ha\a ha\a ha\a ha\a ha\a	0,01 0.02 1 0,02 0.5 0.01 0.1 0.1 0.1 0.01 0.02	80 0.64 7 0.33 18 8.1 28 110 0.6 18 0.08 0.13 0.51	0.66 7 0.45 20 9.2 32 260 0,7 19 0.09 0.16 0.63	0.70 8 0.45 19 9.3 30 150 0.6 20 0.09 0.15 0.70	0.65 8 0.35 19 9.4 32 77 0.5 19 0.08 0.14 0.64	2.5 36 1 67 19 62 45 2 37 0.5 1	2.5 36 1.2 70 21 92 120 2 82 0.5 1 2.5
Method: EPA 3050/EPA 200.8 Internal in Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium	ha\a ha\a ha\a ha\a ha\a ha\a ha\a ha\a	0,01 0.02 1 0,02 0.5 0.01 0.1 0.1 0.1 0.01	80 0,64 7 0,33 18 8,1 28 110 0,6 18 0,08 0,13	0.66 7 0.45 20 9.2 32 260 0.7 19 0.09 0.16	0.70 8 0.45 19 9.3 30 150 0.6 20 0.09 0.15	0.65 8 0.35 19 9.4 32 77 0.5 19 0.08 0.14	2.5 36 1 67 19 62 45 2 37 0.5	2.5 36 1.2 70 21 92 120 2 82 0.5

3/21

RESULTS

	Sample	Number	8	9	10	11		
	-	le Name	TP1-1	TP1-2	TP1-3	TP1-4		
		le Matrix	Soil	Soil	Soil	Soil		
		npled By	Vincont	Vincont	Vincont	Vincont		
		ple Date	12/08/2016	12/08/2016	12/08/2016	12/08/2016		-
Parameter	Units	RL	Result	Result	Result	Result	L1	L2
					= REG153 / SOIL / COA REG153 / SOIL / COARS			
Vietals in Soil - Aqua-regia/ICP-MS (con	rtinued)							
Vethod: EPA 3050/EPA 200.8 Interna	fref.: ME-CA-[ENV]SF	E-LAK-AI	N-005					
Arsenic	µg/g	0.5	3.8	4.4	4.4	4.5	11	18
Selenium	hâ/â	0.7	< 0.7	0.7	< 0.7	< 0.7	1.2	1.5
Moisture	E							
Method: CCME Tier 1 Internal ref.: ME	E-CA-[ENV]GC-LAK-AI	N-010						
Moisture Content	%		6.7	6.1	6.8	6.2		
pH								
Method: SM 4500 Internal ref.: ME-CA	-{ENV]EWL-LAK-AN-(001						
рН	no unit	0.05	8,00	7.54	7,48	7.55		
Sodium adsorption ratio (SAR)								
A CHARLE CHARLES (CALLE)		/JARD-LAI	K-AN-021					
, , ,	amatret.: ME-GA-[ENV							
Vethod: MOE 4696e01/EPA 6010 Inte	emat ret.; ME-CA-[ENV 	0.01	0.04	0.06	0.07	0.06	1	2.4
Method: MOE 4696e01/EPA 6010 Inte Sodium Adsorption Ratio	əmat ret.; ME-CA-ĮENV 		0.04	0.06	0.07	0.06	1	2.4
Wethod: MOE 4696e01/EPA 6010 Inte		0.01	0.04	0.06	0.07	0.06	1	2.4

20160819 4 / 21

RESULTS

20160819

	Sample	Number	12	13	14	15		
	Sampl	le Name	TP1-A	TP4/2-1	TP4/2-2	TP4/2-3		
	Sampl	e Matrix	Soil	Soil	Soil	Soil		
		pled By	Vincont	Vincont	Vincont	Vincont		
	Samp	ple Date	12/08/2016	12/08/2016	12/08/2016	12/08/2016		
Parameter	Units	RL	Result	Result	Result	Result	L1	L2
					= REG153 / SOIL / COARSI REG153 / SOIL / COARSI			
Anions by IC	4		1.0%					
Aethod: EPA300/MA300-lons1.3 In:								_
Chloride	hâ\â	0.4	5,6	13	12	8,0	-	
Conductivity								
Method: EPA 6010/SM 2510 Interna	al ref.: ME-CA-[ENV]EWL	-LAK-AN-	006					
Conductivity	mS/cm	0,002	0.13	0.22	0.20	0,19	0.47	0,57
yanide by SFA								
dethod: SM 4500 Internal ref.: ME-0	CA-[ENV]SFA-LAK-AN-0	05						
Free Cyanide	µg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.051	0.05
lexavalent Chromium by IC								
2.11 . 1 PP PARO 10 A DEPTH 2 DOMOS 11 4 4	L ME OF TENER	I ALC ALL C	na					
#ethod: EPAZT8.6/EPA3U6UA Inter	nai ret.: ME-GA-[ENV]IC-	F-1414-4111-1	700					
Chromium VI	nal rer.: ME-CA-[ENV]IC- µg/g	0,2	1.7	0.2	0.5	0,5	0,66	0,66
Method: EPA218.6/EPA3060A Inter Chromium VI Mercury by CVAAS Method: EPA 7471A/EPA 245 Interr Mercury	µg/g	0,2	1.7	0.2 < 0.05	< 0.05	< 0,05	0.66	1024
Chromium VI Fercury by CVAAS Aethod: EPA 7471A/EPA 245 Interr Mercury	µg/g nal ref.: ME- CA- [ENV]SPI	0,2 E-LAK-AN	1.7 -004					0,66
Chromium VI fercury by CVAAS fethod; EPA 7471A/EPA 245 Interr Mercury fetals in Soil - Aqua-regia/ICP-MS	µg/g nal ref.: ME- CA-[ENV]SPI µg/g	0,2 E-LAK-AN 0,05	-004 < 0.05					1024
Chromium VI fercury by CVAAS fethod: EPA 7471A/EPA 245 Interr Mercury fetals in Soil - Aqua-regia/ICP-MS fethod: EPA 3050/EPA 200.8 Interr	µg/g nal ref.: ME- CA-[ENV]SPI µg/g nal ref.: ME-CA-[ENV]SP	0,2 E-LAK-AN 0,05 E-LAK-AN	-004 < 0.05	< 0.05	< 0.05	< 0.05	0.16	0,27
Chromium VI Mercury by CVAAS Aethod: EPA 7471A/EPA 245 Interr Mercury Metals in Soil - Aqua-regia/ICP-MS Method: EPA 3050/EPA 200.8 Interr Barium	µg/g nal ref.; ME- CA-[ENV]SPI µg/g nal ref.; ME-CA-[ENV]SP µg/g	0,2 E-LAK-AN 0,05 E-LAK-AN	-004 < 0.05	< 0.05 78	< 0.05 78	< 0,05 86	0.16	0,27
Chromium VI fercury by CVAAS fethod: EPA 7471A/EPA 245 Interr Mercury fetals in Soil - Aqua-regia/ICP-MS fethod: EPA 3050/EPA 200.8 Interr Barium Beryllium	µg/g nal ref.: ME- CA- [ENV]SPI µg/g nal ref.: ME-CA-[ENV]SP µg/g µg/ g	0,2 E-LAK-AN 0,05 E-LAK-AN 0,01 0,02	-004 < 0.05 1-005 75 0.50	< 0.05 78 0.71	< 0.05 78 0.63	< 0.05 86 0.59	0.16 210 2.5	0.27 220 2.5
Chromium VI fercury by CVAAS fethod: EPA 7471A/EPA 245 Internomental I	µg/g nal ref.: ME- CA- [ENV]SPI µg/g nal ref.: ME-CA-[ENV]SP µg/g µg/g	0,2 E-LAK-AN 0.05 E-LAK-AN 0.01 0.02	-004 < 0.05 I-005 75 0.50 8	< 0.05 78 0.71 10	< 0.05 78 0.63 10	< 0.05 86 0.59 9	0.16 210 2.5 36	220 2.5 36
Chromium VI fercury by CVAAS fethod: EPA 7471A/EPA 245 Interr Mercury fetals in Soil - Aqua-regia/ICP-MS fethod: EPA 3050/EPA 200.8 Interr Barium Beryllium Boron Cadmium	Hg/g hal ref.: ME-CA-[ENV]SPI Hg/g hal ref.: ME-CA-[ENV]SP Hg/g Hg/g Hg/g Hg/g	0,2 E-LAK-AN 0.05 E-LAK-AN 0.01 0.02 1 0.02	7.7 -004 < 0.05 -75 0.50 8 0.59	< 0.05 78 0.71 10 0.18	< 0.05 78 0.63 10 0.32	< 0.05 86 0.59 9 0.74	0.16 210 2.5 36 1	220 2.5 36
Chromium VI fercury by CVAAS fethod: EPA 7471A/EPA 245 Interr Mercury fetals in Soil - Aqua-regia/ICP-MS fethod: EPA 3050/EPA 200.8 Interr Barium Beryllium Boron Cadmium Chromium	µg/g nal ref.: ME- CA- [ENV]SPI µg/g nal ref.: ME-CA-[ENV]SP µg/g µg/g µg/g µg/g µg/g	0,2 E-LAK-AN 0,05 E-LAK-AN 0,01 0,02 1 0,02 0,5	-004 < 0.05 -005 -75 -0.50 8 -0.59 18	< 0.05 78 0.71 10 0.18 20	< 0.05 78 0.63 10 0.32 20	< 0.05 86 0.59 9 0.74 20	0.16 210 2.5 36 1 67	220 2.5 36 1.2
Chromium VI fercury by CVAAS fethod: EPA 7471A/EPA 245 Interr Mercury fetals in Soil - Aqua-regia/ICP-MS fethod: EPA 3050/EPA 200.8 Interr Barium Beryllium Boron Cadmium Chromium Cobalt	µg/g hal ref.: ME- CA- [ENV]SPI µg/g hal ref.: ME-CA-[ENV]SP µg/g µg/g µg/g µg/g µg/g µg/g	0,2 E-LAK-AN 0.05 E-LAK-AN 0.01 0.02 1 0.02 0.5 0.01	-004 < 0.05 -005 -005 -75 0.50 8 0.59 18 7.8	< 0.05 78 0.71 10 0.18 20 11	78 0.63 10 0.32 20 10	< 0.05 86 0.59 9 0.74 20 9.2	210 2.5 36 1 67	220 2.5 36 1.2 70 2.1
Chromium VI fercury by CVAAS fethod: EPA 7471A/EPA 245 Interr Mercury fetals in Soil - Aqua-regia/ICP-MS fethod: EPA 3050/EPA 200.8 Interr Barium Beryllium Boron Cadmium Chromium Cobalt Copper	µg/g hal ref.: ME-CA-[ENV]SPI µg/g hal ref.: ME-CA-[ENV]SP µg/g µg/g µg/g µg/g µg/g µg/g µg/g µg/	0,2 E-LAK-AN 0.05 E-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1	1.7 -004 < 0.05 75 0.50 8 0.59 18 7.8 35	78 0,71 10 0.18 20 11 34	78 0.63 10 0.32 20 10 34	< 0.05 86 0.59 9 0.74 20 9.2 37	0.16 210 2.5 36 1 67 19 62	220 2.5 36 1.2 70 21
Chromium VI fercury by CVAAS lethod: EPA 7471A/EPA 245 Interr Mercury letals in Soil - Aqua-regia/ICP-MS lethod: EPA 3050/EPA 200.8 Interr Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead	µg/g hal ref.: ME-CA-[ENV]SP! hg/g hal ref.: ME-CA-[ENV]SP hg/g hg/g hg/g hg/g hg/g hg/g hg/g hg/	0,2 E-LAK-AN 0.05 E-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1	75 0.50 8 0.59 18 7.8 35	< 0.05 78 0.71 10 0.18 20 11 34 26	78 0.63 10 0.32 20 10 34	< 0.05 86 0.59 9 0.74 20 9.2 37 310	0.16 210 2.5 36 1 67 19 62 45	220 2.5 36 1.2 70 21 92
Chromium VI fercury by CVAAS fethod: EPA 7471A/EPA 245 Interr Mercury fetals in Soil - Aqua-regia/ICP-MS fethod: EPA 3050/EPA 200.8 Interr Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum	µg/g nal ref.: ME-CA-[ENV]SPI µg/g nal ref.: ME-CA-[ENV]SP µg/g µg/g µg/g µg/g µg/g µg/g µg/g µg/	0,2 E-LAK-AN 0,05 E-LAK-AN 0,01 0,02 1 0,02 0,5 0,01 0,1 0,1 0,1	1.7 -004 < 0.05 75 0.50 8 0.59 18 7.8 35 360 0.9	< 0.05 78 0.71 10 0.18 20 11 34 26 0.5	< 0.05 78 0.63 10 0.32 20 10 34 91 0.8	< 0.05 86 0.59 9 0.74 20 9.2 37 310 1.0	0.16 210 2.5 36 1 67 19 62 45 2	220 2.5 36 1.2 70 21 92 120 2
Chromium VI fercury by CVAAS fethod: EPA 7471A/EPA 245 Internation Mercury fetals in Soil - Aqua-regia/ICP-MS fethod: EPA 3050/EPA 200.8 Internation Barium Beryllium Boron Cadmium Chromium Chromium Cobalt Copper Lead Molybdenum Nickel	Hg/g Hg/g Hg/g Hg/g Hg/g Hg/g Hg/g Hg/g	0,2 E-LAK-AN 0,05 E-LAK-AN 0,01 0,02 1 0,02 0,5 0,01 0,1 0,1 0,1	1.7 -004 < 0.05 -005 -75 0.50 8 0.59 18 7.8 35 360 0.9 18	< 0.05 78 0.71 10 0.18 20 11 34 26 0.5 24	78 0.63 10 0.32 20 10 34 91 0.8 22	< 0.05 86 0.59 9 0.74 20 9.2 37 310 1.0 21	0.16 210 2.5 36 1 67 19 62 45 2 37	220 2.5 36 1.2 70 21 92 120 2
Chromium VI fercury by CVAAS fethod: EPA 7471A/EPA 245 Interr Mercury fetals in Soil - Aqua-regia/ICP-MS fethod: EPA 3050/EPA 200.8 Interr Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver	нg/g hal ref.: ME-CA-[ENV]SPI на/g hal ref.: ME-CA-[ENV]SP на/д на/д на/д на/д на/д на/д на/д на/д	0,2 E-LAK-AN 0.05 E-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.1 0.1	1.7 -004 <0.05 -75 0.50 8 0.59 18 7.8 35 360 0.9 18 0.09	78 0,71 10 0.18 20 11 34 26 0.5 24 0.07	78 0.63 10 0.32 20 10 34 91 0.8 22 0.07	< 0.05 86 0.59 9 0.74 20 9.2 37 310 1.0 21 0.09	0.16 210 2.5 36 1 67 19 62 45 2 37 0.5	220 2.5 36 1.2 70 21 120 2 82 0.5
Chromium VI Fercury by CVAAS Aethod: EPA 7471A/EPA 245 Interr Mercury Aetals in Soil - Aqua-regia/ICP-MS Aethod: EPA 3050/EPA 200.8 Interr Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium	µg/g hal ref.: ME-CA-[ENV]SPI µg/g hal ref.: ME-CA-[ENV]SP µg/g µg/g µg/g µg/g µg/g µg/g µg/g µg/	0,2 E-LAK-AN 0.05 E-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.1 0.01 0.02	1.7 -004 < 0.05 -75 -0.50 -8 -0.59 -18 -7.8 -35 -360 -0.9 -18 -0.09 -0.13	78 0,71 10 0.18 20 11 34 26 0.5 24 0,07 0,16	< 0.05 78 0.63 10 0.32 20 10 34 91 0.8 22 0.07 0.15	< 0.05 86 0.59 9 0.74 20 9.2 37 310 1.0 21 0.09 0.15	0.16 210 2.5 36 1 67 19 62 45 2 37 0.5	220 2.5 36 1.2 70 21 120 2 82 0.5
Chromium VI fercury by CVAAS Aethod: EPA 7471A/EPA 245 Interrese Mercury fetals in Soil - Aqua-regia/ICP-MS fethod: EPA 3050/EPA 200.8 Interrese Interrese Mercury Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium Uranium	µg/g hal ref.: ME-CA-[ENV]SPI µg/g ha/g µg/g 0,2 E-LAK-AN 0.05 E-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.1 0.01 0.02 0.002	1.7 -004 < 0.05 75 0.50 8 0.59 18 7.8 35 360 0.9 18 0.09 0.13 0.51	78 0.71 10 0.18 20 11 34 26 0.5 24 0.07 0.16 0.62	<0.05 78 0.63 10 0.32 20 10 34 91 0.8 22 0.07 0.15 0.62	<0.05 86 0.59 9 0.74 20 9.2 37 310 1.0 21 0.09 0.15 0.58	0.16 210 2.5 36 1 67 19 62 45 2 37 0.5 1 1.9	22CC 2.5 366 1.2 70 21 12C 2 82 0.5 1 2.5 1	
Chromium VI fercury by CVAAS fethod: EPA 7471A/EPA 245 Internation Mercury fetals in Soil - Aqua-regia/ICP-MS fethod: EPA 3050/EPA 200.8 Internation Barium Beryllium Boron Cadmium Chromium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium Uranium Vanadium	Hg/g Hg/g Hg/g Hg/g Hg/g Hg/g Hg/g Hg/g	0,2 E-LAK-AN 0,05 E-LAK-AN 0,01 0,02 1 0,02 0,5 0,01 0,1 0,1 0,1 0,1 0,01 0,02 0,002 3	1.7 -004 < 0.05 75 0.50 8 0.59 18 7.8 35 360 0.9 18 0.09 0.13 0.51 24	78 0,71 10 0.18 20 11 34 26 0.5 24 0.07 0.16 0.62 27	78 0.63 10 0.32 20 10 34 91 0.8 22 0.07 0.15 0.62 27	< 0.05 86 0.59 9 0.74 20 9.2 37 310 1.0 21 0.09 0.15 0.58 28	0.16 210 2.5 36 1 67 19 62 45 2 37 0.5 1 1.9 86	220 2.5 36 1.2 70 21 92 120 2 82 0.5 1 1 2.5 86
Chromium VI fercury by CVAAS Aethod: EPA 7471A/EPA 245 Interrese Mercury fetals in Soil - Aqua-regia/ICP-MS fethod: EPA 3050/EPA 200.8 Interrese Interrese Mercury Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium Uranium	µg/g hal ref.: ME-CA-[ENV]SPI µg/g ha/g µg/g 0,2 E-LAK-AN 0.05 E-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.1 0.01 0.02 0.002	1.7 -004 < 0.05 75 0.50 8 0.59 18 7.8 35 360 0.9 18 0.09 0.13 0.51	78 0.71 10 0.18 20 11 34 26 0.5 24 0.07 0.16 0.62	<0.05 78 0.63 10 0.32 20 10 34 91 0.8 22 0.07 0.15 0.62	<0.05 86 0.59 9 0.74 20 9.2 37 310 1.0 21 0.09 0.15 0.58	0.16 210 2.5 36 1 67 19 62 45 2 37 0.5 1 1.9	22CC 2.5 366 1.2 70 21 12C 2 82 0.5 1 2.5 1	

5/21

	Sample	Number	12	13	14	15		
	Samp	le Name	TP1-A	TP4/2-1	TP4/2-2	TP4/2-3		
	Samp	le Matrix	Soil	Soil	Soil	Soil		
	San	npled By	Vincont	Vincont	Vincont	Vincont		
	Sam	ple Date	12/08/2016	12/08/2016	12/08/2016	12/08/2016		
Parameter	Units	RL	Result	Result	Result	Result	L1	L2
					≈ REG153 / SOIL / COARS			
Metals in Soil - Aqua-regia/ICP-MS (continu	ied)			L2 = 1	REG 153 / SOIL / COARS	E - TABLE I - Residenii	al/Parkland - C	INDEFINE
Method: EPA 3050/EPA 200.8 [Internal ref	f.: ME-CA-[ENV]SF	E-LAK-AI	V-005					
Arsenic	µg/g	0,5	3.9	4.7	4.3	5.3	11	18
Selenium	µg/g	0.7	< 0.7	0.8	< 0.7	0.8	1.2	1,5
	4-[ENV]GC-LAK-AI %	V-01 0	3.5	10.1	9.1	5.0		
Method: CCME Tier 1 Internal ref.: ME-CAMoisture Content		N-01 0 -	3.5	10.1	9.1	5.0		
Method: CCME Tier 1 Internal ref.: ME-CA Moisture Content	%	-	3,5	10.1	9.1	5.0		
Method: CCME Tier 1 Internal ref.: ME-CA Moisture Content	%	-	3.5 7.60	10.1	9.1	5.0 7.55		
Method: CCME Tier 1 Internal ref.: ME-CAMoisture Content OH Method: SM 4500 Internal ref.: ME-CA-[EI	% NVJEWL-LAK-AN-(001						
Method: CCME Tier 1 Internal ref.: ME-CAMoisture Content OH Method: SM 4500 Internal ref.: ME-CA-[EI	% NVJEWL-LAK-AN-(001						
Method: CCME Tier 1 Internal ref.: ME-CAMoisture Content DH Method: SM 4500 Internal ref.: ME-CA-[EI pH Godium adsorption ratio (SAR)	% NV]EWL-LA K-A N-(no unit	0.05	7.60					
pH Method: SM 4500 Internal ref,: ME-CA-[El	% NV]EWL-LA K-A N-(no unit	0.05	7.60				i	2.4
Method: CCME Tier 1 Internal ref.: ME-CAMoisture Content OH Method: SM 4500 Internal ref.: ME-CA-[EI pH Godium adsorption ratio (SAR) Method: MOE 4696e01/EPA 6010 Internal Sodium Adsorption Ratio	% NV]EWL-LA K-A N-(no unit	001 0.05 JARD-LAI	7.60 K-AN-021	7.54	7.57	7,55	1	2.4
Method: CCME Tier 1 Internal ref.: ME-CA Moisture Content PH Method: SM 4500 Internal ref.: ME-CA-[EI pH Sodium adsorption ratio (SAR) Method: MOE 4696e01/EPA 6010 Internal	% NV]EWL-LA K-A N-(no unit If ref.; ME-CA-[ENV	0.05 0.05 JARD-LAI 0.01	7.60 K-AN-021	7.54	7.57	7,55	1	2.4

20160819 6 / 21

R	ESI	UL	TS
Γ		◡ь	

	Sample	Number	16	17		
	Samp	ole Name	TP4/2-4	TP4/2-A		
	Samp	le Matrix	Soil	Soil		
	Sar	npled By	Vincont	Vincont		
	Sam	ple Date	12/08/2016	12/08/2016		
Parameter	Units	RL	Result	Result	L1	L2
					SOIL / COARSE - TABLE 1 - Agricultural/Other - U L / COARSE - TABLE 1 - Residential/Parkland - U	
Anians by IC						
Method: EPA300/MA300-lons1.3 [Inter	mal ref.: ME-CA-[ENV]	IIC-LAK-AI	V-001			
Chloride	рд/д	0,4	7.9	4.2		
Conductivity						
Method: EPA 6010/SM 2510 Internal r	of - MELCALIENN/IENA	LAK-AN	വര			
Conductivity	mS/cm	0.002	0.20	0.15	0.47	0,57
Conductivity	moran	0,002	0.20	0.10	0.47	0,07
Cyanide by SFA						
Vethod: SM 4500 Internal ref.: ME-CA	N-[ENV]SFA-LAK-AN-C	005				
Free Cyanide	µg/g	0.05	< 0.05	< 0.05	0.051	0.05
dexavalent Chromium by IC						
Method: EPA218.6/EPA3060A Interna	l ref.: ME-CA-[ENV]IC	-LAK-AN-	008			
Chromium VI	µg/g	0.2	0.4	0.3	0.66	0.66
. 2144/201						
Method: EPA 7471A/EPA 245 Internal				< 0.05	0.16	0.27
	ref.: ME-CA-[ENV]SP µg/g	0.05	< 0.05	< 0.05	0,16	0,27
Method: EPA 7471A/EPA 245 Internal Mercury				< 0.05	0,16	0,27
Method: EPA 7471A/EPA 245 Internal Mercury Metals in Soil - Aqua-regia/ICP-MS	hā\ā	0.05	< 0.05	< 0.05	0,16	0,27
Nethod: EPA 7471A/EPA 245 Internal Mercury Netals in Soil - Aqua-regia/ICP-MS	µg/g l ref.: ME-CA-[ENV]SF	0.05	< 0.05	< 0.05 84	0,16	
Method: EPA 7471A/EPA 245 Internal Mercury Metals in Soil - Aqua-regia/ICP-MS Method: EPA 3050/EPA 200.8 Internal	hā\ā	0.05 PE-LAK-A)	< 0.05 1-005			220
Method: EPA 7471A/EPA 245 Internal Mercury Metals in Soil - Aqua-regia/ICP-MS Method: EPA 3050/EPA 200.8 Internal Barium	µ9/g l ref.: ME-CA-[ENV]SF µ9/9	0.05 PE-LAK-AN 0.01	< 0.05 1-005 95	84	210	220
Method: EPA 7471A/EPA 245 Internal Mercury Metals in Soil - Aqua-regia/ICP-MS Method: EPA 3050/EPA 200.8 Internal Barium Beryllium	µg/g i ref.: ME-CA-[ENV]SF µg/g µg/g	0.05 PE-LAK-AN 0.01 0.02	< 0.05 I-005 95 0.79	84 0,83	210 2.5	220
Method: EPA 7471A/EPA 245 Internal Mercury Metals in Soil - Aqua-regia/ICP-MS Method: EPA 3050/EPA 200.8 Internal Barium Beryllium Boron	µg/g ref.: ME-CA-[ENV]SF µg/g µg/g	0.05 PE-LAK-AP 0.01 0.02	< 0.05 I-005 95 0.79 10	84 0,83 11	210 2.5 36	220 2.5 36
Method: EPA 7471A/EPA 245 Internal Mercury Metals in Soil - Aqua-regia/ICP-MS Method: EPA 3050/EPA 200.8 Internal Barium Beryllium Boron Cadmium	µ9/g ref.: ME-CA-[ENV]SF µ9/9 µ9/9 µ9/9	0.05 PE-LAK-AN 0.01 0.02 1 0.02	< 0.05 J-005 95 0.79 10 0.17	84 0,83 11 0,16	210 2.5 36 1	220 2.5 36 1.2
Method: EPA 7471A/EPA 245 Internal Mercury Metals in Soil - Aqua-regia/ICP-MS Method: EPA 3050/EPA 200.8 Internal Barium Beryllium Boron Cadmium Chromium	µ9/g ref.: ME-CA-[ENV]SF µ9/9 µ9/9 µ9/9 µ9/9	0.05 PE-LAK-AN 0.01 0.02 1 0.02 0.5	< 0.05 J-005 95 0.79 10 0.17 22	84 0,83 11 0,16 21	210 2.5 36 1 67	220 2.5 36 1.2 70
Method: EPA 7471A/EPA 245 Internal Mercury Metals in Soil - Aqua-regia/ICP-MS Method: EPA 3050/EPA 200.8 Internal Barium Beryllium Boron Cadmium Chromium Cobalt	µ9/g i ref.: ME-CA-[ENV]SF µ9/g µ9/g µ9/g µ9/g µ9/g	0.05 PE-LAK-AN 0.01 0.02 1 0.02 0.5 0.01	< 0.05 J-005 95 0.79 10 0.17 22 11	84 0,83 11 0,16 21 12	210 2.5 36 1 67 19	220 2.5 36 1.2 70 21 92
Method: EPA 7471A/EPA 245 Internal Mercury Metals in Soil - Aqua-regia/ICP-MS Method: EPA 3050/EPA 200.8 Internal Barium Beryllium Boron Cadmium Chromium Cobalt Copper	µg/g ref.: ME-CA-[ENV]SF µg/g µg/g µg/g µg/g µg/g µg/g	0.05 PE-LAK-AP 0.01 0.02 1 0.02 0.5 0.01 0.1	< 0.05 J-005 95 0.79 10 0.17 22 11 29 19 0.5	84 0,83 11 0,16 21 12 37	210 2.5 36 1 67 19 62 45	220 2.5 36 1.2 70 21 92
Method: EPA 7471A/EPA 245 Internal Mercury Metals in Soil - Aqua-regia/ICP-MS Method: EPA 3050/EPA 200.8 Internal Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead	µ9/g I ref.: ME-CA-[ENV]SF	0.05 PE-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1	< 0.05 J-005 95 0.79 10 0.17 22 11 29 19	84 0,83 11 0,16 21 12 37	210 2.5 36 1 67 19 62 45	220 2.5 36 1.2 70 21 92 120
Method: EPA 7471A/EPA 245 Internal Mercury Metals in Soil - Aqua-regia/ICP-MS Method: EPA 3050/EPA 200.8 Internal Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver	µ9/g I ref.: ME-CA-[ENV]SF	0.05 PE-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.1 0.1 0.	< 0.05 J-005 95 0.79 10 0.17 22 11 29 19 0.5	84 0,83 11 0,16 21 12 37 17 0.4	210 2.5 36 1 67 19 62 45	220 2.5 36 1.2 70 21 92 120 2 82
Method: EPA 7471A/EPA 245 Internal Mercury Metals in Soil - Aqua-regia/ICP-MS Method: EPA 3050/EPA 200.8 Internal Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium	µ9/g i ref.: ME-CA-[ENV]SF	0.05 PE-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.1	< 0.05 J-005 95 0.79 10 0.17 22 11 29 19 0.5 25 0.06 0.17	84 0,83 11 0,16 21 12 37 17 0,4 26 0,06 0,18	210 2.5 36 1 67 19 62 45 2 37 0.5	220 2,5 36 1,2 70 21 92 120 2 82 0,5
Method: EPA 7471A/EPA 245 Internal Mercury Metals in Soil - Aqua-regia/ICP-MS Method: EPA 3050/EPA 200.8 Internal Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium Uranium	µ9/g I ref.: ME-CA-[ENV]SF	0.05 PE-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.1 0.01 0.02 0.002	< 0.05 95 0.79 10 0.17 22 11 29 19 0.5 25 0.06 0.17 0.74	84 0,83 11 0,16 21 12 37 17 0,4 26 0,06 0,18 0,77	210 2.5 36 1 67 19 62 45 2 37 0.5 1	220 2.5 36 1.2 70 21 92 120 2 82 0.5 1 2.5
Method: EPA 7471A/EPA 245 Internal Mercury Veltals in Soil - Aqua-regia/ICP-MS Velthod: EPA 3050/EPA 200.8 Internal Barium Beryllium Boron Cadmium Chromium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium Uranium Vanadium	µ9/g I ref.: ME-CA-[ENV]SF µ9/9 0.05 PE-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.1 0.01 0.02 0.002 3	< 0.05 J-005 95 0.79 10 0.17 22 11 29 19 0.5 25 0.06 0.17 0.74 30	84 0,83 11 0,16 21 12 37 17 0,4 26 0,06 0,18 0,77 30	210 2.5 36 1 67 19 62 45 2 37 0.5 1 1.9	1.2 70 21 92 120 2 82 0.5 1 2.5 86	
Metals in Soil - Aqua-regia/ICP-MS Method: EPA 3050/EPA 200.8 Internal Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium Uranium	µ9/g I ref.: ME-CA-[ENV]SF	0.05 PE-LAK-AN 0.01 0.02 1 0.02 0.5 0.01 0.1 0.1 0.1 0.1 0.01 0.02 0.002	< 0.05 95 0.79 10 0.17 22 11 29 19 0.5 25 0.06 0.17 0.74	84 0,83 11 0,16 21 12 37 17 0,4 26 0,06 0,18 0,77	210 2.5 36 1 67 19 62 45 2 37 0.5 1	220 2.5 36 1.2 70 21 92 120 2 82 0.5 1 2.5

20160819 7 / 21

Water Soluble Boron

FINAL REPORT

	Sample	Number	16	17		
	Samp	le Name	TP4/2-4	TP4/2-A		
	Samp	le Matrix	Soil	Soil		
	San	npled By	Vincont	Vincont		
	Sam	ple Date	12/08/2016	12/08/2016		
Parameter	Units	RL	Result	Result	L1	L2
					L / COARSE - TABLE 1 - Agricultural/Other - U COARSE - TABLE 1 - Residential/Parkland - U	
Metals in Soil - Aqua-regia/ICP-MS (co	ontinued)					
Method: EPA 3050/EPA 200.8 [Intern	nal ref.: ME-CA-[ENV]SF	E-LAK-A	N-005			
Arsenic	μg/g	0.5	4.8	5.3	11	18
Arsenic Selenium Moisture	на/а	0.7	4.8 < 0.7	5.3 0.8	11 1.2	18 1.5
Arsenic Selenium Moisture	на/а	0.7				
Arsenic Selenium Moisture Method: CCME Tier 1 Internal ref.: Moisture Content	µg/g ME-CA-[ENV]GC-LAK-AI	0.7 N-010	< 0,7	0.8		
Arsenic Selenium Moisture Method: CCME Tier 1 Internal ref.: I	µ9/9 ME-CA-[ENV]GC-LAK-AI %	0.7 N-010	< 0,7	0.8		_
Arsenic Selenium Moisture Method: CCME Tier 1 Internal ref.: Moisture Content	µ9/9 ME-CA-[ENV]GC-LAK-AI %	0.7 N-010	< 0,7	0.8		_
Arsenic Selenium Moisture Method: CCME Tier 1 Internal ref.: I	µ9/9 ME-CA-[ENV]GC-LAK-AI % CA-[ENV]EWL-LAK-AN-(0.7 N-010	< 0,7 9,7	7.7		_
Arsenic Selenium Moisture Method: CCME Tier 1 Internal ref.: M Moisture Content pH Method: SM 4500 Internal ref.: ME-C pH	µg/g ME-CA-[ENV]GC-LAK-AI % CA-[ENV]EWL-LAK-AN-(no unit	0.7 N-010 -	9.7	7.7		_

20160819 8 / 21

μg/g

0,5

< 0.5

< 0.5

EXCEEDANCE SUMMARY

Parameter	Method	Units	Result	REG153 / SOIL / COARSE - TABLE 1 - Agricultural/Olher - UNDEFINED L1	REG153 / SOIL / COARSE - TABLE 1 - Residential/Parkla nd - UNDEFINED L2
P1-1					
Lead	EPA 3050/EPA 200,8	μg/g	110	45	
P1-2					
Lead	EPA 3050/EPA 200.8	µg/g	260	45	120
Chromium VI	EPA218_6/EPA3060A	µg/g	3.1	0.66	0.66
P1-3	*				
Lead	EPA 3050/EPA 200,8	hã/ã	150	45	120
P1-4					
Lead	EPA 3050/EPA 200.8	µg/g	77	45	
P1-A					
Lead	EPA 3050/EPA 200.8	µg/g	360	45	120
Chromium VI	EPA218.6/EPA3060A	µg/g	1.7	0.66	0.66
P4/2-2					
Lead	EPA 3050/EPA 200.8	μg/g	91	45	
P4/2-3					
Lead	EPA 3050/EPA 200.8	μg/g	310	45	120

20160819 9 / 21

HOLDING TIME SUMMARY

Sample Name	QC Batch Reference	Sample Number	Sampled	Received	Extracted/ Prepared	Analysed	Holding Time	Approved
Anions by IC								
Method: EPA300/MA300-lo	ns1.3 Internal ref.: ME-CA-[E	NV]IC-LA	K-AN-001					
TP1-1	DIO0257-AUG16	8	08/12/2016	08/15/2016	08/18/2016	08/18/2016	09/11/2016	08/19/2016
TP1-2	DIO0257-AUG16	9	08/12/2016	08/15/2016	08/18/2016	08/18/2016	09/11/2016	08/19/2016
TP1-3	DIO0257-AUG16	10	08/12/2016	08/15/2016	08/18/2016	08/18/2016	09/11/2016	08/19/2016
TP1-4	DIO0257-AUG16	11	08/12/2016	08/15/2016	08/18/2016	08/18/2016	09/11/2016	08/19/2016
TP1-A	DIO0257-AUG16	12	08/12/2016	08/15/2016	08/18/2016	08/18/2016	09/11/2016	08/19/2016
TP4/2-1	DIO0257-AUG16	13	08/12/2016	08/15/2016	08/18/2016	08/18/2016	09/11/2016	08/19/2016
TP4/2-2	DIO0257-AUG16	14	08/12/2016	08/15/2016	08/18/2016	08/18/2016	09/11/2016	08/19/2016
TP4/2-3	DIO0257-AUG16	15	08/12/2016	08/15/2016	08/18/2016	08/18/2016	09/11/2016	08/19/2016
TP4/2-4	DIO0257-AUG16	16	08/12/2016	08/15/2016	08/18/2016	08/18/2016	09/11/2016	08/19/2016
TP4/2-A	DIO0257-AUG16	17	08/12/2016	08/15/2016	08/18/2016	08/18/2016	09/11/2016	08/19/2016
Conductivity								
Method: EPA 6010/SM 2510) Internal ref.: ME-CA-[ENV]	EWL-LAK-	AN-006					
TP1-1	EWL0277-AUG16	8	08/12/2016	08/15/2016	08/18/2016	08/18/2016	09/11/2016	08/19/201
TP1-2	EWL0277-AUG16	9	08/12/2016	08/15/2016	08/18/2016	08/18/2016	09/11/2016	08/19/201
TP1-3	EWL0277-AUG16	10	08/12/2016	08/15/2016	08/18/2016	08/18/2016	09/11/2016	08/19/201
TP1-4	EWL0277-AUG16	11	08/12/2016	08/15/2016	08/18/2016	08/18/2016	09/11/2016	08/19/201
TP1-A	EWL0277-AUG16	12	08/12/2016	08/15/2016	08/18/2016	08/18/2016	09/11/2016	08/19/201
TP4/2-1	EWL0277-AUG16	13	08/12/2016	08/15/2016	08/18/2016	08/18/2016	09/11/2016	08/19/201
TP4/2-2	EWL0277-AUG16	14	08/12/2016	08/15/2016	08/18/2016	08/18/2016	09/11/2016	08/19/201
TP4/2-3	EWL0297-AUG16	15	08/12/2016	08/15/2016	08/18/2016	08/18/2016	09/11/2016	08/19/201
TP4/2-4	EWL0277-AUG16	16	08/12/2016	08/15/2016	08/18/2016	08/18/2016	09/11/2016	08/19/201
TP4/2-A	EWL0277-AUG16	17	08/12/2016	08/15/2016	08/18/2016	08/18/2016	09/11/2016	08/19/201
Oyanide by SFA								
- "	ref.: ME-CA-TENVISFA-LAK-A	N-005						
TP1-1	SKA5041-AUG16	8	08/12/2016	08/15/2016	08/16/2016	08/17/2016	08/26/2016	08/18/201
TP1-2	SKA5041-AUG16	9	08/12/2016	08/15/2016	08/16/2016	08/17/2016	08/26/2016	08/18/201
TP1-3	SKA5041-AUG16	10	08/12/2016	08/15/2016	08/16/2016	08/17/2016	08/26/2016	08/18/201
TP1-4	SKA5041-AUG16	11	08/12/2016	08/15/2016	08/16/2016	08/17/2016	08/26/2016	08/18/201
TP1-A	SKA5041-AUG16	12	08/12/2016	08/15/2016	08/16/2016	08/17/2016	08/26/2016	08/18/201
TP4/2-1	SKA5041-AUG16	13	08/12/2016	08/15/2016	08/16/2016	08/17/2016	08/26/2016	08/18/201
TP4/2-2	SKA5041-AUG16	14	08/12/2016	08/15/2016	08/16/2016	08/17/2016	08/26/2016	08/18/201
TP4/2-3	SKA5041-AUG16	15	08/12/2016	08/15/2016	08/16/2016	08/17/2016	08/26/2016	08/18/201
TP4/2-4	SKA5041-AUG16	16	08/12/2016	08/15/2016	08/16/2016	08/17/2016	08/26/2016	08/18/201
TP4/2-A	SKA5041-AUG16	17	08/12/2016	08/15/2016	08/16/2016	08/17/2016	08/26/2016	08/18/201
dexavalent Chromium by IC	:							
		ZIICU AK	ลกกศล					
Wethod: EPA218 6/EPA20A	or a continuous state of the last terms of the l	- John Bos 33 5" F	41 1 10 V s/					
Method: EPA218.6/EPA306 TP1-1	DIO0237-AUG16	8	08/12/2016	08/15/2016	08/17/2016	08/18/2016	09/11/2016	08/19/201

Sample Name	QC Batch Reference	Sample Number	Sampled	Received	Extracted/ Prepared	Analysed	Holding Time	Approved
Hexavalent Chromium by IC	(continued)							
Method: EPA218.6/EPA3060	OA Internal ref.: ME-CA-(EN)	VJIC-LAK-	AN-008					
TP1-2	DIO0237-AUG16	9	08/12/2016	08/15/2016	08/17/2016	08/18/2016	09/11/2016	08/19/2016
TP1-3	DIO0237-AUG16	10	08/12/2016	08/15/2016	08/17/2016	08/18/2016	09/11/2016	08/19/2016
TP1-4	DIO0237-AUG16	11	08/12/2016	08/15/2016	08/17/2016	08/18/2016	09/11/2016	08/19/201
TP1-A	DIO0237-AUG16	12	08/12/2016	08/15/2016	08/17/2016	08/18/2016	09/11/2016	08/19/201
TP4/2-1	DIO0237-AUG16	13	08/12/2016	08/15/2016	08/17/2016	08/18/2016	09/11/2016	08/19/201
TP4/2-2	DIO0237-AUG16	14	08/12/2016	08/15/2016	08/17/2016	08/18/2016	09/11/2016	08/19/201
TP4/2-3	DIO0237-AUG16	15	08/12/2016	08/15/2016	08/17/2016	08/18/2016	09/11/2016	08/19/201
TP4/2-4	DIO0237-AUG16	16	08/12/2016	08/15/2016	08/17/2016	08/18/2016	09/11/2016	08/19/201
TP4/2-A	DIO0237-AUG16	17	08/12/2016	08/15/2016	08/17/2016	08/18/2016	09/11/2016	08/19/201
Mercury by CVAAS								
Method: EPA 7471A/EPA 24	5 Internal ref.: ME-CA-[ENV	/JSPE-LAN	C-AN-004					
TP1-1	EHG0023-AUG16	8	08/12/2016	08/15/2016	08/17/2016	08/18/2016	09/09/2016	08/18/201
TP1-2	EHG0023-AUG16	9	08/12/2016	08/15/2016	08/17/2016	08/18/2016	09/09/2016	08/18/201
TP1-3	EHG0023-AUG16	10	08/12/2016	08/15/2016	08/17/2016	08/18/2016	09/09/2016	08/18/201
TP1-4	EHG0023-AUG16	11	08/12/2016	08/15/2016	08/17/2016	08/18/2016	09/09/2016	08/18/201
TP1-A	EHG0023-AUG16	12	08/12/2016	08/15/2016	08/17/2016	08/18/2016	09/09/2016	08/18/201
TP4/2-1	EHG0023-AUG16	13	08/12/2016	08/15/2016	08/17/2016	08/18/2016	09/09/2016	08/18/201
TP4/2-2	EHG0023-AUG16	14	08/12/2016	08/15/2016	08/17/2016	08/18/2016	09/09/2016	08/18/201
TP4/2-3	EHG0023-AUG16	15	08/12/2016	08/15/2016	08/17/2016	08/18/2016	09/09/2016	08/18/201
TP4/2-4	EHG0023-AUG16	16	08/12/2016	08/15/2016	08/17/2016	08/18/2016	09/09/2016	08/18/201
TP4/2-A	EHG0023-AUG16	17	08/12/2016	08/15/2016	08/17/2016	08/18/2016	09/09/2016	08/18/201
Metals in Soîl - Aqua-regia/i0	DP-MS							
Method: EPA 3050/EPA 200	.8 Internal ref.: ME-CA-(EN\	/JSPE-LAI	K-AN-005					
TP1-1	EMS0074-AUG16	8	08/12/2016	08/15/2016	08/17/2016	08/18/2016	02/08/2017	08/19/201
TP1-2	EMS0074-AUG16	9	08/12/2016	08/15/2016	08/17/2016	08/18/2016	02/08/2017	08/19/201
TP1-3	EMS0074-AUG16	10	08/12/2016	08/15/2016	08/17/2016	08/18/2016	02/08/2017	08/19/201
TP1-4	EMS0074-AUG16	11	08/12/2016	08/15/2016	08/17/2016	08/18/2016	02/08/2017	08/19/201
TP1-A	EMS0074-AUG16	12	08/12/2016	08/15/2016	08/17/2016	08/18/2016	02/08/2017	08/19/201
TP4/2-1	EMS0074-AUG16	13	08/12/2016	08/15/2016	08/17/2016	08/18/2016	02/08/2017	08/19/201
TP4/2-2	EMS0074-AUG16	14	08/12/2016	08/15/2016	08/17/2016	08/18/2016	02/08/2017	08/19/201
TP4/2-3	EMS0074-AUG16	15	08/12/2016	08/15/2016	08/17/2016	08/18/2016	02/08/2017	08/19/201
TP4/2-4	EMS0074-AUG16	16	08/12/2016	08/15/2016	08/17/2016	08/18/2016	02/08/2017	08/19/201
TP4/2-A	EMS0074-AUG16	17	08/12/2016	08/15/2016	08/17/2016	08/18/2016	02/08/2017	08/19/201
Moisture								
Method: CCME Tier 1 Inter	mal ref.: ME-CA-[ENV]GC-LA	K-AN-010						
TP1-1	GCM0148-AUG16	8	08/12/2016	08/15/2016	08/16/2016	08/16/2016	10/11/2016	08/17/201
TP1-2	GCM0148-AUG16	9	08/12/2016	08/15/2016	08/16/2016	08/16/2016	10/11/2016	08/17/201

HOLDING TIME SUMMARY

Sample Name	QC Batch Reference	Sample Number	Sampled	Received	Extracted/ Prepared	Analysed	Holding Time	Approved
Moisture (continued)								-
Method: CCME Tier 1 Internal re	f.: ME-CA-(ENV)GC-LAI	C-AN-010						
TP1-3	GCM0148-AUG16	10	08/12/2016	08/15/2016	08/16/2016	08/16/2016	10/11/2016	08/17/2016
TP1-4	GCM0148-AUG16	11	08/12/2016	08/15/2016	08/16/2016	08/16/2016	10/11/2016	08/17/2016
TP1-A	GCM0148-AUG16	12	08/12/2016	08/15/2016	08/16/2016	08/16/2016	10/11/2016	08/17/2010
TP4/2-1	GCM0148-AUG16	13	08/12/2016	08/15/2016	08/16/2016	08/16/2016	10/11/2016	08/17/2010
TP4/2-2	GCM0148-AUG16	14	08/12/2016	08/15/2016	08/16/2016	08/16/2016	10/11/2016	08/17/201
TP4/2-3	GCM0148-AUG16	15	08/12/2016	08/15/2016	08/16/2016	08/16/2016	10/11/2016	08/17/201
TP4/2-4	GCM0148-AUG16	16	08/12/2016	08/15/2016	08/16/2016	08/16/2016	10/11/2016	08/17/201
TP4/2-A	GCM0148-AUG16	17	08/12/2016	08/15/2016	08/16/2016	08/16/2016	10/11/2016	08/17/201
01-1	75733							
Method: SM 4500 Internal ref.: M	E-CA-(ENV)EWL-LAK-/	N-001						
TP1-1	ARD0055-AUG16	8	08/12/2016	08/15/2016	08/17/2016	08/17/2016	09/11/2016	08/17/201
TP1-2	ARD0055-AUG16	9	08/12/2016	08/15/2016	08/17/2016	08/17/2016	09/11/2016	08/17/201
TP1-3	ARD0055-AUG16	10	08/12/2016	08/15/2016	08/17/2016	08/17/2016	09/11/2016	08/17/201
TP1-4	ARD0055-AUG16	11	08/12/2016	08/15/2016	08/17/2016	08/17/2016	09/11/2016	08/17/201
TP1-A	ARD0055-AUG16	12	08/12/2016	08/15/2016	08/17/2016	08/17/2016	09/11/2016	08/17/201
ГР4/2-1	ARD0055-AUG16	13	08/12/2016	08/15/2016	08/17/2016	08/17/2016	09/11/2016	08/17/201
TP4/2-2	ARD0055-AUG16	14	08/12/2016	08/15/2016	08/17/2016	08/17/2016	09/11/2016	08/17/201
TP4/2-3	ARD0055-AUG16	15	08/12/2016	08/15/2016	08/17/2016	08/17/2016	09/11/2016	08/17/201
TP4/2-4 TP4/2-A	ARD0055-AUG16	16	08/12/2016	08/15/2016	08/17/2016	08/17/2016	09/11/2016	08/17/201
174/2-4	ARD0055-AUG16	17	08/12/2016	08/15/2016	08/17/2016	08/17/2016	09/11/2016	08/17/201
Sodium adsorption ratio (SAR)								
Method: MOE 4696e01/EPA 6010	Internal ref.: ME-CA-(i	ENVJARD	-LAK-AN-021					
TP1-1		8	08/12/2016	08/15/2016	08/19/2016	08/19/2016	02/08/2017	08/19/201
TP1-2		9	08/12/2016	08/15/2016	08/19/2016	08/19/2016	02/08/2017	08/19/201
TP1-3		10	08/12/2016	08/15/2016	08/19/2016	08/19/2016	02/08/2017	08/19/201
TP1-4		11	08/12/2016	08/15/2016	08/19/2016	08/19/2016	02/08/2017	08/19/201
TP1-A		12	08/12/2016	08/15/2016	08/19/2016	08/19/2016	02/08/2017	08/19/201
TP4/2-1		13	08/12/2016	08/15/2016	08/19/2016	08/19/2016	02/08/2017	08/19/201
TP4/2-2		14	08/12/2016	08/15/2016	08/19/2016	08/19/2016	02/08/2017	08/19/201
TP4/2-3		15	08/12/2016	08/15/2016	08/19/2016	08/19/2016	02/08/2017	08/19/201
TP4/2-4		16	08/12/2016	08/15/2016	08/19/2016	08/19/2016	02/08/2017	08/19/201
ГР4/2-А		17	08/12/2016	08/15/2016	08/19/2016	08/19/2016	02/08/2017	08/19/201
Mater Soluble Boron								
/lethod: O.Reg. 153/04 Internal r	ef.: ME-CA-[ENV] SFE-	LAK-AN-(103					
ΓP1-1	ESG0067-AUG16	8	08/12/2016	08/15/2016	08/17/2016	08/18/2016	02/08/2017	08/18/201
ΓP1-2	ESG0067-AUG16	9	08/12/2016	08/15/2016	08/17/2016	08/18/2016	02/08/2017	08/18/201
TP1-3	ESG0067-AUG16	10	08/12/2016	08/15/2016	08/17/2016	08/18/2016	02/08/2017	08/18/201

HOLDING TIME SUMMARY

Sample Name	QC Batch	Sample	Sampled	Received	Extracted/	Analysed	Holding	Approved
	Reference	Number			Prepared		Time	
Water Soluble Boron (continue	ed)							
Method: O.Reg. 153/04 Inter	mal ref.: ME-CA-[ENV] SPE	-LAK-AN-C	003					
TP1-4	ESG0067-AUG16	11	08/12/2016	08/15/2016	08/17/2016	08/18/2016	02/08/2017	08/18/2016
TP1-A	ESG0067-AUG16	12	08/12/2016	08/15/2016	08/17/2016	08/18/2016	02/08/2017	08/18/2016
TP4/2-1	ESG0067-AUG16	13	08/12/2016	08/15/2016	08/17/2016	08/18/2016	02/08/2017	08/18/2016
TP4/2-2	ESG0067-AUG16	14	08/12/2016	08/15/2016	08/17/2016	08/18/2016	02/08/2017	08/18/2016
TP4/2-3	ESG0067-AUG16	15	08/12/2016	08/15/2016	08/17/2016	08/18/2016	02/08/2017	08/18/2016
TP4/2-4	ESG0067-AUG16	16	08/12/2016	08/15/2016	08/17/2016	08/18/2016	02/08/2017	08/18/2016
TP4/2-A	ESG0067-AUG16	17	08/12/2016	08/15/2016	08/17/2016	08/18/2016	02/08/2017	08/18/2016

20160819 13 / 21

QC SUMMARY

Method: EPA300/MA3ti0-lons1,3 | Internal ref., ME-CA-FENVIIC-LAX-AN-001 Anions by IC

Parameter	QC batch	Units	R	Method	Dup	Duplicate	9	LCS/Spike Blank		2	Matrix Spike / Ref.	£
	Reference			Blank	RPD	AC 8	Spike	Recove (Recovery Limits (%)	Spike Recovery	Recov	Recovery Limits (%)
							(%)	Low	High	(%)	Low	High
Chloride	DIO0257-AUG16	6/6rl	0.40	<0.4	12	20	26	80	120	120	75	125
Conductivity Method: EPA 6010/SM 2510 Internal ref.: ME-CA-IENVIEWL-LAK-AN-006	NECATENVEWLLA	% AN 00%										
Parameter	QC batch	Units	R	Method	Dup	Duplicate	9	LCS/Spike Blank		2	Matrix Spike / Ref.) ,
	Reference			Blank	RPD	AC (%)	Spike Recovery		Recovery Limits (%)	Spike Recovery	Recov	Recovery Limits (%)
							(%)	Low	High	(R)	Low	High
Conductivity	EWL0277-AUG16	mS/cm	0.0020	<0.002	0	10	66	06	110	N.		

Cyanide by SFA

Method: SM 4500 | Internal ref:: ME-CA-FENVISFA-LAK-AN-905

Matrix Spike / Ref.	Recovery Limits (%)	Low High	75 125
Mat	Spika Recovery	(%)	N
	/ Limits	High	120
CS/Spike Blank	Recovery Limits (%)	Low	80
ST	Spike	(%)	110
cate	AC 8	(w)	20
Duplicate	RPD		9
Method	Blank		<0.05
귐			0.050
Units			в/вп
QC batch	Reference		SKA5041-AUG16
Parameter			Free Cyanide

14/21

è.

QC SUMMARY

Hexavalent Chromium by IC

Nethod: EPA218.8/EPA3060A | Internal ref.: ME-CA-TENVIIC-LAK-AN-008

	Limits	High	125
Matrix Spike / Ref.	Recovery Limits (%)	Low	75
M	Spika Recovery	(%)	96
	, Limits	High	120
LCS/Spike Blank	Recovery Limits (%)	Low	80
37	Spike		92
Ouplicate	AC (%)	(0,1)	20
Dupli	RPD		Q
Method	Blank		<0.2
묎			0.20
Units			6/61
QC batch	Reference		DIO0237-AUG16
Parameter			Chromium VI

Mercury by CVAAS

Method: EPA 7471 MEPA 245 | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

QC batch	Units	చ	Method	Dup	Ouplicate	א	.CS/Spike Blank		M	Matrix Spike / Ref.	
Reference			Blank	RPD	9 S	Spike	Recover (%	Recovery Limits (%)	Spike Recovery	Recove (%	Recovery Limits (%)
						(%)	Low	High	(%)	Low	High
EHG0023-AUG16	6/60	0.050	<0.05	2	20	102	80	120	117	70	130

Metals in aqueous samples - ICP-OES

Method: MOE 4696e01/EPA 6010 | Inlamainef:: ME-CA-IENVISPE-LAK-AN-003

Parameter	QC batch	Units	굾	Method	ΟΨD	Duplicate	O]	LCS/Spike Blank		M	Matrix Spike / Ref.	ب
	Reference			Blank	RPD	AC (%)	Spike	Recovery (%)	Recovery Limits (%)	Spike Recovery	Recover (9	Recovery Limits (%)
							(%)	Low	High	(%)	Low	High
SAR Calcium	ESG0076-AUG16	Πg/L	0.020	<0.02	6	20	86	80	120	96	70	130
SAR Magnesium	ESG0076-AUG16	mg/L	0.0030	<0.003	O.	20	26	80	120	96	70	130
SAR Sodium	ESG0076-AUG16	mg/L	0.010	<0.01	Ó	20	96	80	120	26	70	130

20 1508 19

QC SUMMARY

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: WE-CA-/ENVISPE-LAK-AN-005

	QC batch	Units	궘	Method	Dup	Duplicate	2	LCS/Spike Blank		Σ	Matrix Spike / Ref.	
	Reference			Blank	RPD	S &	Spike	Recove	Recovery Limits (%)	Spike Recovery	Recovery (%)	Recovery Limits (%)
						(%)	(%)	Low	High	(%)	Low	High
Silver		6/6п	0.010	<0.01	Q	20	26	70	130	87	70	130
Arsenic	EMS0074-AUG16	6/61	0.50	<0.5	2	20	92	20	130	89	70	130
Thallium	EMS0074-AUG16	6/6п	0.020	<0.02	Q.	20	96	20	130	86	70	130
Uranium	EMS0074-AUG16	6/6rl	0,0020	<0.002	ø	20	98	20	130	96	70	130
Vanadium	EMS0074-AUG16	Б/Вп	ю	8	2	20	96	20	130	88	70	130
Zinc	EMS0074-AUG16	6/6rl	0.70	<0.7	٠	20	86	70	130	102	70	130
Barium	EMS0074-AUG16	р/вн	0.010	<0.01	4	20	92	70	130	102	70	130
Beryllium	EMS0074-AUG16	g/grl	0.020	<0.02	10	20	26	70	130	93	70	130
Boron	EMS0074-AUG16	б/вп	-	₹	2	20	101	70	130	80	70	130
Садтіит	EMS0074-AUG16	6/6rl	0.020	<0.02	Q	20	86	20	130	117	70	130
Cobalt	EMS0074-AUG16	6/61	0,010	<0.01	7	20	26	20	130	96	70	130
Chromium	EMS0074-AUG16	б/БП	0.50	<0.5	2	20	26	20	130	119	70	130
Copper	EMS0074-AUG16	6/6rl	0,10	<0:1	т	20	96	70	130	103	70	130
Molybdenum	EMS0074-AUG16	Б/Бґі	0,10	<0.1	20	20	100	70	130	68	70	130
Nickel	EMS0074-AUG16	ß/Brl	0.10	<0.1	÷	20	96	70	130	103	70	130
Lead	EMS0074-AUG16	6/6/1	0,10	0,1	2	20	66	70	130	112	70	130
Antimony	EMS0074-AUG16	6/61	0,80	8.0>	QN	20	104	20	130	92	70	130
Selenium	EMS0074-AUG16	6/61	0.70	<0.7	Q.	20	92	20	130	26	70	130

FINAL REPORT

QC SUMMARY

Wethou: SM 4500 | Internal ref.: ME-CA-FENVIEWL-LAK-AN-001

	Recovery Limits (%)	Hgh	
Matrix Spike / Ref.	Recovery (%)	Low	
Matr	Spike Recovery	(%)	
	y Limits	High	120
LCS/Spike Blank	Recovery Limits (%)	Low	80
27	Spike	(%)	100
Duplicate	AC	È	20
Dup	RPD		0
Method	Blank		
귍			0.050
Units			no unit
QC batch	Reference		ARD0055-AUG16
Parameter			Hd

Water Soluble Boron

Method: O Red. 153/04 | Internal ref:: ME-CA-TENV/ SPE-LAK-AN-903

<u></u>	Recovery Limits (%)	High	130
Matrix Spike / Ref.	Recove	Low	70
W	_ ≥	(%)	120
	Recovery Limits (%)	High	120
LCS/Spike Blank	Recovery (%)	Low	80
Ö	Spike	(%)	105
Duplicate	A (%)		20
Duplicate	RPD		2
Method	Blank		<0.5
씸			0,50
Units			6/6rl
QC batch	Keference		ESG0067-AUG16
Parameter			Water Soluble Boron

FINAL REPORT

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination;

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure, Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added, Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multiplement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multiplement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable. Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike is eccovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte;

FINAL REPORT

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit,

- † Reporting limit raised.
- ↓ Reporting limit lowered,

NA The sample was not analysed for this analyte

ND Non Detect

Samples analysed as received; Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

20160819 19 / 21

Reinquisned by (NAME): Revision # 10 Date of Issue 01 June, 2014	Palitaniishad By (N. C. V.	Sampled By (NAME): VINCOM	Observations/Comments/Special Instructions	10 42-A	1 4:01 6	* 10423	7 704-2	10 V	5 OI - A	1014	1 Committee Comm	2 10 1 200	1 TP1-1 +	SAMPLE IDENTIFICATION	RECORD OF SITE CONDITION (RSC.	· · · · · · · · · · · · · · · · · · ·	Table 3 Agri Other Medium	Regulation 153 (2011):	BERTHOLITE CONTROL CONTROL		Phone: 416-757-8515		Judget Ava	Ties (Company: Soil Ein	REPORT INFORMATION	Received By: Transaffe backer Received Date (mm/dd/yyyy): 08/15 116 Received Time:	SGS Environmental Services	SES
Signature:	61	Signature:	-	13.45					1 3000			41,000	1 001 E 1 1/21 PUP	DATE TIME # OF SAMPLED BOTTLE	□YES □NO	ſ	□ Reg 347/558 (3 Day min TAT) □ PWQO □ MMER □ CCMF □ Other	Other Regulations:	RECHT ATIONS	Phone:		Address:	Contact:	Company:	(same as Report Information)	INVOICE INFORMATION	Laboratory Inform Received By (signatule) Contody Seal Present Contody Seal Intact:	Lakefield: 185 Concession St., Lakefi London: 657 Consortium Court, London	Request for Labor
		**	ν ν		, ,	C	<	C.						# OF MATRIX			Storm Municipality	i i	Specify Due Date:	PLEASE CONFIRM	RUSH TAT (Addition	Regular TAT (5-7days)	The second second	Project #: 15/2	Quotation #:	ATION	nformation Section - Laboure only	 Lakefield: 183 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Toll Free: 877-747-7658 London: 657 Consortium Court, London, QN, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 	Request for Laboratory Services and CHAIN OF CUSTODY
Date		Date: 08/12/16															ANALYSIS REQUESTED	SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY	Rush Cont	PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION	RUSH TAT (Additional Charges May Apply) 📗 1 Day		TURNAROUND TIME (TA	Site Local	P.O. #:	PROJECT INFORMATION	Cooling Agent Present: 4 20 3	Free: 877-747-7658 Fax: 705-652-6365 Free: 877-848-8060 Fax: 519-672-0361 Web: www.cutsgs.com	OF CUSTODY
(mm/dt/gy) Vellow & White Copy - SGS	Pink Copy - Client	_													Preserved (P)	COMMENTS:		SGS DRINKING WATER CHAIN OF CUSTODY	Rush Confirmation ID:	PRESENTATIVE PRIOR TO SUBMIS	Days 2 Days 3-4 Days	TAT's are quoted in business days (exclude statutory holidays & weekends). Samples received after 3pm or on weekends: TAT begins the next business day	0	Site Location/ID: 66 II flarmony H		MATION	Aug 1525	Page 1 of 1	Non

SAMPLE INTEGRITY REPORT

Project Number:

ONTARIO REGULATION 153/04

170	MITAMO NEGE	revited a 1997	0-4			
SGS Sample ID Access 15254 Date / Time Sampled Access 12116						
Date / Time Sampled Aug (2116						
Client Sample ID	ALL					
	lubmission Genera	ł Sample Integrity	Violations			
Temperature >10 C upon receipt if not sampled same day						
No evidence of cooling trend initiated if sampled same day						
Chain of Custody not submitted						
Chain of Custody incomplete						
Chain of Custody not signed / dated						
Chain of Custody not a current version						
Bottles / Samples listed on CoC but not received						
Bottles / Samples received but not listed on the CoC						
Sample container received empty						
So	mple Specific Samp					
Sample received past hold time						
Incorrect preservation (including no preservation where required)						
Headspace present in VOC vial (aqueous)						
Sample(s) received frozen						
Bottle(s) broken or damaged in transport						
Discrepancy between sample label and chain of custody						
Analysis requirements absent / unclear						
Missing or incorrect sample label(s)						
Inappropriate sample container used						
Insufficient number of bottles received						
Insufficient sample volume						
Sample contains multiple phases						
	Sedim	ent Log				
Groundwater samples contain visible sediment / particulate						
Groundwater contains greater than 1cm of sediment / particulate matter in bottle						
Additional Comments/Remarks:						
No issues upon receipt	D	initials:	SOB	-		

Your Project #: 1512-S086E Your C.O.C. #: 611530-02-01

Attention:Laila Torabansari

Soil Engineers Ltd 90 West Beaver Creek Road Unit 100 Richmond Hill, ON CANADA L4B 1E7

Report Date: 2017/05/30

Report #: R4493001 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7A3406 Received: 2017/05/19, 17:30

Sample Matrix: Soil # Samples Received: 11

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Hexavalent Chromium in Soil by IC (1)	11	2017/05/25	2017/05/30	CAM SOP-00436	EPA 3060/7199 m
Strong Acid Leachable Metals by ICPMS	11	2017/05/26	2017/05/26	CAM SOP-00447	EPA 6020B m
Moisture	11	N/A	2017/05/26	CAM SOP-00445	Carter 2nd ed 51.2 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Soils are reported on a dry weight basis unless otherwise specified.

Your Project #: 1512-S086E Your C.O.C. #: 611530-02-01

Attention:Laila Torabansari

Soil Engineers Ltd 90 West Beaver Creek Road Unit 100 Richmond Hill, ON CANADA L4B 1E7

Report Date: 2017/05/30

Report #: R4493001 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7A3406 Received: 2017/05/19, 17:30

Encryption Key

Ashton Gibson Project Manager 30 May 2017 18:17:29

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Antonella Brasil, Senior Project Manager

Email: ABrasil@maxxam.ca Phone# (905)817-5817

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: PC

O.REG 153 ICPMS METALS (SOIL)

Maxxam ID		EKL261	EKL262	EKL263	: EKL264	EKL265		
Sampling Date		2017/05/18 09:35	2017/05/18 09:45	2017/05/18 09:50	2017/05/18 09:55	2017/05/18 10:00		
COC Number		611530-02-01	611530-02-01	611530-02-01	611530-02-01	611530-02-01		
	UNITS	WALL-1	WALL-2	FLOOR-1	WALL-3	FLOOR-2	RDL	QC Batch
Metals								
Acid Extractable Aluminum (AI)	ug/g	17000	9500	19000	5800	11000	50	5000180
Acid Extractable Antimony (Sb)	ug/g	0.53	0.49	ND	1.0	1.6	0.20	5000180
Acid Extractable Arsenic (As)	ug/g	5.6	5.0	4.7	3.7	4.9	1.0	5000180
Acid Extractable Barium (Ba)	ug/g	94	120	88	52	100	0.50	5000180
Acid Extractable Beryllium (Be)	ug/g	0.84	0.49	0.95	0.30	0.54	0.20	5000180
Acid Extractable Boron (B)	ug/g	8.5	5.4	7.5	5.2	6.2	5.0	5000180
Acid Extractable Cadmium (Cd)	ug/g	0.33	0.57	0.48	0.93	0.56	0.10	5000180
Acid Extractable Chromium (Cr)	ug/g	24	15	23	24	19	1.0	5000180
Acid Extractable Cobalt (Co)	ug/g	12	8.0	11	6.0	8.2	0.10	5000180
Acid Extractable Copper (Cu)	ug/g	32	31	30	50	33	0.50	5000180
Acid Extractable Lead (Pb)	ug/g	130	180	21	1000	150	1.0	5000180
Acid Extractable Molybdenum (Mo)	ug/g	0.69	0.83	ND	2.1	1.2	0.50	5000180
Acid Extractable Nickel (Ni)	ug/g	26	17	24	18	21	0.50	5000180
Acid Extractable Selenium (Se)	ug/g	ND	ND	ND	ND	ND	0.50	5000180
Acid Extractable Silver (Ag)	ug/g	ND	ND	ND	ND	ND	0.20	5000180
Acid Extractable Thallium (TI)	ug/g	0.19	0.16	0.17	0.31	0.16	0.050	5000180
Acid Extractable Uranium (U)	ug/g	0.67	0.52	1.2	0.40	0.54	0.050	5000180
Acid Extractable Vanadium (V)	ug/g	34	25	32	22	26	5.0	5000180
Acid Extractable Zinc (Zn)	ug/g	110	110	86	250	130	5.0	5000180
Acid Extractable Mercury (Hg)	ug/g	0.10	ND	ND	ND	ND	0.050	5000180

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: PC

O.REG 153 ICPMS METALS (SOIL)

Maxxam ID		EKL265	EKL267	EKL268	EKL269	EKL270		
Sampling Date		2017/05/18 10:15	2017/05/18 10:30	2017/05/18 10:45	2017/05/18 11:00	2017/05/18 11:15		
COC Number		611530-02-01	611530-02-01	611530-02-01	611530-02-01	611530-02-01		
	UNITS	FLOOR-3	WALL-4	WALL-5	FLOOR-4	WALL-6	RDL	QC Batch
Metals		h-						
Acid Extractable Aluminum (AI)	ug/g	15000	15000	13000	14000	15000	50	5000180
Acid Extractable Antimony (Sb)	ug/g	0.20	ND	ND	ND	ND	0.20	5000180
Acid Extractable Arsenic (As)	ug/g	5.0	4.8	5.1	4.8	5.7	1.0	5000180
Acid Extractable Barium (Ba)	ug/g	65	63	69	68	64	0.50	5000180
Acid Extractable Beryllium (Be)	ug/g	0.77	0.76	0.69	0.71	0.78	0.20	5000180
Acid Extractable Boron (B)	ug/g	7.1	8.4	8.9	9.1	9.3	5.0	5000180
Acid Extractable Cadmium (Cd)	ug/g	ND	ND	ND	ND	ND	0.10	5000180
Acid Extractable Chromium (Cr)	ug/g	20	20	19	20	21	1.0	5000180
Acid Extractable Cobalt (Co)	ug/g	12	13	12	12	14	0.10	5000180
Acid Extractable Copper (Cu)	ug/g	43	35	37	38	42	0.50	5000180
Acid Extractable Lead (Pb)	ug/g	9.2	34	10	10	11	1.0	5000180
Acid Extractable Molybdenum (Mo)	ug/g	ND	ND	ND	ND	ND	0.50	5000180
Acid Extractable Nickel (Ni)	ug/g	24	25	25	24	26	0.50	5000180
Acid Extractable Selenium (Se)	ug/g	ND	ND	ND	ND	ND	0.50	5000180
Acid Extractable Silver (Ag)	ug/g	ND	ND	ND	ND	ND	0.20	5000180
Acid Extractable Thallium (TI)	ug/g	0.17	0.15	0.13	0.15	0.16	0.050	5000180
Acid Extractable Uranium (U)	ug/g	0.44	0.47	0.58	0.51	0.49	0.050	5000180
Acid Extractable Vanadium (V)	ug/g	30	29	27	29	28	5.0	5000180
Acid Extractable Zinc (Zn)	ug/g	57	62	56	59	60	5.0	5000180
Acid Extractable Mercury (Hg)	ug/g	ND	ND	ND	ND	ND	0.050	5000180

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: PC

O.REG 153 ICPMS METALS (SOIL)

Maxxam ID		EKL271		
Sampling Date		2017/05/18		
COC Number		611530-02-01		
	UNITS	DUP-1	RDL	QC Batch
Metals				
Acid Extractable Aluminum (AI)	ug/g	14000	50	5000180
Acid Extractable Antimony (Sb)	ug/g	0.20	0.20	5000180
Acid Extractable Arsenic (As)	ug/g	4.7	1.0	5000180
Acid Extractable Barium (Ba)	ug/g	65	0.50	5000180
Acid Extractable Beryllium (Be)	ug/g	0.74	0.20	5000180
Acid Extractable Boron (B)	ug/g	8.2	5.0	5000180
Acid Extractable Cadmium (Cd)	ug/g	ND	0.10	5000180
Acid Extractable Chromium (Cr)	ug/g	20	1.0	5000180
Acid Extractable Cobalt (Co)	ug/g	12	0.10	5000180
Acid Extractable Copper (Cu)	ug/g	34	0.50	5000180
Acid Extractable Lead (Pb)	ug/g	8.8	1.0	5000180
Acid Extractable Molybdenum (Mo)	ug/g	ND	0.50	5000180
Acid Extractable Nickel (Ni)	ug/g	24	0.50	5000180
Acid Extractable Selenium (Se)	ug/g	NĐ	0.50	5000180
Acid Extractable Silver (Ag)	ug/g	ND	0.20	5000180
Acid Extractable Thallium (TI)	ug/g	0.14	0.050	5000180
Acid Extractable Uranium (U)	ug/g	0.51	0.050	5000180
Acid Extractable Vanadium (V)	ug/g	29	5.0	5000180
Acid Extractable Zinc (Zn)	ug/g	59	5.0	5000180
Acid Extractable Mercury (Hg)	ug/g	ND	0.050	5000180
RDL = Reportable Detection Limit				//

QC Batch = Quality Control Batch

Soil Engineers Ltd Client Project #: 1512-S086E

Sampler Initials: PC

RESULTS OF ANALYSES OF SOIL

Maxxam ID		EKL261	EKL262	EKL263	EKL264	EKL265	EKL266			
Sampling Date		2017/05/18 - 09:35	2017/05/18 09:45	2017/05/18 09:50	2017/05/18 09:55	2017/05/18 10:00	2017/05/18 10:15			
COC Number		611530-02-01	611530-02-01	611530-02-01	611530-02-01	611530-02-01	611530-02-01			
	UNITS	WALL-1	WALL-2	FLOOR-1	WALL-3	FLOOR-2	FLOOR-3	RDL	QC Batch	
Inorganics										
Moisture	%	14	15	28	6.3	20	16	1.0	4999931	
RDL = Reportable Detection Limit										
QC Batch = Quality Con	QC Batch = Quality Control Batch									

Maxxam ID		EKL267	EKL268	EKL269	EKL270	EKL271		
Sampling Date		2017/05/18 10:30	2017/05/18 10:45	2017/05/18 11:00	2017/05/18 11:15	2017/05/18		
COC Number		611530-02-01	611530-02-01	611530-02-01	611530-02-01	611530-02-01		
	UNITS	WALL-4	WALL-5	FLOOR-4	WALL-6	DUP-1	RDL	QC Batch
Inorganics								
Moisture	%	13	12	13	13	13	1.0	4999931
RDL = Reportable Dete	ection Limit		"					
OC Batch = Quality Co.	ntrol Batch							

QC Batch = Quality Control Batch

Soil Engineers Ltd Client Project #: 1512-S086E

Sampler Initials: PC

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		EKL261	EKL262	EKL263	EKL264	EKL265	EKL266		
Sampling Date		2017/05/18 09:35	2017/05/18 09:45	2017/05/18 09:50	2017/05/18 09:55	2017/05/18 10:00	2017/05/18 10:15		
COC Number		611530-02-01	611530-02-01	611530-02-01	611530-02-01	611530-02-01	611530-02-01		
	UNITS	WALL-1	WALL-2	FLOOR-1	WALL-3	FLOOR-2	FLOOR-3	RDL	QC Batch
Inorganics									
Chromium (VI)	ug/g	ND	ND	ND	1.1	ND	ND	0.2	4998696

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

ND = Not detected

Maxxam ID		EKL267	EKL268	EKL269	EKL270	EKL271		
Sampling Date		2017/05/18 10:30	2017/05/18 10:45	2017/05/18 11:00	2017/05/18 11:15	2017/05/18		
COC Number		611530-02-01	611530-02-01	611530-02-01	611530-02-01	611530-02-01		
	UNITS	WALL-4	WALL-5	FLOOR-4	WALL-6	DUP-1	RDL	QC Batch
Inorganics				2				
Chromium (VI)	ug/g	ND	ND	ND	ND	ND	0.2	4998696

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Soil Engineers Ltd

Client Project #: 1512-S086E

Sampler Initials: PC

TEST SUMMARY

Maxxam ID: EKL261 Sample ID: WALL-1 Collected: Shipped:

2017/05/18

Matrix: Soil

Received: 2017/05/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hexavalent Chromium in Soil by IC	IC/SPEC	4998696	2017/05/25	2017/05/30	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	5000180	2017/05/26	2017/05/26	Daniel Teclu
Moisture	BAL	4999931	N/A	2017/05/26	Prgya Panchal

Maxxam ID: EKL262 Sample ID: WALL-2 Matrix: Soil Collected: 2017/05/18

Shipped:

Received: 2017/05/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hexavalent Chromium in Soil by IC	IC/SPEC	4998696	2017/05/25	2017/05/30	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	5000180	2017/05/26	2017/05/26	Daniel Teclu
Moisture	BAL	4999931	N/A	2017/05/26	Prgya Panchal

Maxxam ID: EKL263 Sample ID: FLOOR-1 Matrix: Soil

Collected: 2017/05/18

Shipped:

Received: 2017/05/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hexavalent Chromium in Soil by IC	IC/SPEC	4998696	2017/05/25	2017/05/30	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	5000180	2017/05/26	2017/05/26	Daniel Teclu
Moisture	BAL	4999931	N/A	2017/05/26	Prgya Panchal

Maxxam ID: EKL264 Sample ID: WALL-3 Matrix: Soil

Collected: 2017/05/18 Shipped:

Received: 2017/05/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hexavalent Chromium in Soil by IC	IC/SPEC	4998696	2017/05/25	2017/05/30	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	5000180	2017/05/26	2017/05/26	Daniel Teclu
Moisture	BAL	4999931	N/A	2017/05/26	Prgya Panchal

Maxxam ID: EKL265 Sample ID: FLOOR-2 Matrix: Soil

Collected: 2017/05/18 Shipped:

Received: 2017/05/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hexavalent Chromium in Soil by IC	IC/SPEC	4998696	2017/05/25	2017/05/30	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	5000180	2017/05/26	2017/05/26	Daniel Teclu
Moisture	BAL	4999931	N/A	2017/05/26	Prgya Panchal

Maxxam ID: EKL266 Sample ID: FLOOR-3 Matrix: Soil Collected: 2017/05/18

Shipped:

Received: 2017/05/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hexavalent Chromium in Soil by IC	IC/SPEC	4998696	2017/05/25	2017/05/30	Sally Coughlin

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: PC

TEST SUMMARY

Maxxam ID: EKL266 Sample ID: FLOOR-3 Matrix: Soil

Collected: 2017/05/18

Shipped:

Received: 2017/05/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	5000180	2017/05/26	2017/05/26	Daniel Teclu
Moisture	BAL	4999931	N/A	2017/05/26	Prgya Panchal

Maxxam ID: EKL267 Sample ID: WALL-4 Matrix: Soil

Collected: 2017/05/18

Shipped:

Received: 2017/05/19

Test Description Instrumentation Batch Extracted **Date Analyzed** Analyst Hexavalent Chromium in Soil by IC IC/SPEC 4998696 2017/05/25 2017/05/30 Sally Coughlin Strong Acid Leachable Metals by ICPMS ICP/MS 5000180 2017/05/26 2017/05/26 Daniel Teclu Moisture BAL 4999931 2017/05/26 N/A Prgya Panchal

Maxxam ID: EKL268 Sample ID: WALL-5 Matrix: Soil

Collected: 2017/05/18

Shipped:

Received: 2017/05/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hexavalent Chromium in Soil by IC	IC/SPEC	4998696	2017/05/25	2017/05/30	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	5000180	2017/05/26	2017/05/26	Daniel Teclu
Moisture	BAL	4999931	N/A	2017/05/26	Prgya Panchal

Maxxam ID: EKL269 Sample ID: FLOOR-4 Matrix: Soil

Collected: 2017/05/18

Shipped:

Received: 2017/05/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hexavalent Chromium in Soil by IC	IC/SPEC	4998696	2017/05/25	2017/05/30	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	5000180	2017/05/26	2017/05/26	Daniel Teclu
Moisture	BAL	4999931	N/A	2017/05/26	Prgya Panchal

Maxxam ID: EKL270 Sample ID: WALL-6 Matrix: Soil

Collected: 2017/05/18

Shipped:

Received: 2017/05/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hexavalent Chromium in Soil by IC	IC/SPEC	4998696	2017/05/25	2017/05/30	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	5000180	2017/05/26	2017/05/26	Daniel Teclu
Moisture	BAL	4999931	N/A	2017/05/26	Prgya Panchal

Maxxam ID: EKL271 Sample ID: DUP-1 Matrix: Soil

Collected: 2017/05/18

Shipped:

Received: 2017/05/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hexavalent Chromium in Soil by IC	IC/SPEC	4998696	2017/05/25	2017/05/30	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	5000180	2017/05/26	2017/05/26	Daniel Teclu

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: PC

TEST SUMMARY

Maxxam ID: EKL271 Sample ID: DUP-1 Matrix: Soil

Collected: 2017/05/18 Shipped:

Received: 2017/05/19

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	4999931	N/A	2017/05/26	Prgya Panchal

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: PC

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt	
Package 1 9.3°C	
Results relate only to the items tested.	

Report Date: 2017/05/30

QUALITY ASSURANCE REPORT

Soil Engineers Ltd Client Project #: 1512-5086E Sampler Initials: PC

			Matrix Snike	Snike	CDIVED RIANK	SIANIK	Juria bodtoha	Juch	Odd	
				opine.	SI INCO	SECTION	INICHION D	all P		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4998696	Chromium (VI)	2017/05/30	87	75 - 125	91	80 - 120	ND, RDL=0.2	B/Bn	NC	35
4999931	Moisture	2017/05/26							1.8	20
5000180	Acid Extractable Aluminum (AI)	2017/05/26	NC	75 - 125	86	80 - 120	ND, RDL=50	B/Bn		
5000180	Acid Extractable Antimony (Sb)	2017/05/26	103	75 - 125	105	80 - 120	ND, RDL=0.20	g/gn	NC	30
5000180	Acid Extractable Arsenic (As)	2017/05/26	96	75 - 125	95	80 - 120	ND, RDL=1.0	B/Bn	NC	30
5000180	Acid Extractable Barium (Ba)	2017/05/26	68	75 - 125	101	80 - 120	ND, RDL=0.50	B/Bn	1.1	30
5000180	Acid Extractable Beryllium (Be)	2017/05/26	100	75 - 125	100	80 - 120	ND, RDL=0.20	B/Bn	NC	30
5000180	Acid Extractable Boron (B)	2017/05/26	96	75 - 125	96	80 - 120	ND, RDL=5.0	g/gn	NC	30
5000180	Acid Extractable Cadmium (Cd)	2017/05/26	98	75 - 125	100	80 - 120	ND, RDL=0.10	B/Bn	NC	30
5000180	Acid Extractable Chromium (Cr)	2017/05/26	06	75 - 125	96	80 - 120	ND, RDL=1.0	B/Bn	7.1	30
5000180	Acid Extractable Cobalt (Co)	2017/05/26	97	75 - 125	97	80 - 120	ND, RDL=0.10	B/Bn	6.4	30
5000180	Acid Extractable Copper (Cu)	2017/05/26	66	75 - 125	66	80 - 120	ND, RDL=0.50	B/Bn	7.9	30
5000180	Acid Extractable Lead (Pb)	2017/05/26	102	75 - 125	66	80 - 120	ND, RDL=1.0	B/Bn	1.0	30
5000180	Acid Extractable Mercury (Hg)	2017/05/26	106	75 - 125	66	80 - 120	ND, RDL=0.050	g/gn	NC	30
5000180	Acid Extractable Molybdenum (Mo)	2017/05/26	97	75 - 125	100	80 - 120	ND, RDL=0.50	B/Bn	NC	30
5000180	Acid Extractable Nickel (Ni)	2017/05/26	96	75 - 125	95	80 - 120	ND, RDL=0.50	B/Bn	3.3	30
5000180	Acid Extractable Selenium (Se)	2017/05/26	100	75 - 125	97	80 - 120	ND, RDL=0.50	g/Bn	NC	30
5000180	Acid Extractable Silver (Ag)	2017/05/26	100	75 - 125	103	80 - 120	ND, RDL=0.20	g/gn	NC	30
5000180	Acid Extractable Thallium (Ti)	2017/05/26	102	75 - 125	97	80 - 120	ND, RDL=0.050	g/gn	NC	30
5000180	Acid Extractable Uranium (U)	2017/05/26	104	75 - 125	96	80 - 120	ND, RDL=0.050	B/Bn	11	30
5000180	Acid Extractable Vanadium (V)	2017/05/26	92	75 - 125	97	80 - 120	ND, RDL=5.0	B/Bn	5.4	30
5000180	Acid Extractable Zinc (Zn)	2017/05/26	86	75 - 125	66	80 - 120	ND, RDL=5.0	B/Bn	4.6	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: PC

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 1512-S086E Your C.O.C. #: 52419

Attention:Laila Torabansari

Soil Engineers Ltd 90 West Beaver Creek Road Unit 100 Richmond Hill, ON CANADA L4B 1E7

Report Date: 2017/06/08

Report #: R4504474

Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B7B2790 Received: 2017/06/01, 14:40

Sample Matrix: Soil # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Free (WAD) Cyanide	1	2017/06/03	2017/06/06	CAM SOP-00457	OMOE E3015 m
Hexavalent Chromium in Soil by IC (1)	2	2017/06/05	2017/06/05	CAM SOP-00436	EPA 3060/7199 m
Hexavalent Chromium in Soil by IC (1)	1	2017/06/05	2017/06/06	CAM SOP-00436	EPA 3060/7199 m
Strong Acid Leachable Metals by ICPMS	3	2017/06/06	2017/06/06	CAM SOP-00447	EPA 6020B m
Moisture	4	N/A	2017/06/03	CAM SOP-00445	Carter 2nd ed 51.2 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Soils are reported on a dry weight basis unless otherwise specified.

Your Project #: 1512-S086E Your C.O.C. #: 52419

4

Attention:Laila Torabansari

Soil Engineers Ltd 90 West Beaver Creek Road Unit 100 Richmond Hill, ON CANADA L4B 1E7

Report Date: 2017/06/08

Report #: R4504474

Version: 2 - Revision

CERTIFICATE OF ANALYSIS - REVISED REPORT

MAXXAM JOB #: B7B2790 Received: 2017/06/01, 14:40

Encryption Key

Antonella Brasil
Senior Project Manager
08 Jun 2017 15:27:02

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Antonella Brasil, Senior Project Manager

Email: ABrasil@maxxam.ca Phone# (905)817-5817

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: AB

O.REG 153 ICPMS METALS (SOIL)

Maxxam ID		EMF949	: EMF950	EMF951		
Sampling Date		2017/05/19 10:00	2017/05/19 10:00	2017/05/19 10:00		
COC Number		52419	52419	52419		
	UNITS	WALL-1-1	WALL-2-2	WALL-3-3	RDL	QC Batch
Metals	-					
Acid Extractable Aluminum (Al)	ug/g	13000	14000	16000	50	5014352
Acid Extractable Antimony (Sb)	ug/g	ND	ND	ND	0.20	5014352
Acid Extractable Arsenic (As)	ug/g	4.8	4.9	4.8	1.0	5014352
Acid Extractable Barium (Ba)	ug/g	61	65	80	0.50	5014352
Acid Extractable Beryllium (Be)	ug/g	0.62	0.66	0.79	0.20	5014352
Acid Extractable Boron (B)	ug/g	ND	7.8	7.6	5.0	5014352
Acid Extractable Cadmium (Cd)	ug/g	0.16	0.14	0.12	0.10	5014352
Acid Extractable Chromium (Cr)	ug/g	18	21	24	1.0	5014352
Acid Extractable Cobalt (Co)	ug/g	11	12	13	0.10	5014352
Acid Extractable Copper (Cu)	ug/g	28	38	35	0.50	5014352
Acid Extractable Lead (Pb)	ug/g	14	52	12	1.0	5014352
Acid Extractable Molybdenum (Mo)	ug/g	ND	ND	ND	0.50	5014352
Acid Extractable Nickel (Ni)	ug/g	20	25	28	0.50	5014352
Acid Extractable Selenium (Se)	ug/g	ND	ND	ND	0.50	5014352
Acid Extractable Silver (Ag)	ug/g	ND	ND	ND	0.20	5014352
Acid Extractable Thallium (TI)	ug/g	0.13	0.15	0,15	0.050	5014352
Acid Extractable Uranium (U)	ug/g	0.46	0.56	0.60	0.050	5014352
Acid Extractable Vanadium (V)	ug/g	31	29	30	5.0	5014352
Acid Extractable Zinc (Zn)	ug/g	61	79	70	5.0	5014352
Acid Extractable Mercury (Hg)	ug/g	ND	ND	ND	0.050	5014352
RDL = Reportable Detection Limit						

QC Batch = Quality Control Batch

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: AB

RESULTS OF ANALYSES OF SOIL

Maxxam ID	4	EMF949	EMF950	EMF951		EMF952		
Campling Data		2017/05/19	2017/05/19	2017/05/19		2017/05/19		
Sampling Date		10:00	10:00	10:00		10:00		
COC Number		52419	52419	52419		52419		
	UNITS	WALL-1-1	WALL-2-2	WALL-3-3	QC Batch	TP-S'	RDL	QC Batch
Inorganics								
Moisture	%	11	17	15	5012406	18	1.0	5012133
Wioistarc	/0	11	1/	12	J012400	10	1.0	3012133
WAD Cyanide (Free)	ug/g	11	1/	13	3012400	0.01	0.01	5012111
	ug/g	11	17	15	3012400		-	

.

Soil Engineers Ltd

Client Project #: 1512-S086E

Sampler Initials: AB

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

	UNITS	WALL-1-1	QC Batch	WALL-2-2	QC Batch	WALL-3-3	RDL	QC Batch
COC Number		52419		52419		52419		
Sampling Date		10:00		10:00		10:00		
Campling Date		2017/05/19		2017/05/19		2017/05/19		
Maxxam ID		EMF949		EMF950		EMF951		

 Inorganics

 Chromium (VI)
 ug/g
 ND
 5012775
 ND
 5013229
 ND
 0.2
 5012775

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: AB

TEST SUMMARY

Maxxam ID: EMF949 Sample ID: WALL-1-1

Collected: 2017/05/19

Matrix: Soil

Shipped:

Received: 2017/06/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hexavalent Chromium in Soil by IC	IC/SPEC	5012775	2017/06/05	2017/06/05	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	5014352	2017/06/06	2017/06/06	Daniel Teclu
Moisture	BAL	5012406	N/A	2017/06/03	Valentina Kaftani

Maxxam ID: EMF950 Sample ID: WALL-2-2 Matrix: Soil

Collected: 2017/05/19

Shipped:

Received: 2017/06/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hexavalent Chromium in Soil by IC	IC/SPEC	5013229	2017/06/05	2017/06/06	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	5014352	2017/06/06	2017/06/06	Daniel Teclu
Moisture	BAL	5012406	N/A	2017/06/03	Valentina Kaftani

Maxxam ID: EMF951 Sample ID: WALL-3-3 Matrix: Soil

Collected: 2017/05/19

Shipped:

Received: 2017/06/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hexavalent Chromium in Soil by IC	IC/SPEC	5012775	2017/06/05	2017/06/05	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	5014352	2017/06/06	2017/06/06	Daniel Teclu
Moisture	BAL	5012406	N/A	2017/06/03	Valentina Kaftani

Maxxam ID: EMF952

Sample ID: TP-S' Matrix: Soil

Collected: 2017/05/19

Shipped:

Received: 2017/06/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Free (WAD) Cyanide	TECH	5012111	2017/06/03	2017/06/06	Louise Harding
Moisture	BAL	5012133	N/A	2017/06/03	Valentina Kaftani

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: AB

GENERAL COMMENTS

Each temperature is the a	average of up to thr	ee cooler temperatures taken at receipt	:
Package 1	5.3°C		
Custody Seal is Present a	nd Intact		
Revised Report (2017/06,	/08): Project # adjus	sted as per client request.	
Results relate only to the	e items tested.		

QUALITY ASSURANCE REPORT

Soil Engineers Ltd Client Project #: 1512-5086E Sampler Initials: AB

			Matrix Spike	Spike	SPIKED BLANK	SLANK	Method Blank	lank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5012111	WAD Cyanide (Free)	2017/06/06	96	75 - 125	91	80 - 120	ND, RDL=0.01	B/Bn	0.089	35
5012133	Moisture	2017/06/03							1.1	20
5012406	Moisture	2017/06/03							0	20
5012775	Chromium (VI)	2017/06/05	64 (1)	75 - 125	91	80 - 120	ND, RDL=0.2	B/Bn	NC	35
5013229	Chromium (VI)	2017/06/06	0.43 (1)	75 - 125	88	80 - 120	ND, RDL=0.2	B/Bn	NC	35
5014352	Acid Extractable Aluminum (AI)	2017/06/06	NC	75 - 125	104	80 - 120	ND, RDL=50	g/gn		
5014352	Acid Extractable Antimony (Sb)	2017/06/06	92	75 - 125	100	80 - 120	ND, RDL=0.20	B/Bn	NC	30
5014352	Acid Extractable Arsenic (As)	2017/06/06	100	75 - 125	101	80 - 120	ND, RDL=1.0	B/Bn	3.8	30
5014352	Acid Extractable Barium (Ba)	2017/06/06	NC	75 - 125	105	80 - 120	ND, RDL=0.50	g/gn	0.67	30
5014352	Acid Extractable Beryllium (Be)	2017/06/06	96	75 - 125	66	80 - 120	ND, RDL=0.20	B/Bn	NC	30
5014352	Acid Extractable Boron (B)	2017/06/06	93	75 - 125	97	80 - 120	ND, RDL=5.0	B/Bn	NC	30
5014352	Acid Extractable Cadmium (Cd)	2017/06/06	96	75 - 125	66	80 - 120	ND, RDL=0.10	9/8n	NC	30
5014352	Acid Extractable Chromium (Cr)	2017/06/06	102	75 - 125	103	80 - 120	ND, RDL=1.0	g/gn	3.6	30
5014352	Acid Extractable Cobalt (Co)	2017/06/06	96	75 - 125	105	80 - 120	ND, RDL=0.10	B/Bn	1.6	30
5014352	Acid Extractable Copper (Cu)	2017/06/06	91	75 - 125	105	80 - 120	ND, RDL=0.50	B/Bn	0.50	30
5014352	Acid Extractable Lead (Pb)	2017/06/06	94	75 - 125	104	80 - 120	ND, RDL=1.0	g/gn	2.5	30
5014352	Acid Extractable Mercury (Hg)	2017/06/06	94	75 - 125	101	80 - 120	ND, RDE=0.050	g/gn		
5014352	Acid Extractable Molybdenum (Mo)	2017/06/06	98	75 - 125	100	80 - 120	ND, RDL=0.50	g/gn	14	30
5014352	Acid Extractable Nickel (Ni)	2017/06/06	86	75 - 125	104	80 - 120	ND, RDL=0.50	ng/g	11	30
5014352	Acid Extractable Selenium (Se)	2017/06/06	97	75 - 125	103	80 - 120	ND, RDL=0.50	ng/g	NC	30
5014352	Acid Extractable Silver (Ag)	2017/06/06	96	75 - 125	102	80 - 120	ND, RDL=0.20	g/gn	NC	30
5014352	Acid Extractable Thallium (TI)	2017/06/06	93	75 - 125	103	80 - 120	ND, RDL=0.050	ng/g	NC	30
5014352	Acid Extractable Uranium (U)	2017/06/06	94	75 - 125	102	80 - 120	ND, RDL=0.050	ng/g	14	30
5014352	Acid Extractable Vanadium (V)	2017/06/06	101	75 - 125	100	80 - 120	ND, RDL=5.0	g/gn	8.9	30

QUALITY ASSURANCE REPORT(CONT'D)

Soil Engineers Ltd Client Project #: 1512-5086E Sampler Initials: AB

			Matrix Snike	Snika	CDIKED BI ANK	RIANIK	Jucia bodtoM	Jack	Uad	_
			VIDEN	- Durch	21 1145		20013	4	2	•
QC Batch	Parameter	Date	% Recovery	QC Limits	QC Limits % Recovery QC Limits	QC Limits	Value	UNITS	Value (%)	QC Limits
5014352	Acid Extractable Zinc (Zn)	2017/06/06	NC	75 - 125	107	80 - 120	ND, RDL=5.0	ug/g	0.95	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy,

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated, The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL). (1) The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample. The matrix spike was reanalyzed to confirm result.

.

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: AB

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 1512-S086E Your C.O.C. #: 624932-41-01

Attention:Laila Torabansari

Soil Engineers Ltd 90 West Beaver Creek Road Unit 100 Richmond Hill, ON CANADA L4B 1E7

Report Date: 2017/08/24

Report #: R4673655 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7H8922 Received: 2017/08/18, 14:20

Sample Matrix: Soil # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Hot Water Extractable Boron	5	2017/08/24	2017/08/24	CAM SOP-00408	R153 Ana. Prot. 2011
Hexavalent Chromium in Soil by IC (1)	5	2017/08/22	2017/08/23	CAM SOP-00436	EPA 3060/7199 m
Strong Acid Leachable Metals by ICPMS	5	2017/08/23	2017/08/23	CAM SOP-00447	EPA 6020B m
Moisture	5	N/A	2017/08/21	CAM SOP-00445	Carter 2nd ed 51.2 m
pH CaCl2 EXTRACT	5	2017/08/23	2017/08/23	CAM SOP-00413	EPA 9045 D m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Soils are reported on a dry weight basis unless otherwise specified.

Your Project #: 1512-S086E Your C.O.C. #: 624932-41-01

Attention:Laila Torabansari

Soil Engineers Ltd 90 West Beaver Creek Road Unit 100 Richmond Hill, ON CANADA L4B 1E7

Report Date: 2017/08/24

Report #: R4673655 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7H8922 Received: 2017/08/18, 14:20

Encryption Key

Ontonella Bl Antonella Brasil
Senior Project Manager
24 Aug 2017 16:02:40

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Antonella Brasil, Senior Project Manager

Email: ABrasil@maxxam.ca Phone# (905)817-5817

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Soil Engineers Ltd Client Project #: 1512-S086E

O.REG 153 METALS PACKAGE (SOIL)

Maxxam ID		EYW565	EYW566	EYW567	EYW567	EYW568		
Sampling Date		2017/08/10 09:30	2017/08/10 10:00	2017/08/10 11:20	2017/08/10 11:20	2017/08/10 10:30		
COC Number		624932-41-01	624932-41-01	624932-41-01	624932-41-01	624932-41-01		
	UNITS	WALL 7	WALL 8	FLOOR -2-1	FLOOR -2-1 Lab-Dup	FLOOR 5	RDL	QC Batch
Inorganics								
Moisture	%	18	18	15		14	1.0	5129015
Chromium (VI)	ug/g	ND	ND	ND	ND	ND	0.2	5130633
Metals		*		·				
Hot Water Ext. Boron (B)	ug/g	0.15	0.15	0.12		0.14	0.050	5133920
Acid Extractable Antimony (Sb)	ug/g	ND	ND	ND		ND	0.20	5131813
Acid Extractable Arsenic (As)	ug/g	7.2	7.4	4.7		4.3	1.0	5131813
Acid Extractable Barium (Ba)	ug/g	60	69	48		45	0.50	5131813
Acid Extractable Beryllium (Be)	ug/g	1.0	1.1	0.72		0.70	0.20	5131813
Acid Extractable Boron (B)	ug/g	7.2	8.1	ND		ND	5.0	5131813
Acid Extractable Cadmium (Cd)	ug/g	ND	ND	ND		ND	0.10	5131813
Acid Extractable Chromium (Cr)	ug/g	28	26	21		21	1.0	5131813
Acid Extractable Cobalt (Co)	ug/g	14	16	13		14	0.10	5131813
Acid Extractable Copper (Cu)	ug/g	52	54	27		25	0.50	5131813
Acid Extractable Lead (Pb)	ug/g	12	14	9.2		9.1	1.0	5131813
Acid Extractable Molybdenum (Mo)	ug/g	ND	ND	ND		ND	0.50	5131813
Acid Extractable Nickel (Ni)	ug/g	31	33	24		23	0.50	5131813
Acid Extractable Selenium (Se)	ug/g	ND	ND	ND		ND	0.50	5131813
Acid Extractable Silver (Ag)	ug/g	ND	ND	ND		ND	0.20	5131813
Acid Extractable Thallium (TI)	ug/g	0.20	0.19	0.12		0.12	0.050	5131813
Acid Extractable Uranium (U)	ug/g	0.52	0.54	0.45		0.42	0.050	5131813
Acid Extractable Vanadium (V)	ug/g	38	36	30		28	5.0	5131813
Acid Extractable Zinc (Zn)	ug/g	73	70	59		57	5.0	5131813
Acid Extractable Mercury (Hg)	ug/g	ND	ND	ND		ND	0.050	5131813

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Soil Engineers Ltd Client Project #: 1512-S086E

O.REG 153 METALS PACKAGE (SOIL)

Maxxam ID		EYW568	EYW569		
Sampling Date		2017/08/10 10:30	2017/08/10		
COC Number		624932-41-01	624932-41-01		
	UNITS	FLOOR 5 Lab-Dup	DUP	RDL	QC Batch
Inorganics					
Moisture	%		14	1.0	5129015
Chromium (VI)	ug/g		ND	0.2	5130633
Metals					
Hot Water Ext, Boron (B)	ug/g	0.15	0.15	0.050	5133920
Acid Extractable Antimony (Sb)	ug/g		ND	0.20	5131813
Acid Extractable Arsenic (As)	ug/g		3.9	1.0	5131813
Acid Extractable Barium (Ba)	ug/g		44	0.50	5131813
Acid Extractable Beryllium (Be)	ug/g		0.67	0.20	5131813
Acid Extractable Boron (B)	ug/g		ND	5.0	5131813
Acid Extractable Cadmium (Cd)	ug/g		ND	0.10	5131813
Acid Extractable Chromium (Cr)	ug/g		19	1.0	5131813
Acid Extractable Cobalt (Co)	ug/g		13	0.10	5131813
Acid Extractable Copper (Cu)	ug/g		24	0.50	5131813
Acid Extractable Lead (Pb)	ug/g		8.4	1.0	5131813
Acid Extractable Molybdenum (Mo)	ug/g		ND	0.50	5131813
Acid Extractable Nickel (Ni)	ug/g		22	0.50	5131813
Acid Extractable Selenium (Se)	ug/g		ND	0.50	5131813
Acid Extractable Silver (Ag)	ug/g		ND	0.20	5131813
Acid Extractable Thallium (TI)	ug/g		0.11	0.050	5131813
Acid Extractable Uranium (U)	ug/g		0.42	0.050	5131813
Acid Extractable Vanadium (V)	ug/g		27	5.0	5131813
Acid Extractable Zinc (Zn)	ug/g		55	5.0	5131813
Acid Extractable Mercury (Hg)	ug/g		ND	0.050	5131813

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Soil Engineers Ltd Client Project #: 1512-S086E

RESULTS OF ANALYSES OF SOIL

Maxxam ID		EYW565	EYW566	EYW567	EYW568	EYW569	
Sampling Date		2017/08/10 09:30	2017/08/10 10:00	2017;08/10 11:20	2017/08/10 10:30	2017/08/10	
COC Number		624932-41-01	624932-41-01	624932-41-01	624932-41-01	624932-41-01	
	UNITS	WALL 7	WALL 8	FLOOR -2-1	FLOOR 5	DUP	QC Batch
Inorganics							
Available (CaCl2) pH	рН	7.55	7.55	7.05	7.07	7.04	5131817
					•		

Soil Engineers Ltd Client Project #: 1512-S086E

TEST SUMMARY

Maxxam ID: EYW565 Sample ID: WALL 7 Matrix: Soil

Collected: 2017/08/10

Shipped:

Received: 2017/08/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	5133920	2017/08/24	2017/08/24	Jolly John
Hexavalent Chromium in Soil by IC	IC/SPEC	5130633	2017/08/22	2017/08/23	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	5131813	2017/08/23	2017/08/23	Daniel Teclu
Moisture	BAL	5129015	N/A	2017/08/21	Min Yang
pH CaCl2 EXTRACT	AT	5131817	2017/08/23	2017/08/23	Tahir Anwar

Maxxam ID: EYW566 Sample ID: WALL 8 Matrix: Soil

Collected: 2017/08/10

Shipped:

Received: 2017/08/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	5133920	2017/08/24	2017/08/24	Jolly John
Hexavalent Chromium in Soil by IC	IC/SPEC	5130633	2017/08/22	2017/08/23	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	5131813	2017/08/23	2017/08/23	Daniel Teclu
Moisture	BAL	5129015	N/A	2017/08/21	Min Yang
pH CaCl2 EXTRACT	AT	5131817	2017/08/23	2017/08/23	Tahir Anwar

Maxxam ID: EYW567 Sample ID: FLOOR -2-1 Matrix: Soil

Collected:

2017/08/10

Shipped: Received:

2017/08/18

Test Description Instrumentation Batch Extracted Date Analyzed Analyst

Hot Water Extractable Boron	ICP	5133920	2017/08/24	2017/08/24	Jolly John
Hexavalent Chromium in Soil by IC	IC/SPEC	5130633	2017/08/22	2017/08/23	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	5131813	2017/08/23	2017/08/23	Daniel Teclu
Moisture	BAL	5129015	N/A	2017/08/21	Min Yang
pH CaCl2 EXTRACT	AT	5131817	2017/08/23	2017/08/23	Tahir Anwar

Maxxam ID: EYW567 Dup Sample ID: FLOOR -2-1 Matrix: Soil

Collected: Shipped:

2017/08/10

Received: 2017/08/18

Test Description Instrumentation Date Analyzed Batch Extracted Analyst Hexavalent Chromium in Soil by IC IC/SPEC 5130633 2017/08/22 2017/08/23 Sally Coughlin

Maxxam ID: EYW568 Sample ID: FLOOR 5 Matrix: Soil

Collected: 2017/08/10

Shipped:

Received: 2017/08/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	5133920	2017/08/24	2017/08/24	Jolly John
Hexavalent Chromium in Soil by IC	IC/SPEC	5130633	2017/08/22	2017/08/23	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	5131813	2017/08/23	2017/08/23	Daniel Teclu
Moisture	BAL	5129015	N/A	2017/08/21	Min Yang
pH CaCl2 EXTRACT	AT	5131817	2017/08/23	2017/08/23	Tahir Anwar

Maxxam Job #: B7H8922 Report Date: 2017/08/24

Soil Engineers Ltd Client Project #: 1512-S086E

TEST SUMMARY

Maxxam ID: EYW568 Dup Sample ID: FLOOR 5

Matrix: Soil

Collected: 2017/08/10

Shipped: Received:

2017/08/18

Test Description Instrumentation Batch Extracted Date Analyzed Analyst Hot Water Extractable Boron ICP 5133920 2017/08/24 2017/08/24 Jolly John

Maxxam ID: EYW569 Sample ID: DUP

Matrix: Soil

Collected: 2017/08/10

Shipped:

Received: 2017/08/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	5133920	2017/08/24	2017/08/24	Jolly John
Hexavalent Chromium in Soil by IC	IC/SPEC	5130633	2017/08/22	2017/08/23	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	5131813	2017/08/23	2017/08/23	Daniel Teclu
Moisture	BAL	5129015	N/A	2017/08/21	Min Yang
pH CaCl2 EXTRACT	AT	5131817	2017/08/23	2017/08/23	Tahir Anwar

Maxxam Job #: B7H8922 Report Date: 2017/08/24

Soil Engineers Ltd Client Project #: 1512-S086E

GENERAL COMMENTS

Each temperature is the	average of up to	three cooler temperatures taken at rece	eipt	
Package 1	8.7°C			
Custody Seal Present/In	tact			
Results relate only to th	ie items tested.			

Report Date: 2017/08/24

QUALITY ASSURANCE REPORT

Soil Engineers Ltd Client Project #: 1512-5086E

QC Datch Parameter Opted % Recovery QC Limits % Recovery QC Limits W Robertow UNITS Value (%) QC Limits 5130633 Chromitwick 2017/08/21 75				Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	lank	RPD	٥
Molisture 2017/08/213 75 75 86 80-120 ND, RDL-0.2 ug/g NC Chromium (V) Acid Extractable Aritmony (Sb) 2017/08/23 75-125 96 80-120 ND, RDL-0.2 ug/g NC Acid Extractable Aritmony (Sb) 2017/08/23 99 75-125 96 80-120 ND, RDL-0.2 ug/g NC Acid Extractable Farium (Ba) 2017/08/23 99 75-125 96 80-120 ND, RDL-0.2 ug/g 19 Acid Extractable Extractable Extractable Extractable Comminum (Cd) 2017/08/23 97 75-125 96 80-120 ND, RDL-0.0 ug/g 29 Acid Extractable Comminum (Cd) 2017/08/23 97 75-125 97 80-120 ND, RDL-0.0 ug/g 29 Acid Extractable Comminum (Cd) 2017/08/23 97 75-125 97 80-120 ug/g 29 75-125 97 80-120 ug/g 29 Acid Extractable Companium (Acid Extractable Companium (Ma) 2017/08/23 NC 75-125	QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
Chromium (VI) 2017/08/23 75 - 125 86 80 - 120 NO, FDL=0.2 ug/g NC Acid Extractable Antimony (Sb) 2017/08/23 92 75 - 125 94 80 - 120 ND, FDL=0.20 ug/g NC Acid Extractable Antimony (Sb) 2017/08/23 95 75 - 125 98 80 - 120 ND, RDL=0.20 ug/g 19 Acid Extractable Beryllium (Be) 2017/08/23 97 75 - 125 98 80 - 120 ND, RDL=0.20 ug/g 19 Acid Extractable Beryllium (Be) 2017/08/23 97 75 - 125 98 80 - 120 ND, RDL=0.20 ug/g 19 Acid Extractable Beryllium (Cd) 2017/08/23 96 75 - 125 94 80 - 120 ND, RDL=0.20 ug/g 20 Acid Extractable Coperin (Cl) 2017/08/23 NC 75 - 125 94 80 - 120 ND, RDL=0.20 ug/g 20 Acid Extractable Coper (Cu) 2017/08/23 NC 75 - 125 97 80 - 120 ND, RDL=0.20 ug/g 20	5129015	Moisture	2017/08/21							1.1	20
Acid Extractable Antimony (5b) 2017/08/23 92 75-125 94 80-120 ND, RDLe-102 ug/g 70 Acid Extractable Arsenic (As) 2017/08/23 99 75-125 95 80-120 ND, RDLe-10. ug/g 19 Acid Extractable Arsenic (As) 2017/08/23 97 75-125 96 80-120 ND, RDLe-10. ug/g 19 Acid Extractable Beryllium (Es) 2017/08/23 97 75-125 95 80-120 ND, RDLe-10. ug/g 70 Acid Extractable Beryllium (Cd) 2017/08/23 96 75-125 95 80-120 ND, RDLe-10. ug/g 20 Acid Extractable Cobalt (Co) 2017/08/23 NC 75-125 97 80-120 ND, RDLe-10. ug/g 20 Acid Extractable Cobalt (Co) 2017/08/23 NC 75-125 97 80-120 ND, RDLe-10. ug/g 20 Acid Extractable Cobalt (Co) 2017/08/23 NC 75-125 97 80-120 ND, RDLe-10. ug/g 5.5	5130633	Chromium (VI)	2017/08/23	75	75 - 125	98	80 - 120	ND, RDL=0.2	B/Bn	NC	35
Acid Extractable Arsenic (As) 2017/08/23 99 75-125 95 80-120 NO, RDL=10 ug/g 19 Acid Extractable Bantum (Ba) 2017/08/23 NC 75-125 98 80-120 ND, RDL=0.50 ug/g 19 19 Acid Extractable Benyllium (Be) 2017/08/23 96 75-125 96 80-120 ND, RDL=0.50 ug/g 70 Acid Extractable Benyllium (Be) 2017/08/23 94 75-125 94 80-120 ND, RDL=0.10 ug/g 70 Acid Extractable Cadmium (Cr) 2017/08/23 NC 75-125 97 80-120 ND, RDL=0.50 ug/g 70 Acid Extractable Cobalt (Co) 2017/08/23 NC 75-125 97 80-120 ND, RDL=0.50 ug/g 5.3 Acid Extractable Cobalt (Co) 2017/08/23 NC 75-125 97 80-120 ND, RDL=0.50 ug/g 5.3 Acid Extractable Cobalt (Co) 2017/08/23 NC 75-125 97 80-120 ND, RDL=0.50 ug/g 5.3	5131813	Acid Extractable Antimony (Sb)	2017/08/23	92	75 - 125	94	80 - 120	ND, RDL=0,20	B/Bn		
Acid Extractable Bearum (Ba) 2017/08/23 NC 75-125 98 80-120 ND, RDL-0.50 ug/g PM Acid Extractable Bearum (Ba) 2017/08/23 97 75-125 96 80-120 ND, RDL-0.20 ug/g PM Acid Extractable Beroyllium (Be) 2017/08/23 96 75-125 95 80-120 ND, RDL-0.10 ug/g 30 Acid Extractable Cadmium (Cd) 2017/08/23 NC 75-125 97 80-120 ND, RDL-0.10 ug/g 30 Acid Extractable Copper (Lu) 2017/08/23 NC 75-125 97 80-120 ND, RDL-0.10 ug/g 2.1 Acid Extractable Copper (Lu) 2017/08/23 NC 75-125 97 80-120 ug/g 3.2 Acid Extractable Copper (Lu) 2017/08/23 NC 75-125 97 80-120 ug/g 5.2 Acid Extractable Meruv (Hg) 2017/08/23 NC 75-125 97 80-120 ug/g 5.5 Acid Extractable Meruv (Hg) 2017/08/23 NC	5131813	Acid Extractable Arsenic (As)	2017/08/23	66	75 - 125	95	80 - 120	ND, RDL=1.0	B/Bn	19	30
Acid Extractable Beron (B) 2017/08/23 9F 75-125 96 80-120 ND, RDL=0.20 ug/g PM Acid Extractable Beron (B) 2017/08/23 96 75-125 95 80-120 ND, RDL=0.0 ug/g 70 Acid Extractable Beron (B) 2017/08/23 94 75-125 94 80-120 ND, RDL=0.0 ug/g 3.0 Acid Extractable Cobart (col) 2017/08/23 NC 75-125 97 80-120 ND, RDL=0.0 ug/g 2.9 Acid Extractable Cobart (col) 2017/08/23 NC 75-125 97 80-120 ND, RDL=0.0 ug/g 2.9 Acid Extractable Cobart (col) 2017/08/23 NC 75-125 97 80-120 ND, RDL=0.0 ug/g 2.9 Acid Extractable Charactable Cobart (col) 2017/08/23 NC 75-125 97 80-120 ND, RDL=0.05 ug/g 2.9 Acid Extractable Meruy (Hg) 2017/08/23 97 75-125 97 80-120 ND, RDL=0.05 ug/g 5.5	5131813	Acid Extractable Barium (Ba)	2017/08/23	NC	75 - 125	86	80 - 120	ND, RDL=0.50	B/Bn		
Acid Extractable Boron (B) 2017/08/23 96 75-125 95 80-120 ND, RDL=5.0 ug/g 70-10 Acid Extractable Cadmium (Cd) 2017/08/23 94 75-125 94 80-120 ND, RDL=1.0 ug/g 30 Acid Extractable Cadmium (Cd) 2017/08/23 NC 75-125 97 80-120 ND, RDL=1.0 ug/g 2.9 Acid Extractable Cobalt (Co) 2017/08/23 NC 75-125 97 80-120 ND, RDL=1.0 ug/g 2.9 Acid Extractable Copper (Cu) 2017/08/23 NC 75-125 97 80-120 ND, RDL=0.50 ug/g 2.9 Acid Extractable Copper (Cu) 2017/08/23 NC 75-125 97 80-120 ND, RDL=0.50 ug/g 2.9 Acid Extractable Macrour (Hg) 2017/08/23 NC 75-125 97 80-120 ND, RDL=0.50 ug/g 5.5 Acid Extractable Mickel (Ni) 2017/08/23 NC 75-125 94 80-120 ND, RDL=0.50 ug/g 5.5	5131813	Acid Extractable Beryllium (Be)	2017/08/23	26	75 - 125	96	80 - 120	ND, RDL=0.20	B/Bn		
Acid Extractable Cadmium (Cd) 2017/08/23 94 75-125 94 80-120 ND, RDL=0.10 ug/g 30 Acid Extractable Chromium (Cr) 2017/08/23 NC 75-125 97 80-120 ND, RDL=1.0 ug/g 2.9 Acid Extractable Chromium (Cr) 2017/08/23 NC 75-125 97 80-120 ND, RDL=1.0 ug/g 2.9 Acid Extractable Cobalt (Co) 2017/08/23 NC 75-125 97 80-120 ND, RDL=0.10 ug/g 2.1 Acid Extractable Copper (Cu) 2017/08/23 NC 75-125 97 80-120 ND, RDL=0.0 ug/g 5.5 D Acid Extractable Lorentum (Acid 2017/08/23 NC 75-125 97 80-120 ND, RDL=0.050 ug/g 5.5 D Acid Extractable Molydenum (Mo) 2017/08/23 97 75-125 97 80-120 ND, RDL=0.0 ug/g 5.5 D Acid Extractable Nikel (Ni) 2017/08/23 NC 75-125 99 80-120 ND, RDL=0.050	5131813	Acid Extractable Boron (B)	2017/08/23	96	75 - 125	95	80 - 120	ND, RDL=5.0	B/Bn		
Acid Extractable Chromium (Cr) 2017/08/23 NC 75-125 97 80-120 ND, RDI=1.0 ug/g 2.9 Acid Extractable Cobalt (Co) 2017/08/23 98 75-125 97 80-120 ND, RDI=0.01 ug/g 2.1 Acid Extractable Copper (Cu) 2017/08/23 NC 75-125 97 80-120 ND, RDI=0.05 ug/g 5.5 1 Acid Extractable Lead (Pb) 2017/08/23 NC 75-125 97 80-120 ND, RDI=0.05 ug/g 5.5 1 Acid Extractable Lead (Pb) 2017/08/23 NC 75-125 97 80-120 ND, RDI=0.05 ug/g 5.5 1 Acid Extractable Molybdenum (Mo) 2017/08/23 NC 75-125 94 80-120 ND, RDI=0.05 ug/g 5.5 1 Acid Extractable Molybdenum (Mo) 2017/08/23 NC 75-125 95 80-120 ND, RDI=0.05 ug/g 5.5 N Acid Extractable Nickel (Ni) 2017/08/23 NC 75-125 95 80-120<	5131813	Acid Extractable Cadmium (Cd)	2017/08/23	94	75 - 125	94	80 - 120	ND, RDL=0.10	g/gn	30	30
Acid Extractable Cobalt (Co) 2017/08/23 98 75-125 97 80-120 ND, RDL=0.10 ug/g 2.1 Acid Extractable Copper (Cu) 2017/08/23 NC 75-125 97 80-120 ND, RDL=0.50 ug/g 5.5 14 Acid Extractable Lead (Pb) 2017/08/23 NC 75-125 97 80-120 ND, RDL=0.0 ug/g 5.5 14 Acid Extractable Lead (Pb) 2017/08/23 99 75-125 94 80-120 ND, RDL=0.05 ug/g 7.0 Acid Extractable Mercury (Hg) 2017/08/23 97 75-125 95 80-120 ND, RDL=0.50 ug/g 5.5 1 Acid Extractable Nickel (Ni) 2017/08/23 NC 75-125 95 80-120 ND, RDL=0.50 ug/g 5.5 1 Acid Extractable Nickel (Ni) 2017/08/23 Q 75-125 95 80-120 ND, RDL=0.50 ug/g 5.5 1 Acid Extractable Selenium (Se) 2017/08/23 Q 75-125 95 80-120	5131813	Acid Extractable Chromium (Cr)	2017/08/23	NC	75 - 125	97	80 - 120	ND, RDL=1.0	B/Bn	2.9	30
Acid Extractable Copper (Cu) 2017/08/23 NC 75-125 97 80-120 ND, RDL=0.50 ug/g 5.5 Acid Extractable Lead (Pb) 2017/08/23 NC 75-125 97 80-120 ND, RDL=0.50 ug/g 14 17 Acid Extractable Mercury (Hg) 2017/08/23 97 75-125 94 80-120 ND, RDL=0.50 ug/g 20 16 Acid Extractable Mercury (Hg) 2017/08/23 NC 75-125 95 80-120 ND, RDL=0.50 ug/g 5.5 17 Acid Extractable Nickel (Ni) 2017/08/23 NC 75-125 95 80-120 ND, RDL=0.50 ug/g 5.5 17 Acid Extractable Silver (Ag) 2017/08/23 108 75-125 95 80-120 ND, RDL=0.50 ug/g 5.5 17 Acid Extractable Silver (Ag) 2017/08/23 108 75-125 95 80-120 ND, RDL=0.50 ug/g 5.5 ND Acid Extractable Variatable Variatatable Variatatable Variatable Silver (Ab) 2017/08/23 NC<	5131813	Acid Extractable Cobalt (Co)	2017/08/23	86	75 - 125	97	80 - 120	ND, RDL=0.10	B/Bn	2.1	30
Acid Extractable Lead (Pb) 2017/08/23 NC 75-125 97 80-120 ND, RDL=0.05 ug/g 14 P Acid Extractable Mercury (Hg) 2017/08/23 99 75-125 102 80-120 ND, RDL=0.50 ug/g 20 Acid Extractable Molybdenum (Mo) 2017/08/23 97 75-125 94 80-120 ND, RDL=0.50 ug/g 5.5 10 Acid Extractable Molybdenum (Mo) 2017/08/23 NC 75-125 95 80-120 ND, RDL=0.50 ug/g 5.5 10 Acid Extractable Selenium (Se) 2017/08/23 108 75-125 99 80-120 ND, RDL=0.50 ug/g 5.5 Acid Extractable Selenium (Se) 2017/08/23 108 75-125 99 80-120 ND, RDL=0.50 ug/g 5.5 1.0 Acid Extractable Selenium (Se) 2017/08/23 96 75-125 95 80-120 ND, RDL=0.50 ug/g 5.5 Acid Extractable Thallium (TI) 2017/08/23 NC 75-125 95 80-120	5131813	Acid Extractable Copper (Cu)	2017/08/23	NC	75 - 125	97	80 - 120	ND, RDL=0.50	g/gn	5,5	30
Acid Extractable Mercury (Hg) 2017/08/23 99 75-125 102 ND, RDL=0.050 ug/g 200 Acid Extractable Molybdenum (Mo) 2017/08/23 97 75-125 94 80-120 ND, RDL=0.50 ug/g 75-9 Acid Extractable Nickel (Ni) 2017/08/23 NC 75-125 95 80-120 ND, RDL=0.50 ug/g 5.5 Acid Extractable Nickel (Ni) 2017/08/23 108 75-125 99 80-120 ND, RDL=0.50 ug/g 5.5 Acid Extractable Silver (Ag) 2017/08/23 96 75-125 95 80-120 ND, RDL=0.050 ug/g 75-12 Acid Extractable Thallium (TJ) 2017/08/23 96 75-125 95 80-120 ND, RDL=0.050 ug/g 75-12 Acid Extractable Vanadium (V) 2017/08/23 NC 75-125 95 80-120 ND, RDL=5.0 ug/g 75-12 Acid Extractable Vanadium (V) 2017/08/23 NC 75-125 95 80-120 ND, RDL=5.0 ug/g 75-12	5131813	Acid Extractable Lead (Pb)	2017/08/23	NC	75 - 125	97	80 - 120	ND, RDL=1.0	g/gn	14	30
Acid Extractable Molybdenum (Mo) 2017/08/23 97 75-125 94 80-120 ND, RDL=0.50 ug/g 5.5 Acid Extractable Nickel (Ni) 2017/08/23 NC 75-125 95 80-120 ND, RDL=0.50 ug/g 5.5 75-125 Acid Extractable Selenium (Se) 2017/08/23 108 75-125 95 80-120 ND, RDL=0.50 ug/g 75-12 Acid Extractable Selenium (Se) 2017/08/23 96 75-125 95 80-120 ND, RDL=0.05 ug/g 75-12 Acid Extractable Thallium (TI) 2017/08/23 96 75-125 95 80-120 ND, RDL=0.05 ug/g 75-12 Acid Extractable Uranium (U) 2017/08/23 NC 75-125 95 80-120 ND, RDL=0.050 ug/g 75-12 Acid Extractable Vanadium (V) 2017/08/23 NC 75-125 95 80-120 ND, RDL=5.0 ug/g 6.8 Acid Extractable Zinc (Zn) 2017/08/23 NC 75-125 99 80-120 ND, RDL=5.0 ug/g	5131813	Acid Extractable Mercury (Hg)	2017/08/23	66	75 - 125	102	80 - 120	ND, RDL=0.050	g/gn	20	30
Acid Extractable Nickel (Ni) 2017/08/23 NC 75-125 95 80-120 ND, RDL=0.50 ug/g 5.5 Acid Extractable Selenium (Se) 2017/08/23 94 75-125 99 80-120 ND, RDL=0.50 ug/g 75-12 Acid Extractable Silver (Ag) 2017/08/23 108 75-125 97 80-120 ND, RDL=0.00 ug/g 75-12 Acid Extractable Thallium (TI) 2017/08/23 96 75-125 97 80-120 ND, RDL=0.050 ug/g 75-12 Acid Extractable Uranium (U) 2017/08/23 NC 75-125 95 80-120 ND, RDL=0.050 ug/g 8-8 Acid Extractable Vanadium (V) 2017/08/23 NC 75-125 95 80-120 ND, RDL=5.0 ug/g 6-8 Available (CaCl2) pH 2017/08/23 NC 75-125 99 80-120 ND, RDL=5.0 ug/g 6-8 Hot Water Ext. Boron (B) 2017/08/24 105 75-125 75-125 75-125 75-125 75-125 75-125 75-125	5131813	Acid Extractable Molybdenum (Mo)	2017/08/23	97	75 - 125	94	80 - 120	ND, RDL=0.50	B/Bn		
Acid Extractable Selenium (Se) 2017/08/23 94 75-125 99 80-120 ND, RDL=0.50 ug/g PRP Acid Extractable Silver (Ag) 2017/08/23 108 75-125 95 80-120 ND, RDL=0.050 ug/g 75-125 75-125 95 80-120 ND, RDL=0.050 ug/g 75-125 75-125 95 80-120 ND, RDL=0.050 ug/g 75-125 75-125 95 80-120 ND, RDL=5.05 ug/g 75-125 75-125 95 80-120 ND, RDL=5.0 ug/g 75-125 75-125 ND, RDL=5.0 ug/g 75-125	5131813	Acid Extractable Nickel (Ni)	2017/08/23	NC	75 - 125	95	80 - 120	ND, RDL=0.50	B/Bn	5.5	30
Acid Extractable Silver (Ag) 2017/08/23 108 75-125 95 80-120 ND, RDL=0.050 ug/g PRD Acid Extractable Thallium (TI) 2017/08/23 96 75-125 97 80-120 ND, RDL=0.050 ug/g PRD Acid Extractable Uranium (U) 2017/08/23 NC 75-125 95 80-120 ND, RDL=5.05 ug/g RR Acid Extractable Vanadium (V) 2017/08/23 NC 75-125 95 80-120 ND, RDL=5.0 ug/g 6.8 1.2 Available (CaCI2) pH 2017/08/23 NC 75-125 99 80-120 ND, RDL=5.0 ug/g 6.8 1.2 Hot Water Ext. Boron (B) 2017/08/23 NC 75-125 100 97-103 ND, RDL=0.050 ug/g 0.8/g 1.2	5131813	Acid Extractable Selenium (Se)	2017/08/23	94	75 - 125	66	80 - 120	ND, RDL=0.50	g/gn		
Acid Extractable Thallium (TI) 2017/08/23 96 75-125 97 80-120 ND, RDL=0.050 ug/g 76-126 75-125 95 80-120 ND, RDL=0.050 ug/g 76-12 75-125 95 80-120 ND, RDL=0.050 ug/g 76-12 75-125 95 80-120 ND, RDL=5.0 ug/g 6.8 75-12 75-125 95 80-120 ND, RDL=5.0 ug/g 6.8 75-12 75-125 99 75-103 ND, RDL=5.0 0g/g 6.8 75-12 75-125 75-125 ND, RDL=5.050 Ug/g 75-12 75-125 ND, RDL=6.050 Ug/g 75-12	5131813	Acid Extractable Silver (Ag)	2017/08/23	108	75 - 125	95	80 - 120	ND, RDL=0.20	B/Bn		
Acid Extractable Uranium (U) 2017/08/23 93 75-125 95 80-120 ND, RDL=5.05 ug/g 75-125 75-125 95 80-120 ND, RDL=5.0 ug/g 6.8 75-125 75-125 99 80-120 ND, RDL=5.0 ug/g 6.8 75-125 75-125 99 80-120 ND, RDL=5.0 ug/g 6.8 75-125 75-125 97-103 75-125 100 97-103 75-125 75-125 75-125 ND, RDL=5.050 ug/g 4.2 75-125 75-125 75-125 75-125 ND, RDL=6.050 ug/g 4.2 75-125 75-125 75-125 75-125 ND, RDL=6.050 ug/g 4.2 75-125 75-125 75-125 ND, RDL=6.050 ug/g 4.2 75-125 75-125 75-125 75-125 ND, RDL=6.050 ug/g 75-125 75-125 75-125 ND, RDL=6.050 ug/g 75-125 75-125 ND, RDL=6.050 ug/g 75-125 75-125 ND, RDL=6.050 Ug/g 75-125 75-125 75-125	5131813	Acid Extractable Thallium (TI)	2017/08/23	96	75 - 125	97	80 - 120	ND, RDL=0.050	8/8n		
Acid Extractable Vanadium (V) 2017/08/23 NC 75-125 95 80-120 ND, RDL=5.0 ug/g 6.8 6.8 Acid Extractable Zinc (Zn) 2017/08/23 NC 75-125 99 80-120 ND, RDL=5.0 ug/g 6.8 1.2 Available (Caci2) pH 2017/08/24 105 75-125 102 75-125 ND, RDL=6.050 ug/g 4.2	5131813	Acid Extractable Uranium (U)		93	75 - 125	95	80 - 120	ND, RDL=0.050	B/Bn		
Acid Extractable Zinc (Zn) 2017/08/23 NC 75-125 99 80-120 ND, RDL=5.0 ug/g 6.8 6.8 Available (CaCl2) pH 2017/08/23 105 75-125 100 75-125 ND, RDL=6.050 ug/g 4.2	5131813	Acid Extractable Vanadium (V)	2017/08/23	NC	75 - 125	95	80 - 120	ND, RDL=5.0	g/gn		
Available (CaCI2) pH 2017/08/23 105 75-125 102 97-103 PT-103 RDL=0.050 ug/g 4.2	5131813	Acid Extractable Zinc (Zn)	2017/08/23	NC	75 - 125	66	80 - 120	ND, RDL=5.0	B/Bn	6.8	30
Hot Water Ext. Boron (B) 2017/08/24 105 75 - 125 102 75 - 125 ND, RDL=0.050 ug/g 4.2	5131817	Available (CaCl2) pH	2017/08/23			100	97 - 103			1.2	N/A
	5133920	Hot Water Ext. Boron (B)	2017/08/24	105	75 - 125	102	75 - 125	ND, RDL=0.050	B/Bn	4.2	40

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated, The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Maxxam Job #: B7H8922 Report Date: 2017/08/24

Soil Engineers Ltd Client Project #: 1512-S086E

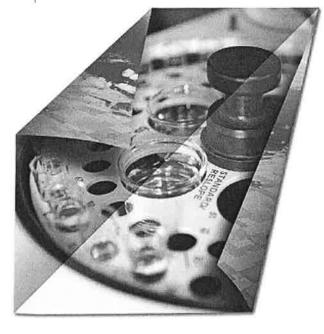
VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).	4.4
Cristian Carriere	

Cristina Carriere, Scientific Service Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5, 10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

100 NUGGET AVENUE, TORONTO, ONTARIO M1S 3A7 • TEL: (416) 754-8515 • FAX: (416) 754-8516


BARRIE	MISSISSAUGA	OSHAWA	NEWMARKET	GRAVENHURST	PETERBOROUGH	HAMILTON
TEL: (705) 721-7863	TEL: (905) 542-7605	TEL: (905) 440-2040	TEL: (905) 853-0647	TEL: (705) 684-4242	TEL: (905) 440-2040	TEL: (905) 777-7956
FAX: (705) 721-7864	FAX: (905) 542-2769	FAX: (905) 725-1315	FAX: (416) 754-8516	FAX: (705) 684-8522	FAX: (905) 725-1315	FAX: (905) 542-2769

APPENDIX 'D'

CERTIFICATE OF ANALYSIS (GROUNDWATER SAMPLES)

REFERENCE NO. 1512-S086E

FINAL REPORT

CA15476-JUL16 R

1512-S086E

Prepared for

Soil Engineers Ltd.

First Page

CLIENT DETAILS	S	LABORATORY DETAI	ILS
Client	Soil Engineers Ltd.	Project Specialist	Deanna Edwards, B.Sc, C.Chem
		Laboratory	SGS Canada Inc.
Address	100 Nugget Ave	Address	185 Concession St, Lakefield ON, K0L 2H0
	Scarborough, ON		
	M1S 3A7.		
Contact	Laila Torabansari	Telephone	705-652-2000
Telephone	416-754-8515	Facsimile	705-652-6365
Facsimile	416-754-8516	Email	deanna.edwards@sgs.com
Email	laila@soilengineersltd.com; ebeyene@soilengineersltd.com	SGS Reference	CA15476-JUL16
Project	1512-S086E	Received	07/27/2016
Order Number		Approved	08/03/2016
Samples	Ground Water (5)	Report Number	CA15476-JUL16 R
		Date Reported	08/03/2016

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average; YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Temperature of samples upon receipt 10,8 degrees C

Cooling Agent Present

No Custody Seal Present

Samples MW1, MW2, MW3, Dup 1 contained visible sediment

Sample MW1 contained >1 cm of sediment, F1-F4 and VOC analysis for Sample MW1 to be resampled by client due to high sediment.

SIGNATORIES

Deanna Edwards, B.Sc, C.Chem

searra Edwardo

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0

t 705-652-2000 f 705-652-6365

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-7
Exceedance Summary	8
Holding Time Summary	9-10
QC Summary	11-17
Legend	
Annexes	19-20

20160803

FINAL REPORT

		North	7			10	
	Sample I	Number e Name	7 MW1	8 MW2	9 MW3	10 Dup 1	
		e Matrix	Ground Water	Ground Water	Ground Water	Ground Water	
	·	pled By	Vincent Chay	Vincent Chay	Vincent Chay	Vincent Chay	
		ole Date	22/07/2016	22/07/2016	22/07/2016	22/07/2016	
Parameter	Units	RL	Result	Result	Result	Result	L1
			L	1 = REG153 / GROUND	WATER / COARSE - TA	BLE 1 - All Types of Pro	perty Uses - UNDE
nions by IC							
ethod: EPA300/MA300-lons1.3] Internal ref.: ME-CA-[ENV]	C-LAK-A	N-001				
Chloride	μg/L	200	8900	42000	13000	O##S	790000
onductivity							
ethod: EPA 6010/SM 2510 Inte	ernal ref.: ME-CA-[ENV]EWL	-LAK-AN	-006				
Conductivity	mS/cm	0.002	0,95	1.2	1,1	***	
yanide by SFA							
ethod: SM 4500 Internal ref.: M	IE-CA-IENVISFA-LAK-AN-0	05					
Cyanide (free)	pg/L	2	< 2	< 2	< 2	***	5
ethod: EPA218.6/EPA3060A Ir Chromium VI	nternal ref.: ΜΕ-CA-[ENV]IC- μg/L	0,2	< 0,2	0.3	< 0.2		25
	μg/L	0.2	< 0,2	0.3	< 0.2	V.	25
Chromium VI	μg/L	0.2	< 0,2	0.3	< 0.2		25
Chromium VI ercury by CVAAS ethod: SM 3112/SM 3112B Intel Mercury (total) etals in aqueous samples - ICP-R	μg/L emal ref.; ME- CA- [ENV]SPE μg/L VIS	0,2 -LAK-AN 0,01	< 0,2 -004 0,41			-	
Chromium VI ercury by CVAAS ethod: SM 3112/SM 3112B Inte Mercury (total) etals in aqueous samples - ICP-R ethod: SM 3030/EPA 200.8 Inte	pg/L emal ref.; ME-CA-[ENV]SPE pg/L ws emal ref.; ME-CA-[ENV]SPE	0,2 -LAK-AN 0,01 -LAK-AN	< 0.2 -004 -0.41	< 0,01	< 0,01		0.1
Chromium VI ercury by CVAAS ethod: SM 3112/SM 3112B Inte Mercury (total) etals in aqueous samples - ICP-I ethod: SM 3030/EPA 200.8 Inte Barium	μg/L emal ref.: ME- CA-[ENV]SPE μ g/L viS emal ref.: ME-CA-[ENV]SPE μg/L	0,2 -LAK-AN- 0,01 -LAK-AN 0.02	< 0,2 004 006 548	< 0,01 68.8	< 0,01 95,8		0.1
Chromium VI ercury by CVAAS ethod: SM 3112/SM 3112B Intel Mercury (total) etals in aqueous samples - ICP-R ethod: SM 3030/EPA 200.8 Intel Barium Beryllium	μg/L emal ref.; ME- CA-[ENV]SPE μg/L viS emal ref.: ME-CA-[ENV]SPE μg/L	0,2 -LAK-AN- 0,01 -LAK-AN 0,02 0,007	< 0.2 -004 -006 548 0.074	< 0.01 68.8 0.084	< 0.01 95.8 1.27	***	0.1 610 0.5
Chromium VI ercury by CVAAS ethod: SM 3112/SM 3112B Inte Mercury (total) etals in aqueous samples - ICP-8 ethod: SM 3030/EPA 200.8 Inte Barium Beryllium Boron	μg/L emal ref.: ME- CA- [ENV]SPE μg/L WS emal ref.: ME- CA- [ENV]SPE μg/L μg/L	0,2 -LAK-AN 0,01 -LAK-AN 0.02 0,007 2	< 0.2 -004 0.41 -006 548 0.074 276	< 0,01 68.8 0,084 116	< 0.01 95.8 1.27 565		0.1 610 0.5 1700
Chromium VI ercury by CVAAS ethod: SM 3112/SM 3112B Inte Mercury (total) etals in aquecus samples - ICP-B ethod: SM 3030/EPA 200.8 Inte Barium Beryllium Boron Cadmium	μg/L ernal ref.; ME-CA-[ENV]SPE μg/L ernal ref.: ME-CA-[ENV]SPE μg/L μg/L μg/L	0,2 -LAK-AN 0,01 E-LAK-AN 0.02 0.007 2 0.003	-004 -004 -006 -548 -0.074 -276 -0.376	< 0,01 68.8 0.084 116 0.068	< 0.01 95,8 1.27 565 0.256	***	0.1 610 0.5 1700 0.5
chromium VI ercury by CVAAS ethod: SM 3112/SM 3112B Inte Mercury (total) etals in aqueous samples - ICP-I ethod: SM 3030/EPA 200.8 Inte Barium Beryllium Boron Cadmium Chromium	μg/L emal ref.: ME- CA- [ENV]SPE μ g/L emal ref.: ME- CA- [ENV]SPE μg/L μg/L μg/L μg/L μg/L	0,2 -LAK-AN 0,01 -LAK-AN 0.02 0.007 2 0.003 0.03	< 0.2 -004 -0.41 -006 548 0.074 276 0.376 0.40	< 0,01 68.8 0.084 116 0.068 2.69	< 0.01 95.8 1.27 565 0.256 16.7		0.1 610 0.5 1700 0.5
Chromium VI ercury by CVAAS ethod: SM 3112/SM 3112B Intel Mercury (total) etals in aqueous samples - ICP-Rethod: SM 3030/EPA 200.8 Intel Barium Beryllium Boron Cadmium Chromium Cobalt	μg/L emal ref.: ME- CA- [ENV]SPE μg/L wiS emal ref.: ME-CA- [ENV]SPE μg/L μg/L μg/L μg/L μg/L μg/L	0,2 -LAK-AN 0,01 -LAK-AN 0.02 0.007 2 0.003 0.003 0.004	< 0.2 -004 0.41 -006 548 0.074 276 0.376 0.40	< 0.01 68.8 0.084 116 0.068 2.69 3.92	< 0.01 95.8 1.27 565 0.256 16.7 19.5		0.1 610 0.5 1700 0.5 11 3.8
Chromium VI ercury by CVAAS ethod: SM 3112/SM 3112B Inte Mercury (total) etals in aqueous samples - ICP-N ethod: SM 3030/EPA 200.8 Inte Barium Beryllium Boron Cadmium Chromium Cobalt Copper	μg/L emal ref.; ME-CA-[ENV]SPE μg/L WS emal ref.: ME-CA-[ENV]SPE μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0,2 -LAK-AN 0,01 E-LAK-AN 0,02 0,007 2 0,003 0,003 0,004 0,02	-004 -004 -006 -548 -0.074 -276 -0.376 -0.40 -12.7 -1.74	<0.01 68.8 0.084 116 0.068 2.69 3.92 5.78	< 0.01 95.8 1.27 565 0.256 16.7 19.5 166		0.1 610 0.5 1700 0.5 11 3.8 5
Chromium VI ercury by CVAAS ethod: SM 3112/SM 3112B Inte Mercury (total) etals in aquecus samples - ICP-B ethod: SM 3030/EPA 200.8 Inte Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead	pg/L emal ref.: ME-CA-[ENV]SPE pg/L emal ref.: ME-CA-[ENV]SPE pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	0,2 -LAK-AN 0,01 E-LAK-AN 0,02 0,007 2 0,003 0,003 0,004 0,02 0,01	-004 -004 -006 -548 -0.074 -276 -0.376 -0.40 -12.7 -1.74 -0.05	< 0.01 68.8 0.084 116 0.068 2.69 3.92 5.78 3.17	<0.01 95.8 1.27 565 0.256 16.7 19.5 166 28.2		0.1 610 0.5 1700 0.5 11 3.8 5
chromium VI ercury by CVAAS ethod: SM 3112/SM 3112B Inte Mercury (total) etals in aqueous samples - tCP-I ethod: SM 3030/EPA 200.8 Inte Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum	μg/L emal ref.: ME-CA-[ENV]SPE μg/L emal ref.: ME-CA-[ENV]SPE μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0,2 -LAK-AN 0,01 E-LAK-AN 0.02 0.007 2 0.003 0.003 0.004 0.02 0.01	< 0.2 -004 -004 -0.41 -006 -548 -0.074 -276 -0.376 -0.40 -12.7 -1.74 -0.05 -4.56	< 0,01 68.8 0.084 116 0.068 2.69 3.92 5.78 3.17 2.06	<0.01 95.8 1.27 565 0.256 16.7 19.5 166 28.2 2.29		0.1 610 0.5 1700 0.5 11 3.8 5 1.9 23
Chromium VI ercury by CVAAS ethod: SM 3112/SM 3112B Inter Mercury (total) etals in aqueous samples - ICP-B ethod: SM 3030/EPA 200.8 Inter Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel	μg/L emal ref.: ME-CA-[ENV]SPE μg/L WS emal ref.: ME-CA-[ENV]SPE μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0,2 -LAK-AN 0,01 -LAK-AN 0,02 0,007 2 0,003 0,003 0,004 0,02 0,01 0,01 0,1	 < 0.2 -004 0.41 -006 548 0.074 276 0.376 0.40 12.7 1.74 0.05 4.56 12.3 	<0.01 68.8 0.084 116 0.068 2.69 3.92 5.78 3.17 2.06 4.6	<0.01 95.8 1.27 565 0.256 16.7 19.5 166 28.2 2.29 26.3		0.1 610 0.5 1700 0.5 11 3.8 5 1.9 23
Chromium VI ercury by CVAAS ethod: SM 3112/SM 3112B Inter Mercury (total) etals in aqueous samples - ICP-B ethod: SM 3030/EPA 200.8 Inter Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver	pg/L emal ref.; ME-CA-[ENV]SPE pg/L ws emal ref.: ME-CA-[ENV]SPE pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	0,2 -LAK-AN 0,01 E-LAK-AN 0,02 0,007 2 0,003 0,003 0,004 0,02 0,01 0,01 0,01 0,01	<0.2 -004 -004 -006 -548 -0.074 -276 -0.376 -0.40 -12.7 -1.74 -0.05 -4.56 -12.3 -0.002	<0.01 68.8 0.084 116 0.068 2.69 3.92 5.78 3.17 2.06 4.6 0.003	<0.01 95.8 1.27 565 0.256 16.7 19.5 166 28.2 2.29 26.3 0.008		0.1 610 0.5 1700 0.5 11 3.8 5 1.9 23 14 0.3
chromium VI ercury by CVAAS ethod: SM 3112/SM 3112B Inte Mercury (total) etals in aquecus samples - ICP-B ethod: SM 3030/EPA 200.8 Inte Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium	μg/L emal ref.: ME-CA-[ENV]SPE μg/L emal ref.: ME-CA-[ENV]SPE μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0,2 -LAK-AN 0,01 E-LAK-AN 0,02 0,007 2 0,003 0,003 0,004 0,02 0,01 0,01 0,01 0,002 0,005	<0.2 -0.04 -0.04 -0.06 -548 -0.074 -276 -0.376 -0.40 -12.7 -1.74 -0.05 -4.56 -12.3 -1.002 -0.047	<0.01 68.8 0.084 116 0.068 2.69 3.92 5.78 3.17 2.06 4.6 0.003 0.052	<0.01 95.8 1.27 565 0.256 16.7 19.5 166 28.2 2.29 26.3 0.008 0.091		0.1 610 0.5 1700 0.5 11 3.8 5 1.9 23 14 0.3 0.5
chromium VI ercury by CVAAS ethod: SM 3112/SM 3112B Inte Mercury (total) etals in aqueous samples - ICP-I ethod: SM 3030/EPA 200.8 Inte Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium Uranium	pg/L emal ref.: ME-CA-[ENV]SPE pg/L WS emal ref.: ME-CA-[ENV]SPE pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	0,2 -LAK-AN 0,01 -LAK-AN 0,02 0,007 2 0,003 0,004 0,02 0,01 0,01 0,1 0,002 0,005 0,002	< 0.2 -004 -004 -0.41 -006 -548 -0.074 -276 -0.376 -0.40 -12.7 -1.74 -0.05 -4.56 -12.3 -12.3 -12.4 -0.002 -0.047 -8.46	<0,01 68.8 0.084 116 0.068 2.69 3.92 5.78 3.17 2.06 4.6 0.003 0.052 6.47	<0.01 95.8 1.27 565 0.256 16.7 19.5 166 28.2 2.29 26.3 0.008 0.091 2.51		0.1 610 0.5 1700 0.5 11 3.8 5 1.9 23 14 0.3 0.5 8.9
chromium VI ercury by CVAAS ethod: SM 3112/SM 3112B Inte Mercury (total) etals in aqueous samples - ICP-II ethod: SM 3030/EPA 200.8 Inte Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium Uranium Vanadium	μg/L emal ref.: ME-CA-[ENV]SPE μg/L VIS emai ref.: ME-CA-[ENV]SPE μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0,2 -LAK-AN 0,01 E-LAK-AN 0,02 0,007 2 0,003 0,003 0,004 0,02 0,01 0,01 0,01 0,002 0,005 0,002 0,001	< 0,2 -004 -004 -0.41 -006 -548 -0.074 -276 -0.376 -0.40 -12.7 -1.74 -0.05 -4.56 -12.3 -12.3 -12.3 -12.4 -12.4 -12.5 -12.4 -12.5 -12	<0.01 68.8 0.084 116 0.068 2.69 3.92 5.78 3.17 2.06 4.6 0.003 0.052 6.47 1.88	<0.01 95.8 1.27 565 0.256 16.7 19.5 166 28.2 2.29 26.3 0.008 0.091 2.51 28.4		0.1 610 0.5 1700 0.5 11 3.8 5 1.9 23 14 0.3 0.5 8.9 3.9
chromium VI ercury by CVAAS ethod: SM 3112/SM 3112B Inte Mercury (total) etals in aqueous samples - ICP-I ethod: SM 3030/EPA 200.8 Inte Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium Uranium	pg/L emal ref.: ME-CA-[ENV]SPE pg/L WS emal ref.: ME-CA-[ENV]SPE pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	0,2 -LAK-AN 0,01 -LAK-AN 0,02 0,007 2 0,003 0,004 0,02 0,01 0,01 0,1 0,002 0,005 0,002	< 0.2 -004 -004 -0.41 -006 -548 -0.074 -276 -0.376 -0.40 -12.7 -1.74 -0.05 -4.56 -12.3 -12.3 -12.4 -0.002 -0.047 -8.46	<0,01 68.8 0.084 116 0.068 2.69 3.92 5.78 3.17 2.06 4.6 0.003 0.052 6.47	<0.01 95.8 1.27 565 0.256 16.7 19.5 166 28.2 2.29 26.3 0.008 0.091 2.51		0.1 610 0.5 1700 0.5 11 3.8 5 1.9 23 14 0.3 0.5 8.9

3/20

R	ESH	LTS
\mathbf{r}		

	•	Number	7	8	9	10	
	•	le Name	MW1 Ground Water	MW2	MW3	Dup 1	
	-	le Matrix npled By	Vincent Chay	Ground Waler Vincent Chay	Ground Water Vincent Chay	Ground Water Vincent Chay	
		ple Date	22/07/2016	22/07/2016	22/07/2016	22/07/2016	
Parameter	Units	RL	Result	Result	Result	Result	L1
				L1 = REG153 / GROUND			
vietals in aqueous samples - ICP-MS (conti	inued)						.,,
Method: SM 3030/EPA 200.8 Internal ref.	: ME-CA-[ENV]SPE	E-LAK-AN	I-006				
Selenium	μg/L	0.04	0,81	0.43	0.27	***	5
Sodium	μg/L	10	34600	25600	34500		490000
retroleum Hydrocarbons (F1)							
/Jethod: CCME Tier 1 Internal ref.: ME-C/	A-TENVIGO-LAK-AI	V-010					
CCME F1 (C6-C10)	µg/L	25		< 25	< 25		420
CCME F1-BTEX (C6-C10)	µg/L	25	220	< 25	< 25	***	
	, 0						
Petroleum Hydrocarbons (F2-F4)							
Aethod: CCME Tier 1 Internal ref.: ME-C/	ATENMICOLI AK AL	ALA4A					
CCME F2 (C10-C16)	ha/r	100		< 100	< 100	***	150
CCME F3 (C16-C34)	µg/L	200		1410	236		500
CCME F4 (C34-C50)	pg/L	200		< 200	< 200		500
Chromatogram returned to baseline at	Yes / No	200		YES	YES	200	-550
nC50	7637110	-		120	, 20		
net							
fethod: SM 4500 Internal ref.: ME-CA-[E	NVJEWL-LAK-AN-O	006					
рН	no unit	0.05	7,58	7.78	7.78	***	
Sodium adsorption ratio (SAR)							
Aethod: MOE 4696e01/EPA 6010 Interna	ref.: ME-CA-IENV	JARD-LA	K-AN-021				
Sodium Adsorption Ratio		0.01	0.23	0.42	0.40	5440	
				77.04			
/olatile Organica							
/lethod: EPA 5030B/8260C Internal ref.: I	MEJCAJENNAGOJ	AK-AKLA	Ω4.				
Acelone	ha\r ne_ov-feiaalocur	30		< 30	< 30	< 30	2700
Bromomethane	μg/L	0.5		< 0.5	< 0.5	< 0.5	0.89
Carbon tetrachloride	μg/L	0.3		< 0.2	< 0.2	< 0.2	0.03
Chlorobenzene	μg/L	0.2		< 0.5	< 0.5	< 0.5	0.5
Chloroform	1/2-2-	0.5		< 0.5	< 0.5		2
1,2-Dichlorobenzene	µg/L			< 0.5		< 0.5	0,5
	μg/L	0.5			< 0.5	< 0.5	
1,3-Dichlorobenzene	μg/L	0.5		< 0.5	< 0.5	< 0.5	0.5
1,4-Dichlorobenzene	μg/L	0.5	***	< 0.5	< 0.5	< 0.5	0.5
Dichlorodifluoromethane	μg/L	2.0		< 2	< 2	< 2	590
1,1-Dichloroethane	μg/L	0.5		< 0.5	< 0.5	< 0.5	0.5

< 0.5

< 0.5

< 0.5

0.5

20160803 4/20

μg/L

1,2-Dichloroethane

RESULTS

 Sample Number
 7
 8
 9
 10

 Sample Name
 MW1
 MW2
 MW3
 Dup 1

 Sample Matrix
 Ground Water
 Ground Water
 Ground Water
 Ground Water

 Sampled By
 Vincent Chay
 Vincent Chay
 Vincent Chay
 Vincent Chay

Sampled By Vincent Chay Vincent Chay Vincent Chay Vincent Chay 22/07/2016 22/07/2016 22/07/2016 22/07/2016 Sample Date Parameter Units Result RL Result Result Result L1

L1 = REG153 / GROUND WATER / COARSE - TABLE 1 - All Types of Property Uses - UNDEFINED

Volatile Organics (continued)

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENV]GC-LAK-AN-004

1,1-Dichloroethylene	μg/L	0,5	1222	< 0.5	< 0.5	< 0.5	0,5
lrans-1,2-Dichloroelhene	μg/L	0.5	***	< 0.5	< 0.5	< 0.5	1,6
cis-1,2-Dichloroethene	μg/L	0,5		< 0.5	< 0.5	< 0.5	1.6
1,2-Dichloropropane	µg/L	0.5	***	< 0.5	< 0.5	< 0.5	0.5
cis-1,3-Dichloropropene	μg/L	0,5	***	< 0.5	< 0.5	< 0.5	
trans-1,3-Dichloropropene	μg/L	0.5	199	< 0.5	< 0.5	< 0.5	
1,3-dichoropropene (total)	µg/L	0.5		< 0.5	< 0.5	< 0.5	0,5
Ethylenedibromide	µg/L	0.2	***	< 0.2	< 0.2	< 0.2	0.2
n-Hexane	µg/L	1.0	***	< 1	< 1	< 1	5
Methyl ethyl ketone	μg/L	20	***	< 20	< 20	< 20	400
Methyl Isobutyl Ketone	µg/L	20	***	< 20	< 20	< 20	640
Methyl-t-butyl Ether	µg/L	2.0	24	< 2	< 2	< 2	15
Methylene Chloride	μg/L	0.5	***	< 0.5	< 0.5	< 0.5	5
Styrene	μg/L	0.5		< 0.5	< 0.5	< 0.5	0.5
Tetrachloroethylene (perchloroethylene)	μg/L	0.5		< 0.5	< 0.5	< 0.5	0,5
1,1,1,2-Tetrachloroethane	μg/L	0.5	***	< 0.5	< 0.5	< 0.5	1.1
1,1,2,2-Tetrachloroethane	μg/L	0.5	par-	< 0.5	< 0.5	< 0,5	0.5
1,1,1-Trichloroethane	µg/L	0.5	***	< 0.5	< 0.5	< 0.5	0,5
1,1,2-Trichloroethane	µg/L	0.5	***	< 0.5	< 0.5	< 0.5	0.5
Trichloroethylene	μg/L	0,5	7111	< 0.5	< 0.5	< 0.5	0.5
Trichlorofluoromethane	µg/L	5.0		< 5	< 5	< 5	150
Vinyl Chloride	μg/L	0.2	***	< 0.2	< 0.2	< 0.2	0.5
Benzene	μg/L	0.5		< 0.5	< 0.5	< 0,5	0,5
Ethylbenzene	µg/L	0,5	***	< 0.5	< 0.5	< 0,5	0.5
Toluene	μg/L	0.5		< 0.5	< 0.5	< 0,5	0.8
Xylene (Iotal)	μg/L	0,5	100	< 0.5	< 0.5	< 0.5	72
m/p-xylene	µg/L	0.5		< 0.5	< 0.5	< 0.5	
o-xylene	μg/L	0,5	722	< 0.5	< 0.5	< 0.5	
Bromodichloromethane	μg/L	0.5	vee:	< 0.5	< 0.5	< 0.5	2
Bromoform	μg/L	0.5	***	< 0.5	< 0.5	< 0.5	5
Dibromochloromethane	μg/L	0,5	-	< 0.5	< 0.5	< 0.5	2
Surr 1,2-Dichloroethane-d4	Surr Rec %	100	***	110	112	110	
Surr 2-Bromo-1-Chloropropane	Surr Rec %	727	***	101	103	102	
Surr 4-Bromofluorobenzene	Surr Rec %	2.00	2776	84	83	82	

20160803 5 / 20

RESULTS

Sample Number 11
Sample Name Trip Blank
Sample Matrix Ground Water
Sampled By Vincent Chay
Sample Date 22/07/2016

Parameter Units RL Result L1

L1 = REG153 / GROUND WATER / COARSE - TABLE 1 - All Types of Property Uses - UNDEFINED

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENV]GC-LAK-AN-004

Acetone	μg/L	30	< 30	2700
Bromomethane	μg/L	0,5	< 0.5	0,89
Carbon tetrachloride	μg/L	0,2	< 0.2	0.2
Chlorobenzene	μg/L	0,5	< 0.5	0.5
Chloroform	μg/L	0.5	< 0.5	2
1,2-Dichlorobenzene	μg/L	0.5	< 0.5	0.5
1,3-Dichlorobenzene	μg/L	0.5	< 0.5	0.5
1,4-Dichlorobenzene	μg/L	0.5	< 0.5	0,5
Dichlorodifluoromethane	μg/L	2.0	< 2	590
1,1-Dichloroethane	μg/L	0.5	< 0.5	0,5
1,2-Dichloroethane	μg/L	0.5	< 0.5	0.5
1,1-Dichloroethylene	μg/L	0.5	< 0.5	0,5
trans-1,2-Dichloroethene	μg/L	0.5	< 0.5	1.6
cis-1,2-Dichloroethene	μg/L	0,5	< 0.5	1.6
1,2-Dichloropropane	µg/∟	0,5	< 0.5	0.5
cis-1,3-Dichloropropene	µд/∟	0,5	< 0.5	
trans-1,3-Dichloropropene	µg/L	0,5	< 0.5	
1,3-dichoropropene (total)	µg/L	0.5	< 0,5	0.5
Ethylenedibromide	µg/L	0.2	< 0.2	0,2
n-Hexane	pg/L	1.0	< 1	5
Methyl ethyl ketone	µg/L	20	< 20	400
Methyl Isobulyl Ketone	µg/L	20	< 20	640
Methyl-t-bulyl Ether	µg/L	2.0	< 2	15
Melhylene Chloride	µg/L	0.5	< 0.5	5
Styrene	μg/L	0.5	< 0.5	0,5
Fetrachloroethylene (perchloroethylene)	μg/L	0.5	< 0.5	0.5
1,1,1,2-Tetrachloroethane	μg/L	0.5	< 0.5	1,1
1,1,2,2-Tetrachloroethane	µg/L	0,5	< 0.5	0.5
1,1,1-Trichloroethane	µg/L	0.5	< 0.5	0.5
1,1,2-Trichloroethane	μg/L	0,5	< 0.5	0.5
Trichloroethylene	μg/L	0.5	< 0.5	0,5
Frichlorofluoromethane	μg/L	5.0	< 5	150
/inyl Chloride	µg/L	0.2	< 0.2	0,5
Benzene	µg/L	0.5	< 0.5	0.5
Ethylbenzene	µg/L	0.5	< 0.5	0,5
Toluene	μg/L	0.5	< 0.5	0.8
Kylene (lotal)	μg/L	0.5	< 0.5	72

6 / 20

RESULTS

	Sample	Number	11	
	Samp	le Name	Trip Blank	
	Sampl	le Matrix	Ground Water	
	San	npled By	Vincent Chay	
	Sam	ple Date	22/07/2016	
Parameter	Units	RL	Result	L1

L1 = REG153 / GROUND WATER / COARSE - TABLE 1 - All Types of Property Uses - UNDEFINED

Volatile Organics (continued)

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENV]GC-LAK-AN-004

m/p-xylene	μg/L	0.5	< 0.5	
о-хуlепе	μg/L	0,5	< 0.5	
Bromodichloromethane	μg/L	0.5	< 0.5	2
Bromoform	μg/L	0.5	< 0.5	5
Dibromochloromethane	μg/L	0.5	< 0.5	2
Surr 1,2-Dichloroethane-d4	Surr Rec %	#5	110	
Surr 2-Bromo-1-Chloropropane	Surr Rec %	•	99	
Surr 4-Bromofluorobenzene	Surr Rec %	*	85	

20160803 7 / 20

EXCEEDANCE SUMMARY

				REG153 /
				GROUND WATER /
				COARSE - TABLE
				1 - All Types of
				Property Uses - UNDEFINED
Parameter	Method	Units	Result	L1
V1				
Cobalt	SM 3030/EPA 200.8	μg/L	12,7	3.80
Mercury	SM 3112/SM 3112B	μg/L	0,41	0.10
V2				
F3 (C16 to C34)	CCME Tier 1	µg/L	1410	500
Cobalt	SM 3030/EPA 200 ₈ 8	μg/L	3,92	3.80
Copper	SM 3030/EPA 200 ₋ 8	μg/L	5.78	5
Lead	SM 3030/EPA 200.8	µg/L	3,17	1.90
V3				
Arsenic	SM 3030/EPA 200.8	μg/L	18.9	13
Beryllium	SM 3030/EPA 200 ₋ 8	μg/L	1.27	0.50
Chromium	SM 3030/EPA 200 ₈ 8	µg/L	16.7	11
Cobalt	SM 3030/EPA 200.8	μg/L	19,5	3.80
Copper	SM 3030/EPA 200.8	μg/L	166	5
Lead	SM 3030/EPA 200.8	µg/∟	28,2	1.90
Nickel	SM 3030/EPA 200.8	μg/L	26.3	14
Vanadium	SM 3030/EPA 200.8	μg/L	28.4	3.90

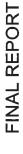
20160803 8 / 20

HOLDING TIME SUMMARY

	QC Batch Reference	Sample Number	Sampled	Received	Extracted/ Prepared	Analysed	Holding Time	Approved
Anions by IC								
Method: EPA300/MA300-lor	ns1.3 Internal ref.: ME-CA-[E	NVJIC-LA	K-AN-001					
MW1	DIO0481-JUL16	7	07/22/2016	07/27/2016	07/28/2016	07/28/2016	08/19/2016	08/02/201
MW2	DIO0455-JUL16	8	07/22/2016	07/27/2016	07/28/2016	07/28/2016	08/19/2016	08/02/201
MW3	DIO0481-JUL16	9	07/22/2016	07/27/2016	07/28/2016	07/28/2016	08/19/2016	08/02/201
Conductivity								
Vethod: EPA 6010/SM 2510) Internal ref.: ME-CA-[ENV]	WL-LAK-	AN-006					
MW1	EWL0410-JUL16	7	07/22/2016	07/27/2016	07/28/2016	07/28/2016	08/21/2016	07/28/201
MW2	EWL0410-JUL16	8	07/22/2016	07/27/2016	07/28/2016	07/28/2016	08/21/2016	07/28/201
MW3	EWL0410-JUL16	9	07/22/2016	07/27/2016	07/28/2016	07/28/2016	08/21/2016	07/28/201
Cyanide by SFA								
Method: SM 4500 Internal	ref.: ME-CA-[ENV]SFA-LAK-A	N-005						
MW1	SKA0206-JUL16	7	07/22/2016	07/27/2016	07/28/2016	07/28/2016	08/05/2016	07/28/201
MW2	SKA0206-JUL16	8	07/22/2016	07/27/2016	07/28/2016	07/28/2016	08/05/2016	07/28/201
MW3	SKA0206-JUL16	9	07/22/2016	07/27/2016	07/28/2016	07/28/2016	08/05/2016	07/28/201
Method: EPA218.6/EPA308	0A Internal ref.: ME-CA-[EN\							
Method: EPA218.6/EPA308 MW1	0A Internal ref.: ME-CA-[EN\ DIO0463-JUL16	7	07/22/2016	07/27/2016	08/02/2016	08/02/2016	08/19/2016	
Method: EPA218.6/EPA306 MW1 MW2	0A Internal ref.: ME-CA-[EN\ DIO0463-JUL16 DIO0463-JUL16	7 8	07/22/2016 07/22/2016	07/27/2016	08/02/2016	08/02/2016	08/19/2016	08/03/201
Method: EPA218.6/EPA308 MW1 MW2 MW3	0A Internal ref.: ME-CA-[EN\ DIO0463-JUL16	7	07/22/2016					08/03/201
Method: EPA218.6/EPA306 MW1 MW2 MW3 Mercury by CVAAS	0A Internal ref.: ME-CA-[EN\ DIO0463-JUL16 DIO0463-JUL16 DIO0463-JUL16	7 8 9	07/22/2016 07/22/2016 07/22/2016	07/27/2016	08/02/2016	08/02/2016	08/19/2016	08/03/201
Method: EPA218.6/EPA308 MW1 MW2 MW3 Mercury by CVAAS	0A Internal ref.: ME-CA-[EN\ DIO0463-JUL16 DIO0463-JUL16	7 8 9	07/22/2016 07/22/2016 07/22/2016	07/27/2016	08/02/2016	08/02/2016	08/19/2016	08/03/201
Method: EPA218.6/EPA308 MW1 MW2 MW3 Mercury by CVAAS Method: SM 311 2/S M 31126	0A Internal ref.: ME-CA-[EN\ DIO0463-JUL16 DIO0463-JUL16 DIO0463-JUL16	7 8 9	07/22/2016 07/22/2016 07/22/2016	07/27/2016	08/02/2016	08/02/2016	08/19/2016	08/03/201 08/03/201
Method: EPA218.6/EPA308 MW1 MW2 MW3 Mercury by CVAAS Viethod: SM 3112/SM 31126 MW1	OA Internal ref.: ME-CA-[EN\ DIO0463-JUL16 DIO0463-JUL16 DIO0463-JUL16 B Internal ref.: ME-CA-[ENV]	7 8 9 SPE-LAK-	07/22/2016 07/22/2016 07/22/2016 AN-004	07/27/2016 07/27/2016	08/02/2016 08/02/2016	08/02/2016 08/02/2016	08/19/2016 08/19/2016	08/03/201 08/03/201 07/28/201
Method: EPA218.6/EPA306 MW1 MW2 MW3 Mercury by CVAAS Method: SM 3112/SM 31126 MW1	OA Internal ref.: ME-CA-[EN\ DIO0463-JUL16 DIO0463-JUL16 DIO0463-JUL16 B Internal ref.: ME-CA-[ENV] EHG0037-JUL16	7 8 9 SPE-LAK-	07/22/2016 07/22/2016 07/22/2016 AN-004 07/22/2016	07/27/2016 07/27/2016 07/27/2016	08/02/2016 08/02/2016	08/02/2016 08/02/2016 07/28/2016	08/19/2016 08/19/2016 08/19/2016	08/03/201 08/03/201 07/28/201 07/28/201
Method: EPA218.6/EPA308 MW1 MW2 MW3 Mercury by CVAAS Viethod: SM 3112/SM 31126 MW1 MW2 MW3	OA Internal ref.: ME-CA-[ENV] DIO0463-JUL16 DIO0463-JUL16 B Internal ref.: ME-CA-[ENV] EHG0037-JUL16 EHG0037-JUL16 EHG0037-JUL16	7 8 9 SPE-LAK- 7 8	07/22/2016 07/22/2016 07/22/2016 AN-004 07/22/2016 07/22/2016	07/27/2016 07/27/2016 07/27/2016 07/27/2016	08/02/2016 08/02/2016 07/28/2016 07/28/2016	08/02/2016 08/02/2016 07/28/2016 07/28/2016	08/19/2016 08/19/2016 08/19/2016 08/19/2016	08/03/201 08/03/201 07/28/201 07/28/201
Method: EPA218.6/EPA308 MW1 MW2 MW3 Mercury by CVAAS Method: SM 3112/SM 31126 MW1 MW2 MW3 Metals in aqueous samples	OA Internal ref.: ME-CA-[ENV] DIO0463-JUL16 DIO0463-JUL16 B Internal ref.: ME-CA-[ENV] EHG0037-JUL16 EHG0037-JUL16 EHG0037-JUL16	7 8 9 SPE-LAK- 7 8	07/22/2016 07/22/2016 07/22/2016 AN-004 07/22/2016 07/22/2016	07/27/2016 07/27/2016 07/27/2016 07/27/2016	08/02/2016 08/02/2016 07/28/2016 07/28/2016	08/02/2016 08/02/2016 07/28/2016 07/28/2016	08/19/2016 08/19/2016 08/19/2016 08/19/2016	08/03/201 08/03/201 07/28/201 07/28/201
Method: EPA218.6/EPA306 MW1 MW2 MW3 Mercury by CVAAS viethod: SM 3112/SM 31126 MW1 MW2 MW3 Vietals in aqueous samples Viethod: SM 3030/EPA 200.	OA Internal ref.: ME-CA-[ENV] DIO0463-JUL16 DIO0463-JUL16 DIO0463-JUL16 B Internal ref.: ME-CA-[ENV] EHG0037-JUL16 EHG0037-JUL16 EHG0037-JUL16	7 8 9 SPE-LAK- 7 8	07/22/2016 07/22/2016 07/22/2016 AN-004 07/22/2016 07/22/2016	07/27/2016 07/27/2016 07/27/2016 07/27/2016	08/02/2016 08/02/2016 07/28/2016 07/28/2016	08/02/2016 08/02/2016 07/28/2016 07/28/2016	08/19/2016 08/19/2016 08/19/2016 08/19/2016	08/03/201 08/03/201 07/28/201 07/28/201 07/28/201
Method: EPA218.6/EPA308 MW1 MW2 MW3 Mercury by CVAAS Method: SM 3112/SM 31126 MW1 MW2 MW3 Metals in aqueous samples Method: SM 3030/EPA 200.	OA Internal ref.: ME-CA-[ENV] DIO0463-JUL16 DIO0463-JUL16 B Internal ref.: ME-CA-[ENV] EHG0037-JUL16 EHG0037-JUL16 EHG0037-JUL16 EHG0037-JUL16 EHG0037-JUL16 EHG0037-JUL16	7 8 9 SPE-LAK- 7 8 9	07/22/2016 07/22/2016 07/22/2016 AN-004 07/22/2016 07/22/2016 07/22/2016	07/27/2016 07/27/2016 07/27/2016 07/27/2016 07/27/2016	08/02/2016 08/02/2016 07/28/2016 07/28/2016 07/28/2016	08/02/2016 08/02/2016 07/28/2016 07/28/2016 07/28/2016	08/19/2016 08/19/2016 08/19/2016 08/19/2016 08/19/2016	08/03/201 08/03/201 07/28/201 07/28/201 07/29/201
MW1 MW2 MW3 Mercury by CVAAS Method: SM 3112/SM 3112/ MW1 MW2 MW3 Metals in aqueous samples	DIO0463-JUL16 DIO0463-JUL16 DIO0463-JUL16 DIO0463-JUL16 B { Internal ref.: ME-CA-[ENV] EHG0037-JUL16 EHG0037-JUL16 EHG0037-JUL16 EHG0037-JUL16 EHG0037-JUL16 EHG0037-JUL16 EHG0037-JUL16	7 8 9 SPE-LAK- 7 8 9 SPE-LAK-	07/22/2016 07/22/2016 07/22/2016 AN-004 07/22/2016 07/22/2016 07/22/2016	07/27/2016 07/27/2016 07/27/2016 07/27/2016 07/27/2016	08/02/2016 08/02/2016 07/28/2016 07/28/2016 07/28/2016	08/02/2016 08/02/2016 07/28/2016 07/28/2016 07/28/2016	08/19/2016 08/19/2016 08/19/2016 08/19/2016 08/19/2016	08/03/201 08/03/201 08/03/201 07/28/201 07/28/201 07/29/201 07/29/201
Method: EPA218.6/EPA308 MW1 MW2 MW3 Mercury by CVAAS Method: SM 3112/SM 31126 MW1 MW2 MW3 Metals in aqueous samples Method: SM 3030/EPA 200. MW1 MW2	DIO0463-JUL16 DIO0463-JUL16 DIO0463-JUL16 DIO0463-JUL16 B { Internal ref.: ME-CA-[ENV] EHG0037-JUL16 EHG0037-JUL16 EHG0037-JUL16 EHG0037-JUL16 EHG0037-JUL16 EMS0128-JUL16 EMS0128-JUL16 EMS0128-JUL16	7 8 9 SPE-LAK- 7 8 9 SPE-LAK- 7 8	07/22/2016 07/22/2016 07/22/2016 AN-004 07/22/2016 07/22/2016 07/22/2016 07/22/2016 07/22/2016	07/27/2016 07/27/2016 07/27/2016 07/27/2016 07/27/2016 07/27/2016 07/27/2016	08/02/2016 08/02/2016 07/28/2016 07/28/2016 07/28/2016 07/27/2016 07/27/2016	08/02/2016 08/02/2016 07/28/2016 07/28/2016 07/28/2016 07/28/2016 07/28/2016	08/19/2016 08/19/2016 08/19/2016 08/19/2016 08/19/2016 09/20/2016 09/20/2016	08/03/201 08/03/201 07/28/201 07/28/201 07/28/201 07/29/201
Method: EPA218.6/EPA308 MW1 MW2 MW3 Mercury by CVAAS Method: SM 3112/SM 31126 MW1 MW2 MW3 Metals in aqueous samples Method: SM 3030/EPA 200. MW1 MW2 MW3 Petroleum Hydrocarbons (F	DIO0463-JUL16 DIO0463-JUL16 DIO0463-JUL16 DIO0463-JUL16 B { Internal ref.: ME-CA-[ENV] EHG0037-JUL16 EHG0037-JUL16 EHG0037-JUL16 EHG0037-JUL16 EMS0128-JUL16 EMS0128-JUL16 EMS0128-JUL16	7 8 9 SPE-LAK- 7 8 9	07/22/2016 07/22/2016 07/22/2016 AN-004 07/22/2016 07/22/2016 07/22/2016 07/22/2016 07/22/2016	07/27/2016 07/27/2016 07/27/2016 07/27/2016 07/27/2016 07/27/2016 07/27/2016	08/02/2016 08/02/2016 07/28/2016 07/28/2016 07/28/2016 07/27/2016 07/27/2016	08/02/2016 08/02/2016 07/28/2016 07/28/2016 07/28/2016 07/28/2016 07/28/2016	08/19/2016 08/19/2016 08/19/2016 08/19/2016 08/19/2016 09/20/2016 09/20/2016	08/03/201 08/03/201 07/28/201 07/28/201 07/28/201
Method: EPA218.6/EPA308 MW1 MW2 MW3 Mercury by CVAAS Viethod: SM 3112/SM 31126 MW1 MW2 MW3 Vietals in aqueous samples Viethod: SM 3030/EPA 200. MW1 MW2 MW3 Petroleum Hydrocarbons (F	DIO0463-JUL16 DIO0463-JUL16 DIO0463-JUL16 DIO0463-JUL16 B [Internal ref.: ME-CA-[ENV] EHG0037-JUL16 EHG0037-JUL16 EHG0037-JUL16 EHG0037-JUL16 EHG0037-JUL16 EHG0037-JUL16 EHG0037-JUL16 EHG0037-JUL16 EHG0037-JUL16	7 8 9 SPE-LAK- 7 8 9	07/22/2016 07/22/2016 07/22/2016 AN-004 07/22/2016 07/22/2016 07/22/2016 07/22/2016 07/22/2016	07/27/2016 07/27/2016 07/27/2016 07/27/2016 07/27/2016 07/27/2016 07/27/2016	08/02/2016 08/02/2016 07/28/2016 07/28/2016 07/28/2016 07/27/2016 07/27/2016	08/02/2016 08/02/2016 07/28/2016 07/28/2016 07/28/2016 07/28/2016 07/28/2016	08/19/2016 08/19/2016 08/19/2016 08/19/2016 08/19/2016 09/20/2016 09/20/2016	08/03/201 08/03/201 07/28/201 07/28/201 07/28/201

Petroleum Hydrocarbona (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-010


20160803 9 / 20

HOLDING TIME SUMMARY

Sample Name	QC Batch Reference	Sample Number	Sampled	Received	Extracted/ Prepared	Analysed	Holding Time	Approved
Petroleum Hydrocarbons (F2-	F4) (continued)							
Method: CCME Tier 1 Intern	al ref.: ME-CA-[ENV]GC-LA	K-AN- 010						
MW2	GCM0313-JUL16	8	07/22/2016	07/27/2016	07/28/2016	07/29/2016	08/05/2016	08/02/201
MW3	GCM0313-JUL16	9	07/22/2016	07/27/2016	07/28/2016	07/29/2016	08/05/2016	08/02/201
p)-l								
Method: SM 4500 Internal re	of.: ME-CA-[ENV]EWL-LAK-	N-006						
MW1	EWL0410-JUL16	7	07/22/2016	07/27/2016	07/28/2016	07/28/2016	08/19/2016	07/28/201
MW2	EWL0410-JUL16	8	07/22/2016	07/27/2016	07/28/2016	07/28/2016	08/19/2016	07/28/201
MW3	EWL0410-JUL16	9	07/22/2016	07/27/2016	07/28/2016	07/28/2016	08/19/2016	07/28/201
Sodium adsorption ratio (SAR)							
Method: MOE 4896e01/EPA 6	010 Internal ref.: ME-CA-[ENVJARD	-LAK-AN-021					
MW1		7	07/22/2016	07/27/2016	08/02/2016	08/02/2016	01/18/2017	08/02/201
MW2		8	07/22/2016	07/27/2016	08/02/2016	08/02/2016	01/18/2017	08/02/201
MW3		9	07/22/2016	07/27/2016	08/02/2016	08/02/2016	01/18/2017	08/02/201
Volatile Organics								
Method: EPA 5030B/8260C	Internal ref.: ME-CA-[ENV]G	C-LAK-A	V-004					
MW2	GCM0011-AUG16	8	07/22/2016	07/27/2016	08/02/2016	08/02/2016	08/05/2016	08/03/201
MW3	GCM0011-AUG16	9	07/22/2016	07/27/2016	08/02/2016	08/02/2016	08/05/2016	08/03/201
Dup 1	GCM0011-AUG16	10	07/22/2016	07/27/2016	08/02/2016	08/02/2016	08/05/2016	08/03/201
Trip Blank	GCM0011-AUG16	11	07/22/2016	07/27/2016	08/02/2016	08/02/2016	08/05/2016	08/03/201

20160803 10 / 20

Anions by IC Method; EPA300/MA300-ions1.3 | Internal ref.: ME-CA-TENVIIC-LAX-AN-001

Parameter	QC batch	Units	占	Method	Dup	Ouplicate	21	CS/Spike Blank		ŧ	Matrix Spike / Ref.	
	Reference			Blank	RPD	Q (Spike	Recovery (%)	Recovery Limits (%)	Spike Recovery	Recovery Limits (%)	' Limits
						<u>%</u>	Recovery (%)	Low	High	(%)	Low	High
Chloride	DIO0455-JUL16	J/grl	200	<200	ın	20	92	80	120	66	75	125
Chloride	DIO0481-JUL16	hg/L	200	<200	2	20	98	80	120	104	75	125
Conductivity Method: EPA 6010/SM 2510 Internal ref.; ME-CA-TENVIEWL-LAK-AN-006	tna! ref.: ME-CA-IENVIEWL-LA	90 NA X										

	Recovery Limits (%)	High	
/latrix Spike / Ref.	Recover (9	Low	
Ma	Spike Recovery	(%)	NA
	/ Limits	High	110
.CS/Spike Blank	Recover,	Low	06
07	Spike	(%)	88
Suplicate Supplicate	AC %		10
Dupl	RPD		0
Method	Blank		< 0.002
굺			0.0020
Units			mS/cm
QC batch	Reference		EWL0410-JUL16 mS/cm
Parameter			Conductivity

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	귙	Method	Dupl	Duplicate	2	LCS/Spike Blank		2	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC %	Spike	Recovery Limits (%)	y Limits	Spike Recovery	Rесоvегу (%)	Recovery Limits (%)
						(E)	(%)	Low	High	(%)	Low	High
	SKA0206-JUL16	µg/L	2	<2	S	10	100	06	110	121	75	125

20160803

1

QC SUMMARY

Hexavalent Chromium by IC

Method: EPA218.8/EPA3060A | Internal ref.; ME-CA-/ENV/IC-LAK-AN-008

QC batch	Units	귎	Method	Dup	Duplicate	SI	LCS/Spike Blank		2	Matrix Spike / Ref.	
Reference			Blank	RPD	S &	Spike	Recovery Limits (%)	y Limits	Spike Recovery	Recovery Limits (%)	y Limits
					<u>R</u>	Kecovery (%)	Low	High	(%)	Γow	High
DIO0463-JUL16	ng/L	0.20	<0.2	10	20	97	80	120	06	75	125

Mercury by CVAAS

Method: SM 3112/SM 3112B | Internal ref.: ME-CA-FENVISPE-LAK-AN-004

Parameter	QC batch	Units	귛	Method	Dup	Duplicate) 	LCS/Spike Blank		M	Matrix Spike / Ref.	بير
	Reference			Blank	RPD	AC (%)	Spike	Recovery L	Recovery Limits (%)	Spike Recovery	Racovei (9	Recovery Limits (%)
							(%)	Low	High	(%)	Low	High
Mercury (total)	EHG0037-JUL16	T/6n	0.010	<0.01	2	20	83	06	110	107	70	130

QC SUMMARY

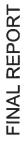
Metals in aqueous samples - ICP-MS
Method: SM 3020/FDA 200 8 1 Interna

Parameter	QC batch	Units	귎	Method	Dug	Duplicate	ប្ប	LCS/Spike Blank		Σ	Matrix Spike / Ref.	
	Reference			Blank	RPD	Y S	Spike	Recover (%	Recovery Limits (%)	Spike Recovery	Recovery Limits (%)	Limits
						<u>@</u>	recovery (%)	Low	High	(%)	Low	High
Silver	EMS0128-JUL16	hg/L	0.0020	<0.002	8	20	96	06	110	98	70	130
Arsenic	EMS0128-JUL16	hg/L	0.20	<0.2	7	20	94	06	110	114	70	130
Barium	EMS0128-JUL16	µg/L	0.020	<0.02	9	20	66	06	110	N N	0.2	130
Beryllium	EMS0128-JUL16	hg/L	0.0070	<0.007	ND	20	96	06	110	113	20	130
Boron	EMS0128-JUL16	⊓/6rl	2	<2	S	20	46	06	110	Ž	70	130
Cadmium	EMS0128-JUL16	hg/L	0.0030	<0,003	Q	20	86	06	110	66	20	130
Cobalt	EMS0128~JUL16	hg/L	0.0040	<0,004	-	20	94	06	110	26	70	130
Chromium	EMS0128-JUL16	µg/L	0.030	<0.03	2	20	92	06	110	06	70	130
Copper	EMS0128-JUL16	µg/L	0.020	<0.02	10	20	92	06	110	87	70	130
Molybdenum	EMS0128-JUL16	hg/L	0.010	<0.01	Q.	20	101	06	110	N	70	130
Sodium	EMS0128-JUL16	hg/L	10	<10	-	20	100	06	110	Ž	70	130
Nickel	EMS0128-JUL16	µg/L	0.10	<0.1	m	20	93	06	110	101	70	130
Lead	EMS0128-JUL16	hg/L	0.010	<0.01	o	20	98	06	110	Ž	20	130
Antimony	EMS0128-JUL16	hg/L	0.020	<0.02	18	20	103	06	110	Ž	70	130
Selenium	EMS0128-JUL16	hg/L	0,040	<0.0>	7	20	86	06	110	111	70	130
Thallium	EMS0128-JUL16	J/6rl	0.0050	<0.005	Q	20	86	06	110	26	70	130
Uranium	EMS0128-JUL16	hg/L	0.0020	<0.002	9	20	94	06	110	Ž	70	130
Vanadium	EMS0128-JUL16	µg/L	0.010	<0.01	7	20	92	06	110	2	70	130
Zinc	EMS0128-JUL16	hg/L	2	<2	Q	20	76	06	110	66	70	130

Petroleum Hydrocarbons (F1)

Method: COME Tier 1 Internal ref: ME-CA-TENVISC-LAK-AN-010

Reference	Ā	Method	Duplica	te .		LCS/Spike Blank			Matrix Spike / Ref.	
		Blank	RPD	AC &	Spike	Recovery Limits (%)	/ Limits	Spike Recovery	Recovery (%)	Recovery Limits (%)
						Low	High	(%)	Low	High
CCME F1 (C6-C10) GCM0008-AUG16 μg/L	25	<25	9	30	96	90	140	114	9	140

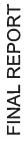

Petroleum Hydrocarbons (F2-F4)

Method: COME Tier 1 Internal ref.: ME-CA-IENVIGO-LAK-AN-010

	Recovery Limits (%)	High	140	140	140
Matrix Spike / Ref.	Recovery (%)	Low	99	09	09
M	Spike Recovery	(%)	NSS	NSS	NSS
	Recovery Limits (%)	High	140	140	140
CS/Spike Blank	Recovery (%)	Low	09	09	09
ij	Spike	(%)	106	106	106
Ouplicate	AC (%)		30	30	30
Dupi	RPD		NSS	NSS	NSS
Method	Blank		<100	<200	<200
귐			100	200	200
Units			hg/L	hg/L	hg/L
QC batch	Reference		GCM0313-JUL16	GCM0313-JUL16	GCM0313-JUL16
Parameter			CCME F2 (C10-C16)	CCME F3 (C16-C34)	CCME F4 (C34-C50)

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-008

	Units RL	Method	Dupli	Duplicate	ឬ	LCS/Spike Blank		Σ	Matrix Spike / Ref.	
		Blank	RPD	AC 8	Spike	Recovery Limits (%)	Limits	Spike Recovery	Recovery Limits (%)	ery Limits (%)
				(g _y)	(%)	Low	High	(%)	Low	High
no unit	0.050	ď.			100			A.		



Voletile Organics

Method: EPA 5030B/8260C | Internal ref.: N/E-CA-(ENVISC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duplicate	ate	/SOI	LCS/Spike Blank		Mat	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC S	Spike	Recovery Limits (%)	Limits	Spike Recovery	Recovery Limits (%)	Limits
						<u>@</u>	Kecovery (%)	Low	High	(%)	Low	High
1,1,1,2-Tetrachloroethane	GCM0011-AUG16	µg/L	0.50	<0.5	NSS	30	16	60	130	NSS	20	140
1,1,1-Trichloroethane	GCM0011-AUG16	µg/L	0.50	<0.5	NSS	30	91	09	130	NSS	20	140
1,2-Dichloropropane	GCM0011-AUG16	µg/L	0.50	<0.5	NSS	30	06	09	130	NSS	20	140
1,3-Dichlorobenzene	GCM0011-AUG16	µg/L	0.50	<0.5	NSS	30	92	09	130	NSS	20	140
1,4-Dichlorobenzene	GCM0011-AUG16	hg/L	0.50	<0.5	NSS	30	92	09	130	SSN	20	140
Acetone	GCM0011-AUG16	hg/L	30	<30	NSS	30	26	09	130	NSS	20	140
Benzene	GCM0011-AUG16	hg/L	0.50	<0.5	NSS	30	93	09	130	NSS	20	140
Bromodichloromethane	GCM0011-AUG16	hg/L	0.50	<0.5	NSS	30	88	09	130	NSS	50	140
Bromoform	GCM0011-AUG16	hg/L	0.50	<0.5	NSS	30	92	09	130	NSS	50	140
Bromomethane	GCM0011-AUG16	hg/L	0.50	<0.5	NSS	30	92	20	140	NSS	50	140
Carbon tetrachloride	GCM0011-AUG16	hg/L	0.20	<0.2	NSS	30	06	09	130	NSS	50	140
Chlorobenzene	GCM0011-AUG16	hg/L	0.50	<0.5	NSS	30	06	09	130	NSS	50	140
Chloroform	GCM0011-AUG16	hg/L	0.50	<0.5	NSS	30	92	09	130	NSS	50	140
cis-1,2-Dichlaroethene	GCM0011-AUG16	hg/L	0.50	<0.5	NSS	30	87	09	130	NSS	50	140
cis-1,3-Dichloropropene	GCM0011-AUG16	hg/L	0.50	<0.5	NSS	30	88	09	130	NSS	50	140
Dibromochloromethane	GCM0011-AUG16	hg/L	0.50	<0.5	NSS	30	06	09	130	NSS	50	140
Dichlorodifluoromethane	GCM0011-AUG16	hg/L	2.0	7	NSS	30	107	20	140	NSS	50	140
Ethylbenzene	GCM0011-AUG16	hg/L	0.50	<0.5	NSS	30	06	09	130	NSS	50	140
Ethylenedibromide	GCM0011-AUG16	hg/L	0.20	<0.2	NSS	30	92	09	130	NSS	50	140
n-Hexane	GCM0011-AUG16	µg/L	1.0	۲	NSS	30	26	09	130	NSS	50	140

Volatile Organics (continued)
Method: EPA 5030B/8260C | Internal ref.: ME-CA-FENVIGC-LAK-AN-004

Parameter	QC batch	Units	교	Method	Dup	Duplicate	ប្ប	LCS/Spike Blank		Ÿ	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC 8	Spike	Recovery Limits (%)	y Limits	Spike Recovery	Recovery Limits (%)	Limits
						3	(%)	Low	High	(%)	Low	High
т/p-xylene	GCM0011-AUG16	hg/L	0.50	<0.5	NSS	30	92	09	130	NSS	50	140
Methyl ethyl ketone	GCM0011-AUG16	J/6rl	20	<20	NSS	30	102	09	130	NSS	20	140
Methyl Isobutyl Ketone	GCM0011-AUG16	µg/L	20	<20	NSS	30	101	50	140	NSS	20	140
Methyl-t-butyl Ether	GCM0011-AUG16	hg/L	2.0	<2	NSS	30	103	09	130	NSS.	20	140
Methylene Chloride	GCM0011-AUG16	hg/L	0.50	<0.5	NSS	30	94	09	130	NSS	90	140
o-xylene	GCM0011-AUG16	hg/L	0.50	<0.5	NSS	30	68	09	130	NSS	20	140
Styrene	GCM0011-AUG16	hg/L	0.50	<0.5	NSS	30	94	09	130	NSS	20	140
Tetrachloroethylene	GCM0011-AUG16	J/6rl	0.50	<0.5	NSS	30	89	09	130	NSS	50	140
(perchloroethylene)												
Toluene	GCM0011-AUG16	hg/L	0,50	<0.5	NSS	30	06	9	130	NSS	20	140
trans-1,2-Dichloroethene	GCM0011-AUG16	hg/L	0.50	<0.5	NSS	30	94	09	130	NSS	20	140
trans-1,3-Dichloropropene	GCM0011-AUG16	hg/L	0,50	<0.5	NSS	30	96	09	130	NSS	20	140
Trichloroethylene	GCM0011-AUG16	hg/L	0.50	<0.5	NSS	30	06	09	130	NSS	90	140
Trichlorofluoromethane	GCM0011-AUG16	7/6d	5.0	\$	NSS	30	94	50	140	NSS	20	140
Vinyl Chloride	GCM0011-AUG16	µg/L	0.20	<0,2	NSS	30	96	09	130	NSS	90	140
1,1,2,2-Tetrachloroethane	GCM0011-AUG16	J/g/L	0.50	<0.5	NSS	30	98	09	130	NSS	50	140
1,1,2-Trichloroethane	GCM0011-AUG16	J/Br/	0.50	<0.5	NSS	30	63	09	130	NSS	20	140
1,1-Dichloroethane	GCM0011-AUG16	µg/L	0.50	<0.5	NSS	30	93	09	130	NSS	20	140
1,1-Dichloroethylene	GCM0011-AUG16	hg/L	0.50	<0.5	NSS	30	96	09	130	NSS	20	140
1,2-Dichlorobenzene	GCM0011-AUG16	hg/L	0.50	<0.5	NSS	30	92	09	130	NSS	20	140
1,2-Dichloroethane	GCM0011-AUG16	J/Br/	0.50	<0.5	NSS	30	92	09	130	NSS	20	140

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision,

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects,

.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added, Used to evaluate laboratory accuracy with sample matrix effects,

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike,

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multialement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike is greater than or Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full, This report supersedes all previous versions,

-- End of Analytical Report --

20160803 18 / 20

Page of

かっつつて

LABLINS # 704

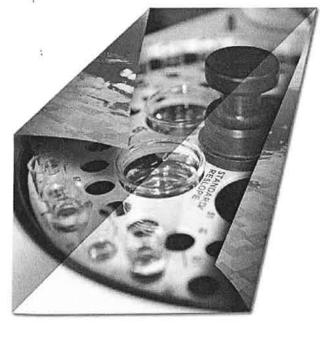
Cooling Agent Present:

Received By (signature): Custody Seal Present:

Received Date (mm/dd/yyyy); 27:27:76 (mm/dd/yy)

- London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361 Web: www.cl.sgs.com SGS Environmental Services - Lakefield: 185 Concession St., Lakefield, ON K0L 2110 Phone: 705-652-2000 Toll Five: 877-747-7658 Fax: 705-652-6365 Laboratory Information Section - Lab use only ROCENED BY Dave Matthews

	2	тепретавите Срои кесепри
REPURING INFORMATION	INVOICE INFORMATION	PROJECTINEORMATION
3	(same as Report Information)	1417-60017
+ War	Company	Project #: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Address: (00 // 4/KB Me	Contact:	TURNAROUND TIME (TAT) REQUIRED
	Address;	TAT's are quoted in business days (exclude statutory holidays) & weekends). Regular TAT (5-7days) Samples received after 3pm or on weekends : TAT begins the next business day
Phone: 416 784 8515		RUSH TAT (Additional Charges May Apply) 1 pay 2 bays 34 bays
Fax: 0	Phone:	SENTATIVE PRIOR TO SUBM
Email for ha Choi leve tnews the com	7 Email:	Specify Due Date: Rush Confirmation ID:
REG	RECULATIONS	DRINKING WATER SAMPLES (POTABLE WATER FOR HUMAN CONSUMPTION) MUST BE
Regulation 153 (2011):	Other Regulations: Sewer By-Law;	SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY
RestPark Soil Texture: Table 2	Reg 347/558 (3 Day min TAT) Sanitary PWQO MMER	ANALYSIS HEQUESTED
Table 3 AgrirOther Medium	CCME Other: Municipality:	stals (alster
RECORD OF SITE CONDITION (RSC)	Ci 🗆 YES 🗀 NO	sw/1
SAMPLE IDENTIFICATION	DATE TIME # OF MATRIX SAMPLED SAMPLED BOTTLES	O-Reg155
~ 3 <u>-</u>	1 500 11 GW	7" "%
435	()) (2)	8
25	110001	7 3 3
1 Ding 1	7 0051	1/-
s Tein Rowle	* ~ /	-11
9		0,1)
r- 0		
0 0		
01		
Observations/Comments/Special Instructions		
Sampled By (NAME): / [MLL] [Mory	Signature: 1 Ch	Date: 12 21 16 (unridayy) Pink Copy - Client
Relinquished by (NAME):	Signature:	Date: / / / Yellow & White Copy - SGS
Revision #: 1.0 Date of Issue: 01 June, 2014		


SGS

SAMPLE INTEGRITY REPORT

Project Number: 1512 - 5086 E	ONTABIO	REGULATION 15:	0/04				
SGS Sample ID JUL 15476	ONTANIO	REGOLATION 13:	3/04				
Date/Time Sampled July 22/16							
Client Sample ID SE COFC som	ALL ole Submission	General Sample Integri	ty Violations				
Temperature >10 C upon receipt if not sampled same day			7			MULLINAMINA	
No evidence of cooling trend initiated if sampled same day							
Chain of Custody not submitted							
Chain of Custody Incomplete	Ø						
Chain of Custody not signed / dated							
Chain of Custody not a current version							
Bottles / Samples listed on CoC but not received							
Bottles / Samples received but not listed on the CoC							
Sample container received empty							
Sample received past hold time	Sample Specific	: Sample Integrity Viole	tions				
incorrect preservation (including no preservation where required)							
Headspace present in VOC vial (aqueous)							
Sample(s) received frozen							
Bottle(s) broken or damaged in transport							
Discrepancy between sample label and chain of custody							_
Analysis requirements absent / unclear							0
Missing or incorrect sample label(s)						0	
Inappropriate sample container used							
Insufficient number of bottles received							
Insufficient sample volume							
Sample contains multiple phases							
		Lediment Log		CHE'S			
Groundwater samples contain visible sediment / particulate		All D					
Groundwater contains greater than 1cm of sediment / particulate matter in bottle		MWID					
Additional Comments/Remarks:							
No issues upon receipt		Initials:	K	14			

PFICA-[ENV]GEN-LAK-AD 021 Date of Issue: 11-May-16

FINAL REPORT

CA15253-AUG16 R

1512-S086E

Prepared for

Soil Engineers Ltd.

First Page

CLIENT DETAILS	S	LABORATORY DETAILS	3
Client	Soil Engineers Ltd.	Project Specialist	Deanna Edwards, B.Sc, C.Chem
		Laboratory	SGS Canada Inc.
Address	100 Nugget Ave	Address	185 Concession St., Lakefield ON, K0L 2H0
	Scarborough, ON		
	M1S 3A7.		
Contact	Laila Torabansari	Telephone	705-652-2000
Telephone	416-754-8515	Facsimile	705-652-6365
Facsimile	416-754-8516	Email	deanna.edwards@sgs.com
Email	laila@soilengineersltd.com; ebeyene@soilengineersltd.com	SGS Reference	CA15253-AUG16
Project	1512-S086E	Received	08/15/2016
Order Number		Approved	08/19/2016
Samples	Ground Water (3)	Report Number	CA15253-AUG16 R
		Date Reported	08/19/2016

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%; YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Temperature of Samples uon receipt 23 degrees C

Cooling Agent Present

Custody seal not present

SIGNATORIES

Deanna Edwards, B.Sc, C.Chem

searra Edwardo

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0

t 705-652-2000 f 705-652-6365

www.sgs.com

TABLE OF CONTENTS

First Page	<u>.</u> 1
Index	. 2
Results	I- 5
Exceedance Summary	. 6
Holding Time Summary	'-8
QC Summary9-	16
Legend	17
Annexes	19

	Sample	Number	7	8	9	
	Samp	le Name	MW1	MW2	MW3	
	Samp	le Matrix	Ground Water	Ground Water	Ground Water	
		npled By	Vincent	Vincent	Vincent	
		ple Date	14/08/2016	14/08/2016	14/08/2016	
Parameter	Units	RL	Result	Result	Result	L1
nions by IC			L	.1 = REG153 / GROUND	WATER / COARSE - TABLE 1 - /	All Types of Property Uses - UN
flethod: EPA300/MA300-lons1.3 Internal r	nne, kar on retre	UC LAV A	61.004			
Chloride	ha\r restriction and milenaal	200			9900	790000
Chionide	рдус	200			5500	730000
Conductivity						
	AAE OA KEARAEWI	LAIZ AN	0.00			
Nethod: EPA 6010/SM 2510 Internal ref.: I	wS/cm iaic_Ov-[ciaa]eaar	0.002	-000	1,22	1,1	
Conductivity	mozem	0,002	-	-	21	
yanide by SFA						
•	NACEA LAM AND	າກຂ				
Nethod: SM 4500 Internal ref.: ME-CA-[EN			-	NEW TOTAL	< 2	5
Cyanide (free)	μg/L	2			- 2	
lander about the manage on her the						
lexavalent Chromium by IC			004			
	* 8.6 hr = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-I AK-AIV-	(111)P			
Chromium VI	µg/L	0,2	1		< 0,2	25
Chromium VI fercury by CVAAS lethod; SM 3112/SM 3112B Internal ref.:	µg/L ME- CA- [ENV]SPE	0.2 E-LAK-AN	1			
Method: EPA218.6/EPA3060A Internal ref. Chromium VI Mercury by CVAAS Method: SM 3112/SM 3112B Internal ref.: Mercury (total)	µg/L	0,2	1		< 0.01	0.1
Chromium VI Mercury by CVAAS Method: SM 3112/SM 3112B Internal ref.: Mercury (total)	µg/L ME- CA- [ENV]SPE	0.2 E-LAK-AN	1			
Chromium VI fercury by CVAAS fethod; SM 3112/SM 3112B Internal ref.: Mercury (total) fetals in aqueous samples - ICP-MS	µg/L ME- CA- [ENV]SPE µg/L	0,2 E-LAK-AN 0,01	-004			
Chromium VI Mercury by CVAAS Method: SM 3112/SM 3112B Internal ref.: Mercury (total) Metals in aqueous samples - ICP-MS Method: SM 3030/EPA 200.8 Internal ref.:	µg/L ME-CA-(ENV)SPE µg/L ME-CA-(ENV)SPE	0,2 E-LAK-AN 0,01 E-LAK-AN	-004 006		< 0.01	0.1
Chromium VI Aercury by CVAAS Aethod: SM 3112/SM 3112B Internal ref.: Mercury (total) Aetals in aqueous samples - ICP-MS Aethod: SM 3030/EPA 200.8 Internal ref.: Barium	µg/L ME-CA-[ENV]SPE µg/L ME-CA-[ENV]SPE µg/L	0,2 E-LAK-AN 0,01 E-LAK-AN 0.02	-004			
Chromium VI Mercury by CVAAS Method: SM 3112/SM 3112B Internal ref.: Mercury (total) Metals in aqueous samples - ICP-MS Method: SM 3030/EPA 200.8 Internal ref.:	µg/L ME-CA-(ENV)SPE µg/L ME-CA-(ENV)SPE	0,2 E-LAK-AN 0,01 E-LAK-AN	-004 006 127	29.1	< 0.01 47.4	0.1
Chromium VI fercury by CVAAS fethod; SM 3112/SM 3112B Internal ref.: Mercury (total) fetals in aqueous samples - ICP-MS fethod; SM 3030/EPA 200.8 Internal ref.: Barlum Beryllium	µg/L ME- CA- [ENV]SPE µg/L ME- CA- [ENV]SPE µg/L	0,2 E-LAK-AN 0,01 E-LAK-AN 0,02 0,007	-004 006 127 < 0,007	29.1	< 0.01 47.4 < 0.007	0,1 610 0,5
Chromium VI Mercury by CVAAS Method: SM 3112/SM 3112B Internal ref.: Mercury (total) Metals in aqueous samples - ICP-MS Method: SM 3030/EPA 200.8 Internal ref.: Barium Beryllium Boron	µg/L ME-CA-[ENV]SPE µg/L µg/L µg/L µg/L µg/L	0,2 E-LAK-AN 0,01 E-LAK-AN 0.02 0.007 2	-004 006 127 < 0,007 286	29.1 < 0.007 134	< 0.01 47.4 < 0.007 565	0.1 610 0.5 1700
Chromium VI Mercury by CVAAS Method: SM 3112/SM 3112B Internal ref.:	µg/L ME-CA-[ENV]SPE µg/L µg/L µg/L µg/L	0,2 E-LAK-AN 0,01 E-LAK-AN 0,02 0,007 2 0,003	-004 006 127 < 0,007 286 0,020	29.1 < 0.007 134 0.015	< 0.01 47.4 < 0.007 565 0.012	0.1 610 0.5 1700 0.5
Chromium VI Mercury by CVAAS Method: SM 3112/SM 3112B Internal ref.:	μg/L ME-CA-[ENV]SPE μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.2 E-LAK-AN 0.01 E-LAK-AN 0.02 0.007 2 0.003 0.03	-004 -006 127 < 0.007 286 0.020 0.27	29.1 < 0.007 134 0.015 0.43	< 0.01 47.4 < 0.007 565 0.012 0.21	0.1 610 0.5 1700 0.5
Chromium VI Mercury by CVAAS Method: SM 3112/SM 3112B Internal ref.: Mercury (total) Metals in aqueous samples - ICP-MS Method: SM 3030/EPA 200.8 Internal ref.: Barium Beryllium Boron Cadmium Chromium Cobalt	µg/L ME-CA-[ENV]SPE µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0,2 E-LAK-AN 0,01 E-LAK-AN 0,02 0,007 2 0,003 0,03 0,004	-004 006 127 < 0.007 286 0.020 0.27 2.97	29.1 < 0.007 134 0.015 0.43 0.636	47.4 < 0.007 565 0.012 0.21 0.925	610 0.5 1700 0.5 11 3.8
Chromium VI Mercury by CVAAS Method: SM 3112/SM 3112B Internal ref.: iMercury (total) Metals in aqueous samples - ICP-MS Method: SM 3030/EPA 200.8 internal ref.: Barium Beryllium Boron Cadmium Chromium Cobalt Copper	μg/L ME-CA-[ENV]SPE μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.2 E-LAK-AN 0.01 E-LAK-AN 0.02 0.007 2 0.003 0.03 0.004 0.02	-004 -006 127 < 0,007 286 0,020 0,27 2,97 0,40	29.1 < 0.007 134 0.015 0.43 0.636 0.84	< 0.01 47.4 < 0.007 565 0.012 0.21 0.925 0.34	0.1 610 0.5 1700 0.5 11 3.8 5
Chromium VI Mercury by CVAAS Method: SM 3112/SM 3112B Internal ref.:	µg/L ME-CA-[ENV]SPE µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.2 E-LAK-AN 0.01 E-LAK-AN 0.02 0.007 2 0.003 0.03 0.004 0.02 0.01	-004 127 < 0.007 286 0.020 0.27 2.97 0.40 0.07	29.1 < 0.007 134 0.015 0.43 0.636 0.84 0.02	< 0.01 47.4 < 0.007 565 0.012 0.21 0.925 0.34 0.04	0.1 610 0.5 1700 0.5 11 3.8 5
Chromium VI Mercury by CVAAS Method: SM 3112/SM 3112B Internal ref.:	µg/L ME-CA-[ENV]SPE µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.2 E-LAK-AN 0.01 E-LAK-AN 0.02 0.007 2 0.003 0.003 0.004 0.02 0.01	-004 127 < 0.007 286 0.020 0.27 2.97 0.40 0.07 6.16	29.1 < 0.007 134 0.015 0.43 0.636 0.84 0.02 3.11	47.4 < 0.007 565 0.012 0.21 0.925 0.34 0.04 4.36	0.1 610 0.5 1700 0.5 11 3.8 5 1.9 23
Chromium VI Mercury by CVAAS Method: SM 3112/SM 3112B Internal ref.:	μg/L ME-CA-[ENV]SPE μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.2 E-LAK-AN 0.01 E-LAK-AN 0.02 0.007 2 0.003 0.003 0.004 0.02 0.01 0.01	-004006 127 < 0,007 286 0,020 0,27 2,97 0,40 0,07 6,16 2,6	29.1 < 0.007 134 0.015 0.43 0.636 0.84 0.02 3.11 2.0	<0.01 47.4 <0.007 565 0.012 0.21 0.925 0.34 0.04 4.36 0.6	0.1 610 0.5 1700 0.5 11 3.8 5 1.9 23
Chromium VI Mercury by CVAAS Method: SM 3112/SM 3112B Internal ref.:	μg/L ME-CA-[ENV]SPE μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.2 E-LAK-AN 0.01 E-LAK-AN 0.02 0.007 2 0.003 0.03 0.004 0.02 0.01 0.01 0.1 0.002	-004 -006 127 < 0,007 286 0,020 0,27 2,97 0,40 0,07 6,16 2,6 < 0,002	29.1 < 0.007 134 0.015 0.43 0.636 0.84 0.02 3.11 2.0 < 0.002	< 0.01 47.4 < 0.007 565 0.012 0.21 0.925 0.34 0.04 4.36 0.6 < 0.002	0.1 610 0.5 1700 0.5 11 3.8 5 1.9 23 14 0.3
Chromium VI Mercury by CVAAS Method: SM 3112/SM 3112B Internal ref.:	µg/L ME-CA-[ENV]SPE µg/L µg/L	0.2 E-LAK-AN 0.01 E-LAK-AN 0.02 0.007 2 0.003 0.003 0.004 0.02 0.01 0.01 0.1 0.002 0.005	-004 127 < 0.007 286 0.020 0.27 2.97 0.40 0.07 6.16 2.6 < 0.002 0.014	29.1 < 0.007 134 0.015 0.43 0.636 0.84 0.02 3.11 2.0 < 0.002 0.021	< 0.01 47.4 < 0.007 565 0.012 0.21 0.925 0.34 0.04 4.36 0.6 < 0.002 0.013	0.1 610 0.5 1700 0.5 11 3.8 5 1.9 23 14 0.3 0.5
Chromium VI Mercury by CVAAS Method: SM 3112/SM 3112B Internal ref.: Mercury (total) Metals in aqueous samples - ICP-MS Method: SM 3030/EPA 200.8 Internal ref.: Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium Uranium	µg/L ME-CA-[ENV]SPE µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.2 E-LAK-AN 0.01 E-LAK-AN 0.02 0.007 2 0.003 0.004 0.02 0.01 0.1 0.002 0.005 0.002 0.01	-004 127 < 0.007 286 0.020 0.27 2.97 0.40 0.07 6.16 2.6 < 0.002 0.014 5.26	29.1 < 0.007 134 0.015 0.43 0.636 0.84 0.02 3.11 2.0 < 0.002 0.021 6.47	< 0.01 47.4 < 0.007 565 0.012 0.21 0.925 0.34 0.04 4.36 0.6 < 0.002 0.013 0.800	0.1 610 0.5 1700 0.5 11 3.8 5 1.9 23 14 0.3 0.5 8.9
Chromium VI Mercury by CVAAS Method: SM 3112/SM 3112B Internal ref.:	µg/L ME-CA-[ENV]SPE µg/L µg/L	0.2 E-LAK-AN 0.01 E-LAK-AN 0.02 0.007 2 0.003 0.004 0.02 0.01 0.01 0.1 0.002 0.005 0.002	-004 -006 127 < 0,007 286 0,020 0,27 2,97 0,40 0,07 6,16 2,6 < 0,002 0,014 5,26 0,29	29.1 < 0.007 134 0.015 0.43 0.636 0.84 0.02 3.11 2.0 < 0.002 0.021 6.47 0.14	<0.01 47.4 <0.007 565 0.012 0.21 0.925 0.34 0.04 4.36 0.6 <0.002 0.013 0.800 0.17	0.1 610 0.5 1700 0.5 11 3.8 5 1.9 23 14 0.3 0.5 8.9 3.9

0.5

FINAL REPORT

	Sample Sampl	Number le Name	7 MW1	8 MW2	9 MW3	
		e Matrix	Ground Water	Ground Water	Ground Water	
		pled By	Vincent	Vincent	Vincent	
	Samp	ple Date	14/08/2016	14/08/2016	14/08/2016	
Parameter	Units	RL	Result	Result	Result	L1
Metals in aqueous samples - ICP-MS (cont	inued)		L	1 = REG153 / GROUNL	WATER/COARSE - TABLE 1	- All Types of Property Uses - UNDEFI
Nethod: SM 3030/EPA 200.8 Internal ref.	: ME-CA-[ENV]SPE	LAK-AN	1-006			
Selenium	μg/L	0.04	2,35	0,57	0.07	5
Sodium	μg/L	10	27400	25300	41500	490000
Petroleum Hydrocarbons (F1)						
#ethod: CCME Tier 1 Internal ref.: ME-C	A-[ENV]GC-LAK-AI	V-010				
CCME F1 (C6-C10)	μg/L	25	***	< 25	***	420
CCME F1-BTEX (C6-C10)	μg/L	25	244	< 25		
intertación Edicionación (200 E)						
etroleum Hydrocarbons (F2-F4)	* **** ** ** ** * * * * * * * * * * *	1.00.00				
lethod: CCME Tier 1 Internal ref.: ME-C						450
CCME F2 (C10-C16)	μg/L	100		< 100		150
CCME F3 (C16-C34)	μg/L 	200	***	< 200	***	500
CCME F4 (C34-C50)	μg/L	200	****	< 200	***	500
Chromatogram returned to baseline at nC50	Yes / No	16	200	YES		
H						
######################################	NVIEWL-LAK-AN-C	ากอ				
рН	no unit	0.05	. ***	***	7.95	
		-				
Sodium adsorption ratio (SAR)						
Nethod: MOE 4696e01/EPA 6010 Interna	ol ref · N#LCAJENN	naph.i a	K&KI^91			
Sodium Adsorption Ratio	G 12311 1A15"	0.01	37.541.077.1	-	0.77	
Souldin Adsorption Natio		, W. W.			0.17	
folatile Organics						
Method: EPA 5030B/8260C Internal ref.:	AND PARTER POOL	A SCHANILO	24			
						2700
Acetone	μg/L	30	52			0.89
Bromomethane	µg/L	0.5	< 0.5		***	0.2
Carbon letrachloride	μg/L	0.2	< 0.2			0.5
Chloroform	µg/L	0.5	< 0.5	2000		
Chloroform	μg/L	0.5	< 0.5	***		2
1,2-Dichlorobenzene	μg/L	0.5	< 0.5	2333		0.5
1,3-Dichlorobenzene	µg/L	0.5	< 0.5	2000	984	0.5
1,4-Dichlorobenzene	μg/L	0.5	< 0.5	244	W000	0.5
Dichlorodifluoromethane	μg/L	2,0	< 2		5557	590
1,1-Dichloroethane	μg/L	0.5	< 0.5	644	eres.	0.5

0.5

μg/L

< 0.5

20160819 4 / 19

1,2-Dichloroethane

RESULTS

	Sample	Number	7	8	9	
	Samp	ole Name	MW1	MW2	MW3	
	Samp	ole Matrix	Ground Water	Ground Water	Ground Water	
	Sai	mpled By	Vincent	Vincent	Vincent	
	San	nple Date	14/08/2016	14/08/2016	14/08/2016	
Parameter	Units	RL	Result	Result	Result	L1

ethod: EPA 5030B/8260C Internal ref.:	ME-CA-JENVIGC-LA	K-AN-00	1			
1,1-Dichloroethylene	µg/L	0.5	< 0.5	****	***	0,5
trans-1,2-Dichloroethene	μg/L	0.5	< 0.5	***	***	1,6
cis-1,2-Dichloroethene	μg/L	0.5	< 0.5		***	1,6
1,2-Dichloropropane	µg/L	0.5	< 0.5		***	0,5
cis-1,3-Dichloropropene	μg/L	0.5	< 0.5	8888	***	
lrans-1,3-Dichloropropene	μg/L	0_5	< 0.5	5000	***	
1,3-dichoropropene (total)	μg/L	0.5	< 0,5			0,5
Elhylenedibromide	μg/L	0.2	< 0.2	***	***	0.2
n-Hexane	µg/L	1.0	< 1	-	***	5
Methyl ethyl ketone	μg/L	20	< 20		***	400
Methyl Isobutyl Ketone	µg/L	20	< 20	***	2666	640
Methyl-l-bulyl Elher	μg/L	2.0	< 2		222	15
Methylene Chloride	μg/L	0.5	< 0.5		***	5
Styrene	μg/L	0.5	< 0.5	500	***	0.5
Tetrachloroethylene (perchloroethylene)	μg/L	0.5	< 0.5	(***)	200	0.5
1,1,1,2-Tetrachloroethane	μg/L	0.5	< 0.5		***	1.1
1,1,2,2-Tetrachloroethane	μg/L	0.5	< 0.5	2000	242	0.5
1,1,1-Trichloroethane	µg/L	0,5	< 0,5	3000	500	0.5
1,1,2-Trichloroethane	µg/L	0.5	< 0.5	***	, 300	0,5
Trichloroethylene	μg/L	0.5	5,5	· · · ·	202	0.5
Trichlorofluoromethane	μg/L	5.0	< 5	****	375	150
Vinyl Chloride	µg/L	0.2	< 0.2	59665	200	0.5
Benzene	µg/L	0.5	< 0.5	< 0.5	***	0.5
Ethylbenzene	µg/L	0.5	< 0.5	< 0.5	344	0,5
Toluene	µg/L	0.5	< 0.5	< 0.5	***	8.0
Xylene (total)	µg/L	0.5	< 0.5	< 0.5	***	72
m/p-xylene	µg/L	0.5	< 0.5	< 0.5	***	
o-xylene	µg/L	0.5	< 0.5	< 0.5	212	
Bromodichloromethane	µg/L	0.5	< 0.5	****	2000	2
Bromoform	µg/L	0.5	< 0.5	1200	224	5
Dibromochloromethane	µg/L	0.5	< 0.5	***	1700 1700	2
Surr 1,2-Dichloroethane-d4	Surr Rec %		101	1966	3000	
Surr 2-Bromo-1-Chloropropane	Surr Rec %	i i	96	(444)	***	
Surr 4-Bromofluorobenzene	Surr Rec %	163	95	(200)	***	

5/19 20160819

EXCEEDANCE SUMMARY

				REG153 /
				GROUND WATER /
				COARSE - TABLE
				1 - All Types of
				Property Uses -
				UNDEFINED
Parameter	Method	Units	Result	L1
1				
Trichloroethylene	EPA 5030B/8260C	μg/L	5.5	0.50
3				
Arsenic	SM 3030/EPA 200.8	μg/L	13.1	13

20160819 6 / 19

HOLDING TIME SUMMARY

Sample Name	QC Batch Reference	Sample Number	Sampled	Received	Extracted/ Prepared	Analysed	Holding Time	Approved
Anions by IC								
Method: EPA300/MA300-lons1.3 I	nternal ref.: ME-CA-[E	NVJIC-LA	K-AN-001					
MW3	DIO0277-AUG16	9	08/14/2016	08/15/2016	08/16/2016	08/16/2016	09/11/2016	08/19/2016
Conductivity								
Method: EPA 6010/SM 2510 Interr	nal ref.: ME-CA-[ENV]	EWL-LAK-	AN-006					
MW3	EWL0237-AUG16	9	08/14/2016	08/15/2016	08/16/2016	08/16/2016	09/13/2016	08/18/2016
Cyanide by SFA Method: SM 4500 Internal ref.: ME	-CAJENVISFA-LAK-A	N-005						
MW3	SKA0116-AUG16	9	08/14/2016	08/15/2016	08/16/2016	08/16/2016	08/28/2016	08/16/2016
Hexavalent Chromium by IC								
Method: EPA218.8/EPA3060A Inte	emal ref.: ME-CA-IEN\	/IIC-LAK-	AN-008					
MW3	DIO0263-AUG16	9	08/14/2016	08/15/2016	08/18/2016	08/18/2016	09/11/2016	08/19/2016
	0,00200,10010		00/1/2010	00/10/2010	35/13/2010	00/10/2010	00/1/1/2010	00/13/2010
Mercury by CVAAS Method: SM 3112/SM 3112B Inter	nol rof · ME-CA-IENIVI	OPELIAN.	AN.Ona					
MW3	EHG0022-AUG16	9	08/14/2016	08/15/2016	08/17/2016	08/17/2016	09/11/2016	08/17/2016
Vietals in aqueous samples - ICP-MS Viethod: SM 3030/EPA 200.8 Inter		SPE-LAK	-AN-006					
MW1	EMS0072-AUG16	7	08/14/2016	08/15/2016	08/16/2016	08/16/2016	10/13/2016	08/17/2016
MW2	EMS0072-AUG16	8	08/14/2016	08/15/2016	08/16/2016	08/16/2016	10/13/2016	08/17/2016
MW3	EMS0072-AUG16	9	08/14/2016	08/15/2016	08/16/2016	08/16/2016	10/13/2016	08/17/2016
Petroleum Hydrocarbons (F1) Method: CCME Tier 1 Internal ref.:	: ME-CA-[ENV]GC-LAI	<-AN-010						
MW2	GCM0147-AUG16	8	08/14/2016	08/15/2016	08/17/2016	08/17/2016	08/28/2016	08/19/2016
Petroleum Hydrocarbons (F2-F4)	. Sac on tenhano i al	<_an_nan						
Method: CGME Tier 1 Internal ref.:	. METER YET YET	Z24 5.2 1 C						
	GCM0152-AUG16	8	08/14/2016	08/15/2016	08/17/2016	08/17/2016	08/28/2016	08/19/2016
MW2			08/14/2016	08/15/2016	08/17/2016	08/17/2016	08/28/2016	08/19/2016
MW2	GCM0152-AUG16	8	08/14/2016	08/15/2016	08/17/2016	08/17/2016	08/28/2016	08/19/2016
Method: CGME Tier 1 Internal ref.: MW2 pH Method: SM 4500 Internal ref.: ME MW3	GCM0152-AUG16	8	08/14/2016 08/14/2016	08/15/2016 08/15/2016	08/17/2016 08/16/2016	08/17/2016 08/16/2016	08/28/2016 09/11/2016	08/19/2016 08/16/2016
MW2 oH Method: SM 4500 Internal ref.: ME MW3 Sodium adsorption ratio (SAR)	GCM0152-AUG16 -CA-[ENV]EWL-LAK-/ EWL0226-AUG16	8 NN-006 9	08/14/2016					
MW2 oH Method: SM 4500 Internal ref.: ME	GCM0152-AUG16 -CA-[ENV]EWL-LAK-/ EWL0226-AUG16	8 NN-006 9	08/14/2016					
MW2 Method: SM 4500 Internal ref.: ME MW3 Sodium adsorption ratio (SAR) Method: MOE 4696e01/EPA 8010 MW3	GCM0152-AUG16 -CA-[ENV]EWL-LAK-/ EWL0226-AUG16	8 NN-006 9 ENVJARD	08/14/2016 -LAK-AN-021	08/15/2016	08/16/2016	08/16/2016	09/11/2016	08/16/2016
MW2 DH Method: SM 4500 Internal ref.: ME MW3 Sodium adsorption ratio (SAR) Method: MOE 4696e01/EPA 6010 MW3 /clatile Organics	GCM0152-AUG16 -CA-[ENV]EWL-LAK-A EWL0226-AUG16 Internal ref.: ME-CA-[i	8 9 9 ENVJARD 9	08/14/2016 -LAK-AN-021 08/14/2016	08/15/2016	08/16/2016	08/16/2016	09/11/2016	08/16/2016
MW2 Method: SM 4500 Internal ref.: ME MW3 Sodium adsorption ratio (SAR) Method: MOE 4696e01/EPA 8010	GCM0152-AUG16 -CA-[ENV]EWL-LAK-A EWL0226-AUG16 Internal ref.: ME-CA-[i	8 9 9 ENVJARD 9	08/14/2016 -LAK-AN-021 08/14/2016	08/15/2016	08/16/2016	08/16/2016	09/11/2016	08/16/2016

HOLDING TIME SUMMARY

Sample Name	QC Batch Reference	Sample Number	Sampled	Received	Extracted/ Prepared	Analysed	Holding Time	Approved
Volatile Organics (continued)								
Method: EPA 5030B/8260C Inf	temal ref.: ME-CA-[ENV]G	C-LAK-A	V-004					
MW2	GCM0131-AUG16	8	08/14/2016	08/15/2016	08/16/2016	08/16/2016	08/28/2016	08/16/2016

20160819 8 / 19

QC SUMMARY

Anions by IC

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-FENVIIC-LAK-AN-001

	Recovery Limits (%)	High	125	125	
Matrix Spike / Ref.	Recover (%	Low	75	75	
Ň	Spike Recovery	N	107		
	/ Limits	High	120	120	
LCS/Spike Blank	Recovery Limits (%)	Low	80	80	
3	Spike	(%)	101	96	
Ouplicate	AC	20	20		
Dupli	RPD		>2		
Method	Blank		<200	<200	
RL			200	200	
Units			µg/L	hg/L	
QC batch	Reference		DI00220-AUG16	DIO0277-AUG16	
Parameter			Chloride	Chloride	

Conductivity

Method: EPA 6010/SM 2510 | Internal ref.: ME-CA-TENVIEWL-LAK-AN-006

	/ Limits	Hah	
Matrix Spike / Ref.	Recovery Limits (%)	Low	
	Spike Recovery	(%)	NA A
LCS/Spike Blank	/ Limits)	High	110
	Recovery Limits (%)	Low	06
ដ	Spika	(%)	66
Duplicate	S AC	10	
IdnQ	RPD	0	
Method	<0.002		
씸			0.0020
Units			AUG16 mS/cm
QC batch	Reference		EWL0237-
Parameter			Conductivity

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

	Limits	High	125	
Matrix Spike / Ref.	Recovery Limits (%)	Low	7.5	
	_	(%)	102	
LCS/Spike Blank		High	110	
	Recovery Limits (%)	Low	06	
ឌ្ម		(%)	88	
Duplicate		10		
	RPD		2	
Method	Blank		8	
R			2	
Units			hg/L	
QC batch	Reference		SKA0116-AUG16	
Parameter			Cyanide (free)	

Hexavalent Chromium by IC

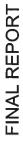

Method: EPA218.8/EPA3060A | Internal ref.; ME-CA-FENVIIC-LAK-AN-008

ef.	Recovery Limits (%)	High	125
Matrix Spike / Ref.	Recov	Low	75
Σ	Spike Recovery	%	06
	Recovery Limits (%)	High	120
LCS/Spike Blank	Recovery (%)	Low	80
27	Spike	(%)	94
Duplicate	AC 80	(2)	20
IdnQ	RPD		16
Method	Blank		<0.2
귎			0.20
Units			ng/L
QC batch	Reference		DI00263-AUG16
Parameter			Chromium VI

Melicury by CVAAS

Method: SM 3112/SM 3112B | Internal ref.: ME-CA-(ENVISPE-LAK-AN-004

QC batch	Units	귊	Method	Dup	Duplicate	Ö	LCS/Spike Blank		2	Matrix Spike / Ref.	
			Blank	RPD	AC	Spike	Recovery Limits (%)	Limits	Spike Recovery	Recovery Limits (%)	/ Limits
					(%)	Kecovery (%)	Low	High	(%)	Low	High
EHG0022-AUG16	ng/L	0.010	<0.01	2	20	80	06	110	7.5	70	130

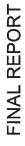


Metals in aqueous samples - iCP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-IENVISPE-LAK-AN-006

Parameter	QC batch	Units	교	Method	hQ	Duplicate	21	LCS/Spike Blank		Ma	Matrix Spike / Ref.	
	Reference			Blank	RPD	Q §	Spike	Recovery Limits (%)	y Limits	Spike Recovery	Recovery Limits (%)	Limits
						(%)	Kecovery (%)	Low	High	(%)	Low	High
Silver	EMS0072-AUG16	µg/L	0.0020	<0.002	QN	20	86	06	110	82	02	130
Arsenic	EMS0072-AUG16	hg/L	0.20	<0.2	æ	20	92	06	110	83	70	130
Uranium	EMS0072-AUG16	J/6rl	0.0020	<0.002	æ	20	26	06	110	73	70	130
Vanadium	EMS0072-AUG16	hg/L	0,010	<0.01	13	20	92	06	110	94	70	130
Zinc	EMS0072-AUG16	J/Brl	2	<2	Q	20	93	06	110	73	70	130
Barium	EMS0072-AUG16	J/Br/	0.020	<0.02	es.	20	101	06	110	N	20	130
Beryllium	EMS0072-AUG16	hg/L	0,0070	<0.00	Q	20	94	06	110	110	70	130
Boron	EMS0072-AUG16	hg/L	2	<2	4	20	26	06	110	Ž	70	130
Cadmium	EMS0072-AUG16	hg/L	0.0030	<0,003	2	20	94	06	110	100	70	130
Cobalt	EMS0072-AUG16	J/Brl	0.0040	<0.004	0	20	06	06	110	83	70	130
Chromium	EMS0072-AUG16	T/6rl	0:030	<0.03	14	20	92	06	110	92	70	130
Copper	EMS0072-AUG16	η/βη	0.020	<0.02	4	20	26	06	110	95	70	130
Molybdenum	EMS0072-AUG16	µg/L	0.010	<0.01	ю	20	107	06	110	88	70	130
Sodium	EMS0072-AUG16	J/BH	10	<10	0	20	96	06	110	Ž	70	130
Nickel	EMS0072-AUG16	hg/L	0.10	<0.1	7	20	94	06	110	81	70	130
Lead	EMS0072-AUG16	J/Brl	0.010	<0.01	*	20	66	06	110	06	70	130
Antimony	EMS0072-AUG16	hg/L	0.020	<0.02	0	20	101	06	110	93	70	130
Selenium	EMS0072-AUG16	hg/L	0,040	<0.0>	7	20	103	06	110	Ž	70	130
Thallium	EMS0072-AUG16	hg/L	0.0050	<0.005	60	20	26	06	110	103	70	130

Metals in aqueous samples - ICP-OES


Method: MCE 4698e01/EPA 6010 | Internal ref. ME-CA-FENVISPE-LAK-AN-003

	Recovery Limits (%)	High	130	130	130
Matrix Spike / Ref.	Rесоvегу I (%)	Low	70	70	70
Ž	Spike Recovery	(%)	Ž	Ž	N
	/ Limits	High	120	120	120
.CS/Spike Blank	Recovery Limits (%)	Low	80	80	80
SOT	Spike	(%)	101	96	96
Duplicate	A &		20	20	20
Idna	RPD		De	0	0
Method	Blank		<0.02	<0.003	<0.01
묍			0.020	0.0030	0.010
Units			mg/L	mg/L	mg/L
QC b atch	Reference		EMS0072-AUG16	EMS0072-AUG16	EMS0072-AUG16
Parameter			SAR Calcium	SAR Magnesium	SAR Sodium

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-TENVIGO-LAK-AN-010

Parameter	QC batch	Units	귙	Method	Dup	Ouplicate	9	LCS/Spike Blank		Ν	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC 8	Spike	Recovery Limits (%)	' Limits)	Spike Recovery	Recovery Lin (%)	Recovery Limits (%)
						(8)	(%)	Low	High	(%)	Low	High
CCME F1 (C6-C10)	GCM0147-AUG16	hg/L	25	<25	Q.	30	76	09	140	N	9	140

Petroleum Hydrocarbons (FZ-F4)

Method: COME Tier 1 Internal ref.: ME-CA-FENVIGC LAK-AN-010

		SIES	본	Method	Δď	Duplicate	ថ្ម	LCS/Spike Blank		Ä	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC 8	Spike	Recovery Limits (%)	y Limits	Spike Recovery	Recovery Limits (%)	y Limits
						(g)	(%)	Low	High	(%)	Low	High
CCME F2 (C10-C16)	GCM0152-AUG16	µg/L	100	<100	NSS	30	86	09	140	NSS	09	140
CCME F3 (C16-C34)	GCM0152-AUG16	hg/L	200	<200	NSS	30	86	09	140	NSS	09	140
CCME F4 (C34-C50)	GCM0152-AUG16	hg/L	200	<200	NSS	30	86	09	140	NSS	09	140
Method: SM 4500 Internal ref.: ME-CA-TENVIEWL-LAK-AN-006	ENVEVL-LAK-AN-108											
Parameter	QC batch	Units	귇	Method	Δď	Duplicate	ថ្ម	LCS/Spike Blank		Ā	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC (%)	Spike	Recovery Limits (%)	y Limits	Spike Recovery	Recovery Limits (%)	y Limits
						(8)	(%)	Low	High	(%)	Low	High
Hd	EWL0226-AUG16	no unit	0.050	₹ N	-		101			Ϋ́		

Votatile Organics
Wethod: EPA 5030B/8260C | Internal ref.; ME-CA-FENVIGC-LAK-AN-004

Parameter	QC batch	Units	교	Method	Dup	Duplicate	2	LCS/Spike Blank		Σ	Matrix Spike / Ref.	<u>ب.</u>
	Reference			Blank	RPD	Q §	Spike	Recovery Limits (%)	y Limits	Spike Recovery	Recove	Recovery Limits (%)
						(%)	recovery (%)	Low	Ę	(%)	Low	High
1,1,1,2-Tetrachloroethane	GCM0131-AUG16	₽ hg/L	0.50	<0.5	2	30	68	09	130	104	90	140
1,1,1-Trichloroethane	GCM0131-AUG16	µg/L	0.50	<0.5	Q	30	68	09	130	104	20	140
1,2-Dichloropropane	GCM0131-AUG16	hg/L	0,50	<0.5	2	30	06	09	130	103	90	140
1,3-Dichlorobenzene	GCM0131-AUG16	hg/L	0.50	<0,5	Q.	30	68	09	130	103	20	140
1,4-Dichlorobenzene	GCM0131-AUG16	hg/L	0.50	<0.5	2	30	89	09	130	103	20	140
Acetone	GCM0131-AUG16	hg/L	30	<30	Q.	30	68	09	130	66	20	140
Benzene	GCM0131-AUG16	hg/L	0.50	<0.5	Q.	30	06	09	130	106	20	140
Bromodichloromethane	GCM0131-AUG16	7/6rl	0.50	<0.5	2	30	87	09	130	101	20	140
Bromoform	GCM0131-AUG16	hg/L	05.0	<0.5	2	30	88	09	130	103	20	140
Bromomethane	GCM0131-AUG16	hg/L	0.50	<0,5	2	30	88	20	140	101	20	140
Carbon tetrachloride	GCM0131-AUG16	hg/L	0.20	<0,2	Q	30	88	09	130	105	20	140
Chlorobenzene	GCM0131-AUG16	µg/L	0.50	<0.5	2	30	89	09	130	103	20	140
Chloroform	GCM0131-AUG16	µg/L	0.50	<0.5	Q	30	68	09	130	105	20	140
cis-1,2-Dichlaroethene	GCM0131-AUG16	hg/L	0.50	<0.5	Q.	30	06	09	130	106	20	140
cis-1,3-Dichloropropene	GCM0131-AUG16	hg/L	0.50	<0.5	Q	30	06	09	130	102	20	140
Dibromochloromethane	GCM0131-AUG16	hg/L	0.50	<0.5	Q.	30	88	09	130	101	20	140
Dichlorodifluoromethane	GCM0131-AUG16	J/Brl	2.0	2	Q	30	06	20	140	104	20	140
Ethylbenzene	GCM0131-AUG16	hg/L	0.50	<0.5	Q.	30	80	09	130	104	20	140
Ethylenedibromide	GCM0131-AUG16	hg/L	0.20	<0.2	2	30	90	09	130	103	20	140
n-Hexane	GCM0131-AUG16	hg/L	1.0	₹	2	30	94	09	130	107	20	140

QC SUMMARY

Volatile Organics (continued)

Method: EPA 5030B/8260C | Internal ref.: ME-CA-FENVIGC-LAK-AN-004

	CC batch	Units	R	Method	Dup	Duplicate	ĭ	LCS/Spike Blank		Σ	Matrix Spike / Ref.	
	Reference			Blank	RPD	YC :	Spike	Recove.	Recovery Limits (%)	Spika Recovery	Recove	Recovery Limits
						<u>%</u>	Recovery (%)	Low	High	(%)	Low	High
	GCM0131-AUG16	µ9/L	0.50	<0.5	2	30	06	09	130	104	90	140
Methyl ethyl ketone	GCM0131-AUG16	hg/L	20	<20	2	30	92	09	130	103	90	140
Methyl Isobutyl Ketone	GCM0131-AUG16	µg/L	20	<20	Q.	30	93	20	140	105	20	140
Methyl-t-butyl Ether	GCM0131-AUG16	hg/L	2.0	7	Q.	30	91	09	130	104	20	140
Methylene Chloride	GCM0131-AUG16	hg/L	0.50	<0.5	Q	30	91	09	130	106	90	140
	GCM0131-AUG16	hg/L	0.50	<0.5	Q	30	88	09	130	101	20	140
	GCM0131-AUG16	µg/L	0.50	<0.5	9	30	06	09	130	104	20	140
Tetrachloroethylene (perchloroethylene)	GCM0131-AUG16	µg/L	0.50	<0.5	9	30	06	09	130	103	90	140
	GCM0131-AUG16	hg/L	0.50	<0.5	Q	30	88	09	130	103	20	140
trans-1,2-Dichloroethene	GCM0131-AUG16	hg/L	0.50	<0,5	g	30	91	09	130	106	90	140
trans-1,3-Dichloropropene	GCM0131-AUG16	µg/L	0.50	<0.5	2	30	92	09	130	103	20	140
Trichloraethylene	GCM0131-AUG16	hg/L	0.50	<0.5	g	30	06	09	130	103	90	140
Trichlorofluoromethane	GCM0131-AUG16	hg/L	5.0	\$	g	30	88	20	140	103	20	140
	GCM0131-AUG16	hg/L	0.20	<0.2	9	30	88	09	130	104	90	140
1,1,2,2-Tetrachloroethane	GCM0131-AUG16	hg/L	0.50	<0.5	9	30	06	09	130	105	50	140
1,1.2-Trichloroethane	GCM0131-AUG16	µg/L	0.50	<0.5	9	30	06	09	130	104	20	140
1,1-Dichloroethane	GCM0131-AUG16	hg/L	0.50	<0.5	2	30	06	09	130	106	50	140
1,1-Dichloroethylene	GCM0131-AUG16	hg/L	0.50	<0.5	Q.	30	93	09	130	109	20	140
1,2-Dichlorobenzene	GCM0131-AUG16	hg/L	0:20	<0.5	Q	30	06	09	130	104	20	140
1,2-Dichloroethane	GCM0131-AUG16	hg/L	0.50	<0.5	Q	30	89	09	130	106	90	140
				 10	0							

FINAL REPORT

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD; Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable. Duplicate Qualifiar: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the matrix spike increases, the uncertainty of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis, "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

20160819 17 / 19

Relinquished by (NAME): sampled By (NAME): Observations/Comments/Special Instructions RECORD OF SITE CONDITION (RSC) company: Received By: received Date (mm/dd/yyyy) CO NS (16 (mm/dd/yy) scrived Time Table 3 ろり 222 スピィ acha @ Soil engineested com G16 784 8515 REPORT INFORMATION SAMPLE IDENTIFICATION 00 Nr Regulation 153 (2011): Res/Park Agri/Other Ind/Com Engineers (to SGS Environmental Services := Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Toll Free: 877-747-7658 Fax: 705-652-6365 (ment Soil Texture: Fine Medium Coarse REGULATIONS Email: A Contact: Address - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361 Web: www.ca.sgs.com Stall Fills DATE MISA Reg 347/558 (3 Day min TAT) YES PWQ0 MMER COME (same as Report Information) Other Regulations: Request for Laboratory Services and CHAIN OF CUSTODY INVOICE INFORMATION Other NO Signature: Signature: SAMPLED BOTTLES Custody Seal Present: Received By (signature) Custody Scal Intact 8xx 1000 TIME 500 Laboratory information Section y Lab Its only # QF y Municipality Sewer By-Law: Sanitary Storm dans 25 MATRIX PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION RUSH TAT (Additional Charges May Apply) PHC F1-F4 BTEX Specify Due Date Project # 760/5/2-5086 & 又 Quotation #: Regular TAT (5-7days) Samples received after 3pm or on waekends: TAT begins the next business day O. Reg 253 Metals (ICP & hydride metals DRINKING WATER SAMPLES (POTABLE WATER FOR HUMAN CONSUMPTION) MUST BE 又 ☐Hg ☐ B-HWS ☐ Cr(VI) Temperature Upon Receipt ("C) Cooling Agent Present: SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY O.Reg 153 VOCs ANALYSIS REQUESTED Metals & morganes Date Date: K FURNAROUND TIME (TAT) REQUIRED TAT's are quoted in business days (exclude statutory holidays & weekends) PROJECT INFORMATION 3 Site Location/ID: 6611 20/16 Rush Confirmation ID: ☐ 1 Day Ò (mun/dd/sy) | Yellow & White Copy - 868 (mm/dd/yy) LAB LIMS # 2 Days Pink Copy - Client Field Fiftered (F) Preserved (P) Page 2 COMMENTS: 3-4 Days

Date of Issue; 01 June, 2014

SGS

SAMPLE INTEGRITY REPORT

Project Number:							
	NTARIO REGL	LATION 153	/04				
SGS Sample ID Aug 15254 Date / Time Sampled Aug 14116 Client Sample ID							
Client Sample ID	ALL						
	iubmission Genera	Sample Integrit	y Violations				
Temperature >10 C upon receipt if not sampled same day							
No evidence of cooling trend initiated if sampled same day							
Chain of Custody not submitted							
Chain of Custody incomplete							
Chain of Custody not signed / dated							
Chain of Gustody not a current version							
Bottles / Samples listed on CoC but not received							
Bottles / Samples received but not listed on the CpC							
Sample container received empty							
MRAN HEZ HANNE BURESON MENT A SPECIAL SON	nple Specific Samp	The second distriction of the second	Tresty Co.		120	1016	
Sample received past hold time							
Incorrect preservation (including no preservation where required)							
Headspace present in VOC viai (aqueous)							
Sample(s) received frozen							
Bottle(s) broken or damaged in transport							
Discrepancy between sample label and chain of custody							
Analysis requirements absent / unclear							
Missing or incorrect sample label(s)							
Inappropriate sample container used							
Insufficient number of battles received							
Insufficient sample volume							
Sample contains multiple phases		D					
	Sedime		100				15,8
Groundwater samples contain visible sediment / particulate							
Groundwater contains greater than 1cm of sediment / particulate matter in bottle							
Additional Comments/Remarks:				e.			
No issues upon receipt	8	Initiale	00				

Your Project #: 1512-S086E Your C.O.C. #: 613136-01-01

Attention:Laila Torabansari

Soil Engineers Ltd 90 West Beaver Creek Road Unit 100 Richmond Hill, ON CANADA L4B 1E7

Report Date: 2017/06/05

Report #: R4499361 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7A9427 Received: 2017/05/29, 17:33

Sample Matrix: Water # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
1,3-Dichloropropene Sum	2	N/A	2017/06/02		EPA 8260C m
Petroleum Hydro. CCME F1 & BTEX in Water	1	N/A	2017/06/03	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1)	1	2017/06/03	2017/06/03	CAM SOP-00316	CCME PHC-CWS m
Mercury	1	2017/06/05	2017/06/05	CAM SOP-00453	EPA 7470A m
Dissolved Metals by ICPMS	4	N/A	2017/06/01	CAM SOP-00447	EPA 6020B m
Volatile Organic Compounds in Water	2	N/A	2017/06/01	CAM SOP-00228	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request, Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: 1512-S086E Your C.O.C. #: 613136-01-01

Attention:Laila Torabansari

Soil Engineers Ltd 90 West Beaver Creek Road Unit 100 Richmond Hill, ON CANADA L4B 1E7

Report Date: 2017/06/05

Report #: R4499361

Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7A9427 Received: 2017/05/29, 17:33

Encryption Key

Ashton Gibson Project Manager 05 Jun 2017 17:08:02

Please direct all questions regarding this Certificate of Analysis to your Project Manager

Antonella Brasil, Senior Project Manager

Email: ABrasil@maxxam.ca Phone# (905)817-5817

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: JC

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		ELP260		送
Sampling Date		2017/05/29 16:00		
COC Number	U.	613136-01-01		
	UNITS	MW1	RDL	QC Batch
Metals				
Mercury (Hg)	ug/L	ND	0.1	5012735
RDL = Reportable Dete	ction Limit			
QC Batch = Quality Cor	itrol Batch			
ND = Not detected				

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: JC

O.REG 153 DISSOLVED ICPMS METALS (WATER)

				-			
Maxxam ID		ELP260 %	ELP261	ELP262	ELP263		
Sampling Date		2017/05/29 16:00	2017/05/29 16:55	2017/05/29 12:30	2017/05/29		
COC Number		613136-01-01	613136-01-01	613136-01-01	613136-01-01		
	UNITS	MW1	MW2	MW3	DUP-W1	RDL	QC Batch
Metals							
Dissolved Antimony (Sb)	ug/L	ND	ND	0.54	ND	0.50	5006407
Dissolved Arsenic (As)	ug/L	ND	ND	8.6	9.2	1.0	5006407
Dissolved Barium (Ba)	ug/L	65	21	40	41	2.0	5006407
Dissolved Beryllium (Be)	ug/L	ND	ND	ND	ND	0.50	5006407
Dissolved Boron (B)	ug/L	140	84	610	620	10	5006407
Dissolved Cadmium (Cd)	ug/L	ND	ND	ND	ND	0.10	5006407
Dissolved Chromium (Cr)	ug/L	ND	ND	ND	ND	5.0	5006407
Dissolved Cobalt (Co)	ug/L	ND	ND	0.58	0.67	0.50	5006407
Dissolved Copper (Cu)	ug/L	1.3	ND	ND	ND	1.0	5006407
Dissolved Lead (Pb)	ug/L	ND	ND	ND	ND	0.50	5006407
Dissolved Molybdenum (Mo)	ug/L	3.2	1.4	4.7	4.7	0.50	5006407
Dissolved Nickel (Ni)	ug/L	1.5	1.2	ND	ND	1.0	5006407
Dissolved Selenium (Se)	ug/L	ND	ND	ND	ND	2.0	5006407
Dissolved Silver (Ag)	ug/L	ND	ND	ND	ND	0.10	5006407
Dissolved Thallium (TI)	ug/L	ND	ND	ND	ND	0.050	5006407
Dissolved Uranium (U)	ug/L	4.8	6.0	1,4	1.4	0.10	5006407
Dissolved Vanadium (V)	ug/L	ND	ND	ND	ND	0.50	5006407
Dissolved Zinc (Zn)	ug/L	ND	ND	ND	ND	5,0	5006407

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

ND = Not detected

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: JC

O.REG 153 PETROLEUM HYDROCARBONS (WATER)

Maxxam ID		ELP261		
Sampling Date		2017/05/29 16:55		
COC Number		613136-01-01		
	UNITS	MW2	RDL	QC Batch
BTEX & F1 Hydrocarbons				
Benzene	ug/L	ND	0.20	5011352
Toluene	ug/L	ND	0.20	5011352
Ethylbenzene	ug/L	ND	0.20	5011352
o-Xylene	ug/L	ND	0.20	5011352
p+m-Xylene	ug/L	ND	0.40	5011352
Total Xylenes	ug/L	ND	0.40	5011352
F1 (C6-C10)	ug/L	ND	25	5011352
F1 (C6-C10) - BTEX	ug/L	ND	25	5011352
F2-F4 Hydrocarbons				
F2 (C10-C16 Hydrocarbons)	ug/L	ND	100	5012022
F3 (C16-C34 Hydrocarbons)	ug/L	ND	200	5012022
F4 (C34-C50 Hydrocarbons)	ug/L	ND	200	5012022
Reached Baseline at C50	ug/L	Yes		5012022
Surrogate Recovery (%)				
1,4-Difluorobenzene	%	104		5011352
4-Bromofluorobenzene	%	93		5011352
D10-Ethylbenzene	%	91		5011352
D4-1,2-Dichloroethane	%	89		5011352
o-Terphenyl	%	99		5012022
RDL = Reportable Detection I	imit			
QC Batch = Quality Control B	atch			
ND = Not detected				

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: JC

O.REG 153 VOCS BY HS (WATER)

Maxxam ID		ELP260	ELP264		
Sampling Date		2017/05/29 16:00			
COC Number		613136-01-01	613136-01-01		
	UNITS	MW1	TRIP BLANK	RDL	QC Batc
Calculated Parameters					
1,3-Dichloropropene (cis+trans)	ug/L	ND	ND	0.50	500403
Volatile Organics					9-
Acetone (2-Propanone)	ug/L	ND	ND	10	500324
Benzene	ug/L	ND	ND	0.20	500324
Bromodichloromethane	ug/L	ND	ND	0.50	500324
Bromoform	ug/L	ND	ND	1.0	500324
Bromomethane	ug/L	ND	ND	0.50	500324
Carbon Tetrachloride	ug/L	ND	ND	0.20	500324
Chlorobenzene	ug/L	ND	ND	0.20	500324
Chloroform	ug/L	ND	ND	0.20	500324
Dibromochloromethane	ug/L	ND	ND	0.50	500324
1,2-Dichlorobenzene	ug/L	ND	ND	0.50	500324
1,3-Dichlorobenzene	ug/L	ND	ND	0.50	500324
1,4-Dichlorobenzene	ug/L	ND	ND	0.50	500324
Dichlorodifluoromethane (FREON 12)	ug/L	ND	ND	1.0	500324
1,1-Dichloroethane	ug/L	ND	ND	0.20	500324
1,2-Dichloroethane	ug/L	ND	ND	0.50	500324
1,1-Dichloroethylene	ug/L	ND	ND	0.20	500324
cis-1,2-Dichloroethylene	ug/L	ND	ND	0.50	500324
trans-1,2-Dichloroethylene	ug/L	ND	ND	0.50	500324
1,2-Dichloropropane	ug/L	ND	ND	0.20	500324
cis-1,3-Dichloropropene	ug/L	ND	ND	0.30	500324
trans-1,3-Dichloropropene	ug/L	ND	ND	0.40	500324
Ethylbenzene	ug/L	ND	ND	0.20	500324
Ethylene Dibromide	ug/L	ND	ND	0.20	500324
Hexane	ug/L	ND	ND	1.0	500324
Methylene Chloride(Dichloromethane)	ug/L	ND :	ND	2.0	500324
Methyl Ethyl Ketone (2-Butanone)	ug/L	ND	ND	10	500324
Methyl Isobutyl Ketone	ug/L	ND	ND	5.0	500324
Methyl t-butyl ether (MTBE)	ug/L	ND	ND	0.50	500324
Styrene	ug/L	ND	ND	0,50	500324
1,1,1,2-Tetrachloroethane	ug/L	ND	ND	0.50	500324
1,1,2,2-Tetrachloroethane	ug/L	ND	ND	0.50	500324
Tetrachloroethylene	ug/L	ND	ND	0.20	500324
RDL = Reportable Detection Limit					

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

ND = Not detected

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: JC

O.REG 153 VOCS BY HS (WATER)

Maxxam ID		ELP260	ELP264		
Sampling Date		2017/05/29 16:00			
COC Number		613136-01-01	613136-01-01		
	UNITS	MW1	TRIP BLANK	RDL	QC Batch
Toluene	ug/L	ND	ND	0.20	5003242
1,1,1-Trichloroethane	ug/L	ND	ND	0.20	5003242
1,1,2-Trichloroethane	ug/L	ND	ND	0.50	5003242
Trichloroethylene	ug/L	ND	ND	0.20	5003242
Trichlorofluoromethane (FREON 11)	ug/L	ND	ND	0.50	5003242
Vinyl Chloride	ug/L	ND	ND	0.20	5003242
p+m-Xylene	ug/L	ND	ND	0.20	5003242
o-Xylene	ug/L	ND	ND	0.20	5003242
Total Xylenes	ug/L	ND	ND	0.20	5003242
Surrogate Recovery (%)	,				
4-Bromofluorobenzene	%	94	94		5003242
D4-1,2-Dichloroethane	%	110	110		5003242
D8-Toluene	%	93	94		5003242

QC Batch = Quality Control Batch

ND = Not detected

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: JC

TEST SUMMARY

Maxxam ID: ELP260 Sample ID: MW1 Matrix: Water

Collected: 2017/05/29

Shipped:

Received: 2017/05/29

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5004034	N/A	2017/06/02	Automated Statchk
Mercury	CV/AA	5012735	2017/06/05	2017/06/05	Ron Morrison
Dissolved Metals by ICPMS	ICP/MS	5006407	N/A	2017/06/01	Thao Nguyen
Volatile Organic Compounds in Water	GC/MS	5003242	N/A	2017/06/01	Xueming Jiang

Maxxam ID: ELP261 Sample ID: MW2

Water

Matrix:

Collected: 2017/05/29

Shipped:

Received: 2017/05/29

Test Description Instrumentation Batch Extracted Date Analyzed Analyst Petroleum Hydro. CCME F1 & BTEX in Water HSGC/MSFD 5011352 N/A 2017/06/03 Jiaxuan (Simon) Xi Petroleum Hydrocarbons F2-F4 in Water 2017/06/03 GC/FID 2017/06/03 5012022 (Kent) Maolin Li Dissolved Metals by ICPMS ICP/MS 5006407 N/A 2017/06/01 Thao Nguyen

Maxxam ID: ELP262 Sample ID: MW3 Matrix: Water **Collected:** 2017/05/29

Shipped:

Received: 2017/05/29

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Metals by ICPMS	ICP/MS	5006407	N/A	2017/06/01	Thao Nguyen

Maxxam ID: ELP263 Sample ID: DUP-W1 Matrix: Water

Collected: 2017/05/29

Shipped:

Received: 2017/05/29

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Metals by ICPMS	ICP/MS	5006407	N/A	2017/06/01	Thao Nguyen

Maxxam ID: ELP264
Sample ID: TRIP BLANK
Matrix: Water

Collected: Shipped:

Received: 2017/05/29

_Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5004034	N/A	2017/06/02	Automated Statchk
Volatile Organic Compounds in Water	GC/MS	5003242	N/A	2017/06/01	Xueming Jiang

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: JC

GENERAL COMMENTS

Each t	emperature is the	average of up to t	three cooler temperatures taken at receipt	3	
	Package 1	10.0°C			
Result	s relate only to th	e items tested.			

QUALITY ASSURANCE REPORT

Soil Engineers Ltd Client Project #: 1512-5086E Sampler Initials: JC

			Matrix Spike	Spike	SPIKED BLANK	LANK	Method Blank	lank	RPD	0
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5003242	4-Bromofluorobenzene	2017/06/01	101	70 - 130	101	70 - 130	66	%		
5003242	D4-1,2-Dichloroethane	2017/06/01	103	70 - 130	86	70 - 130	101	%		
5003242	D8-Toluene	2017/06/01	102	70 - 130	104	70 - 130	96	%		
5011352	1,4-Difluorobenzene	2017/06/02	105	70 - 130	105	70 - 130	103	%		
5011352	4-Bromofluorobenzene	2017/06/02	92	70 - 130	94	70 - 130	94	%		
5011352	D10-Ethylbenzene	20/90/207	06	70 - 130	91	70 - 130	06	%		
5011352	D4-1,2-Dichloroethane	2017/06/02	91	70 - 130	94	70 - 130	93	%		
5012022	o-Terphenyl	2017/06/03	104	60 - 130	103	60 - 130	102	%		
5003242	1,1,1,2-Tetrachloroethane	2017/06/01	101	70 - 130	94	70 - 130	ND, RDL=0.50	1/8n	NC	30
5003242	1,1,1-Trichloroethane	2017/06/01	66	70 - 130	93	70 - 130	ND, RDL=0.20	ng/L	NC	30
5003242	1,1,2,2-Tetrachloroethane	2017/06/01	112	70 - 130	100	70 - 130	ND, RDL=0.50	ng/L	NC	30
5003242	1,1,2-Trichloroethane	2017/06/01	105	70 - 130	94	70 - 130	ND, RDL=0.50	1/Bn	NC	30
5003242	1,1-Dichloroethane	2017/06/01	104	70 - 130	96	70 - 130	ND, RDL=0.20	ng/L	NC	30
5003242	1,1-Dichloroethylene	2017/06/01	107	70 - 130	100	70 - 130	ND, RDL=0.20	1/Bn	NC	30
5003242	1,2-Dichlorobenzene	2017/06/01	96	70 - 130	89	70 - 130	ND, RDL=0.50	ng/L	NC	30
5003242	1,2-Dichloroethane	2017/06/01	104	70 - 130	95	70 - 130	ND, RDL=0.50	ng/L	NC	30
5003242	1,2-Dichloropropane	2017/06/01	105	70 - 130	95	70 - 130	ND, RDL=0.20	l J/Bn	NC	30
5003242	1,3-Dichlorobenzene	2017/06/01	96	70 - 130	91	70 - 130	ND, RDL=0.50	ng/L	NC	30
5003242	1,4-Dichlorobenzene	2017/06/01	66	70 - 130	93	70 - 130	ND, RDL=0.50	ng/L	NC	30
5003242	Acetone (2-Propanone)	2017/06/01	110	60 - 140	105	60 - 140	ND, RDL=10	ug/t	NC	30
5003242	Benzene	2017/06/01	105	70 - 130	97	70 - 130	ND, RDL=0.20	ng/L	NC	30
5003242	Bromodichloromethane	2017/06/01	105	70 - 130	95	70 - 130	ND, RDL=0.50	ng/L	NC	30
5003242	Bromoform	2017/06/01	102	70 - 130	91	70 - 130	ND, RDL=1.0	1/Bn	NC	30
5003242	Bromomethane	2017/06/01	112	60 - 140	86	60 - 140	ND, RDL=0.50	ng/L	NC	30
5003242	Carbon Tetrachloride	2017/06/01	102	70 - 130	96	70 - 130	ND, RDL=0.20	ng/L	NC	30
5003242	Chlorobenzene	2017/06/01	106	70 - 130	98	70 - 130	ND, RDL=0.20	ng/L	NC	30
5003242	Chloroform	2017/06/01	101	70 - 130	93	70 - 130	ND, RDL=0.20	ng/L	NC	30
5003242	cis-1,2-Dichloroethylene	2017/06/01	108	70 - 130	66	70 - 130	ND, RDL=0.50	ng/L	NC	30
5003242	cis-1,3-Dichloropropene	2017/06/01	110	70 - 130	95	70 - 130	ND, RDL=0.30	ng/L	NC	30
5003242	Dibromochloromethane	2017/06/01	104	70 - 130	93	70 - 130	ND, RDL=0.50	ng/L	NC	30
5003242	Dichlorodifluoromethane (FREON 12)	2017/06/01	106	60 - 140	97	60 - 140	ND, RDL=1.0	ng/L	NC	30

Page 10 of 13

QUALITY ASSURANCE REPORT(CONT'D)

Soil Engineers Ltd Client Project #: 1512-5086E Sampler Initials: JC

			Matrix Spike	Spike	SPIKED BLANK	SLANK	Method Blank	lank	RPD	0
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5003242	Ethylbenzene	2017/06/01	105	70 - 130	100	70 - 130	ND, RDL=0.20	ng/L	NC	30
5003242	Ethylene Dibromide	2017/06/01	107	70 - 130	95	70 - 130	ND, RDL=0.20	1/Bn	NC	30
5003242	Hexane	2017/06/01	112	70 - 130	106	70 - 130	ND, RDL=1.0	ng/L	NC	30
5003242	Methyl Ethyl Ketone (2-Butanone)	2017/06/01	118	60 - 140	108	60 - 140	ND, RDL=10	1/Bn	NC	30
5003242	Methyl Isobutyl Ketone	2017/06/01	113	70 - 130	101	70 - 130	ND, RDL=5.0	ng/L	NC	30
5003242	Methyl t-butyl ether (MTBE)	2017/06/01	106	70 - 130	97	70 - 130	ND, RDL=0.50	ng/L	NC	30
5003242	Methylene Chloride(Dichloromethane)	2017/06/01	110	70 - 130	66	70 - 130	ND, RDL=2.0	ng/L	NC	30
5003242	o-Xylene	2017/06/01	66	70 - 130	97	70 - 130	ND, RDL=0.20	ng/L	NC	30
5003242	p+m-Xylene	2017/06/01	105	70 - 130	100	70 - 130	ND, RDL=0.20	ng/L	NC	30
5003242	Styrene	2017/06/01	104	70 - 130	100	70 - 130	ND, RDL=0.50	ng/L	NC	30
5003242	Tetrachloroethylene	2017/06/01	100	70 - 130	92	70 - 130	ND, RDL=0.20	ng/L	NC	30
5003242	Toluene	2017/06/01	103	70 - 130	96	70 - 130	ND, RDL=0.20	ng/L	NC	30
5003242	Total Xylenes	2017/06/01					ND, RDL=0.20	ng/L	NC	30
5003242	trans-1,2-Dichloroethylene	2017/06/01	105	70 - 130	86	70 - 130	ND, RDL=0.50	ng/L	NC	30
5003242	trans-1,3-Dichloropropene	2017/06/01	115	70 - 130	97	70 - 130	ND, RDL=0.40	ng/L	NC	30
5003242	Trichloroethylene	2017/06/01	95	70 - 130	90	70 - 130	ND, RDL=0.20	ng/L	NC	30
5003242	Trichlorofluoromethane (FREON 11)	2017/06/01	104	70 - 130	98	70 - 130	ND, RDL=0.50	ng/L	NC	30
5003242	Vinyl Chloride	2017/06/01	108	70 - 130	100	70 - 130	ND, RDL=0.20	ng/L	NC	30
5006407	Dissolved Antimony (Sb)	2017/06/01	101	80 - 120	100	80 - 120	ND, RDL=0.50	ug/L	NC	20
5006407	Dissolved Arsenic (As)	2017/06/01	92	80 - 120	92	80 - 120	ND, RDL=1.0	ng/L	0.90	20
5006407	Dissolved Barium (Ba)	2017/06/01	91	80 - 120	96	80 - 120	ND, RDL=2.0	ug/L	6.0	20
5006407	Dissolved Beryllium (Be)	2017/06/01	97	80 - 120	66	80 - 120	ND, RDL=0.50	ug/L	NC	20
5006407	Dissolved Boron (B)	2017/06/01	91	80 - 120	96	80 - 120	ND, RDL=10	ng/L	1.9	20
5006407	Dissolved Cadmium (Cd)	2017/06/01	96	80 - 120	98	80 - 120	ND, RDL=0.10	ng/L	NC	20
5006407	Dissolved Chromium (Cr)	2017/06/01	93	80 - 120	94	80 - 120	ND, RDL=5.0	ng/L	NC	20
5006407	Dissolved Cobalt (Co)	2017/06/01	92	80 - 120	95	80 - 120	ND, RDL=0.50	ug/L	NC	20
5006407	Dissolved Copper (Cu)	2017/06/01	93	80 - 120	96	80 - 120	ND, RDL=1.0	ug/L	NC	20
5006407	Dissolved Lead (Pb)	2017/06/01	89	80 - 120	95	80 - 120	ND, RDL=0.50	ng/L	NC	20
5006407	Dissolved Molybdenum (Mo)	2017/06/01	66	80 - 120	97	80 - 120	ND, RDL=0.50	ug/L	4.3	20
5006407	Dissolved Nickel (Ni)	2017/06/01	68	80 - 120	94	80 - 120	ND, RDL=1.0	ng/L	12	20
5006407	Dissolved Selenium (Se)	2017/06/01	94	80 - 120	97	80 - 120	ND, RDL=2.0	ng/L	NC	20

Page 11 of 13

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, LSN 218 Tei; (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

QUALITY ASSURANCE REPORT(CONT'D)

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: JC

			Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	lank	RPD	•
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5006407	Dissolved Silver (Ag)	2017/06/01	93	80 - 120	94	80 - 120	ND, RDL=0.10	1/8n	NC	20
5006407	Dissolved Thallium (TI)	2017/06/01	90	80 - 120	94	80 - 120	ND, RDL=0.050	ng/L	NC	20
5006407	Dissolved Uranium (U)	2017/06/01	93	80 - 120	95	80 - 120	ND, RDL=0.10	1/Bn	3.5	20
5006407	Dissolved Vanadium (V)	2017/06/01	92	80 - 120	93	80 - 120	ND, RDL=0.50	ng/L	12	20
5006407	Dissolved Zinc (Zn)	2017/06/01	92	80 - 120	96	80 - 120	ND, RDL=5.0	1/Bn	NC	20
5011352	Benzene	2017/06/02	97	70 - 130	110	70 - 130	ND, RDL=0.20	ng/L	NC	30
5011352	Ethylbenzene	2017/06/02	89	70 - 130	66	70 - 130	ND, RDL=0.20	ng/L	NC	30
5011352	F1 (C6-C10) - BTEX	2017/06/02					ND, RDL=25	ng/L	NC	30
5011352	F1 (C6-C10)	2017/06/02	101	70 - 130	109	70 - 130	ND, RDL=25	1/8n	NO	30
5011352	o-Xylene	2017/06/02	89	70 - 130	66	70 - 130	ND, RDL=0.20	1/8n	NO	30
5011352	p+m-Xylene	2017/06/02	86	70 - 130	97	70 - 130	ND, RDL=0.40	1/Bn	NC	30
5011352	Toluene	2017/06/02	85	70 - 130	96	70 - 130	ND, RDL=0.20	1/8n	NC	30
5011352	Total Xylenes	2017/06/02					ND, RDL=0.40	ng/L	NC	30
5012022	F2 (C10-C16 Hydrocarbons)	2017/06/03	66	50 - 130	95	60 - 130	ND, RDL=100	ng/L	2.3	30
5012022	F3 (C16-C34 Hydrocarbons)	2017/06/03	102	50 - 130	104	60 - 130	ND, RDL=200	1/8n	NC	30
5012022	F4 (C34-C50 Hydrocarbons)	2017/06/03	105	50 - 130	107	60 - 130	ND, RDL=200	1/gn	NC	30
5012735	Mercury (Hg)	2017/06/05	86	75 - 125	92	80 - 120	ND, RDL=0.1	1/8n	NC	20
-										

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: JC

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 1512-S086E Your C.O.C. #: 571089-01-01

Attention:Laila Torabansari

Soil Engineers Ltd 100 Nugget Ave Toronto, ON M1S 3A7

Report Date: 2016/08/04

Report #: R4092468

Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6F9023 Received: 2016/07/28, 15:30

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydro. CCME F1 & BTEX in Water	1	N/A	2016/08/03	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1)	1	2016/08/02	2016/08/04	CAM SOP-00316	CCME PHC-CWS m

Remarks:

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act.

Maxxam Analytics is accredited for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Antonella Brasil
Senior Project Manager
04 Aug 2016 15:58:03 -04:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Antonella Brasil, Senior Project Manager

Email: ABrasil@maxxam.ca Phone# (905)817-5817

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Soil Engineers Ltd Client Project #: 1512-S086E

O.REG 153 PETROLEUM HYDROCARBONS (WATER)

Maxxam ID		CUG255		
Sampling Date		2016/07/28 15:00		
COC Number		571089-01-01		
	UNITS	MW1	RDL	QC Batch
BTEX & F1 Hydrocarbons				
Benzene	ug/L	ND	0.20	4603871
Toluene	ug/L	0.55	0.20	4603871
Ethylbenzene	ug/L	ND	0.20	4603871
o-Xylene	ug/L	ND	0.20	4603871
p+m-Xylene	ug/L	0.46	0.40	4603871
Total Xylenes	ug/L	0.46	0.40	4603871
F1 (C6-C10)	ug/L	ND	25	4603871
F1 (C6-C10) - BTEX	ug/L	ND	25	4603871
F2-F4 Hydrocarbons				
F2 (C10-C16 Hydrocarbons)	ug/L	ND	100	4602607
F3 (C16-C34 Hydrocarbons)	ug/L	ND	200	4602607
F4 (C34-C50 Hydrocarbons)	ug/L	ND	200	4602607
Reached Baseline at C50	ug/L	Yes		4602607
Surrogate Recovery (%)				
1,4-Difluorobenzene	%	96		4603871
4-Bromofluorobenzene	%	100		4603871
D10-Ethylbenzene	%	91		4603871
D4-1,2-Dichloroethane	%	96		4603871
o-Terphenyl	%	99		4602607
RDL = Reportable Detection L QC Batch = Quality Control B ND = Not detected				

Soil Engineers Ltd Client Project #: 1512-S086E

TEST SUMMARY

Maxxam ID: CUG255 Sample ID: MW1 Matrix: Water

Collected: 2016/07/28

Shipped: Received: 2016/07/28

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	4603871	N/A	2016/08/03	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	4602607	2016/08/02	2016/08/04	Dorina Popa

Soil Engineers Ltd Client Project #: 1512-S086E

GENERAL COMMENTS

Each temperature is the	overage of up to th	ooler temperatures taken at receipt	
Package 1	19.0°C		3
3			
Results relate only to the	items tested.		

QUALITY ASSURANCE REPORT

Soil Engineers Ltd Client Project #: 1512-5086E

			Matrix Spike	Spike	SPIKED BLANK	SLANK	Method Blank	lank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4602607	o-Terphenyl	2016/08/03	102	60 - 130	101	60 - 130	66	%		
4603871	1,4-Difluorobenzene	2016/08/03	66	70 - 130	66	70 - 130	96	%		
4603871	4-Bromofluorobenzene	2016/08/03	100	70 - 130	101	70 - 130	101	%		
4603871	D10-Ethylbenzene	2016/08/03	93	70 - 130	100	70 - 130	97	%		
4603871	D4-1,2-Dichloroethane	2016/08/03	66	70 - 130	101	70 - 130	100	%		
4602607	F2 (C10-C16 Hydrocarbons)	2016/08/03	108	50 - 130	88	60 - 130	ND, RDL=100	ng/L	4.5	30
4602607	F3 (C16-C34 Hydrocarbons)	2016/08/03	102	50 - 130	92	60 - 130	ND, RDL=200	ng/L	NC	30
4602607	F4 (C34-C50 Hydrocarbons)	2016/08/03	103	50 - 130	97	60 - 130	ND, RDL=200	1/Bn	NC	30
4603871	Benzene	2016/08/03	86	70 - 130	101	70 - 130	ND, RDL=0.20	ng/L	NC	30
4603871	Ethylbenzene	2016/08/03	66	70 - 130	107	70 - 130	ND, RDL=0.20	1/Bn	NC	30
4603871	F1 (C6-C10) - BTEX	2016/08/03					ND, RDL=25	1/Bn	NC	30
4603871	F1 (C6-C10)	2016/08/03	85	70 - 130	88	70 - 130	ND, RDL=25	ng/L	NO	30
4603871	o-Xylene	2016/08/03	66	70 - 130	107	70 - 130	ND, RDL=0.20	1/Bn	NC	30
4603871	p+m-Xylene	2016/08/03	98	70 - 130	86	70 - 130	ND, RDL=0.40	1/Bn	NC	30
4603871	Toluene	2016/08/03	68	70 - 130	66	70 - 130	ND, RDL=0.20	1/8n	NC	30
4603871	Total Xylenes	2016/08/03					ND, RDL=0.40	1/Bn	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Your Project #: 1512-S086E Your C.O.C. #: 81117

Attention:Laila Torabansari

Soil Engineers Ltd 90 West Beaver Creek Road Unit 100 Richmond Hill, ON CANADA L4B 1E7

Report Date: 2017/09/06

Report #: R4688321 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B7I9231 Received: 2017/08/31, 11:15

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Mercury	1	2017/08/31	2017/09/05	CAM SOP-00453	EPA 7470A m
Dissolved Metals by ICPMS	1	N/A	2017/09/01	CAM SOP-00447	EPA 6020B m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Antonella Brasil Schior Project Manager 06 Sep 2017 08:58:03

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Antonella Brasil, Senior Project Manager

Email: ABrasil@maxxam.ca Phone# (905)817-5817

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 1 Page 1 of 8

Soil Engineers Ltd

Client Project #: 1512-S086E

Sampler Initials: MK

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

		FAU206		
		2017/08/31 10:30		
		81117		
UNITS	Criteria	MW1	RDL	QC Batch
ug/L	0.1	ND	0.1	5145164
		UNITS Criteria	2017/08/31 10:30 81117 UNITS Criteria MW1	2017/08/31 10:30 81117 UNITS Criteria MW1 RDL

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)
Table 1: Full Depth Background Site Condition Standards

Ground Water - All Types of Property Uses

ND = Not detected

Soil Engineers Ltd Client Project #: 1512-S086E

Sampler Initials: MK

O.REG 153 DISSOLVED ICPMS METALS (WATER)

Maxxam ID			FAU207		
Sampling Date			2017/08/31 10:40		
COC Number			81117		
	UNITS	Criteria	MW3	RDL	QC Batch
Metals					
Dissolved Antimony (Sb)	ug/L	1.5	0.54	0.50	5144679
Dissolved Arsenic (As)	ug/L	13	4.7	1.0	5144679
Dissolved Barium (Ba)	ug/L	610	38	2.0	5144679
Dissolved Beryllium (Be)	ug/L	0.5	ND	0.50	5144679
Dissolved Boron (B)	ug/L	1700	620	10	5144679
Dissolved Cadmium (Cd)	ug/L	0.5	ND	0.10	5144679
Dissolved Chromium (Cr)	ug/L	11	ND	5.0	5144679
Dissolved Cobalt (Co)	ug/L	3.8	0.64	0.50	5144679
Dissolved Copper (Cu)	ug/L	. 5	4.5	1.0	5144679
Dissolved Lead (Pb)	ug/L	1.9	ND	0.50	5144679
Dissolved Molybdenum (Mo)	ug/L	23	5.2	0.50	5144679
Dissolved Nickel (Ni)	ug/L	14	ND	1.0	5144679
Dissolved Selenium (Se)	ug/L	5	ND	2.0	5144679
Dissolved Silver (Ag)	ug/L	0.3	ND	0.10	5144679
Dissolved Thallium (TI)	ug/L	0.5	ND	0.050	5144679
Dissolved Uranium (U)	ug/L	8.9	2.4	0.10	5144679
Dissolved Vanadium (V)	ug/L	3.9	ND	0.50	5144679
Dissolved Zinc (Zn)	ug/L	160	ND	5.0	5144679

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 1: Full Depth Background Site Condition Standards

Ground Water - All Types of Property Uses

ND = Not detected

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: MK

TEST SUMMARY

Maxxam ID: FAU206 Sample ID: MW1

Water

Matrix:

Collected: 2017/08/31

Shipped:

Received: 2017/08/31

Test Description Instrumentation Batch Extracted **Date Analyzed** Analyst Mercury CV/AA 5145164 2017/08/31 2017/09/05 Ron Morrison

Maxxam ID: FAU207

Collected: 2017/08/31

Shipped:

Received: 2017/08/31

Sample ID: MW3 Matrix: Water

Test Description Instrumentation Batch Extracted **Date Analyzed** Analyst Dissolved Metals by ICPMS ICP/MS 5144679 N/A 2017/09/01 Matthew Ritenburg

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: MK

GENERAL COMMENTS

Each temperature is the avera	age of up to three cooler temperatures taken at receipt
Package 1	10.7°C
Revised Report (2017/09/06):	Project changed to 1512-S086E, as per client request.
Results relate only to the iter	ms tested.

Report Date: 2017/09/06

QUALITY ASSURANCE REPORT

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: MK

			Matrix Spike	Spike	SPIKED BLANK	SLANK	Method Blank	lank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5144679	Dissolved Antimony (Sb)	2017/09/01	102	80 - 120	102	80 - 120	ND, RDL=0.50	ng/L		
5144679	Dissolved Arsenic (As)	2017/09/01	86	80 - 120	97	80 - 120	ND, RDL=1.0	ng/L		
5144679	Dissolved Barium (Ba)	2017/09/01	96	80 - 120	86	80 - 120	ND, RDL=2.0	1/Bn		
5144679	Dissolved Beryllium (Be)	2017/09/01	100	80 - 120	101	80 - 120	ND, RDL=0.50	ng/L		
5144679	Dissolved Boron (B)	2017/09/01	86	80 - 120	101	80 - 120	ND, RDL=10	1/Bn		
5144679	Dissolved Cadmium (Cd)	2017/09/01	86	80 - 120	66	80 - 120	ND, RDL=0.10	1/Bn	14	20
5144679	Dissolved Chromium (Cr)	2017/09/01	94	80 - 120	96	80 - 120	ND, RDL=5.0	1/Bn		
5144679	Dissolved Cobalt (Co)	2017/09/01	93	80 - 120	96	80 - 120	ND, RDL=0.50	1/Bn	(4)	
5144679	Dissolved Copper (Cu)	2017/09/01	26	80 - 120	103	80 - 120	ND, RDL=1.0	1/Bn	5.2	20
5144679	Dissolved Lead (Pb)	2017/09/01	93	80 - 120	95	80 - 120	ND, RDL=0.50	ng/L	NC	20
5144679	Dissolved Molybdenum (Mo)	2017/09/01	66	80 - 120	66	80 - 120	ND, RDL=0.50	1/Bn		
5144679	Dissolved Nickel (Ni)	2017/09/01	94	80 - 120	6	80 - 120	ND, RDL=1.0	ng/L		
5144679	Dissolved Selenium (Se)	2017/09/01	86	80 - 120	100	80 - 120	ND, RDL=2.0	1/Bn		
5144679	Dissolved Silver (Ag)	2017/09/01	97	80 - 120	66	80 - 120	ND, RDL=0.10	ng/L		
5144679	Dissolved Thallium (TI)	2017/09/01	93	80 - 120	94	80 - 120	ND, RDL=0.050	1/Bn		
5144679	Dissolved Uranium (U)	2017/09/01	26	80 - 120	66	80 - 120	ND, RDL=0.10	1/8n		
5144679	Dissolved Vanadium (V)	2017/09/01	93	80 - 120	94	80 - 120	ND, RDL=0.50	1/8n		
5144679	Dissolved Zinc (Zn)	2017/09/01	NC	80 - 120	97	80 - 120	ND, RDL=5.0	ng/L	7.9	20
5145164	Mercury (Hg)	2017/09/05	66	75 - 125	109	80 - 120	ND, RDL=0.1	ng/L	NC	20
-										

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement,

Matrix Spike: A sample to which a known amount of the analyte of interest has been added, Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Watrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL)

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: MK

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Cistin	Carrière	
Cristina Carrie	re, Scientific Service Specialist	

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Soil Engineers Ltd Client Project #: 1512-S086E Sampler Initials: MK

Exceedence Summary Table – Reg153/04 T1-GW Result Exceedences

Sample ID	Maxxam ID	Parameter	Criteria	Result	DL	Units
No Exceedences						
The exceedence summ	ary table is for information p	ourposes only and should not	be considered a compre	hensive listing or	statement of	f conformance
to applicable regulator	y guidelines.					

Your Project #: 1512-S086E Your C.O.C. #: 624105-01-01

Attention:Laila Torabansari

Soil Engineers Ltd 90 West Beaver Creek Road Unit 100 Richmond Hill, ON CANADA L4B 1E7

Report Date: 2017/08/18

Report #: R4659087 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7H4287 Received: 2017/08/14, 15:20

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantit	y Extracted	Analyzed	Laboratory Method	Reference
1,3-Dichloropropene Sum	2	N/A	2017/08/17	7	EPA 8260C m
Volatile Organic Compounds in Water	2	N/A	2017/08/16	5 CAM SOP-00228	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Ontonella Brasil
Senior Project Manager
18 Aug 2017 11:45:39

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Antonella Brasil, Senior Project Manager

Email: ABrasil@maxxam.ca Phone# (905)817-5817

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages: 1 Page 1 of 8

Soil Engineers Ltd Client Project #: 1512-S086E

O.REG 153 VOCS BY HS (WATER)

Maxxam ID		EXZ716	EXZ717		
Sampling Date		2017/08/10 16:20			
COC Number		624105-01-01	624105-01-01		
	UNITS	MW1	ТВ	RDL	QC Batcl
Calculated Parameters					
1,3-Dichloropropene (cis+trans)	ug/L	ND	ND	0.50	5117572
Volatile Organics	1	l		-	
Acetone (2-Propanone)	ug/L	ND	ND	10	5114898
Benzene	ug/L	ND	ND	0.20	5114898
Bromodichloromethane	ug/L	ND	ND	0.50	5114898
Bromoform	ug/L	ND	ND	1.0	5114898
Bromomethane	ug/L	ND	ND	0.50	5114898
Carbon Tetrachloride	ug/L	ND	ND	0.20	5114898
Chlorobenzene	ug/L	ND	ND	0.20	511489
Chloroform	ug/L	ND	ND	0.20	511489
Dibromochloromethane	ug/L	ND	ND	0.50	511489
1,2-Dichlorobenzene	ug/L	ND	ND	0.50	511489
1,3-Dichlorobenzene	ug/L	ND	ND	0.50	511489
1,4-Dichlorobenzene	ug/L	ND	ND	0.50	511489
Dichlorodifluoromethane (FREON 12)	ug/L	ND	ND	1.0	511489
1,1-Dichloroethane	ug/L	ND	ND	0.20	511489
1,2-Dichloroethane	ug/L	ND	ND	0.50	511489
1,1-Dichloroethylene	ug/L	ND	ND	0.20	511489
cis-1,2-Dichloroethylene	ug/L	ND	ND	0.50	511489
trans-1,2-Dichloroethylene	ug/L	ND	ND	0.50	511489
1,2-Dichloropropane	ug/L	ND	ND	0.20	511489
cis-1,3-Dichloropropene	ug/L	ND	ND	0.30	511489
trans-1,3-Dichloropropene	ug/L	ND	ND	0.40	511489
Ethylbenzene	ug/L	ND	ND	0.20	511489
Ethylene Dibromide	ug/L	ND	ND	0.20	511489
Hexane	ug/L	ND	ND	1.0	511489
Methylene Chloride(Dichloromethane)	ug/L	ND	ND	2.0	511489
Methyl Ethyl Ketone (2-Butanone)	ug/L	ND	ND	10	511489
Methyl Isobutyl Ketone	ug/L	ND	ND	5.0	511489
Methyl t-butyl ether (MTBE)	ug/L	ND	ND	0.50	511489
Styrene	ug/L	ND	ND	0.50	511489
1,1,1,2-Tetrachloroethane	ug/L	ND	ND	0.50	511489
1,1,2,2-Tetrachloroethane	ug/L	ND	ND	0.50	511489
Tetrachloroethylene	ug/L	ND	ND	0.20	511489
RDL = Reportable Detection Limit					

QC Batch = Quality Control Batch

ND = Not detected

Soil Engineers Ltd Client Project #: 1512-S086E

O.REG 153 VOCS BY HS (WATER)

Maxxam ID		EXZ716	EXZ717		
Sampling Date		2017/08/10 16:20			
COC Number		624105-01-01	624105-01-01		
	UNITS	MW1	ТВ	RDL	QC Batch
Toluene	ug/L	ND	ND	0.20	5114898
1,1,1-Trichloroethane	ug/L	ND	ND	0.20	5114898
1,1,2-Trichloroethane	ug/L	ND	ND	0.50	5114898
Trichloroethylene	ug/L	ND	ND	0.20	5114898
Trichlorofluoromethane (FREON 11)	ug/L	ND	ND	0.50	5114898
Vinyl Chloride	ug/L	ND	ND	0.20	5114898
p+m-Xylene	ug/L	ND	ND	0.20	5114898
o-Xylene	ug/L	ND	ND	0.20	5114898
Total Xylenes	ug/L	ND	ND	0.20	5114898
Surrogate Recovery (%)	**				
4-Bromofluorobenzene	%	89	88		5114898
D4-1,2-Dichloroethane	%	118	118		5114898
D8-Toluene	%	91	91		5114898
RDL = Reportable Detection Limit QC Batch = Quality Control Batch ND = Not detected					

Soil Engineers Ltd Client Project #: 1512-S086E

TEST SUMMARY

Maxxam ID: EXZ716

Sample ID: MW1 Matrix: Water **Collected:** 2017/08/10

Shipped: Received: 2017/08/14

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5117572	N/A	2017/08/17	Automated Statchk
Volatile Organic Compounds in Water	GC/MS	5114898	N/A	2017/08/16	Manpreet Sarao

Maxxam ID: EXZ717 Sample ID: TB

Matrix: Water

Collected:

Shipped:

Received: 2017/08/14

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5117572	N/A	2017/08/17	Automated Statchk
Volatile Organic Compounds in Water	GC/MS	5114898	N/A	2017/08/16	Manpreet Sarao

Soil Engineers Ltd Client Project #: 1512-S086E

GENERAL COMMENTS

Each to	emperature is the	average of up to	three cooler temperatures taken at receipt
	Package 1	9.0°C	
All 40r	nL vials for VOC ar	nalysis contained	visible sediment for sample MW1
Result	s relate only to th	e items tested.	

QUALITY ASSURANCE REPORT

Soil Engineers Ltd Client Project #: 1512-5086E

QC Earthy Postmeter Volume (sp. certains) CUMINS Volume (sp. certains) OUNTS Volume (sp. certains) QC Immiss CUMINS Volume (sp. certains) QC Immiss CUMINS Volume (sp. certains) QC Immiss State of the certains State of the certains <th< th=""><th></th><th></th><th></th><th>Matrix Spike</th><th>Spike</th><th>SPIKED BLANK</th><th>BLANK</th><th>Method Blank</th><th>lank</th><th>RPD</th><th></th></th<>				Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	lank	RPD	
4-Bronofluocobenzene 2017/08/16 102 70-130 102 67-130 115 % D61-12-Delptocothane 2017/08/16 108 70-130 101 70-130 115 % D8-Folkere 2017/08/16 108 70-130 107 70-130 91 % 13.13-7-Techorochane 2017/08/16 105 70-130 107 70-130 MCP-LOS MCP 13.13-7-Techorocethane 2017/08/16 116 70-130 107 70-130 MCP-LOS MCP 13.13-7-Techorocethane 2017/08/16 116 70-130 107 70-130 MCP-LOS MCP 13.13-Pichlorocethane 2017/08/16 116 70-130 107 70-130 MCP MCP 13.13-Delhorocethane 2017/08/16 100 70-130 107 70-130 MCP MCP MCP 13.20-behorocethane 2017/08/16 100 70-130 107 70-130 MCP MCP MCP MCP MCP MCP <th>QC Batch</th> <th>Parameter</th> <th>Date</th> <th>% Recovery</th> <th>QC Limits</th> <th>% Recovery</th> <th>QC Limits</th> <th>Value</th> <th>UNITS</th> <th>Value (%)</th> <th>QC Limits</th>	QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
D64.2Olchforcethane D07/08/16 105 70-130 107 30 115 % 11.1.2.7-Retachlorcethane 2017/08/16 101 70-130 107 70-130 <td>5114898</td> <td>4-Bromofluorobenzene</td> <td>2017/08/16</td> <td>101</td> <td>70 - 130</td> <td>102</td> <td>70 - 130</td> <td>94</td> <td>%</td> <td></td> <td></td>	5114898	4-Bromofluorobenzene	2017/08/16	101	70 - 130	102	70 - 130	94	%		
Observoluence 2017/08/16 101 70 - 130 104 70 - 130 ND RDI020 w/L 1.1.1.2.Fetracelloresthane 2017/08/16 44 70 - 130 107 70 - 130 ND RDI020 wg/L NC 1.1.1.2.Fetracelloresthane 2017/08/16 116 70 - 130 107 70 - 130 ND RDI020 wg/L NC 1.1.2.Fetracelloresthane 2017/08/16 116 70 - 130 107 70 - 130 ND RDI020 wg/L NC 1.1.Deckloresthane 2017/08/16 110 70 - 130 107 ND RDI020 wg/L NC 1.1.Deckloresthane 2017/08/16 100 70 - 130 ND RDI020 wg/L NC 1.1.Deckloresthane 2017/08/16 100 70 - 130 ND RDI020 wg/L NC 1.2.Deckloresthane 2017/08/16 100 70 - 130 ND RDI020 wg/L NC 1.2.Deckloresthane 2017/08/16 100 70 - 130 ND RDI020 wg/L NC 1.2.Decklo	5114898	D4-1,2-Dichloroethane	2017/08/16	108	70 - 130	101	70 - 130	115	%		
1.3.L.2. Tetrachlorochhane 2017/08/16 105 70 - 130 ND, RDL-0.20 ug/L NC 1.3.L.2. Tetrachlorochhane 2017/08/16 116 70 - 130 107 - 130 ND, RDL-0.20 ug/L NC 1.1.L.2. Tetrachlorochhane 2017/08/16 110 70 - 130 107 70 - 130 ND, RDL-0.20 ug/L NC 1.1.L.2. Tetrachlorochhane 2017/08/16 120 70 - 130 107 ND, RDL-0.20 ug/L NC 1.1.D. Chilorochhane 2017/08/16 120 70 - 130 ND, RDL-0.20 ug/L NC 1.1.D. Chilorochhane 2017/08/16 120 70 - 130 ND, RDL-0.20 ug/L NC 1.1.D. Chilorochhane 2017/08/16 120 70 - 130 101 70 - 130 ND, RDL-0.20 ug/L NC 1.1.D. Chilorochhane 2017/08/16 120 70 - 130 101 70 - 130 ND, RDL-0.20 ug/L NC 1.1.D. Chilorochhane 2017/08/16 120 70 - 130 ND, RDL-0.20 ug/L NC	5114898	D8-Toluene	2017/08/16	101	70 - 130	104	70 - 130	91	%		
1.1.1.Frichtonoentrane 2017/08/16 94 70-130 95 70-130 ND, RDL-020 ug/L NC 1.1.2.Frichtonoentrane 2017/08/16 116 70-130 107 70-130 ND, RDL-050 ug/L NC 1.1.2.Frichtonoentrane 2017/08/16 105 70-130 107 70-130 ND, RDL-050 ug/L NC 1.1.Dichloroentrane 2017/08/16 106 70-130 107 70-130 ND, RDL-050 ug/L NC 1.2.Dichloroentrane 2017/08/16 106 70-130 101 70-130 ND, RDL-050 ug/L NC 1.2.Dichloroentrane 2017/08/16 100 70-130 101 70-130 ND, RDL-050 ug/L NC 1.2.Dichloroentrane 2017/08/16 100 70-130 101 70-130 ND, RDL-050 ug/L NC 1.2.Dichloroentrane 2017/08/16 100 70-130 ND, RDL-050 ug/L NC 1.2.Dichloroentrane 2017/08/16 100 70-130	5114898	1,1,1,2-Tetrachloroethane	2017/08/16	105	70 - 130	107	70 - 130	ND, RDL=0.50	ng/L	NC	30
1.1.2.2-Tetrachloroethane 2017/08/16 116 70-130 107 70-130 ND, RDL-050 ug/L NC 1.1.2.2-Tetrachloroethane 2017/08/16 110 70-130 105 70-130 ND, RDL-050 ug/L NC 1.1.2-Choloroethane 2017/08/16 110 70-130 112 70-130 ND, RDL-050 ug/L NC 1.1.2-Choloroethane 2017/08/16 85 70-130 112 70-130 ND, RDL-050 ug/L NC 1.2-Choloroethane 2017/08/16 85 70-130 19 70-130 ND, RDL-050 ug/L NC 1.2-Choloroethane 2017/08/16 85 70-130 100 70-130 ND, RDL-050 ug/L NC 1.2-Choloroethane 2017/08/16 85 70-130 100 70-130 ND, RDL-050 ug/L NC 1.2-Choloroethane 2017/08/16 85 70-130 100 70-130 ND, RDL-050 ug/L NC 1.2-Choloroethane 2017/08/16 10	5114898	1,1,1-Trichloroethane	2017/08/16	94	70 - 130	66	70 - 130	ND, RDL=0.20	ng/L	NC	30
1.1.2-Trichloroethane 2017/08/16 110 70-130 105 70-130 NO, RDLe-0.50 ug/L NC 1.1.2-Trichloroethane 2017/08/16 105 70-130 107 70-130 NO, RDLe-0.20 ug/L NC 1.1.0-Chriloroethane 2017/08/16 15 70-130 107 70-130 NO, RDLe-0.20 ug/L NC 1.2Otchloroethane 2017/08/16 100 70-130 100 70-130 NO, RDLe-0.50 ug/L NC 1.2Otchloroethane 2017/08/16 100 70-130 100 70-130 NO, RDLe-0.50 ug/L NC 1.2Otchloroethane 2017/08/16 85 70-130 100 70-130 NO, RDLe-0.50 ug/L NC 1.2Otchloroethane 2017/08/16 85 70-130 100 70-130 NO, RDLe-0.50 ug/L NC 1.2Otchloroethane 2017/08/16 85 70-130 100 70-130 NO, RDLe-0.50 ug/L NC 1.2Otchloroethane 2017/08/1	5114898	1,1,2,2-Tetrachloroethane	2017/08/16	116	70 - 130	107	70 - 130	ND, RDL=0.50	ng/L	NC	30
1.1Dichlorocethane 2017/08/16 1.05 70-130 107 NO. RDI-0.20 Ug/L NC 1.1Dichlorocethane 2017/08/16 106 70-130 112 70-130 ND. RDI-0.20 ug/L NC 1.2Dichlorocethane 2017/08/16 107 70-130 101 70-130 ND. RDI-0.50 ug/L NC 1.2Dichlorocethane 2017/08/16 100 70-130 100 70-130 ND. RDI-0.50 ug/L NC 1.2Dichlorocethane 2017/08/16 100 70-130 100 70-130 ND. RDI-0.50 ug/L NC 1.2Dichlorocethane 2017/08/16 100 70-130 100 70-130 ND. RDI-0.50 ug/L NC 1.2Dichlorocethane 2017/08/16 104 70-130 100 70-130 ND. RDI-0.50 ug/L NC 1.2Dichlorocethane 2017/08/16 104 70-130 100 70-130 ND. RDI-0.50 ug/L NC 1.2Dichlorocethane 2017/08/16 102<	5114898	1,1,2-Trichloroethane	2017/08/16	110	70 - 130	105	70 - 130	ND, RDL=0.50	ng/L	NC	30
1.1-Dickhlorozenzene 2017/08/16 106 70-130 112 70-130 No, RDI=0.02 ug/L NC 1.2-Dickhlorozenzene 2017/08/16 85 70-130 98 70-130 ug/L NC 1.2-Dickhlorozenzene 2017/08/16 100 70-130 99 70-130 ug/L NC 1.2-Dichlorozenzene 2017/08/16 100 70-130 100 70-130 ug/L NC 1.2-Dichlorozenzene 2017/08/16 84 70-130 100 70-130 ug/L NC 1.3-Dichlorozenzene 2017/08/16 85 70-130 100 70-130 ug/L NC 1.3-Dichlorozenzene 2017/08/16 85 70-130 100 70-130 ug/L NC Benzene 2017/08/16 102 70-130 100 70-130 ug/L NC Benzene 2017/08/16 102 70-130 100 70-130 ug/L NC Benzene 2017/08/16 102 70	5114898	1,1-Dichloroethane	2017/08/16	105	70 - 130	107	70 - 130	ND, RDL=0.20	ng/L	NC	30
1.2.Dichlorobenzene 2017/08/16 85 70 - 130 98 70 - 130 0 Dr. 0 D	5114898	1,1-Dichloroethylene	2017/08/16	106	70 - 130	112	70 - 130	ND, RDL=0.20	ng/L	NC	30
1.2-Dichloroethane 2017/08/16 107 70-130 101 70-130 ND, RDI-DS ug/L NC 1.2-Dichloroethane 2017/08/16 100 70-130 100 70-130 ND, RDI-DS ug/L NC 1.2-Dichlorobenzene 2017/08/16 84 70-130 100 ND, RDI-DS ug/L NC 1.2-Dichlorobenzene 2017/08/16 123 60-140 100 ND, RDI-DS ug/L NC Acetone (2-Propanone) 2017/08/16 123 60-140 100 ND, RDI-DS ug/L NC Benzene 2017/08/16 102 70-130 ND, RDI-DS ug/L NC Bromondichloromethane 2017/08/16 102 70-130 ND, RDI-DS ug/L NC Bromondichloromethane 2017/08/16 102 70-130 ND, RDI-DS ug/L NC Chlorobenzene 2017/08/16 102 70-130 ND, RDI-DS ug/L NC Chloroform 2017/08/16 100 70-130	5114898	1,2-Dichlorobenzene	2017/08/16	85	70 - 130	86	70 - 130	ND, RDL=0.50	ng/L	N	30
1,2-Dichloropropane 2017/08/16 100 70-130 99 70-130 ND, RDL=0.20 ug/L NC 1,3-Dichlorobenzene 2017/08/16 84 70-130 100 70-130 ND, RDL=0.20 ug/L NC 1,4-Dichlorobenzene 2017/08/16 85 70-130 100 70-130 ND, RDL=0.20 ug/L NC Acetone (2-Propancie) 2017/08/16 125 60-140 100 60-140 ND, RDL=0.20 ug/L NC Benzene 2017/08/16 106 70-130 105 10-130 ug/L NC Bromomethane 2017/08/16 116 70-130 100 60-140 ND, RDL=0.20 ug/L NC Bromofichic methane 2017/08/16 116 70-130 104 70-130 ND, RDL=0.20 ug/L NC Groun detaction (ede 2017/08/16 116 70-130 104 70-130 ND, RDL=0.20 ug/L NC Groun detaction (ede 2017/08/16 101 70-130	5114898	1,2-Dichloroethane	2017/08/16	107	70 - 130	101	70 - 130	ND, RDL=0.50	ug/L	NC	30
1,3-Dicklorobenzene 2017/08/16 84 70-130 100 70-130 ND, RDL=0.50 ug/L NC 1,4-Dicklorobenzene 2017/08/16 85 70-130 100 70-130 ND, RDL=0.50 ug/L NC Acetone (2-Propanone) 2017/08/16 123 60-140 100 50-140 ND, RDL=0.50 ug/L NC Bennoncientene 2017/08/16 102 70-130 105 70-130 ND, RDL=0.50 ug/L NC Bronnochmethane 2017/08/16 116 70-130 108 70-130 ND, RDL=0.50 ug/L NC Grobon Tetrachloride 2017/08/16 102 60-140 104 ND, RDL=0.50 ug/L NC Chlorobenzene 2017/08/16 100 70-130 ND, RDL=0.50 ug/L NC Chlorobenzene 2017/08/16 100 70-130 ND, RDL=0.50 ug/L NC Chlorobenzene 2017/08/16 100 70-130 ND, RDL=0.50 ug/L NC	5114898	1,2-Dichloropropane	2017/08/16	100	70 - 130	66	70 - 130	ND, RDL=0.20	ug/L	NC	30
14-Dicklorobenzene 2017/08/16 85 70-130 101 70-130 ND, RDI=0.05 ug/L NC Acetone [2-Propanone] 2017/08/16 123 60-140 100 60-140 ND, RDI=0.05 ug/L NC Benzene 2017/08/16 104 70-130 105 70-130 ug/L NC Benzene 2017/08/16 104 70-130 100 60-140 ND, RDI=0.05 ug/L NC Bennomethane 2017/08/16 102 60-140 104 60-140 ND, RDI=0.05 ug/L NC Carbon Tetrachloride 2017/08/16 102 60-140 104 60-140 ND, RDI=0.05 ug/L NC Chloroform Carbon Tetrachloride 2017/08/16 93 70-130 93 70-130 ug/L NC NC Chloroform Carbon Tetrachloride 2017/08/16 100 70-130 ND, RDI=0.02 ug/L NC Chloroform Carbon Tetrachloroethylene 2017/08/16 107	5114898	1,3-Dichlorobenzene	2017/08/16	84	70 - 130	100	70 - 130	ND, RDL=0.50	ng/L	NC	30
Acetone (2-Propanone) 2017/08/16 123 60-140 100 60-140 ND, RDL=10 ug/L NC Bencene Bencene 2017/08/16 104 70-130 105 70-130 ND, RDL=0.20 ug/L NC Bromodichloromethane 2017/08/16 102 70-130 100 70-130 ND, RDL=0.20 ug/L NC Bromodichloromethane 2017/08/16 116 70-130 108 70-130 ND, RDL=0.20 ug/L NC Chlorobenzene 2017/08/16 102 70-130 101 70-130 ND, RDL=0.20 ug/L NC Chlorobenzene 2017/08/16 100 70-130 101 70-130 ND, RDL=0.20 ug/L NC Chlorobenzene 2017/08/16 101 70-130 101 70-130 ND, RDL=0.20 ug/L NC Chlorobenzene 2017/08/16 101 70-130 101 70-130 ND, RDL=0.20 ug/L NC Cis-1.2-Dichloroethyene 2017/08/16	5114898	1,4-Dichlorobenzene	2017/08/16	85	70 - 130	101	70 - 130	ND, RDL=0.50	ng/L	NC	30
Benzene 2017/08/16 104 70-130 105 70-130 ND, RDL=0.20 ug/L NC Bromodichloromethane 2017/08/16 102 70-130 100 70-130 ND, RDL=0.20 ug/L NC Bromonethane 2017/08/16 116 70-130 108 70-130 ND, RDL=0.20 ug/L NC Bromonethane 2017/08/16 102 60-140 104 60-140 ND, RDL=0.20 ug/L NC Carbon Tetrachloride 2017/08/16 102 60-140 104 ND, RDL=0.20 ug/L NC Chloroform 2017/08/16 100 70-130 ND, RDL=0.20 ug/L NC Chloroform 2017/08/16 101 70-130 ND, RDL=0.20 ug/L NC Cist.1.3-Dichloroethylene 2017/08/16 107 70-130 ND, RDL=0.20 ug/L NC Cist.1.3-Dichloroethylene 2017/08/16 110 70-130 ND, RDL=0.20 ug/L NC Cist.1.3-Dichloroethylene	5114898	Acetone (2-Propanone)	2017/08/16	123	60 - 140	100	60 - 140	ND, RDL=10	1/8n	NC	30
Bromodichloromethane 2017/08/16 102 70-130 100 70-130 ND, RDL=0.50 ug/L NC Bromoform 2017/08/16 116 70-130 108 70-130 ND, RDL=0.50 ug/L NC Bromomethane 2017/08/16 116 70-130 108 70-130 ug/L NC NC Carbon Tetrachloride 2017/08/16 193 70-130 98 70-130 ug/L NC NC Chlorobenzene 2017/08/16 100 70-130 ND, RDL=0.20 ug/L NC NC Chloroform 2017/08/16 100 70-130 ND, RDL=0.20 ug/L NC Cis-1.2-Dichloroethylene 2017/08/16 101 70-130 ND, RDL=0.20 ug/L NC Cis-1.3-Dichloromethane 2017/08/16 107 70-130 ND, RDL=0.20 ug/L NC Dichlorodifluoromethane 2017/08/16 110 70-130 ND, RDL=0.20 ug/L NC Ethylbenzene 1010	5114898	Benzene	2017/08/16	104	70 - 130	105	70 - 130	ND, RDL=0.20	1/Bn	NC	30
Brommoframe 2017/08/16 116 70-130 108 70-130 NC NDL=1.0 ug/L NC Bromomethane 2017/08/16 102 60-140 104 60-140 NC NDL=0.50 ug/L NC Carbon Tetrachloride 2017/08/16 93 70-130 98 70-130 ND, RDL=0.20 ug/L NC Chlorobenzene 2017/08/16 100 70-130 101 70-130 ND, RDL=0.20 ug/L NC Chloroform 2017/08/16 100 70-130 101 70-130 ND, RDL=0.20 ug/L NC Cis-1,2-Dichloroethylene 2017/08/16 107 70-130 100 70-130 ND, RDL=0.20 ug/L NC Cis-1,3-Dichloroethylene 2017/08/16 107 70-130 102 70-130 ND, RDL=0.20 ug/L NC Dichloroethylene 2017/08/16 107 70-130 102 70-130 ND, RDL=0.20 ug/L NC Dichoroethoroethylene 2017/08/16 105	5114898	Bromodichloromethane	2017/08/16	102	70 - 130	100	70 - 130	ND, RDL=0.50	ng/L	NC	30
Bromomethane 2017/08/16 102 60-140 104 60-140 ND, RDL=0.50 ug/L NC PR Carbon Tetrachloride 2017/08/16 93 70-130 98 70-130 ND, RDL=0.20 ug/L NC NC Chlorobenzene 2017/08/16 100 70-130 101 70-130 ND, RDL=0.20 ug/L NC NC Chlorobenzene 2017/08/16 100 70-130 101 70-130 ND, RDL=0.20 ug/L NC NC Chloroform 2017/08/16 2017/08/16 101 70-130 ND, RDL=0.20 ug/L NC NC Cis-1,3-Dichloroethylene 2017/08/16 107 70-130 ND, RDL=0.20 ug/L NC NC Dichorochloromethane 2017/08/16 100 70-130 100 70-130 ND, RDL=0.20 ug/L NC NC Ethylbenzene 2017/08/16 105 70-130 ND, RDL=0.20 ug/L NC NC NC Ethylbenzene	5114898	Bromoform	2017/08/16	116	70 - 130	108	70 - 130	ND, RDL=1.0	ng/L	NC	30
Carbon Tetrachloride 2017/08/16 93 70-130 98 70-130 ND, RDL=0.20 ug/L NC Chlorobenzene Chlorobenzene 2017/08/16 100 70-130 101 70-130 ND, RDL=0.20 ug/L NC NC Chloroform Chloroform 2017/08/16 101 70-130 ND, RDL=0.20 ug/L NC NC cis-1,3-Dichloroptopene 2017/08/16 107 70-130 101 70-130 ND, RDL=0.50 ug/L NC NC cis-1,3-Dichloroptopene 2017/08/16 110 70-130 ND, RDL=0.30 ug/L NC NC Dibromochloromethane (FREON 12) 2017/08/16 105 70-130 ND, RDL=0.50 ug/L NC NC Ethylenzene 2017/08/16 105 60-140 102 70-130 ND, RDL=0.20 ug/L NC NC Ethylenzene 2017/08/16 116 70-130 ND, RDL=0.20 ug/L NC NC Hexane 2017/08/16	5114898	Bromomethane	2017/08/16	102	60 - 140	104	60 - 140	ND, RDL=0.50	1/8n	NC	30
Chlorobenzene 2017/08/16 100 70-130 101 70-130 ND, RDL=0.20 ug/L NC Chloroform cis-1,2-Dichloroethylene 2017/08/16 101 70-130 101 70-130 ND, RDL=0.20 ug/L NC 105 cis-1,2-Dichloroethylene 2017/08/16 107 70-130 102 70-130 ND, RDL=0.20 ug/L NC 105 cis-1,3-Dichloroethylene 2017/08/16 107 70-130 102 70-130 ND, RDL=0.30 ug/L NC 105 Dichlorodiflucomethane 2017/08/16 105 60-140 70-130 ND, RDL=0.30 ug/L NC NC Ethylenzene 2017/08/16 105 70-130 ND, RDL=0.20 ug/L NC NC Ethylenzene 2017/08/16 116 70-130 107 70-130 ND, RDL=0.20 ug/L NC Hexane 2017/08/16 118 70-130 109 70-130 ND, RDL=0.20 ug/L NC Methyl	5114898	Carbon Tetrachloride	2017/08/16	93	70 - 130	98	70 - 130	ND, RDL=0.20	ng/L	NC	30
Cis-1,2-Dichloroethylene 2017/08/16 98 70-130 ND, RDL=0.20 ug/L NC cis-1,2-Dichloroethylene 2017/08/16 101 70-130 ND, RDL=0.50 ug/L NC cis-1,3-Dichloroethylene 2017/08/16 107 70-130 101 70-130 ND, RDL=0.30 ug/L NC cis-1,3-Dichloroethylene 2017/08/16 107 70-130 102 70-130 ND, RDL=0.30 ug/L NC Dichlorodifluoromethane 2017/08/16 105 60-140 112 60-140 ND, RDL=0.20 ug/L NC Ethylbenzene 2017/08/16 166 70-130 107 70-130 ND, RDL=0.20 ug/L NC Hexane 2017/08/16 168 70-130 107 70-130 ND, RDL=1.0 ug/L NC Methyl Ethyl Ketone (2-Butanone) 2017/08/16 132 60-140 70-130 ND, RDL=1.0 ug/L NC Methyl Etbyl tetre (MTBE) 2017/08/16 121 70-130 ND, RDL=1.0 ug/L <td>5114898</td> <td>Chlorobenzene</td> <td>2017/08/16</td> <td>100</td> <td>70 - 130</td> <td>101</td> <td>70 - 130</td> <td>ND, RDL=0.20</td> <td>ng/L</td> <td>NC</td> <td>30</td>	5114898	Chlorobenzene	2017/08/16	100	70 - 130	101	70 - 130	ND, RDL=0.20	ng/L	NC	30
cis-1,2-Dichloroethylene 2017/08/16 101 70-130 101 70-130 101 70-130 ND, RDL=0.50 ug/L NC cis-1,3-Dichloropenee 2017/08/16 107 70-130 102 70-130 ND, RDL=0.30 ug/L NC NC Dichlorodifluoromethane (FREON 12) 2017/08/16 105 60-140 112 60-140 ND, RDL=0.20 ug/L NC NC Ethylenzene 2017/08/16 16 70-130 107 70-130 ND, RDL=0.20 ug/L NC NC Hexane Hexane 2017/08/16 116 70-130 70-130 ND, RDL=1.0 ug/L NC NC Methyl Ethyl Ketone (2-Butanone) 2017/08/16 132 60-140 70-130 ND, RDL=1.0 ug/L NC NC Methyl Ethyl Ketone 2017/08/16 122 70-130 109 70-130 ND, RDL=5.0 ug/L NC NC Methyl Etbutyl ether (MTBE) 2017/08/16 100 70-130 ND, RDL=5.0 <	5114898	Chloroform	2017/08/16	98	70 - 130	66	70 - 130	ND, RDL=0.20	ng/L	NC	30
cis-1,3-Dichloropropene 2017/08/16 107 70-130 102 70-130 ND, RDL=0.30 ug/L NC Dibromochloromethane PREON 12) 2017/08/16 110 70-130 105 70-130 ND, RDL=0.50 ug/L NC NC Ethylbenzene 2017/08/16 105 70-130 102 70-130 ND, RDL=0.20 ug/L NC NC Ethylbenzene 2017/08/16 166 70-130 107 70-130 ND, RDL=0.20 ug/L NC NC Hexane Wethyl Ethyl Ketone (2-Butanone) 2017/08/16 132 60-140 70-130 ND, RDL=1.0 ug/L NC NC Methyl Isobutyl Ketone 2017/08/16 132 60-140 109 70-130 ND, RDL=1.0 ug/L NC NC Methyl Isobutyl Ketone 2017/08/16 121 70-130 ND, RDL=5.0 ug/L NC NC Methyl Isobutyl Ketone 2017/08/16 100 70-130 NB 70-130 NB NC-130 NB <td>5114898</td> <td>cis-1,2-Dichloroethylene</td> <td>2017/08/16</td> <td>101</td> <td>70 - 130</td> <td>101</td> <td>70 - 130</td> <td>ND, RDL=0.50</td> <td>ng/L</td> <td>NC</td> <td>30</td>	5114898	cis-1,2-Dichloroethylene	2017/08/16	101	70 - 130	101	70 - 130	ND, RDL=0.50	ng/L	NC	30
Dichlorondelloromethane 2017/08/16 110 70-130 105 70-130 ND, RDL=0.50 ug/L NC Dichlorodifluoromethane (FREON 12) 2017/08/16 105 60-140 112 60-140 ND, RDL=1.0 ug/L NC NC Ethylbenzene 2017/08/16 166 70-130 102 70-130 ND, RDL=0.20 ug/L NC NC Hexane 2017/08/16 132 60-140 109 60-140 ND, RDL=1.0 ug/L NC NC Methyl Ethyl Ketone (2-Butanone) 2017/08/16 132 60-140 109 60-140 ND, RDL=1.0 ug/L NC NC Methyl Isbutyl Ketone 2017/08/16 121 70-130 109 70-130 ND, RDL=5.0 ug/L NC NC Methyl Isbutyl ether (MTBE) 2017/08/16 100 70-130 ND, RDL=5.0 ug/L NC NC	5114898	cis-1,3-Dichloropropene	2017/08/16	107	70 - 130	102	70 - 130	ND, RDL=0.30	ng/L	NC	30
Dichlorodifluoromethane (FREON 12) 2017/08/16 105 60-140 112 60-140 ND, RDL=1.0 ug/L NC NC Ethylbenzene 2017/08/16 96 70-130 102 70-130 ND, RDL=0.20 ug/L NC NC Hexane 2017/08/16 132 60-140 70-130 ND, RDL=1.0 ug/L NC NC Methyl Ethyl Ketone (2-Butanone) 2017/08/16 132 60-140 109 60-140 ND, RDL=1.0 ug/L NC NC Methyl Isobutyl Ketone 2017/08/16 121 70-130 109 70-130 ND, RDL=5.0 ug/L NC NC Methyl Isobutyl ketone 2017/08/16 121 70-130 109 70-130 ND, RDL=5.0 ug/L NC NC	5114898	Dibromochloromethane	2017/08/16	110	70 - 130	105	70 - 130	ND, RDL=0.50	ng/L	NC	30
Ethylbenzene 2017/08/16 96 70-130 102 70-130 ND, RDL=0.20 ug/L NC Ethylene Dibromide 2017/08/16 116 70-130 107 70-130 ND, RDL=0.20 ug/L NC NC Methyl Ethyl Ketone (2-Butanone) 2017/08/16 132 60-140 109 60-140 ND, RDL=1.0 ug/L NC NC Methyl Isobutyl Ketone (2-Butanone) 2017/08/16 121 70-130 109 70-130 ND, RDL=5.0 ug/L NC NC Methyl Isobutyl Ketone (2-Butanone) 2017/08/16 121 70-130 109 70-130 ND, RDL=5.0 ug/L NC NC	5114898	Dichlorodifluoromethane (FREON 12)	2017/08/16	105	60 - 140	112	60 - 140	ND, RDL=1.0	ng/L	NC	30
Ethylene Dibromide 2017/08/16 116 70-130 107 70-130 ND, RDL=0.20 ug/L NC Hexane Methyl Ethyl Ketone (2-Butanone) 2017/08/16 132 60-140 109 60-140 ND, RDL=1.0 ug/L NC Methyl Isobutyl Ketone 2017/08/16 121 70-130 109 70-130 ND, RDL=5.0 ug/L NC Methyl Isobutyl Ketone 2017/08/16 100 70-130 98 70-130 ND, RDL=5.0 ug/L NC	5114898	Ethylbenzene	2017/08/16	96	70 - 130	102	70 - 130	ND, RDL=0.20	1/Bn	NC	30
Hexane 2017/08/16 108 70-130 119 70-130 ND, RDL=1.0 ug/L NC NC Methyl Ethyl Ketone (2-Butanone) 2017/08/16 132 60-140 109 60-140 ND, RDL=10 ug/L NC NC Methyl Isobutyl Ketone 2017/08/16 121 70-130 109 70-130 ND, RDL=5.0 ug/L NC NC Methyl t-butyl ether (MTBE) 2017/08/16 100 70-130 98 70-130 ND, RDL=0.50 ug/L NC NC	5114898	Ethylene Dibromide	2017/08/16	116	70 - 130	107	70 - 130	ND, RDL=0.20	1/Bn	NC	30
Methyl Ethyl Ketone (2-Butanone) 2017/08/16 132 60 - 140 109 60 - 140 ND, RDL=10 ug/L NC Methyl Isobutyl Ketone 2017/08/16 121 70 - 130 109 70 - 130 ND, RDL=5.0 ug/L NC Methyl Isobutyl Ketone 2017/08/16 100 70 - 130 98 70 - 130 ND, RDL=6.50 ug/L NC	5114898	Hexane	2017/08/16	108	70 - 130	119	70 - 130	ND, RDL=1.0	ng/L	NC	30
Methyl Isobutyl Ketone 2017/08/16 121 70-130 109 70-130 NO-130	5114898	Methyl Ethyl Ketone (2-Butanone)	2017/08/16	132	60 - 140	109	60 - 140	ND, RDL=10	ng/L	NC	30
Methyl t-butyl ether (MTBE) 2017/08/16 100 70-130 98 70-130 ND, RDL=0.50 ug/L NC	5114898	Methyl Isobutyl Ketone	2017/08/16	121	70 - 130	109	70 - 130	ND, RDL=5.0	ng/L	NC	30
	5114898	Methyl t-butyl ether (MTBE)	2017/08/16	100	70 - 130	86	70 - 130	ND, RDL=0.50	J/Bn	NC	30

Page 6 of 8

Maxxam Analytics International Corporation 0/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, LSN 218 Fel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Report Date: 2017/08/18

QUALITY ASSURANCE REPORT(CONT'D)

Soil Engineers Ltd Client Project #: 1512-5086E

			Matrix Spike	Spike	SPIKED BLANK	SLANK	Method Blank	lank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5114898	Methylene Chloride(Dichloromethane)	2017/08/16	110	70 - 130	108	70 - 130	ND, RDL=2.0	1/Bn	NC	30
5114898	o-Xylene	2017/08/16	93	70 - 130	105	70 - 130	ND, RDL=0.20	ng/L	NC	30
5114898	p+m-Xylene	2017/08/16	101	70 - 130	109	70 - 130	ND, RDL=0.20	1/Bn	2.7	30
5114898	Styrene	2017/08/16	62	70 - 130	88	70 - 130	ND, RDL=0.50	1/Bn	NC	30
5114898	Tetrachloroethylene	2017/08/16	06	70 - 130	95	70 - 130	ND, RDL=0.20	1/8n	4.9	30
5114898	• Toluene	2017/08/16	26	70 - 130	101	70 - 130	ND, RDL=0.20	1/8n	NC	30
5114898	Total Xylenes	2017/08/16					ND, RDL=0.20	1/8n	2.7	30
5114898	trans-1,2-Dichloroethylene	2017/08/16	100	70 - 130	105	70 - 130	ND, RDL=0.50	ng/L	NC	30
5114898	trans-1,3-Dichloropropene	2017/08/16	114	70 - 130	107	70 - 130	ND, RDL=0.40	1/8n	NC	30
5114898	Trichloroethylene	2017/08/16	94	70 - 130	86	70 - 130	ND, RDL=0.20	1/Bn	NC	30
5114898	Trichlorofluoromethane (FREON 11)	2017/08/16	95	70 - 130	101	70 - 130	ND, RDL=0.50	1/8n	NC	30
5114898	Vinyl Chloride	2017/08/16	101	70 - 130	107	70 - 130	ND, RDL=0.20	1/8n	NC	30
4										

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

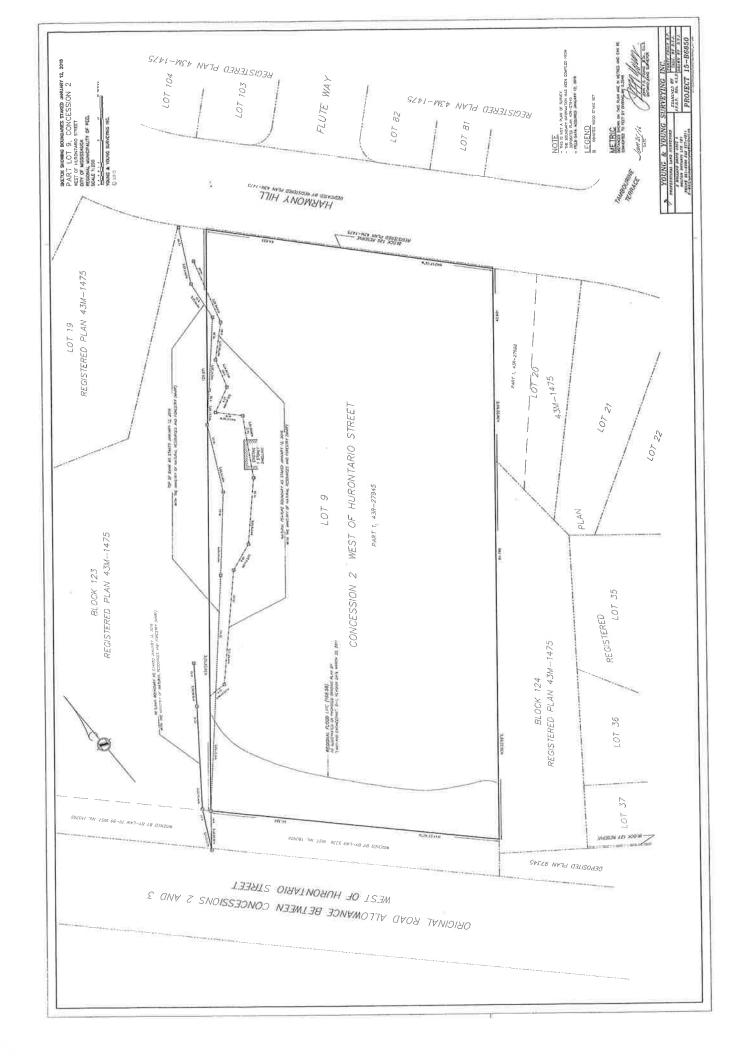
Soil Engineers Ltd Client Project #: 1512-S086E

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s),

Cistion	Carriere	
Cristina Carrie	re, Scientific Service Specialist	

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

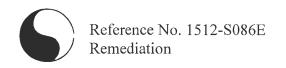

100 NUGGET AVENUE, TORONTO, ONTARIO M1S 3A7 • TEL: (416) 754-8515 • FAX: (416) 754-8516

BARRIE MISSISSAUGA **OSHAWA** NEWMARKET GRAVENHURST PETERBOROUGH **HAMILTON** TEL: (705) 721-7863 TEL: (905) 542-7605 TEL: (905) 440-2040 TEL: (905) 853-0647 TEL: (705) 684-4242 TEL: (905) 440-2040 TEL: (905) 777-7956 FAX: (705) 721-7864 FAX: (905) 542-2769 FAX: (905) 725-1315 FAX: (416) 754-8516 FAX: (705) 684-8522 FAX: (905) 725-1315 FAX: (905) 542-2769

APPENDIX 'E'

SURVEY PLAN

REFERENCE NO. 1512-S086E

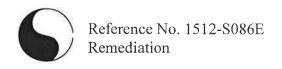

100 NUGGET AVENUE, TORONTO, ONTARIO M1S 3A7 • TEL: (416) 754-8515 • FAX: (416) 754-8516

BARRIE MISSISSAUGA **OSHAWA** NEWMARKET **GRAVENHURST** PETERBOROUGH **HAMILTON** TEL: (705) 721-7863 TEL: (905) 542-7605 TEL: (905) 440-2040 TEL: (905) 853-0647 TEL: (705) 684-4242 TEL: (905) 440-2040 TEL: (905) 777-7956 FAX: (705) 721-7864 FAX: (905) 542-2769 FAX: (905) 725-1315 FAX: (416) 754-8516 FAX: (705) 684-8522 FAX: (905) 725-1315 FAX: (905) 542-2769

APPENDIX 'F'

REMEDIATION

REFERENCE NO. 1512-S086E



This section summarizes the background information, the remedial activities including confirmation soil sampling and testing undertaken at the subject site, as a part of the Phase Two Environmental Site Assessment as defined by Ontario Regulation (O. Reg.) 153/04, as amended. The subject site is located approximately 230 m to the north side of Highway 401 and east of Second Line West, in the City of Mississauga. A residential development is being proposed for the subject site.

The findings of the first stage investigation of the Phase Two ESA summarized below:

- A total of three (3) boreholes to depths ranging from 3.0 mbgs to 7.6 mbgs and five (5) hand dug test pits to depths of 0.5 mbgs were advanced during the first stage investigation. The boreholes were completed as monitoring wells for groundwater observation, sampling and/or testing. Selected soil and groundwater samples were assessed for the potential contamination with respect to the APECs identified by the Phase One ESA.
- Based on the analytical results of soil samples from the first stage investigation of the Phase Two ESA, Lead and Chromium VI at the test pit location TP1 up to the depth of 0.5 mbgs at the eastern section of the subject site exceeding the Table 1 Full Depth Background Site Condition Standards, for Residential/ Parkland/ Institutional/ Industrial/ Commercial/ Community Property Use (Table 1 Standards).
- Based on the analytical results of soil samples from the initial investigation of the Phase Two ESA, Lead, Molybdenum and Chromium VI at test pit location TP4 at depths ranging from 0.3 mbgs to 0.6 mbgs at the southern section of the subject site exceeding the Table 1 Standards.
- The remaining analysed soil and groundwater samples during the initial investigation for the tested parameters meet the Table 1 Standards.

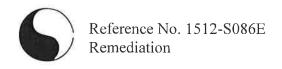
Soil remediation was required in the vicinities of TP1 and TP4 at the eastern and southern portions of the subject site in order to bring the impacted areas into compliance with the Table 1 Standards.

1) <u>REMEDIAL ACTIONS</u>

The fieldwork for the remedial excavations and removal of impacted surface soil was carried out from March 17, 2017 to August 10, 2017, under the supervision of a field representative from SEL.

1.1) Site Preparation of Soil Remediation

The areas of remediation were identified and outlined on site by SEL's field representative, based on the findings of the initial investigation, as discussed earlier.


1.2) Methodology

The methodology of the remedial activity includes:

- Excavate and remove the impacted soil from the vicinities of TP1 and TP 4 at the eastern and southern sections of the subject site.
- Dispose the impacted soil at the MOECC licensed landfill facility.
- Confirmation sampling and testing of soil samples retrieved from the margins of the excavations, for analysis of metals.

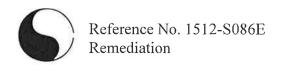
1.3) Extent of Soil Remediation

The impacted soil in the vicinities of TP1 and TP4 (located at the eastern and southern section of the subject site) was excavated as shown in Drawing Nos. 3, 4, 6 and 7. The area of excavation was approximately 6.5 m by 45 m in area, extending up to a depth of 2.0 mbgs.

1.4) Disposal of Impacted Soils

Prior to the disposal of impacted soils, a Toxicity Characteristic Leaching Procedure (TCLP) leachate test was conducted on a representative sample from impacted soil for disposal criteria. The results confirmed that all the tested parameters were below the Schedule 4 of the O. Reg. 558 criteria. Consequently, the material is classified as a non-hazardous/non-registerable waste. Copies of the laboratory Certificates of Analysis are enclosed.

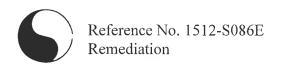
A total of 812.26 metric tone of impacted soils was removed from the northern and central sections of the subject site and transported to GFL in Toronto, an MOE licensed facility, for disposal. Copies of Bills of Lading are enclosed.


2) FREE FLOWING PRODUCT

No signs of groundwater seepage or free flowing product were observed in the cavity.

3) <u>CONFIRMATION SAMPLING AND ANALYSIS</u>

The sampling and decontamination procedures were conducted in accordance with the "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", May 1996, revised December 1996, as amended by O. Reg. 511/09.


Laboratory analytical methods, protocols and procedures were carried out in accordance with the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", dated March 9, 2004, amended as of July 1, 2011, in accordance with O. Reg. 511/09 and O. Reg. 269/11.

3.1) Confirmation Soil Sampling

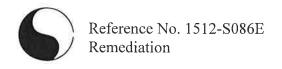
Upon completion of the removal of impacted soils from each location, confirmation soil samples were collected from the margins of the excavations for chemical analysis. Details of confirmation soil samples along with the test parameters are presented in the table below.

SAMPLE	DEPTH (mbgs)	SAMPLE LOCATION	PARAMETER	NOTE
ID	(mbgs)		OF ANALYSIS	
Wall 1	0.4 - 0.6	North wall of the excavation at TP 4 location		
Wall 2	0.4 - 0.6	West wall of the excavation at TP 4 location		The analytical results exceed Table 2 Standards. Further excavation is
Wall 3	0.4 - 0.6	South wall of the excavation at TP 4 location		required.
Floor 2	1.5	Floor of the excavation		
Floor 1	2.0	Floor of the excavation		
Floor 2-1	2.0	Floor of the excavation		
Floor 3	1.5	Floor of the excavation		
Floor 4	1.5	Floor of the excavation		
Floor 5	1.5	Floor of the excavation		
Wall 1-1	0.4 - 0.6	North wall of the excavation near TP 4 location		
Wall 2-2	0.4 - 0.6	West wall of the excavation near TP 4 location	Metals	
Wall 3-3	0.4 - 0.6	South wall of the excavation near TP 4 location		Confirmation samples from the final
Wall 4	0.4 - 0.6	South wall of the excavation near TP1 location		margin of the excavation
Wall 5	0.4 - 0.6	East wall of the excavation near TP1 location		
Wall 6	0.4 - 0.6	North wall of the excavation near TP1 location		
Wall 7	0.4 - 0.6	South wall of the excavation near TP1 location		
Wall 8	0.4 - 0.6	North wall of the excavation near TP1 location		

Please note that further excavation and additional confirmation sampling program were conducted from the new margins of the excavation when the analytical result of confirmation samples exceed Table 1 Standards.

3.2) Analytical Results

The soil test results were reviewed using the Table 1, Full Depth Background Site Condition Standards for Residential/Parkland/Institutional/Industrial/Commercial/ Community property use (Table 1 Standards) as published in the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (EPA), April 15, 2011.


A total of thirteen (13) confirmation soil samples and two (2) field duplicate samples collected from the final margins of the excavations were analysed for metals.

All confirmation soil samples and field duplicate sample meet the Table 1 Standards. Soil quality data containing results of the chemical analyses for the confirmation samples and duplicate sample is presented in Table III. Maximum concentrations of the tested parameters in soil after the remedial excavation and impacted soil removal are presented in Table V.

The Certificates of Analyses for the confirmation soil samples and field duplicate samples are enclosed.

4) <u>CONCLUSION</u>

- Based on the analytical results of the first investigation soil samples, metals and inorganic parameters (Lead, Molybdenum and Chromium VI) were identified in the soil up to depth of 0.6 mbgs at locations of TP1 and TP4 at concentrations above the Table 1, Full Depth Background Site Condition Standards for Residential/Parkland/Institutional/Industrial/Commercial/ Community property use (Table 1 Standards).
- The impacted soil between the TP1 and TP4 locations at the eastern and southern sections of the subject site was excavated as shown in Drawing Nos. 3, 4, 6, and 7.

- A total of 812.26 metric tone of impacted soil was removed from the remedial excavation at the subject site and transported to GFL in Toronto, an MOE licensed facility, for disposal.
- The final size of the excavation in the vicinities of TP1 and TP4 was approximately 6.5 m by 45 m in area, extending up to a depth of 2.0 mbgs.
- No signs of groundwater seepage or free flowing product were observed in the remedial excavations.
- In the remedial excavation area, a total of thirteen (13) confirmation soil samples and two (2) field duplicate samples collected from the final margins of the excavation were analysed for metals.
- All confirmation soil samples and field duplicate samples from the final margins of the excavation meet the Table 1 Standards.

Based on the field observation and analytical testing programs, it our judgment that the removal of the impacted soils from the eastern and southern sections of the subject site is completed. No further investigation is required.

100 NUGGET AVENUE, TORONTO, ONTARIO M1S 3A7 • TEL: (416) 754-8515 • FAX: (416) 754-8516

BARRIE	MISSISSAUGA	OSHAWA	NEWMARKET	GRAVENHURST	PETERBOROUGH	HAMILTON
TEL: (705) 721-7863	TEL: (905) 542-7605	TEL: (905) 440-2040	TEL: (905) 853-0647	TEL: (705) 684-4242	TEL: (905) 440-2040	TEL: (905) 777-7956
FAX: (705) 721-7864	FAX: (905) 542-2769	FAX: (905) 725-1315	FAX: (416) 754-8516	FAX: (705) 684-8522	FAX: (905) 725-1315	FAX: (905) 542-2769

TCLP TESTING

REFERENCE NO. 1512-S086E

CLIENT NAME: SOIL ENGINEERS LIMITED 100 NUGGET AVENUE TORONTO, ON M1S3A7 (416) 754-8515

ATTENTION TO: Laila Torabansari

PROJECT: 1512-S086E

AGAT WORK ORDER: 17T185928

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Coordinator

DATE REPORTED: Feb 16, 2017

PAGES (INCLUDING COVER): 5

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES		

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

age 1 of 5

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.ccala.ca and/or www.scc.ca, The tests in this report may not necessarily be included in the scope of accreditation.

CLIENT NAME: SOIL ENGINEERS LIMITED

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 17T185928

PROJECT: 1512-S086E

ATTENTION TO: Laila Torabansari

SAMPLED BY:

DATE DEBOOTED O. Reg. 558 Metals DATE RECEIVED: 2017-02-09

DATE RECEIVED: 2017-02-09					DATE REPORTED: 2017-02-16
		SAMPLE DESCRIPTION:	CRIPTION:	TCLP	
		SAMI	SAMPLE TYPE:	Soil	
		DATE (DATE SAMPLED:	2017-02-09	
Parameter	Unit	8/9	RDL	8181491	
Arsenic Leachate	mg/L	2.5	0.010	<0.010	
Barium Leachate	mg/L	100	0.100	0.475	
Boron Leachate	mg/L	200	0.050	0,076	
Cadmium Leachate	mg/L	0.5	0.010	<0.010	
Chromium Leachate	mg/L	2	0.010	<0.010	
Lead Leachate	mg/L	5	0.010	<0.010	
Selenium Leachate	mg/L	_	0.010	<0.010	
Silver Leachate	mg/L	5	0.010	<0.010	
Uranium Leachate	mg/L	10	0.050	<0.050	

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to 0, Reg. 558 - Schedule IV Leachate Quality Criteria Comments:

Certified By:

Amanjot Bhela

Quality Assurance

CLIENT NAME: SOIL ENGINEERS LIMITED

PROJECT: 1512-S086E

SAMPLING SITE:

AGAT WORK ORDER: 17T185928 ATTENTION TO: Laila Torabansari

SAMPLED BY:

				Soi	l Ana	alysis	5								
RPT Date: Feb 16, 2017			D	UPLICATI	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1 1 1 1 1	ptable nits	Recovery	1 :-	ptable nits
		ld	·				Value	Lower	Upper	e e u s e u mê		Upper	Allesters of a	Lower	Upper
O. Reg. 558 Metals	233														
Arsenic Leachate	8181522		<0.010	<0.010	NA	< 0.010	96%	90%	110%	101%	80%	120%	103%	70%	130%
Barium Leachate	8181522		0.548	0.512	6.8%	< 0.100	99%	90%	110%	100%	80%	120%	97%	70%	130%
Boron Leachate	8181522		<0.050	< 0.050	NA	< 0.050	100%	90%	110%	101%	80%	120%	91%	70%	130%
Cadmium Leachate	8181522		< 0.010	<0.010	NA	< 0.010	100%	90%	110%	106%	80%	120%	102%	70%	130%
Chromium Leachate	8181522		<0,010	<0.010	NA	< 0.010	97%	90%	110%	108%	80%	120%	107%	70%	130%
Lead Leachate	8181522		<0.010	<0.010	NA	< 0.010	101%	90%	110%	94%	80%	120%	94%	70%	130%
Selenium Leachate	8181522		<0.010	<0.010	NA	< 0.010	98%	90%	110%	98%	80%	120%	101%	70%	130%
Silver Leachate	8181522		<0.010	<0.010	NA	< 0.010	99%	90%	110%	106%	80%	120%	102%	70%	130%
Uranium Leachate	8181522		<0.050	<0.050	NA	< 0.050	104%	90%	110%	97%	80%	120%	95%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Amanjot Bhela

Method Summary

CLIENT NAME: SOIL ENGINEERS LIMITED

PROJECT: 1512-S086E

SAMPLING SITE:

AGAT, WORK ORDER: 17T185928 ATTENTION TO: Laila Torabansari

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Arsenic Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A	ICP-MS
Barium Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A	ICP-MS
Boron Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A	ICP-MS
Cadmium Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A	ICP-MS
Chromium Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A	ICP-MS
Lead Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A	ICP-MS
Selenium Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A	ICP-MS
Silver Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A	ICP-MS
Uranium Leachate	MET-93-6103	EPA SW-846 1311 & 3010A & 6020A	ICP-MS

用何们 Laboratories

5835 Coopers Avenue Mississauga, Onlario 1,42 1Y2 Ph: 905 712.5100 Fax: 905 712.5122 webearth, agatlabs.com

Laboratory Use Only

Work Order #: 171185928

ON/A N N □ Yes Arrwal Tomperglures: Custody Sear Inthot: Cooler Quantity: Notes

No Regulatory Requirement

Whitegulation 558

Sewer Use Sanitary Storm

Regulation 153/04

Table <u>Indicate One</u> □Ind/Com

CCME

if this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water intended for human consumption)

Regulatory Requirements:

Enginera

Chain of Custody Record

Report Informations

Company:

Contact:

Address:

Next Business
Day OR Date Required (Rush Surcharges May Apply): W 5 to 7 Business Days Turnaround Time (TAT) Required: 2 Business
Days Rush TAT (Rush Surcharges Apply) 3 Business Days Regular TAT

Prov. Water Quality Objectives (PWQO)

Oother

Region.

Soil Texture (Check One)

Coarse

ilas chiaxo pissi l'eremes ilde com

Project Information:

a, lockissi Kan nevalta com

Reports to be sent to:

1. Email:

2. Enail;

Agriculture □Res/Park

7153

754

Fax:

して多くない

*TAT is exclusive of weekends and statutory holidays Please provide prior notification for rush TAI

Certificate of Analysis Report Guldeline on

Record of Site Condition? Is this submission for a

D Yes

2

□ Yes

O. Reg 153

Sample Matrix Legend

8

AGAT Quote #:

Site Location: Sampled By:

'Same Day' analysis, please contact your AGAT CPM 70.

> Ground Water Sediment Biota Paint Soil ΞŌ B GW 0 0 S Bill To Same: Invoice Information: Company: Contact: Address: Email:

Surface Water SW

Y/N Field Filtered - Metals, Hg, CrVI Comments/ Sample Matrix

Special Instructions

of Containers

Sampled

Time

Date Sampled

Sample dentification

4

0865: □ EC □ FOC □ Hg ☐ All Metals ☐ 153 Metals (excl. Hydrides) Metals and Inorganics

RAZ [] HQ []

Full Metals Scan

Regulation/Custom Metals

Volatiles: □ v0C □ BTEX □ THM Nutrients: □ qr □ qru □ тки □ tvo, □ no, □ no, con □ con □

CCME Fractions 1 to 4

sHA9 **SN8A**

Organochlorine Pesticides PCBs: ☐ Total ☐ Arodors

2 194410

TCLP: \(\text{M&} \) \(\text{VOCs} \) \(\text{ABNs} \) \(\text{ABNs} \) \(\text{B} \) \(\text{B} \)

Sewer Use

1 CO2H

Page 5 of 5

Pink Copy - Client 1 Yellow Copy - AGAT 1 White Copy- AGAT

8

193

Sampins Received By Inna Name and Signit

(81)

100

3 110

CLICAKE

Smptos - Janquilled by (Port N.

onspies Resinguished By IPs At Name And Signi

Dist.

Samples Received By Philifical attention

100 NUGGET AVENUE, TORONTO, ONTARIO M1S 3A7 • TEL: (416) 754-8515 • FAX: (416) 754-8516

MISSISSAUGA **BARRIE** OSHAWA NEWMARKET GRAVENHURST PETERBOROUGH **HAMILTON** TEL: (705) 721-7863 TEL: (905) 542-7605 TEL: (905) 440-2040 TEL: (905) 853-0647 TEL: (705) 684-4242 TEL: (905) 440-2040 TEL: (905) 777-7956 FAX: (705) 721-7864 FAX: (905) 542-2769 FAX: (905) 725-1315 FAX: (416) 754-8516 FAX: (705) 684-8522 FAX: (905) 725-1315 FAX: (905) 542-2769

BILLS

REFERENCE NO. 1512-S086E

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9 PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Ticket: F1-54801 Weighmaster: KELLY DAVIDSON

<u>Date In</u> <u>Date Out</u> 17-Mar-2017 8:44 am 17-Mar-2017 8:44 am

Vehicle / Trk ID: 5589VP - Robmar Trucking

Carrier: Robmar Trucking

Reference / Job #:

Bill of Lading: 23453

INBOUND

GROSS WEIGHT 35,570.00 kg Man. WT TARE WEIGHT 13,630.00 kg Tare Out

NET WEIGHT 21,940.00 kg

 Quantity
 Unit
 Description
 Rate
 Extension
 Tax
 Total

 21.94
 MT
 SOIL: C
 \$40.00
 \$877.60
 \$114.09
 \$991.69

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

Net Amount: \$991.69

MASTERCARD Tendered: 991.69

Change: \$0.00

H.S.T # 84188 4893

Signature:

C of A A210742 C of A A680294

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9 PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

 Ticket: F1-54809
 Weighmaster: KELLY DAVIDSON

 Date In
 Date Out

 17-Mar-2017
 8:49 am

 17-Mar-2017
 8:49 am

Vehicle / Trk ID: 9472VJ - Salo Commercial

Carrier: Salo Commercial

Reference / Job #:

Bill of Lading: 23296

INBOUND

GROSS WEIGHT 38,010.00 kg Man. WT TARE WEIGHT 14,100.00 kg Tare Out

NET WEIGHT 23,910.00 kg

 Quantity
 Unit
 Description
 Rate
 Extension
 Tax
 Total

 23.91
 MT
 SOIL: C
 \$40.00
 \$956.40
 \$124.33
 \$1,080.73

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

Net Amount: \$1,080.73

MASTERCARD Tendered: 1,080.73

Change: \$0.00

Signature:

002001 - 2512461 Ontario Ltd

2502-110 Charles Street East

Toronto, ON M4Y 1T5

C of A A210742 C of A A680294

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9 PH:(416) 745-8080 FX:(416) 745-3478

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Weighmaster: KELLY DAVIDSON

Date Out

Date In 17-Mar-2017 10:06 am 17-Mar-2017 10:08 am

Vehicle / Trk ID: AJ81901 - Lucky Strike

Ticket: F1-54812

Carrier: Lucky Strike

24515

INBOUND 37,380.00 Man. WT

12,960.00

Tare Out

24,420.00

24.42 MT SOIL: C \$40.00 \$976.80 \$126.98 \$1,103.78

\$40.00

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

MASTERCARD

\$1,103.78 Net Amount:

Tendered:

1,103.78

\$0.00

Change:

H.S.T # 84188 4893

GREEN FOR LIFE environmental

Signature

C of A A210742 C of A A680294

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9 PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

MT

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

SOIL: C

REPRINT

Ticket: F1-54815 Weighmaster: KELLY DAVIDSON

Date In **Date Out** 17-Mar-2017 10:15 am 17-Mar-2017 10:15 am

Vehicle / Trk ID: 5589VP - Robmar Trucking

Carrier: Robmar Trucking

23454

\$942.00

INBOUND

37,180.00 Man. WT 13,630.00 Tare Out

23,550.00

\$122.46 \$1,064.46

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc., it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

\$1,064.46

MASTERCARD

1.064.46 \$0.00

Change:

Net Amount:

Tendered:

Signature

23.55

H.S.T # 84188 4893

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9 PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Ticket: F1-54818 Weighmaster: KELLY DAVIDSON

Date Out

Date In 17-Mar-2017 10:26 am 17-Mar-2017 10:28 am

Vehicle / Trk ID: 9472VJ - Salo Commercial Carrier: Salo Commercial

23297

INBOUND

36,310.00 Man. WT 14,100.00 Tare Out

22,210.00

22.21 MT SOIL: C \$40.00 \$888.40 \$115.49 \$1,003.89

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

Signature

\$1,003.89 Net Amount:

MASTERCARD Tendered: 1,003.89

> Change: \$0.00

H.S.T # 84188 4893

C of A A210742 C of A A680294

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9 PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Ticket: F1-54822 Weighmaster: KELLY DAVIDSON Date Out Date In

17-Mar-2017 10:36 am 17-Mar-2017 10:41 am

Vehicle / Trk ID: AS48901 - Dan 637

Carrier: Dan

24275 **INBOUND**

> 38,250.00 Man. WT 12,950.00 Tare Out

25,300.00

25.30 MT SOIL: C \$40.00 \$1,012.00 \$131.56 \$1,143.56

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

> Net Amount: \$1,143.56

MASTERCARD Tendered: 1.143.56

Change: \$0.00

Signature

M

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9 PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Weighmaster: KELLY DAVIDSON

Date Out

Date In 17-Mar-2017 10:40 am 17-Mar-2017 10:42 am

Vehicle / Trk ID: AE12209 - Dvine 645 Carrier: Dvine Haulage

Ticket: F1-54823

19870

INBOUND

36,780.00 Man. WT 12,820.00 Tare Out

23,960.00

23.96 MT SOIL: C \$40.00 \$958.40 \$124.59 \$1,082.99

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

\$1,082.99 Net Amount:

MASTERCARD Tendered: 1,082.99

> Change: \$0.00

H.S.T # 84188 4893

Signature

C of A A210742 C of A A680294

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9

PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Ticket: F1-54839 Weighmaster: KELLY DAVIDSON Date Out Date In

17-Mar-2017 11:25 am 17-Mar-2017 11:26 am

Vehicle / Trk ID: AJ81901 - Lucky Strike

Carrier: Lucky Strike

24511

INBOUND

37,800.00 Man. WT 12,960.00 Tare Out

24,840.00

24.84 MT SOIL: C \$40.00 \$993.60 \$129.17 \$1,122.77

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

MASTERCARD

\$1,122.77

1,122,77 \$0.00

Signature

H.S.T # 84188 4893

Net Amount:

Tendered:

Change:

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9 PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Ticket: F1-54842 Weighmaster: KELLY DAVIDSON

<u>Date In</u> <u>Date Out</u>

17-Mar-2017 11:34 am 17-Mar-2017 11:35 am

Vehicle / Trk ID: 5589VP - Robmar Trucking

Carrier: Robmar Trucking

23455

36,740.00 Man. WT 13,630.00 Tare Out

INBOUND

23,110.00

23.11 MT SOIL: C \$40.00 \$924.40 \$120.17 \$1,044.57

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

MASTERCARD

Net Amount: \$1,044.57

RCARD Tendered: 1,044.57

Change: \$0.00

H.S.T # 84188 4893

GFL GREEN FOR LIFE environmental

Signature

C of A A210742 C of A A680294

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9 PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

iono, on Mai 113

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Ticket: F1-54853 Weighmaster: KELLY DAVIDSON

<u>Date In</u> <u>Date Out</u> 17-Mar-2017 11:46 am <u>17-Mar-2017 11:46 am</u>

Vehicle / Trk ID: 9472VJ - Salo Commercial

Carrier: Salo Commercial

23298

INBOUND

37,630.00 Man. WT 14,100.00 Tare Out

23,530.00

20.00

23.53 MT SOIL: C \$40.00 \$941.20 \$122.36 \$1,063.56

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

Net Amount: 9
MASTERCARD Tendered:

ASTERCARD Tendered: 1,063.56

Change: \$0.00

\$1,063.56

Signature:

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9

PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Weighmaster: KELLY DAVIDSON

Date Out

17-Mar-2017 12:05 pm

Vehicle / Trk ID: AS48901 - Dan 637

24277

Carrier: Dan

Date In

17-Mar-2017 12:04 pm

Ticket: F1-54849

INBOUND

37,270.00 Man. WT 12,950.00 Tare Out

24,320.00

24.32 MT SOIL: C \$40.00 \$972.80 \$126.46 \$1,099.26

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

MASTERCARD

\$1,099.26 Net Amount:

Tendered: 1,099.26

Change: \$0.00

H.S.T # 84188 4893

Signature

Signature

C of A A210742 C of A A680294

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9 PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Ticket: F1-54850 Weighmaster: KELLY DAVIDSON

Date In **Date Out** 17-Mar-2017 12:09 pm 17-Mar-2017 12:09 pm

Vehicle / Trk ID: AE12209 - Dvine 645 Carrier: Dvine Haulage

19871

INBOUND

36,290.00 Man. WT 12,820.00 Tare Out

23,470.00

23,47 MT SOIL: C \$40.00 \$938.80 \$122.04 \$1,060.84

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

Net Amount: \$1,060.84 **MASTERCARD** Tendered: 1,060.84

> Change: \$0.00

H.S.T # 84188 4893

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9 PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Weighmaster: KELLY DAVIDSON

Date Out

Date In 17-Mar-2017 12:54 pm 17-Mar-2017 12:57 pm

Vehicle / Trk ID: AJ81901 - Lucky Strike

Ticket: F1-54864

Carrier: Lucky Strike

24512

INBOUND

36,990.00 Man. WT

12,960.00

Tare Out 24,030.00

24.03 MT SOIL: C \$40.00 \$961.20 \$124.96 \$1,086.16

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

\$1,086.16 Net Amount:

1,086.16 MASTERCARD Tendered:

\$0.00 Change:

Signature

H.S.T # 84188 4893

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9

PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

INBOUND

Ticket: F1-68340 Weighmaster: TERESA DONATO

> Date In Date Out

10-Aug-2017 9:10 am 10-Aug-2017 9:18 am

Vehicle / Trk ID: AC18744 - Freestyle 213

Carrier: Freestyle

Reference / Job #:

Bill of Lading: 25212

GROSS WEIGHT 39,560.00 Man. WT TARE WEIGHT 13,340.00 kg Tare Out

NET WEIGHT 26,220.00

Quantity **Description** Rate <u>Unit</u> **Extension** Tax **Total** 26.22 MT SOIL: C \$40.00 \$1,048.80 \$136.34 \$1,185.14

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

> Net Amount: **MASTERCARD**

\$1,185.14

Tendered: 1,185.14

Change: \$0.00

H.S.T # 84188 4893

Signature

C of A A210742 C of A A680294

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9 PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Ticket: F1-68341 Weighmaster: TERESA DONATO

Date In Date Out 10-Aug-2017 9:11 am 10-Aug-2017 9:20 am

Vehicle / Trk ID: AD88192 - 2570734 Ont Inc 1

Carrier: 2570734 Ont Inc

Reference / Job #:

Bill of Lading: 38230

INBOUND

GROSS WEIGHT 40,590.00 ka Man WT TARE WEIGHT 13,560.00 Tare Out

NET WEIGHT 27,030.00

Quantity <u>Unit</u> Description Rate **Extension** Tax **Total** 27.03 MT SOIL: C \$40.00 \$1,081.20 \$140.56 \$1,221.76

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

MASTERCARD

\$1,221.76

Tendered: 1,221,76

Change:

Net Amount:

\$0.00

Signature

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9

PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Ticket: F1-68344 Weighmaster: TERESA DONATO

Date Out

Date In 10-Aug-2017 9:26 am 10-Aug-2017 9:32 am

Vehicle / Trk ID: 9225YT - A Haulage

Carrier: A Haulage

18362

INBOUND

40,340.00 Man. WT 13,370.00 Tare Out

26,970.00

26.97 MT SOIL: C \$40.00 \$1,078.80 \$140.24 \$1,219.04

\$40.00

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

MASTERCARD

Net Amount: \$1,219.04

Tendered: 1,219.04

> Change: \$0.00

H.S.T # 84188 4893

GREEN FOR LIFE environmental

Signature

C of A A210742 C of A A680294

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9

PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

25.19

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

SOIL: C

REPRINT

Ticket: F1-68345 Weighmaster: TERESA DONATO

Date Out Date In 10-Aug-2017 9:28 am 10-Aug-2017 9:35 am

Vehicle / Trk ID: AD10339 - Duhok 04

Carrier: Duhok

\$1,007.60

37691

INBOUND

38,690.00 Man. WT 13,500.00 Tare Out

25,190.00

\$130.99 \$1,138.59

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

MASTERCARD

\$1,138.59

Tendered: 1.138.59

Change:

Net Amount:

\$0.00

Signature

MT

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9

PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Weighmaster: TERESA DONATO

Date Out

Date In 10-Aug-2017 10:23 am 10-Aug-2017 10:29 am

Vehicle / Trk ID: AC18744 - Freestyle 213

Carrier: Freestyle

Ticket: F1-68350

25213 **INBOUND**

> 38,860.00 Man. WT 13,340.00 Tare Out

25,520.00

25.52 MT SOIL: C \$40.00 \$1,020.80 \$132.70 \$1,153.50

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

MASTERCARD

Net Amount: \$1,153,50

Tendered:

1,153.50

Change:

\$0.00

H.S.T # 84188 4893

Signature

C of A A210742 C of A A680294

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9 PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Weighmaster: TERESA DONATO Ticket: F1-68352

Date Out Date In 10-Aug-2017 10:32 am 10-Aug-2017 10:34 am

Vehicle / Trk ID: AD88192 - 2570734 Ont Inc 1

Carrier: 2570734 Ont Inc

38231

INBOUND

40,980.00 Man. WT 13,560.00 Tare Out

27,420.00

27.42 MT SOIL: C \$40.00 \$1,096.80 \$142.58 \$1,239.38

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc., it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

\$1,239.38

MASTERCARD

Tendered: 1,239,38 \$0.00

Change:

Net Amount:

Signature

H.S.T # 84188 4893

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9

PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

MT

26.04

Signature

18363

Ticket: F1-68354

Date In

Vehicle / Trk ID: 9225YT - A Haulage

Carrier: A Haulage

10-Aug-2017 10:57 am

\$1,041.60

INBOUND

REPRINT

Date Out

10-Aug-2017 11:00 am

Weighmaster: TERESA DONATO

39,410.00 Man. WT 13,370.00 Tare Out

26,040.00

\$135.41

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

SOIL: C

\$40.00

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

MASTERCARD

\$1,177.01 Net Amount:

Tendered:

1,177.01

\$1,177.01

Change:

\$0.00

H.S.T # 84188 4893

GREEN FOR LIFE environmental

C of A A210742 C of A A680294

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9

PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East

Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Ticket: F1-68355 Weighmaster: TERESA DONATO

> Date Out Date In

10-Aug-2017 10:58 am 10-Aug-2017 11:02 am

Vehicle / Trk ID: AD10339 - Duhok 04

Carrier: Duhok

37692

INBOUND

39,690.00 Man. WT 13,500.00 Tare Out

26,190.00

26.19 MT SOIL: C \$40.00 \$1,047.60 \$136.19 \$1,183.79

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

Net Amount: \$1,183.79

MASTERCARD

Tendered: 1,183,79

Change:

\$0.00

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9

PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Ticket: F1-68360 Weighmaster: TERESA DONATO

Date Out

Date In 10-Aug-2017 11:34 am 10-Aug-2017 11:37 am

Vehicle / Trk ID: AC18744 - Freestyle 213

Carrier: Freestyle

25214 **INBOUND**

> 40,350.00 Man. WT

> > Tare Out

13,340.00 27,010.00

27.01 MT SOIL: C \$40.00 \$1,080.40 \$140.45 \$1,220.85

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

MASTERCARD

\$1,220.85 Net Amount:

Tendered: 1,220.85

Change: \$0.00

H.S.T # 84188 4893

GREEN FOR LIFE

environmental

Signature

C of A A210742 C of A A680294

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9 PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Ticket: F1-68362 Weighmaster: TERESA DONATO

Date In **Date Out** 10-Aug-2017 11:36 am 10-Aug-2017 11:44 am

Vehicle / Trk ID: AD88192 - 2570734 Ont Inc 1

Carrier: 2570734 Ont Inc

38232

INBOUND

41,880.00 Man. WT 13,560.00 Tare Out

28,320.00

28.32 MT SOIL: C \$40.00 \$1,132.80 \$147.26 \$1,280.06

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

/ V X Signature

Net Amount: \$1,280.06 **MASTERCARD** Tendered: 1,280,06

> Change: \$0.00

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9 PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd

2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Ticket: F1-68369 Weighmaster: TERESA DONATO

Date Out

Date In 10-Aug-2017 12:15 pm 10-Aug-2017 12:20 pm

Vehicle / Trk ID: 9225YT - A Haulage

Carrier: A Haulage

18364

INBOUND

39,780.00 Man. WT 13,370.00 Tare Out

26,410.00

26.41 MT SOIL: C \$40.00 \$1,056.40 \$137.33 \$1,193.73

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

MASTERCARD

\$1,193.73 Net Amount:

Tendered:

1,193.73

Change: \$0.00

H.S.T # 84188 4893

GREEN FOR LIFE environmental

Signature

C of A A210742 C of A A680294

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9

PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Ticket: F1-68373 Weighmaster: TERESA DONATO

Date In **Date Out** 10-Aug-2017 12:24 pm 10-Aug-2017 12:31 pm

Vehicle / Trk ID: AD10339 - Duhok 04

Carrier: Duhok

37693

INBOUND

40,990.00 Man. WT 13,500.00 Tare Out

27,490.00

27.49 MT SOIL: C \$40.00 \$1,099.60 \$142.95 \$1,242.55

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

MASTERCARD

\$1,242.55

Tendered: 1,242,55

Change:

Net Amount:

\$0.00

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9

PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Weighmaster: TERESA DONATO

Date Out

Date In 10-Aug-2017 12:40 pm 10-Aug-2017 12:45 pm

Vehicle / Trk ID: AC18744 - Freestyle 213

Carrier: Freestyle

Ticket: F1-68375

25215 **INBOUND**

> 42,240.00 Man. WT 13,340.00 Tare Out

28,900.00

28.90 MT SOIL: C \$40.00 \$1,156.00 \$150.28 \$1,306.28

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

Signature

\$1,306.28 Net Amount:

MASTERCARD Tendered: 1,306.28

Change: \$0.00

H.S.T # 84188 4893

C of A A210742 C of A A680294

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9

PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Ticket: F1-68376 Weighmaster: TERESA DONATO

Date In **Date Out** 10-Aug-2017 12:46 pm 10-Aug-2017 12:52 pm

Vehicle / Trk ID: AD88192 - 2570734 Ont Inc 1

Carrier: 2570734 Ont Inc

38233

INBOUND

42,680.00 Man. WT 13,560.00 Tare Out

29,120.00

29.12 MT SOIL: C \$40.00 \$1,164.80 \$151.42 \$1,316.22

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

MASTERCARD

\$1,316.22

1,316,22

Change:

Net Amount:

Tendered:

\$0.00

Signature

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9

PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Ticket: F1-68381 Weighmaster: TERESA DONATO

Date Out

Date In 10-Aug-2017 1:35 pm 10-Aug-2017 1:46 pm

Vehicle / Trk ID: 9225YT - A Haulage

Carrier: A Haulage

18365

INBOUND

40,320.00 Man. WT 13,370.00 Tare Out

26,950.00

26.95 MT SOIL: C \$40.00 \$1,078.00 \$140.14 \$1,218.14

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

MASTERCARD

Net Amount: \$1,218.14

Tendered:

1,218.14

\$0.00

Change:

H.S.T # 84188 4893

GREEN FOR LIFE environmental

Signature

C of A A210742 C of A A680294

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9

PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Ticket: F1-68390 Weighmaster: TERESA DONATO

Date Out Date In

10-Aug-2017 1:45 pm 10-Aug-2017 1:50 pm

Vehicle / Trk ID: AD10339 - Duhok 04

Carrier: Duhok

37694

INBOUND

35,420.00 Man. WT 13,500.00 Tare Out

21,920.00

21.92 MT SOIL: C \$40.00 \$876.80 \$113.98 \$990.78

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

Net Amount: VISA Tendered: \$990.78 990.78

Change:

\$0.00

Signature

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9

PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Ticket: F1-68391 Weighmaster: TERESA DONATO

Date Out

Date In 10-Aug-2017 2:05 pm 10-Aug-2017 2:38 pm

Vehicle / Trk ID: AC18744 - Freestyle 213

Carrier: Freestyle

25216 **INBOUND**

> 38,470.00 Man. WT 13,340.00 Tare Out

25,130.00

25.13 MT SOIL: C \$40.00 \$1,005.20 \$130.68 \$1,135.88

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

VISA

\$1,135.88 Net Amount:

Tendered: 1,135.88 Change:

\$0.00

H.S.T # 84188 4893

GREEN FOR LIFE environmental

Signature

C of A A210742 C of A A680294

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9 PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Ticket: F1-68392 Weighmaster: TERESA DONATO

Date Out Date In 10-Aug-2017 2:40 pm 10-Aug-2017 2:40 pm

Vehicle / Trk ID: AD88192 - 2570734 Ont Inc 1

Carrier: 2570734 Ont Inc

38234

INBOUND

39,430.00 Man. WT 13,560.00 Tare Out

25,870.00

25.87 MT SOIL: C \$40.00 \$1,034.80 \$134.52 \$1,169.32

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

Signature

Net Amount: \$1,169.32 VISA Tendered: 1.169.32 Change: \$0.00

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9

PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Ticket: F1-68399 Weighmaster: TERESA DONATO

Date Out

Date In 10-Aug-2017 3:02 pm 10-Aug-2017 3:18 pm

Vehicle / Trk ID: AD10339 - Duhok 04

Carrier: Duhok

37695 **INBOUND**

> 34,710.00 Man. WT 13,500.00 Tare Out

21,210.00

21.21 MT SOIL: C \$40.00 \$848.40 \$110.29 \$958.69

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

VISA

\$958.69 Net Amount:

Tendered: 958.69 \$0.00

Change:

H.S.T # 84188 4893

GREEN FOR LIFE

environmental

Signature

C of A A210742 C of A A680294

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9 PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East

Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Ticket: F1-68400 Weighmaster: TERESA DONATO

Date Out Date In 10-Aug-2017 3:08 pm 10-Aug-2017 3:22 pm

Vehicle / Trk ID: 9225YT - A Haulage

Carrier: A Haulage

18366

INBOUND

39,050.00 Man. WT 13,370.00 Tare Out

25,680.00

25.68 MT SOIL: C \$40.00 \$1,027.20 \$133.54 \$1,160.74

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

Net Amount: VISA

\$1,160.74 1,160.74

Change:

Tendered:

\$0.00

Signature

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9

PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Ticket: F1-68404 Weighmaster: TERESA DONATO

Date Out

Date In 10-Aug-2017 3:16 pm 10-Aug-2017 4:04 pm

Vehicle / Trk ID: AD88192 - 2570734 Ont Inc 1

Carrier: 2570734 Ont Inc

38235

INBOUND

37,260.00 Man. WT 13,560.00 Tare Out

23,700.00

23.70 MT SOIL: C \$40.00 \$948.00 \$123.24 \$1,071.24

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc, it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

Signature

\$1,071.24 Net Amount:

Tendered: 1,071.24 Change: \$0.00

H.S.T # 84188 4893

C of A A210742 C of A A680294

GFL ENVIRONMENTAL INC. - SOIL - FENMAR 38 Fenmar Drive North York, ON M9L 1L9

PH:(416) 745-8080 FX:(416) 745-3478

002001 - 2512461 Ontario Ltd 2502-110 Charles Street East Toronto, ON M4Y 1T5

Signature

Contract/ Site Name: 20170739 - T&D 6611 2ND LINE WEST MISSISSAUGA

REPRINT

Weighmaster: TERESA DONATO Ticket: F1-68403 Date In Date Out

VISA

10-Aug-2017 3:48 pm 10-Aug-2017 3:48 pm

Vehicle / Trk ID: AC18744 - Freestyle 213

Carrier: Freestyle NO LOAD

25217

INBOUND

13,340.00 Man. WT 13,340.00 Tare Out

0.00

0.00 MT SOIL: C \$40.00 \$0.00 \$0.00 \$0.00 1.00 NO LOAD CHARGE \$350.00 \$350.00 \$45.50 \$395.50

TERMS AND CONDITIONS FOR DISPOSAL

User of this facility assume all liability for any injury or damage to person or property arising from or contributed to by users' failure to comply with procedures posted by GFL Environmental Inc. and/or instructions provided by a GFL Environmental Inc. attendant.

Customers represents and warrants that the description of the material deposited with GFL Environmental Inc. on the face hereof is accurate and that the waste does not, unless specifically noted on the face hereof, include any radioactive, volatile, corrosive, highly flammable, explosive, biomedical, infectious biohazardous, toxic, hazardous or special waste such terms are defined in applicable local, provincial or federal law. Customer agrees to indemnify and save GFL Environmental Inc., it's directors, officers and employees, harmless from any and all costs and expenses (including without limitation any line or penalty imposed upon GFL Environmental Inc.) which GFL Environmental Inc. may incur arising from or as a result of any misrepresentation of the waste

Net Amount: \$395.50 VISA Tendered: 395.50

> Change: \$0.00