

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 958-960 EAST AVENUE, MISSISSAUGA, ONTARIO

REGION OF PEEL

VERSION 2

PROJECT NO.: 181-11306-00 DATE: DECEMBER 2018

WSP 51 CONSTELLATION COURT TORONTO, ON, CANADA M9W 1K4

WSP.COM

51 CONSTELLATION COURT TORONTO, ON, CANADA M9W 1K4

wsp.com

December 20, 2018

Mr. Yuen Lee

REGION OF PEEL 10 Peel Centre Drive, Suite B Brampton, Ontario L6T 4B9

Subject: Phase Two Environmental Site Assessment 958-960 East Avenue, Mississauga, Ontario Project No.: 181-11306-00

WSP is pleased to present our Phase Two Environmental Site Assessment report for the abovenoted property. This Phase Two Environmental Site Assessment was completed in accordance with Ontario Regulation 153/04, as amended. As such, this report may be used to support a Record of Site Condition application for the property. The report describes the interpreted environmental conditions at the property and provides conclusions for your consideration.

We trust that this information is sufficient for your current needs. If you have any questions or require further information, please contact us.

Yours truly,

tillet

Michael Wilson, C.E.T. **Project Manager**

WSP ref.: 181-11306-00

SIGNATURES

PREPARED BY

Michael Wilson, C.E.T. Project Manager, Environment

REVIEWED BY

Marty Barons, P.Eng., QP_{ESA} Environmental Engineer

This report was prepared by WSP for the account of REGION OF PEEL, in accordance with the professional services agreement. The disclosure of any information contained in this report is the sole responsibility of the intended recipient. The material in it reflects WSP's best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. WSP accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This limitations statement is considered part of this report.

The original of the technology-based document sent herewith has been authenticated and will be retained by WSP for a minimum of ten years. Since the file transmitted is now out of WSP's control and its integrity can no longer be ensured, no guarantee may be given with regards to any modifications made to this document.

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT Project No. 181-11306-00 REGION OF PEEL WSP December 2018 Page iii

TABLE OF CONTENTS

1	EXECUTIVE SUMMARY0
2	INTRODUCTION
2.1	Site Description
2.2	Property Ownership
2.3	Current and Proposed Future Uses
2.4	Applicable Site Condition Standard
3	BACKGROUND INFORMATION
3.1	Physical Setting5
3.2	Past Assessments and Investigations
4	SCOPE OF INVESTIGATION7
4.1 4.1.1	Overview of Site Investigation7 Sampling and Analysis Plan7
4.2	Media Investigation
4.3	Phase One Conceptual Site Model8
4.4	Deviations from the sampling and analysis plan
4.5	Impediments
5	INVESTIGATION METHOD
-	
5.1	Ceneral
5.1 5.2	General
5.1 5.2 5.3	General 10 Drilling 10 Soil 11
5.1 5.2 5.3 5.3.1 5.3.2	General 10 Drilling 10 Soil 11 Soil Sampling 11 Field Screening Measurements 11
5.1 5.2 5.3 5.3.1 5.3.2 5.4 5.4.1 5.4.2	General 10 Drilling 10 Soil 11 Soil Sampling 11 Field Screening Measurements 11 Groundwater 12 Groundwater Konitoring and Well Installation 12 Groundwater Field Measurement of Water Quality Parameters 12
5.1 5.2 5.3 5.3.1 5.3.2 5.4 5.4.1 5.4.2 5.4.3	General 10 Drilling 10 Soil 11 Soil Sampling 11 Field Screening Measurements 11 Groundwater 12 Groundwater Monitoring and Well Installation 12 Groundwater Field Measurement of Water Quality Parameters12 12 Groundwater Sampling 12
5.1 5.2 5.3 5.3.1 5.3.2 5.4 5.4.1 5.4.2 5.4.3 5.4.3 5.5	General 10 Drilling 10 Soil 11 Soil Sampling 11 Field Screening Measurements 11 Groundwater 12 Groundwater Monitoring and Well Installation 12 Groundwater Field Measurement of Water Quality Parameters12 12 Sediment Sampling 12
5.1 5.2 5.3 5.3.1 5.3.2 5.4 5.4.1 5.4.2 5.4.3 5.5 5.6	General 10 Drilling 10 Soil 11 Soil Sampling 11 Field Screening Measurements 11 Groundwater 12 Groundwater Monitoring and Well Installation 12 Groundwater Field Measurement of Water Quality Parameters12 12 Sediment Sampling 12 Analytical Testing 12

5.8	Elevation Survey	13
5.9	Quality Assurance and Quality Control Measures	13
6	REVIEW AND EVALUATION	15
6.1	Geology/Soil Stratigraphy	15
6.2	Hydrogeology	15
6.2.1	Elevations and Flow Direction	15
6.2.2	Hydraulic Gradients	15
6.3	Results of Analysis	15
6.3.1	Soil Texture Analysis	15
6.3.2	Field Screening	16
6.3.3	Soil Chemical Quality	16
6.3.4	Soil - Metals and Other Regulated Parameters	16
6.3.5	Soil - Petroleum Hydrocarbons and BTEX	17
6.3.6	Soil - Volatile Organic Compounds	17
6.3.7	Soil - Polycyclic Aromatic Hydrocarbons	
6.3.8	Soil - Polychlorinated Biphenyls Hydrocarbons	17
6.3.9	Waste Characterization - TCLP	17
6.3.10	Groundwater Chemical Quality	
6.3.11	Groundwater - Metals and Other Regulated Parameters	17
6.3.12	Groundwater - Petroleum Hydrocarbons and BTEX	18
6.3.13	Groundwater-Volatile Organic Compounds	18
6.3.14	Sediment Quality	18
6.4	Quality Assurance and Quality Control Results	18
6.5	Phase Two Conceptual Site Model	19
7	CONCLUSIONS	. 28
7.1	Qualifier	29
7.2	Qualifications of the Assessors	29
8	REFERENCES	.30

TABLES (WITHIN BODY OF REPORT)

TABLE 1.1	PCA SUMMARY	0
TABLE 2.1	PROPERTY INFORMATION	3
TABLE 2.2	PROPERTY OWNERSHIP INFORMATION	3
TABLE 3.1	SUMMARY OF PHYSICAL SETTING	5
TABLE 4.1	LIST OF STANDARD OPERATING	
	PROCEDURES USED IN FIELD	
	INVESTIGATION	7
TABLE 5.1	SUMMARY OF DRILLING	10
TABLE 5.2	SUMMARY OF FIELD SCREENING	
	INFORMATION	11
TABLE 5.3	SUMMARY OF RESIDUE MANAGEMENT	
	PROCEDURES	13
TABLE 5.4	QUALITY ASSURANCE AND QUALITY	
	CONTROL MEASURES	13
TABLE 6.1	SOIL TEXTURE ANALYSIS	15
TABLE 6.2	SUMMARY OF METAL AND ORP	
	EXCEEDANCES IN SOIL	16
TABLE 6.3	SUMMARY OF QA/QC RESULTS	18
TABLE 6.4	SUMMARY OF PCAS IDENTIFIED IN THE	
	PHASE ONE ESA	19
TABLE 6.5	SUMMARY OF APECS IDENTIFIED IN	
	PHASE ONE ESA	21
TABLE 6.6	SUMMARY OF PHASE TWO CSM	

TABLES (APPENDED TO REPORT)

Table 1	Monitoring Well Installation and Groundwater Levels
Table 2	Summary of Soil Samples Submitted for Chemical Analysis
Table 3	Summary of Groundwater Samples Submitted for Chemical
	Analysis
Table 4	Soil Analytical Results - Metals and ORPs
Table 5	Soil Analytical Results - PHCs and BTEX
Table 6	Soil Analytical Results - VOCs
Table 7	Soil Analytical Results - PAHs
Table 8	Soil Analytical Results - TCLP
Table 9	Soil Analytical Results - PCBs
Table 10	Groundwater Analytical Results - Metals and ORPs
Table 11	Groundwater Analytical Results - PHCs and BTEX
Table 12	Groundwater Analytical Results - VOCs
Table 13	Summary of Maximum Concentrations in Soil
Table 14	Summary of Maximum Concentrations in Groundwater

FIGURES (APPENDED TO REPORT)

Figure 1	Phase One Conceptual Site Model
Figure 2	Areas of Potential Environmental Concern
Figure 3	Borehole Location Plan
Figure 4	Groundwater Contours and Groundwater Flow
Figure 5	Summary of Chemical Analysis in Soil
Figure 6	Chemical Exceedances in Soil - ORPs
Figure 7	Summary of Chemical Analysis in Groundwater
Figure 8	Cross Section A-A' and B-B' with Chemical Exceedances in
	Soil - ORPs
Figure 9	Contaminant Transport Diagram - Human Health Exposure
Figure 10	Contaminant Transport Diagram - Ecological Exposure

APPENDICES

TABLES FIGURES

- 1 OORES
- A LEGAL SURVEY
- B SAMPLING AND ANALYSIS PLAN
- **C** BOREHOLE LOGS
- D CERTIFICATES OF ANALYSIS
- D-1 Soil

D-2 Groundwater

ACRONYMS AND ABBREVIATIONS

μm	micrometre(s)
APEC	area(s) of potential environmental concern as defined in O.Reg. 153/04, "the area on, in or under a phase one property where one or more contaminants are potentially present, as determined through the phase one environmental site assessment, including through (a) identification of past or present uses on, in or under the phase one property, and (b) identification of potentially contaminating activity"
As	arsenic
B-HWS	boron (hot water soluble)
BTEX	benzene, toluene, ethylbenzene, and xylenes
CALA	Canadian Association for Laboratory Accreditation
Cl-	chlorine
CN-	cyanide
Cr (VI)	hexavalent chromium
CSM	conceptual site model
DNAPL	dense non-aqueous phase liquid(s)
EC	electrical conductivity
ESA	environmental site assessment
ha	hectare(s)
Hg	mercury
ICC	Industrial/Commercial/Community
km	kilometre(s)
L	litre(s)
LNAPL	light non-aqueous phase liquid(s)
m	metre(s)
masl	metres above sea level
mbgs	metres below ground surface
MDL	method detection limit
MNRF	Ministry of Natural Resources and Forestry
MECP	Ministry of the Environment, Conservation and Parks
N/S	Not Specified
Na	sodium
O.Reg. 153/04	Ontario Regulation 153/04, as amended
O.Reg. 347	Ontario Regulation 347, as amended

O.Reg. 903	Ontario Regulation 903, as amended
ORPs	other regulated parameters
РАН	polycyclic aromatic hydrocarbon
PCA	potentially contaminating activity as defined in O.Reg. 153/04, "a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a Phase One study area"
РСВ	polychlorinated biphenyls
РСОС	potential contaminant(s) of concern
РНС	petroleum hydrocarbon
PID	photoionization detector
PIN	property identification number
ppm	parts per million
QA	quality assurance
QC	quality control
QPESA	Qualified Person for ESAs according to MECP O.Reg. 153/04
RA	Risk Assessment
RDL	reporting detection limit
RPI	Residential/Parkland/Institution
RPIICC	Residential/Parkland/Institution/Industrial/Commercial/Community
RSC	Record of Site Condition
SAP	Sampling and Analysis Plan
SAR	sodium adsorption ratio
Sb	antimony
Se	selenium
SOP	standard operating procedure(s)
SCS	Site Condition Standard
THM	trihalomethane
TOV	total organic vapours
UST	underground storage tank
VOC	volatile organic compound

1 EXECUTIVE SUMMARY

WSP Canada Inc. was retained by The Region of Peel to conduct a Phase Two Environmental Site Assessment (ESA) at 958-960 East Avenue in Mississauga, Ontario (hereafter referred to as the "Phase Two Property" or "Site"). It is our understanding that this Phase Two ESA was undertaken to assess the soil and groundwater conditions prior to a residential redevelopment, and that a Record of Site Condition (RSC) for the Phase Two Property will be required.

The Site is located on the southwest corner of Lakeshore Road East and East Avenue in a mixed industrial, commercial, community, parkland, and residential area in the City of Mississauga, Ontario. The location of the Site is provided on Figure 1. The Phase One Property is currently utilized for residential purposes, with a total area of 0.7601 ha (1.9 acres).

Based on the Phase One ESA completed by WSP in October 2018, the Phase Two Property is considered to have areas of potential environmental concern (APEC) due to the following potentially contaminating activities (PCAs):

Table 1.1 PCA Summary

DCAc

PCA No. 8 Chemical Manufacturing, Processing and Bulk Storage	Phase One Study Area – Based on a review of the city directories, Abbie-Innes Manufacturing Ltd. Sanitary Chemical, was historically located at 795 1 st Street, approximately 105 m north of the Phase One Property. (APEC 6)
	A review of the city directories HB Fuller-Monercher Inc. and Fuller B Canada Inc., industrial adhesives, coating, and sealant operations, historically operated at 880 Rangeview Road, approximately 250 m south of the Site. Based on the location relative to inferred groundwater flow direction, and distance of the PCAs from the Site, these operations were not considered to be contributing to an APEC on-site.
PCA No. 10 Commercial Autobody Shops	Phase One Study Area – Based on a review of the city directories and current activities noted during the site reconnaissance, Speedy Glass and Wheels & Tires Ltd. operated at 811 Lakeshore Road East, and Ultimocar and E-Zee Wheels Auto Sales operated at 825 Lakeshore Road east, both approximately 10 m north of the Site. (APEC 6)
PCA No. 28 Gasoline and Associated Products Storage in Fixed Tanks	<u>Phase One Study Area</u> – Based on a previous investigation of a neighbouring property, a historic UST was previously located at 930 East Avenue, south adjacent to the Phase One Property, prior to its removal in 2014. (APEC 5)
PCA No. 30 Importation of Fill Material of Unknow Quality	<u>Phase One Property</u> – Uneven grading was noted throughout the Phase One Property during the site reconnaissance, it is assumed that fill material was imported on to the Site. (APEC 2)
PCA No. 37 Operation of Dry Cleaning Equipment (where chemicals are used)	<u>Phase One Study Area</u> – Based on a review of the city directories, Superior Cleaners historically operated at 791 Lakeshore Road East, approximately 10 m north of the Phase One Property. (APEC 6)
PCA No. 54 Textile Manufacturing and Processing	<u>Phase One Study Area</u> – Based on a review of the city directories, Duralite Furniture Manufacturing historically operated at 795 1 st Street, approximately 105 m north of the Phase One Property. (APEC 6)

DESCRIPTION

PCAs

DESCRIPTION

PCA No. 55 Transformer Manufacturing, Processing and Use	<u>Phase One Property</u> – A transformer was noted in the middle of the Phase One Property during the site reconnaissance. (APEC 3)
PCA No. 58 Waste Disposal and Waste Treatment, including thermal treatment, landfilling and transfer of conditioners	Phase One Study Area – One (1) property within the Phase One Study Areas was the location of a former landfilling operation and eight (8) properties within the Phase One Study Area were registered in the O.Reg. 347 database for the generation, use and/or storage of various wastes, including 930 East Avenue, located south adjacent to the Phase One Property, was registered for the generation, use, and/or storage of inorganic chemical waste, aliphatic solvents and residues, petroleum distillates, waste oils/sludges, and organic chemical waste. (APEC 4)
PCA No. N/S A Application of De-icing Compounds	<u>Phase One Property</u> – Vehicle parking lots were noted on the Phase One Property during the site reconnaissance and it is assumed that it has been subject to de-icing compounds. (APEC 1)

From November 1 to 8, 2018 eight (8) boreholes (BH18-1 to BH18-8) were advanced on the Site using a trackmounted Mobile B-45 HD drill rig. Five (5) boreholes were converted to monitoring wells (BH18-1, BH18-2, BH18-4, BH18-5 and BH18-7) and two (2) located consisted of shallow and deep nested wells (BH18-1 S/D and BH18-2 S/D). The borehole locations were selected based on the findings of the Phase One ESA (WSP, 2018). Soil and groundwater samples were submitted for analysis of potential contaminants of concern (PCOCs) including: metals and ORPs, PHCs, VOCs, PAHs and PCBs.

- Fill material was identified in all boreholes at depth ranging from approximately 0.9 to 2.1 mbgs. The fill material consisted of silty clay with trace sand and gravel and contained shale fragments, wood fragments and rootlets. Beneath the fill material, native deposits of silty clay till were encountered to depths ranging from 3.0 to 3.7 mbgs. Silty clay till/shale complex was encountered below the silty clay till unit which was encountered above the shale bedrock at depths ranging from 3.8 to 6.5 mbgs. Rock coring was completed in three (3) boreholes (BH18-1D, BH18-2D and BH18-3).
- The depth to groundwater was recorded in the overburden monitoring wells (BH18-1S, BH18-2S, BH18-4, BH18-5 and BH18-7) installed during the current investigation. The groundwater levels were found to range between 1.9 and 3.2 mbgs and the groundwater elevations ranged between 78.0 and 80.2 m masl. Based on the levels recorded, the groundwater flow direction appears to be southwesterly. However, subsurface utilities may be influencing the water levels, specifically for BH18-7. Groundwater flow direction can be influenced by seasonal fluctuation, utility services, and other subsurface features and can only be confirmed with long term monitoring.
- The soil and groundwater analytical results were compared to 2011 MECP Table 3 Full Depth Generic SCS in a Non-Potable Groundwater Condition for RPI Use.
- A total of thirty-six (36) soil samples, and four (4) QA/QC samples, were submitted to the laboratory and analysed for PCOCs including: metals and ORPs, PHCs, VOCs, PAHs and PCBs. The results of the analyses indicated the following exceedances of the MECP Table 3 RPI SCS.

SAMPLE ID	DEPTH (MBGS)	PARAMETER	UNITS	TABLE 3 RPI SCS	ANALYTICAL RESULT
BH18-2 SS2	0.8-1.4	EC	mS/cm	0.7	2.9

Table 7.1 Summary of Exceedances in Soil

		SAR	-	5	24
BH18-2 SS3	1.5-2.1	EC	mS/cm	0.7	2.0
BH18-2 SS4	2.3-2.9	EC	mS/cm	0.7	1.8

Notes:

Bold and Shaded: Concentration exceeds the MECP Table 3 RPI SCS

In November and December 2018, groundwater samples were obtained from the five (5) overburden monitoring wells and submitted for analysis of metals and ORPs, PHCs, and VOCs. The groundwater analytical results indicated all samples met the MECP Table 3 SCS with the exception of elevated F2 concentrations at BH18-4, located on the south portion of the Site. As this concentration marginally exceeded the MECP Table 3 SCS, redevelopment and resampling was conducted and two (2) subsequent groundwater sampling events indicated the concentrations met the MECP Table 3 SCS for PHCs. As the two (2) most recent sampling events at BH18-4 met the MECP Table 3 SCS for PHCs, the original groundwater exceedance may be an anomaly and not representative of the actual groundwater conditions at this location.

Based on the findings of this Phase Two ESA, WSP presents the following conclusions and recommendations:

- Soils impacted with elevated EC and/or SAR are present on the property at one (1) borehole location in the vicinity of the private parking lot and were found at depths ranging from 0.8-2.9 mbgs.
- All groundwater samples collected met the MECP Table 3 SCS for the parameters analyzed.
- As the property is proposed to be developed from residential to residential (no change in property use) a
 RSC may be required as part of site development by lower tier municipalities. Remediation of soil impacted
 with EC/SAR followed by confirmatory sampling would be required to support an RSC filing. Alternatively,
 if remediation is not considered feasible, a RA can be conducted instead of, or in conjunction with
 remediation.
- In the case of either remediation or RA, further assessment of the extent of impacts (particularly horizontal extent) will be required to further investigate the EC/SAR impacts. Remediation and collection of confirmatory soil samples can be conducted during construction and bulk excavation.
- All monitoring wells should be decommissioned in accordance with O.Reg. 903 when no longer required.

2 INTRODUCTION

WSP was retained by The Region of Peel to conduct a Phase Two ESA of the property located at 958-960 East Avenue in Mississauga, Ontario. It is our understanding that this environmental assessment has been requested prior to residential redevelopment of the Site and that a RSC with the MECP may be required. The Phase Two ESA was conducted in compliance with O.Reg. 153/04 to support the proposed residential redevelopment of the Site.

2.1 SITE DESCRIPTION

The Site is located on the southwest corner of Lakeshore Road East and East Avenue in a mixed industrial, commercial, community, parkland, and residential area in the City of Mississauga, Ontario. The location of the Site is provided on Figure 1. The Phase One Property is currently utilized for residential purposes, with a total area of 0.7601 ha (1.9 acres).

The Phase Two Property is occupied with two (2) residential apartment buildings and a tenant parking lot located on the east portion of the property. The location of the residential structures on the Phase Two Property and the location of the Phase Two Property are depicted in Figure 1.

Property information for the Site is provided in the table below:

Table 21	Property	Information
	Property	mornation

CRITERION	DESCRIPTION
Municipal Address	958-960 East Avenue, Mississauga, Ontario
Property Identification Numbers (PINs)	153485-0269 (LT)
Legal Description	Part of Lot 9 and 10, Concession 3, South of Dundas Street (Formerly Township of Toronto, County of Peel), City of Mississauga, Regional Municipality of Peel

A survey plan was not available for the Phase One Property. A site plan is attached in Appendix A.

2.2 PROPERTY OWNERSHIP

Property ownership information for the Site is provided in the table below:

Table 2.2 Property Ownership Information

CRITERION	DESCRIPTION
Current Site Owner	Peel Housing Corporation

Owner's Representative	Yuen Lee The Region of Peel 10 Peel Centre Drive, Suite B, Mississauga, Ontario L9T 4B8 Email: Yuen.lee@peelregion.ca
	Linum Fueimeet@peen egiomeu

2.3 CURRENT AND PROPOSED FUTURE USES

The Phase Two Property is currently occupied with two (2) residential apartment buildings and a tenant parking lot located on the east portion of the property. It is our understanding that the site is proposed to be redeveloped with a 7 to 10 storey residential building structure with two (2) levels of underground parking and one (1) level of above ground parking.

2.4 APPLICABLE SITE CONDITION STANDARD

Analytical results were compared to the 2011 MECP Table 3 Full Depth Generic SCS in a Non-Potable Groundwater Condition for RPI property uses and medium to fine grained soils set out in the MECP publication *Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act* (April 15, 2011). This evaluation standard for the Phase Two Property was selected for comparison purposes based on the following:

- The City of Mississauga obtains its potable water from Lake Ontario, and does not rely on groundwater as a
 potable water source.
- The Phase Two Property is not considered an "environmentally sensitive" site, as defined by O.Reg. 153/04
- Residential land use is proposed for the Phase Two Property
- The Phase Two Property is not situated within 30-m of a water body
- The pH of the soil samples analysed during this investigation from the eight (8) boreholes ranged from 6.66 to 7.76, which falls within the acceptable range stated in O.Reg. 153/04
- Bedrock was not encountered within 2 m of the ground surface
- Grain size analysis indicated that over 2/3 of the Phase Two Property is considered medium to fine textured soil as defined in O.Reg. 153/04. The grain size results are presented in Appendix C.

3 BACKGROUND INFORMATION

3.1 PHYSICAL SETTING

A summary of the Site's physical setting, determined through the Phase One ESA is included in table below:

Table 3.1Summary of Physical Setting

CRITERIA	DESCRIPTION
i. Water Bodies and Areas of Natural Significance	 The Etobicoke Creek is located approximately 1.0 km to the east and Lake Ontario is located approximately 500 m south of the Phase One Property. No areas of natural significance were identified in the Phase One Study Area The ERIS ANSI Report did not identify the Phase One Property or any areas within the Phase One Study Area as a having Natural & Scientific Interest. The Natural Heritage Areas database lists areas of natural significance including provincial parks, conservation reserves, areas of natural and scientific interest, wetlands environmentally significant areas, habitats of a threatened or endangered species, and wilderness areas. A review of this database listed the following four (4) species as either endangered for threatened; The Henslow's Sparrow (bird) has been listed as endangered by SARO and COSEWIC. The Henslow's Sparrow was last observed within 1 km of the Phase One Property in 1932. Given that the last sighting was in 1932, it is not anticipated that there are any Henslow's Sparrows utilizing the Site or nearby neighbouring properties as habitat. The American Eel (fish) has been listed as endangered by SARO and COSEWIC. The American Eel (fish) has been listed as threatened by SARO and COSEWIC. The American Eel (fish) has been listed as threatened by SARO and COSEWIC. According to the MNRF, the barn shallows are found in open structures almost exclusively their habitats are in barns, under bridges, and in culverts. Given that there are any Barn Swallow's habitats on the Site or the neighbouring properties. It not anticipated that these species would be found on the Site; however, if required, an environmental specialist could be retained to undertake a site-specific Ecological assessment. At this time further assessment is not warranted.
ii. Topography, Hydrology, Geology	The Phase One Property is relatively flat with an elevation of approximately 82 to 85 masl. The topography in the vicinity of the Phase One Property slopes to the south. Based on the local topography, the inferred shallow groundwater flow direction of the Phase One Study Area is to the southwest towards Lake Ontario and Cooksville Creek, which is located approximately 500 m south and 650 m southwest of the Site, respectively. The groundwater flow direction on the Phase One Property can only be confirmed through long-term groundwater monitoring. The Site is situated within a Bevelled till plain physiographic region. The surficial geology in the vicinity of the Site is described as "Coarse-textured glaciolacustrine

deposits - sand, gravel, minor silt and clay foreshore and basinal deposits." The underlying bedrock within the area generally consists of shale, limestone, dolostone, and siltstone of the Georgian Bay Formation; Blue Mountain Formation; Billings Formation; Collingwood Member; Eastview Member. The bedrock in the vicinity of the Site is anticipated at depths of approximately 5 mbgs, based on the available MECP well records.

3.2 PAST ASSESSMENTS AND INVESTIGATIONS

A Phase One ESA was completed concurrently with this investigation and in referenced throughout this report. The Phase One CSM can be found in Section 4.3 below.

4 SCOPE OF INVESTIGATION

4.1 OVERVIEW OF SITE INVESTIGATION

The Phase Two ESA involved intrusive investigation in the areas determined in the Phase One ESA to be APECs. The Phase Two ESA was carried out according to O. Reg. 153/04. The Site investigation activities were limited to visible and accessible locations of the Site. Subsurface investigations, testing, sampling, and laboratory analyses were completed based on finding of Phase One ESA, accessibility to each APEC, and site observations.

The site investigation program included the following:

- Clearance of public and private underground utilities and services prior to commencement of intrusive investigation activities.
- Preparation of a Health and Safety Plan and safe execution of all proposed work.
- Advancement of eight (8) boreholes on the Phase Two Property, to depths ranging from approximately 4.6 to 12.3 mbgs using a track-mounted drill rig. The soil lithology from each borehole was logged in the field and samples were screened for TOV with a photoionization detector. The location of the boreholes was selected to investigate any APECs identified during the Phase One ESA.
- Based on field screening and visual/olfactory observations, worst-case/representative soil samples from the boreholes were submitted for laboratory testing of relevant PCOCs.
- Groundwater monitoring wells were installed within five (5) boreholes to assess groundwater quality at the Site and determine the direction of groundwater flow in the overburden. In addition, two (2) monitoring wells were installed in the bedrock for geotechnical and hydrogeological purposes.
- The groundwater levels in the wells were measured to determine the groundwater table elevation. The wells were surveyed to a geodetic benchmark to determine groundwater flow direction.
- The groundwater wells were purged to remove stagnant water and sampled for laboratory testing of relevant parameters of concern.
- Both soil and groundwater samples were submitted for chemical analysis by a CALA certified laboratory in accordance with the MECP standards and requirements of O.Reg. 153/04 under the Environmental Protection Act.

4.1.1 SAMPLING AND ANALYSIS PLAN

The SAP is provided in Appendix B. per O.Reg. 153/04 Schedule E. Condition 3(5), WSP developed the SOPs used in the field investigation.

Fieldwork for this Phase Two ESA was undertaken following the SOPs. Deviations from the SAP and SOPs, if any, are detailed in Section 4.4. The list of SOPs is presented in the table below.

Table 4.1 List of Standard Operating Procedures Used in Field Investigation

CATEGORY	SOP
i. Drilling	Auger/Boring Rigs

CATEGORY		SOP
		Rock coring Monitoring Well Hollow Stem Auger Advancement Soil Sample Material Descriptions
ii.	Soil Sampling	Continuous Sampling Field Soil Sampling for VOC and PHC Analysis
iii.	Soil Field Testing	Odour Identification Field Screening of Samples for Organic Vapours
iv.	Monitoring Well Construction	Monitoring Well Construction Monitoring Well Development
v.	Field Measurement of Water Quality Indicators	Temperature Measurement Conductivity Measurement pH Measurement Dissolved Oxygen Measurement
vi.	Groundwater Monitoring/Sampling	Water Level Monitoring Non-Aqueous Phase Liquid Level Monitoring Monitoring Well Purging Monitoring Well Sampling Volatile Organic Sampling
vii.	QA/QC Program	Quality Assurance Quality Control

4.2 MEDIA INVESTIGATION

A summary of the media investigated during the Phase Two ESA is provided in Table 2 and Table 3, attached.

4.3 PHASE ONE CONCEPTUAL SITE MODEL

A Phase One CSM was presented in the Phase One ESA report by WSP and is presented in this report as Figure 1. The Phase One CSM identified the PCAs and APECs for the Site, as described in Section 6.5.

4.4 DEVIATIONS FROM THE SAMPLING AND ANALYSIS PLAN

The Phase Two ESA was done in general accordance with the SAP.

4.5 IMPEDIMENTS

Two (2) sanitary force mains and two (2) watermains were located in the open area to the west of the residential buildings. The boreholes planed for this area, were moved further west to avoid this area. As the borehole placement still covered the respective APECs, the impediments did not limit WSP's ability to carry out this Phase Two ESA in accordance with O.Reg. 153/04.

5 INVESTIGATION METHOD

5.1 GENERAL

This section provides a brief description of all methods employed in undertaking this Phase Two ESA. Where the method differs from the associated standard operating procedure, a detailed description of the method used and a rationale for the change in method is provided in the appropriate subsection below.

5.2 DRILLING

WSP staff inspected the Site and identified the preferred borehole locations based on the APECs identified in the most recent Phase One ESA by WSP, as shown on Figure 2. The borehole locations are shown on the Borehole Location Plan in Figure 3. The location of underground services and utilities within the Site were cleared prior to the commencement of the drilling program. WSP arranged for the service locates to be completed through Ontario One Call and OnSite Locators. A summary of the drilling events is presented in the table below.

Table 5.1 Summary of Drilling

INFORMATION PARAMETER DETAILS

Name of Drilling Contractor	Profile Drilling	
Drilling Equipment Used	Mobile B-45 HD (Track)	
Measures taken to minimize the potential for cross-contamination	A 50-mm stainless steel split spoon sampler was used to collect soil samples from the boreholes. The split spoon sampler was brushed clean of soil, washed in municipal water containing phosphate free detergent, rinsed in municipal water, and then rinsed with distilled water for each sampling interval in order to reduce the potential for cross contamination.	
Frequency of sample collection	Every 0.6 m per 0.8 m for the first 3.1 m followed by 0.6 m per 1.5 m to the termination of the borehole.	

From November 1 to 8, 2018 eight (8) boreholes (BH18-1 to BH18-8) were advanced on the Site using a trackmounted Mobile B-45 HD drill rig. Five (5) boreholes were converted to monitoring wells (BH18-1, BH18-2, BH18-4, BH18-5 and BH18-7) and two (2) located consisted of shallow and deep nested wells (BH18-1 S/D and BH18-2 S/D). The boreholes were advanced to a maximum depth of 12.3 mbgs. Soil samples were collected from the fill material and native clayey silt till using a 50-mm diameter, 0.61-m long stainless-steel split spoon sampler.

5.3 SOIL

5.3.1 SOIL SAMPLING

Disposable nitrile gloves were used during sample collection and changed between each sample to minimize the potential for cross-contamination. Soil samples were described in the field by WSP staff and observations were recorded in a dedicated field book. Soil samples were collected directly into laboratory-supplied 120-mL amber glass jars and 40-mL methanol-preserved vials and were stored at a temperature of less than 10°C. Samples selected for laboratory analysis were handled under standard chain of custody procedures until received at the laboratory. The soil samples selected for laboratory analysis were considered representative of worst-case conditions in the boreholes based on field screening results and visual and olfactory observations.

All soil samples were submitted to Maxxam Laboratories in Mississauga, Ontario. The soil samples submitted for chemical analysis are summarized in Table 2, appended.

5.3.2 FIELD SCREENING MEASUREMENTS

Soil samples collected from the boreholes were field screened for TOV using a MiniRae 3000 PID. In addition to visual and olfactory observations, the results of field screening were used to determine worst-case samples in order to select those to submit to the laboratory for analysis of volatile parameters. Additional samples may have been analysed for delineation purposes, if required. A summary of field screening measurements is provided in the table below.

Table 5.2 Summary of Field Screening Information

	n	I A
CR	R	IA
U () ()		., .

DESCRIPTION

i.	Make and Model of Field Screening Instrument	MiniRae 3000 PID, Serial Number 592-911305
ii.	Chemicals that Field Screening Instrument Detects and Respective Detection Limits	VOCs with dynamic range of 0.1 parts per million (ppm) to 5,000 ppm
iii.	Precision of the Measurements	3 significant figures
iv.	Accuracy of the Measurements	± 5% display reading ± one digit
v.	Calibration Reference Standards	Isobutylene
vi.	Calibration Procedures	The PID is factory-calibrated on an annual basis and the calibration was checked on a daily basis both prior to and after use in the field using 100 ppm isobutylene according to manufacturer procedures.

Field screening measurements (PID readings) are discussed in Section 6.3.1.2 and presented on the finalized borehole logs, included in Appendix C.

5.4 GROUNDWATER

5.4.1 GROUNDWATER MONITORING AND WELL INSTALLATION

Groundwater monitoring wells were installed at five (5) borehole locations (BH18-1S, BH8-2S, BH18-4, BH18-5 and BH18-7). The monitoring wells were installed upon completion of soil sampling activities and nitrile gloves were used to handle the well risers and screens during installation to minimize the potential for cross contamination during installation. Two (2) deep monitoring wells were installed as nested wells at BH18-1D and BH8-2D as part of the geotechnical and hydrogeological investigations.

Monitoring wells BH18-1S, BH8-2S, BH18-4, BH18-5 and BH18-7 were screened to intersect the suspected local groundwater table, based on observed conditions in the soil horizon (i.e. brown to grey colour change and/or observed change in moisture content) during the drilling and soil sampling activities. The wells were constructed using 50-mm Schedule 40 PVC riser and included a 3.1-m well screen (slot 10). A sand pack was placed in the borehole annulus around the well screen from the bottom of the well to approximately 0.6-m above the well screen. Bentonite holeplug seal was placed above the sand pack to surface. The wells were completed with flush mount and/or monument casings. The monitoring well construction details are shown on the attached borehole logs included as Appendix C.

5.4.2 GROUNDWATER FIELD MEASUREMENT OF WATER QUALITY PARAMETERS

The monitoring wells were purged using 13-mm LDPE Waterra tubing and an inertial pump (foot valve). The wells were purged by removing three well volumes or by purging the well dry three times. The wells were sampled on November 21, 27, December 6 and 12, 2018 using dedicated bailers. Field measurements of water quality parameters were collected using a Hanna multi-meter as part of this assessment including field pH, EC, and temperature. Field groundwater quality measurements were obtained after the removal of each well volume and were recorded in a dedicated field book. This data has been archived and is available upon request.

5.4.3 GROUNDWATER SAMPLING

On November 21, 27, December 6 and 12, 2018, groundwater samples were collected from the overburden wells. The samples were collected in laboratory-supplied bottles and stored in an ice-filled cooler. The groundwater samples were submitted under proper chain of custody procedures to Maxxam Laboratories in Mississauga for analysis of metals and ORPs, PHCs and VOCs.

5.5 SEDIMENT SAMPLING

Sediment sampling was not conducted as part of this Phase Two ESA.

5.6 ANALYTICAL TESTING

Soil and groundwater samples were submitted to Maxxam Laboratories in Mississauga, Ontario, for chemical analysis for the above listed parameters. Maxxam Laboratories is certified by CALA.

5.7 RESIDUE MANAGEMENT PROCEDURES

The management of residues such as soil cuttings, purge and development groundwater, and fluids from equipment cleaning was conducted as indicated in the table below.

Table 5.3 Summary of Residue Management Procedures

RESIDUE

MANAGEMENT PROCEDURE

i.	Soil cuttings from drilling and excavations	Soil cuttings were placed in drums pending the soil analysis for offsite disposal removed from the Phase Two Property by BT Mini Disposal
ii.	Water from well development and purging	Groundwater from the development and purging of the monitoring wells was emptied onto the ground downstream of the wells.
iii.	Fluids from equipment cleaning.	Equipment cleaning water was emptied onto the ground downstream of the wells.

5.8 ELEVATION SURVEY

The existing ground surface and top of pipe (well casing) elevations of the groundwater monitoring wells were surveyed with a reference to a local Mississauga Benchmark in November 2018. The ground surface elevations can be found on the borehole logs presented in Appendix C.

5.9 QUALITY ASSURANCE AND QUALITY CONTROL MEASURES

The project-specific QA/QC measures are described in the table below.

Table 5.4Quality Assurance and Quality Control Measures

QA/QC MEASURE

DESCRIPTION

i. Sample containers, preservation, labelling, handling, and custody for samples submitted for	Soil samples from the boreholes were collected in 40 mL methanol- preserved vials for PHC F1/VOCs/BTEX analysis, and 120 mL glass jars without preservative for analysis of all other parameters at the sample locations.
laboratory analysis, including any deviations	Groundwater samples from the monitoring wells were collected using the following laboratory supplied containers:
from the SAP.	VOCs – three (3) 40 mL glass vials preserved with a sodium bisulphate tablet
	PHC F1/BTEX – three (3) 40 mL glass vials preserved with a sodium bisulphate tablet
	PHC F2-F4 – two (2) 250 mL amber glass bottles preserved with a sodium bisulphate tablet
	Inorganics – one (1) 500 mL plastic 'general' bottle, no preservation

QA/QC MEASURE	DESCRIPTION
	Dissolved metals – one (1) 125 mL plastic bottle, HNO3 preservative Mercury – one (1) 100 mL clear glass bottle, HCl preservative Chromium VI – one (1) 125 mL plastic bottle, preserved with Ammonium Sulfate/Ammonium Hydroxide Cyanide – one (1) 125 mL plastic bottle, preserved with Sodium Hydroxide
	Groundwater samples were collected using dedicated sampling equipment for each well. Groundwater samples collected for dissolved metals, mercury, and chromium (VI) analysis were field filtered using a dedicated 0.45-micron filter. Groundwater containers used for PHC F1/BTEX and VOC analysis were filled to achieve zero headspace. Sample containers were labelled with unique sample identification, the project number, and the sampling date. A laboratory-supplied chain of custody was completed. A copy was sent with the samples to the laboratory, and one (1) copy was retained for the project file.
ii. Equipment cleaning procedures during sampling	Nitrile gloves were replaced after each sample was collected to reduce the potential for cross-contamination of the samples. Field equipment was cleaned with soap and water, and was rinsed with distilled water between samples.
iii. Field QC measures	Blind field duplicate samples of soil and groundwater were collected and submitted for laboratory analysis as part of this investigation. A laboratory-prepared VOC trip blank was brought to the Site during the groundwater sampling and was submitted to the laboratory for analysis.
iv. Deviations from the procedures set out in the QA/QC program set out in the SAP.	None

Field duplicate samples were assessed as part of the QA/QC program through a comparison of the analytical results of the original samples to the field duplicate samples. Field duplicates measure the cumulative effects of both field and laboratory precision and hence provide an indication of overall precision. Therefore, field duplicates may have greater variability than laboratory duplicates which measure only laboratory precision. It is also expected that non-aqueous matrices will have a greater variance than aqueous matrices due to the heterogeneity of most non-aqueous samples (such as soil/sediment samples). Field duplicates were evaluated based on the relative percent difference (RPD) in parameter concentrations.

The RPD was calculated in accordance with the *Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act* (July 1, 2011). The calculated RPD was assessed against the recommended performance criteria outlined in the 2011 Protocol where the measured concentration was greater than 5 times the MDL.

AGAT Laboratories also performed QA/QC procedures as outlined in their CALA procedures. These procedures included analysis of lab duplicates and blanks as well as analysis of surrogate recovery as outlined in the Certificates of Analysis provided in Appendix D.

6 REVIEW AND EVALUATION

6.1 GEOLOGY/SOIL STRATIGRAPHY

A brief summary of the subsurface conditions encountered at the Site is presented below. Detailed borehole logs are included in Appendix C.

All boreholes were advanced through fill material ranging in depth from approximately 0.9 to 2.1 mbgs. The fill material consisted of silty clay with trace sand and gravel and contained shale fragments, wood fragments and rootlets. Beneath the fill material, native deposits of silty clay till were encountered to depths ranging from 3.0 to 3.7 mbgs. Silty clay till/shale complex was encountered below the silty clay till unit which was encountered above the shale bedrock at depths ranging from 3.8 to 6.5 mbgs. Rock coring was completed in three (3) boreholes (BH18-1, BH18-2 and BH18-3).

6.2 HYDROGEOLOGY

6.2.1 ELEVATIONS AND FLOW DIRECTION

A summary of the groundwater elevations is presented in Table 1 and groundwater elevations from December 12, 2018 and inferred groundwater flow direction are presented on Figure 4. The December 12, 2018 groundwater elevations in the overburden monitoring wells till ranged from 1.9 to 3.2 mbgs (78.5 to 80.2 masl). The inferred groundwater flow direction is southwesterly. Subsurface utilities may be influencing the water levels, specifically for BH18-7. Groundwater flow direction can be influenced by seasonal fluctuation, utility services, and other subsurface features and can only be confirmed with long term monitoring.

Neither LNAPL nor DNAPL were found to be present in any of the monitoring wells on the Site.

6.2.2 HYDRAULIC GRADIENTS

The hydraulic gradient was calculated based on the December 12, 2018 groundwater elevations. The average horizontal hydraulic gradient was calculated to be 0.0023 based upon these measurements.

6.3 RESULTS OF ANALYSIS

The results of the laboratory analysis are discussed in the following sub-sections.

6.3.1 SOIL TEXTURE ANALYSIS

Results of the soil texture analysis are presented below.

Table 6.1Soil Texture Analysis

CRITERIA DESCRIPTION

i.	rationale for the use of soil texture category,	Three (3) soil samples from the native material underwent grain size analysis, the results of which indicated that all samples were classified as medium to fine grained, as defined by O.Reg. 153/04.
ii.	a description of the results of the required grain size analysis	The results of the five (5) grain size analysis showed that all samples contained more than 50% by mass of particles that are 75 μm or larger in mean diameter. BH18-1 SS4: 11% Gravel, 16% Sand, 45% Silt, 21% Clay BH18-2 SS3: 5% Sand, 61% Silt, 34% Clay BH18-5 SS5: 11% Gravel, 19% Sand, 46% Silt, 24% Clay
iii.	a description and rationale for the number of samples collected and analysed	The grain size analyses were conducted as part of the geotechnical investigation conducted concurrently with this Phase Two ESA. A total of three (3) samples were analyzed in order to characterize the soils across the Phase Two Property.

6.3.2 FIELD SCREENING

Forty-five (45) soil samples were screened for TOV using a PID. TOV concentrations ranged from 1.2 ppm to 6.9 ppm. The TOV readings are included on the borehole logs included in Appendix C. The samples that were submitted for laboratory analysis of organic parameters (VOCs, PHCs, or PAHs) are indicated in the borehole logs provided in Appendix C.

6.3.3 SOIL CHEMICAL QUALITY

The soil analytical results from the present investigation are presented in Tables 4 through Table 9 and summarized on Figure 5. The chemical exceedances in soil are presented in Figure 6.

The Laboratory Certificates of Analysis for the soil analysis completed during the present investigation are provided in Appendix D.

6.3.4 SOIL - METALS AND OTHER REGULATED PARAMETERS

Eight (8) soil samples were collected and submitted for analysis of metals and ORPs. Three (3) additional soil samples were submitted for analysis of EC and/or SAR for vertical delineation purposes. The soil analytical results for metals and ORPs are provided in Table 4. Laboratory analysis indicated the following parameter exceedances of Table 3 RPI SCS for ORPs in the fill and native material on Site, as summarized in Figure 6:

SAMPLE ID	DEPTH (MBGS)	PARAMETER	UNITS	TABLE 3 RPI SCS	ANALYTICAL RESULT
BH18-2 SS2	0.8-1.4	EC	mS/cm	0.7	2.9
		SAR	-	5	24
BH18-2 SS3	1.5-2.1	EC	mS/cm	0.7	2.0
BH18-2 SS4	2.3-2.9	EC	mS/cm	0.7	1.8

 Table 6.2
 Summary of Metal and ORP Exceedances in Soil

6.3.5 SOIL - PETROLEUM HYDROCARBONS AND BTEX

Eight (8) soil samples, including one (1) field duplicate for QA/QC purposes, were collected and submitted for analysis of PHCs and BTEX. The soil analytical results for PHCs and BTEX are provided in Table 5 and the results of the laboratory analyses indicated that all samples analysed met the applicable Table 3 RPI SCS.

6.3.6 SOIL - VOLATILE ORGANIC COMPOUNDS

Eight (8) soil samples, including one (1) blind field duplicate for QA/QC purposes, were collected and submitted for analysis of VOCs. The soil analytical results for VOCs are provided in Table 6 and the results of the laboratory analyses indicated that all samples analysed met the applicable Table RPI 3 SCS.

6.3.7 SOIL - POLYCYCLIC AROMATIC HYDROCARBONS

Eight (8) soil samples, including one (1) blind field duplicate for QA/QC purposes, were collected and submitted for analysis of PAHs. The soil analytical results for PAHs are provided in Table 7 and the results of the laboratory analyses indicated that all samples analysed met the applicable Table 3 SCS.

6.3.8 SOIL - POLYCHLORINATED BIPHENYLS HYDROCARBONS

One (1) soil sample was collected and submitted for analysis of PCBs. The soil analytical results for PCBs is provided in Table 9 and the results of the laboratory analyses indicated that the sample analysed met the applicable Table 3 RPI SCS.

6.3.9 WASTE CHARACTERIZATION - TCLP

One (1) composite soil samples was collected during the drilling program and submitted for TCLP analysis of metals and inorganics, VOCs and PCBs. The TCLP laboratory analysis provided in Table 8 indicated that all concentrations met the Schedule IV Leachate Quality Criteria and can be considered a non-hazardous waste.

6.3.10 GROUNDWATER CHEMICAL QUALITY

The groundwater analytical results from the November and December 2018 sampling events are presented in Tables 10 through 12 and are summarized on Figure 7.

The Laboratory Certificates of Analysis for the groundwater analysis completed during the present Phase Two ESA are provided in Appendix D.

6.3.11 GROUNDWATER - METALS AND OTHER REGULATED PARAMETERS

Five (5) groundwater samples were collected and submitted for the analysis of metals and ORPs. The groundwater analytical results for metals and ORPs are provided in Table 10 and the results of the laboratory analyses indicated that all samples analysed met the applicable Table 3 SCS.

6.3.12 GROUNDWATER - PETROLEUM HYDROCARBONS AND BTEX

Six (6) groundwater samples including one (1) QAQC duplicate were collected and submitted for the analysis of PHCs and BTEX. The groundwater analytical results for PHCs and BTEX are provided in Table 11 and the results of the laboratory analyses indicated that all samples analysed met the applicable Table 3 SCS. It should be noted that a marginal exceedance for PHCs F2 was identified at BH18-4 during the November 21, 2018 groundwater sampling event. Two (2) subsequent groundwater sampling events reported the PHC F2 concentrations below the applicable Table 3 SCS for BH18-4.

6.3.13 GROUNDWATER- VOLATILE ORGANIC COMPOUNDS

Six (6) groundwater samples including one (1) QAQC duplicate were collected and submitted for the analysis of VOCs. The groundwater analytical results for VOCs are provided in Table 12 and the results of the laboratory analyses indicated that all samples analysed met the applicable Table 3 SCS.

6.3.14 SEDIMENT QUALITY

Sediment testing was not a part of this scope of work.

6.4 QUALITY ASSURANCE AND QUALITY CONTROL RESULTS

Proper field protocols for sample collection and handling were followed by all WSP personnel in general accordance with the MECP *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario*. All field equipment was decontaminated before and between sample collection and clean nitrile gloves were used for each sample to eliminate the potential for cross contamination of samples. All soil and groundwater samples were collected directly into laboratory-supplied containers, preserved as required, and stored and shipped in ice-filled coolers. Proper chain of custody procedures were followed by WSP and the laboratory during sample transfer.

The RPDs for the analyzed parameters in duplicate samples (where the RPD could be calculated) were within the 2011 Protocol performance criteria. As such, it is WSP's opinion that the laboratory analytical data is reliable and reproducible.

A summary of the field duplicate soil and groundwater samples, and the results of the QA/QC comparisons of the duplicate samples indicating that the results can be interpreted with confidence.

DATE	MEDIA	SAMPLE ID	DUPLICATE	PARAMETERS	QA/QC RESULTS
2018-11-06	Soil	BH18-3 SS3	QAQC3	PHCs & BTEX	All results were within the 2011
2018-11-05		BH18-2 SS3	QAQC2	VOCs	Protocol criteria for RPD
2018-11-01		BH18-1 SS2	QAQC-1	РАН	
2018-11-09		BH18-5 SS2	QAQC-4	РАН	

Table 6.3 Summary of QA/QC Results

2018-11-21	Groundwater	BH18-1S	QAQC18-2	PHCs	All results were within the 2011
2018-11-21		BH18-5	QAQC18-1	VOCs	Protocol criteria for KPD

A laboratory prepared trip blank travelled along with the November 21, 2018 groundwater samples and was analysed by the laboratory for VOCs. In addition, laboratory prepared trip blanks travelled along with the December 6 and 12, 2018 groundwater samples and were analysed by the laboratory for PHCs. All concentrations were below the RDL, indicating no contamination from the sample containers, preservatives, transportation, and storage conditions. The results also indicate that the laboratory instrument was not detecting false interference.

AGAT Laboratories carried out internal QA/QC measures including process recoveries, blanks, and replicate samples. The laboratory QA/QC results are provided on the Certificates of Analysis in Appendix D. The results were acceptable and therefore suitable for interpretation.

With respect to subsection 47 (3) of O.Reg. 153/04, all certificates of analysis of analytical reports received pursuant to clause 47 (2) (b) of the regulation comply with subsection 47(3), a certificate of analysis of analytical report has been received for each sample submitted for analysis, and all certificates of analysis or analytical reports received have been included in full in Appendix C to the Phase Two ESA report.

6.5 PHASE TWO CONCEPTUAL SITE MODEL

DESCRIPTION

Through analysis and interpretation of the Phase One ESA, Phase One CSM, and field data gathered during this Phase Two ESA, a Phase Two CSM was developed.

Based on information obtained as part of the Phase One ESA, PCAs that occurred on the Site or within the Phase One Study Area are summarized in the table below. All PCAs including the number and location (if known) of USTs are illustrated on the Phase One CSM provided as Figure 1 and Figure 2.

Table 6.4 Summary of PCAs Identified in the Phase One ESA

PCA No. 8 Chemical Manufacturing, Processing and Bulk Storage	Phase One Study Area – Based on a review of the city directories, Abbie-Innes Manufacturing Ltd. Sanitary Chemical, was historically located at 795 1 st Street, approximately 105 m north of the Phase One Property. (APEC 6)
	A review of the city directories HB Fuller-Monercher Inc. and Fuller B Canada Inc., industrial adhesives, coating, and sealant operations, a historically operated at 880 Rangeview Road, approximately 250 m south of the Site. Based on the location relative to inferred groundwater flow direction, and distance of the PCAs from the Site, these operations were not considered to be contributing to an APEC on-site.
PCA No. 10 Commercial Autobody Shops	Phase One Study Area – Based on a review of the city directories and current activities noted during the site reconnaissance, Speedy Glass and Wheels & Tires Ltd. operated at 811 Lakeshore Road East, and Ultimocar and E-Zee Wheels Auto Sales operated at 825 Lakeshore Road east, both approximately 10 m north of the Site. (APEC 6)
PCA No. 28 Gasoline and Associated Products Storage in Fixed Tanks	Phase One Study Area – Based on a previous investigation of a neighbouring property, a historic UST was previously located at 930 East Avenue, south adjacent to the Phase One Property, prior to its removal in 2014. (APEC 5)

PCAs

PCAs

DESCRIPTION

PCA No. 30 Importation of Fill Material of Unknow Quality	<u>Phase One Property</u> – Uneven grading was noted throughout the Phase One Property during the site reconnaissance, it is assumed that fill material was imported on to the Site. (APEC 2)
PCA No. 37 Operation of Dry Cleaning Equipment (where chemicals are used)	<u>Phase One Study Area</u> – Based on a review of the city directories, Superior Cleaners historically operated at 791 Lakeshore Road East, approximately 10 m north of the Phase One Property. (APEC 6)
PCA No. 54 Textile Manufacturing and Processing	<u>Phase One Study Area</u> – Based on a review of the city directories, Duralite Furniture Manufacturing historically operated at 795 1 st Street, approximately 105 m north of the Phase One Property. (APEC 6)
PCA No. 55 Transformer Manufacturing, Processing and Use	<u>Phase One Property</u> – A transformer was noted in the middle of the Phase One Property during the site reconnaissance. (APEC 3)
PCA No. 58 Waste Disposal and Waste Treatment, including thermal treatment, landfilling and transfer of conditioners	Phase One Study Area – One (1) property within the Phase One Study Areas was the location of a former landfilling operation and eight (8) properties within the Phase One Study Area were registered in the O.Reg. 347 database for the generation, use and/or storage of various wastes, including 930 East Avenue, located south adjacent to the Phase One Property, was registered for the generation, use, and/or storage of inorganic chemical waste, aliphatic solvents and residues, petroleum distillates, waste oils/sludges, and organic chemical waste. The additional addresses included 830, 872, 880, 885 Lakeshore Road East, 863, 850, 865 Rangeview Road. (APEC 4)
PCA No. N/S A Application of De-icing Compounds	<u>Phase One Property</u> – Vehicle parking lots were noted on the Phase One Property during the site reconnaissance and it is assumed that it has been subject to de-icing compounds. (APEC 1)

N/S - not specified in Table 2, Schedule D, of O.Reg. 153/04

Based on a review of the above-noted PCAs, the following APECs were identified on the Site. The table of APECs presented in the form as approved by the Director is provided below. The table was prepared in accordance with clause 16(2) (a), Schedule D, O.Reg. 153/04.

Table 6.5 Summary of APECs Identified in Phase One ESA

AREA OF POTENTIAL ENVIRONMENTAL CONCERN	LOCATION OF POTENTIAL ENVIRONMENTAL CONCERN ON PHASE ONE PROPERTY	POTENTIALLY CONTAMINATING ACTIVITY	LOCATION OF PCA (ON-SITE OR OFF- SITE)	POTENTIAL CONTAMINANTS OF CONCERN	MEDIA POTENTIALLY IMPACTED (GROUND WATER, SOIL AND/OR SEDIMENT)
APEC-1	East portion of Phase One Property (vicinity of parking area)	PCA No. N/S A Application of De- Icing Compounds	On-site	Na, Cl-, electrical conductivity, SAR	Soil & Groundwater
APEC-2	Entire Phase One Property	PCA No. 30 Importation of Fill Material of Unknown Quality	On-site	Metals, As, Sb, Se, B- HWS, CN-, electrical conductivity, Cr (VI), Hg, low or high pH, SAR, PAHs	Soil
APEC-3	Vicinity of on-site transformer	PCA No. 55 Transformer Manufacturing, Processing and Use	On-site	PCBs	Soil
APEC-4	Southeastern Portion of the Phase One Property	PCA No. 58 Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of conditioners	Off-site	VOCs, Metals, As, Sb, Se, Na, B-HWS, Cl-, CN-, Cr (VI), Hg	Groundwater
APEC- 5	Southeastern Portion of the Phase One Property	PCA No. 28 Gasoline and Associated Products Storage in Fixed Tanks	Off-site	PHCs, BTEX	Soil & Groundwater
APEC-6	Northern Portion of the Phase One Property	PCA No. 8 Chemical Manufacturing, Processing and Bulk Storage	Off-site	VOCs	Groundwater
		PCA No. 10 Commercial Autobody Shop		PHCs, VOCs, metals, As, Sb, Se, B-HWS, CN- , Cr (VI), Na, Cl-, Hg	

	PCA No. 34 Metal Fabrication	Metals, As, Sb, Se, B- HWS, CN-, Cr (VI), Na, Cl-, Hg	
	PCA No. 37 Operation of Dry Cleaning Equipment (where chemicals are used)	VOCs	
	PCA No. 54 Textile Manufacturing and Processing	VOCs	

The Phase One CSM (Figure 1 and Figure 2) and the Phase Two CSM (Figure 3 through Figure 10) prepared for the Site incorporates the information and data collected as part of the Phase One and Phase Two ESAs. The following table provides a summary discussion of the interpreted field data that is incorporated into the CSM.

Table 6.6 Summary of Phase Two CSM

CRITERIA	DISCUSSION
 i. a description and assessment of, a. areas where a PCA have occurred, b. APECs, and c. any subsurface structures and utilities on, in or under the phase two property that may affect contaminant distribution and transport. 	 a. The Phase One ESA completed by WSP concurrently with this Phase Two ESA identified PCAs on the Site and within the Phase One Study Area, as outlined in Table 6.3 above, and depicted on Figure 1 and Figure 2. b. The PCAs that were identified as contributing to on-site APECs are discussed in Table 6.3 above. The table of APECs presented in the form as approved by the Director is provided in Table 6.4, above. c. Underground utilities can affect contaminant distribution and transport. Trenches excavated to install utility services, and the associated granular backfill may provide preferential pathways for horizontal contaminant migration in the shallow subsurface. Two (2) watermains and two (2) sanitary forcemains are located in the open area to the west of 958 East Avenue building. Gas and electrical services entered the Phase Two Property from the north.
 ii. a description of and, as appropriate, figures illustrating, the physical setting of the phase two property and any areas under it including, a. stratigraphy from ground surface to the deepest aquifer or aquitard investigated, b. hydrogeological characteristics, including aquifers, aquitards and, in each hydrostratigraphic unit where one or more contaminants is present at concentrations above the applicable site condition standards, lateral and vertical gradients, c. approximate depth to bedrock, d. approximate depth to water table, e. any respect in which section 41 or 43.1 of the regulation applies to the property, f. areas where soil has been brought from another property 	 a. All boreholes were advanced through fill material ranging in depth from approximately 0.9 to 2.1 mbgs. The fill material consisted of silty clay with trace sand and gravel and contained shale fragments, wood fragments and rootlets. Beneath the fill material, native deposits of silty clay till were encountered to depths ranging from 3.0 to 3.7 mbgs. Silty clay till/shale complex was encountered below the silty clay till unit which was encountered above the shale bedrock at depths ranging from 3.8 to 6.5 mbgs. Rock coring was completed in three (3) boreholes (BH18-1, BH18-2 and BH18-3). b. The silty clay till is considered an unconfined overburden aquifer, and the underlying bedrock is considered an aquitard. No exceedances of the Table 3 SCS were identified in the overburden monitoring wells. The average horizontal hydraulic gradient for BH18-2S and BH18-2D was 0.3 down. c. The depth to bedrock encountered on site ranged from 3.8 to 6.5 mbgs. d. The depth to shallow groundwater in the overburden ranged from 1.9-3.2 mbgs (79.6 to 80.2 masl) based on the December 12, 2018 water levels. e. Neither section 41 or section 43.1 apply to the Site as: The Henslow's Sparrow (bird) has been listed as endangered by SARO and COSEWIC. The Henslow's Sparrow was last observed within 1 km of the Phase One Property in 1932. Given that the last sighting was in 1932, it is not anticipated that there are any

CRITERIA	DISCUSSION		
and placed on, in or under the phase two property, and g. approximate locations, if known, of any proposed buildings and other structures	Henslow's Sparrows utilizi properties as habitat. The American Eel (fish) ha and COSEWIC. The Americ found in waterbodies. As t is approximately 500 m sou not anticipated that there Site or neighbouring prope The Barn Swallow (bird) ha and COSEWIC. According t found in open structures a in barns, under bridges, ar open structures located or the Phase One Study Area any Barn Swallow's habita properties. The soil at the property ha	ng the Site or nearby s been listed as endat an Eel is a fish specie he nearest waterbod uth of the Phase One are any American Ee erties as habitat. as been listed as thre o the MNRF, the barr lmost exclusively the of in culverts. Given the the Phase One Prop it is not anticipated t ts on the Site or the p	 neighbouring ngered by SARO s; therefore, it is y, Lake Ontario, Property it is l's utilizing the atened by SARO n shallows are eir habitats are that there are no erty or within hat there are neighbouring n 5 and 9
	 f. Soil was not brought from or under the Site, as part o g. The Site is proposed for re- building with one (1) level location of building structu the east portion of the Site west side. 	another property and f this Phase Two ESA development as a 7-s of underground park ure is proposed to be with above grade pa	d placed on, in, torey residential king. The constructed on arking on the
iii. where a contaminant is present on, in or under the phase two	a.	b.	с.
greater than the applicable site condition standard, identification of,	Fill and native soils in the vicinity of the southeast parking lot	SAR EC	Soil
 a. each area where a contaminant is present on, in or under the phase two property at a concentration greater than the applicable site condition standard, b. the contaminants associated with each of the areas referred to in subparagraph A, c. each medium in which a contaminant associated with an area referred to in subparagraph is present, d. a description and assessment of what is known about each of the areas referred to in subparagraph A, 	 d. What is known about the a Overburden Soils: Elevated EC/SAR levels in s investigation in the fill and parking lot near the south that the application of de-i contributing to the elevate e. The horizontal distribution groundwater on Site are puthe soil analytical results, t impacts appears to be loca mbgs. 	reas of environment soil were identified d l native soils in the a east portion of the Si cing agents to East A ed levels of EC/SAR. n of contaminants in resented in Figures 6 the vertical extent of lized to depth of app	al impact: uring this rea of the tenant te. It is possible venue may be soil and and 8. Based on the EC/SAR roximately 3.0

CRITERIA	DISCUSSION
e. the distribution, in each of the areas referred to in subparagraph A, of each contaminant present in the	f. The presence of EC/SAR impacts in soil is likely associated with the application of de-icing agents along East Avenue and on the private parking lot.
area at a concentration greater than the applicable site	g. Migration of these contaminants will be affected by water infiltration and groundwater flow.
condition standard, for each medium in which the contaminant is present, together with figures showing the distribution,	h. The southeast portion of the Site consists of an asphalt paved parking lot with several concrete walkways to the two (2) onsite buildings. The remaining portions of the site consists of grassed area with limited landscaping. Climatic and/or meteorological conditions are not considered to have greatly influenced the
f. anything known about the reason for the discharge of the contaminants present on, in or	distribution or migration of the contaminants in the southeast portion as this area consists of asphalt, although stormwater infiltration may have affected the infiltration of de-icing agents.
under the phase two property at a concentration greater than the applicable site condition standard into the natural environment,	i. Given the nature of the contaminants identified in this investigation, vapour intrusion is not a concern.
g. anything known about migration of the contaminants present on, in or under the phase two property at a concentration greater than the applicable site condition standard away from any APEC, including the identification of any preferential pathways,	
h. climatic or meteorological conditions that may have influenced distribution and migration of the contaminants, such as temporal fluctuations in groundwater levels, and	
i. if applicable, information concerning soil vapour intrusion of the contaminants into buildings including,	
1. relevant construction features of a building, such as a basement or crawl space,	
2. building heating, ventilating and air conditioning design and operation, and	
CRITERIA	DISCUSSION
--	--
3. subsurface utilities,	
 iv. where contaminants on, in or under the phase two property are present at concentrations greater than the applicable site condition standard, one or more cross-sections showing, a. the lateral and vertical distribution of a contaminant in each area where the contaminants is present at concentrations greater than the applicable site condition standard in soil, groundwater and sediment, b. approximate depth to water table in each area referred to in subparagraph A, c. stratigraphy from ground surface to the deepest aquifer or aquitard investigated, and d. any subsurface structures and utilities that may affect contaminant distribution and transport in each area referred to in subparagraph A 	 a. Plan view and cross-section view figures that indicate the horizontal distribution of contaminants are provided as: Figure 6 Chemical Exceedances in Soil - ORPs Figure 8 Cross Section A-A' and B-B' with Chemical Exceedances in Soil - ORPs b. Groundwater levels are provided in Figure 4. c. Stratigraphy from ground surface to the deepest strata investigated is provided in cross-sections on Figure 9. d. Underground utilities can affect contaminant distribution and transport. Trenches excavated to install utility services, and the associated granular backfill may provide preferential pathways for horizontal contaminant migration in the shallow subsurface. Two (2) watermains and two (2) sanitary forcemains are located in the open area to the west of 958 East Avenue building. Gas and electrical services entered the Phase Two Property from the north
 v. for each areas where a contaminant is present on, in or under the property at a concentration greater than the applicable site condition standard for the contaminant, a diagram identifying, with narrative explanatory notes, a. the release mechanisms, b. contaminant transport pathway, c. the human and ecological receptors located on, in or under the phase two property, d. receptor exposure points, and routes of exposure. 	The release mechanism was identified as the applicable of de-icing agents to the private parking lot contributing to EC/ SAR impacts. The impacted media is the upper fill and native soils. Human receptors are not anticipated to be impacted by the elevated concentrations of EC/SAR as these parameters are primarily related to plant growth and are not anticipate do not pose a human health concern. The applicable ecological receptors and contaminant transport/ exposure pathways include: Ecological Receptors: — Plants — Terrestrial Invertebrates — Mammals & Birds Transport/Exposure routes of contaminants to ecological receptors:

CRITERIA	DISCUSSION
	 Ingestion of soil contaminants (direct) Immersion in soil contaminants (direct) Plant root uptake (direct) Ingestion of plants (indirect)
	 Ingestion of invertebrates (indirect) Ingestion of animal prey (indirect) A summary of the release mechanism, contaminant transport pathway and receptors is depicted in Figure 9 and Figure 10.

7 CONCLUSIONS

Based on the Phase Two ESA, WSP presents the following findings:

- Fill material was identified in all boreholes at depth ranging from approximately 0.9 to 2.1 mbgs. The fill material consisted of silty clay with trace sand and gravel and contained shale fragments, wood fragments and rootlets. Beneath the fill material, native deposits of silty clay till were encountered to depths ranging from 3.0 to 3.7 mbgs. Silty clay till/shale complex was encountered below the silty clay till unit which was encountered above the shale bedrock at depths ranging from 3.8 to 6.5 mbgs. Rock coring was completed in three (3) boreholes (BH18-1D, BH18-2D and BH18-3).
- The depth to groundwater was recorded in the overburden monitoring wells (BH18-1S, BH18-2S, BH18-4, BH18-5 and BH18-7) installed during the current investigation. The groundwater levels were found to range between 1.9 and 3.2 mbgs and the groundwater elevations ranged between 78.0 and 80.2 m masl. Based on the levels recorded, the groundwater flow direction appears to be southwesterly. However, subsurface utilities may be influencing the water levels, specifically for BH18-7. Groundwater flow direction can be influenced by seasonal fluctuation, utility services, and other subsurface features and can only be confirmed with long term monitoring.
- The soil and groundwater analytical results were compared to 2011 MECP Table 3 Full Depth Generic SCS in a Non-Potable Groundwater Condition for RPI Use.
- A total of thirty-six (36) soil samples, and four (4) QA/QC samples, were submitted to the laboratory and analysed for PCOCs including: metals and ORPs, PHCs, VOCs, PAHs and PCBs. The results of the analyses indicated the following exceedances of the MECP Table 3 RPI SCS.

SAMPLE ID	DEPTH (MBGS)	PARAMETER	UNITS	TABLE 3 RPI SCS	ANALYTICAL RESULT
BH18-2 SS2	0.8-1.4	EC	mS/cm	0.7	2.9
		SAR	-	5	24
BH18-2 SS3	1.5-2.1	EC	mS/cm	0.7	2.0
BH18-2 SS4	2.3-2.9	EC	mS/cm	0.7	1.8

Table 7.1 Summary of Exceedances in Soil

Notes:

Bold and Shaded: Concentration exceeds the MECP Table 3 RPI SCS

In November and December 2018, groundwater samples were obtained from the five (5) overburden monitoring wells and submitted for analysis of metals and ORPs, PHCs, and VOCs. The groundwater analytical results indicated all samples met the MECP Table 3 SCS with the exception of elevated F2 concentrations at BH18-4, located on the south portion of the Site. As this concentration marginally exceeded the MECP Table 3 SCS, redevelopment and resampling was conducted and two (2) subsequent groundwater sampling events indicated the concentrations met the MECP Table 3 SCS for PHCs. As the two (2) most recent sampling events at BH18-4 met the MECP Table 3 SCS for PHCs, the original groundwater exceedance may be an anomaly and not representative of the actual groundwater conditions at this location.

Based on the findings of this Phase Two ESA, WSP presents the following conclusions and recommendations:

- Soils impacted with elevated EC and/or SAR are present on the property at one (1) borehole location in the vicinity of the private parking lot and were found at depths ranging from 0.8-2.9 mbgs.
- All groundwater samples collected met the MECP Table 3 SCS for the parameters analyzed.
- As the property is proposed to be developed from residential to residential (no change in property use) a
 RSC may be required as part of site development by lower tier municipalities. Remediation of soil impacted
 with EC/SAR followed by confirmatory sampling would be required to support an RSC filing. Alternatively,
 if remediation is not considered feasible, a RA can be conducted instead of, or in conjunction with
 remediation.
- In the case of either remediation or RA, further assessment of the extent of impacts (particularly horizontal extent) will be required to further investigate the EC/SAR impacts.
- All monitoring wells should be decommissioned in accordance with O.Reg. 903 when no longer required.

7.1 QUALIFIER

This assignment is limited to the completion of a Phase Two ESA and analysis of potential contamination at the selected borehole locations. This report is prepared for the Region of Peel's sole use in the evaluation of the property at 958-960 East Avenue, Mississauga, ON.

The Phase Two ESA, sampling, and laboratory analyses were completed as documented in the report. Extrapolation of data beyond the borehole locations assumes that homogenous conditions exist beyond the sampling locations, which may not be the case. Therefore, it is not feasible to state conclusively, that the subsurface conditions encountered during this investigation exist beyond the sampled locations.

The conclusions provided in this report reflect our best judgment in light of the information available at the time of report preparation. Any use, which a third party makes of this report, or any reliance on or any decisions to be made based on it, is the responsibility of such third parties. WSP accepts no responsibility for damages, if any, suffered by any third party because of decisions or actions taken, based on this report. Conclusions documented in this report do not apply to other land uses. It is understood that Site conditions, environmental or otherwise, are not static and that this report documents Site conditions at the time of the investigation.

7.2 QUALIFICATIONS OF THE ASSESSORS

This report was reviewed by Mr. Michael Wilson, C.E.T., who is currently an Environmental Project Manager in the Toronto, Ontario office of WSP Canada Inc. Mr. Wilson has experience in conducting Phase One and Two ESAs on numerous residential, commercial, and industrial properties.

This report was reviewed by Marty Barons, P.Eng., QP_{ESA} , an Environmental Engineer in the Toronto, Ontario Office of WSP Canada Inc. Marty holds a Bachelors of Applied Science Degree in Environmental Engineering, and is a recognized Professional Engineer in Ontario since 2008. He has conducted and managed dozens of environmental investigations including Phase One ESAs, Phase Two ESAs, and various site remediation projects across Ontario. Marty is a Qualified Person (QP_{ESA}) under the MECP O.Reg. 153/04.

8 **REFERENCES**

- Ontario Ministry of the Environment, Conservation and Parks (MECP). 1996. Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario. December 1996.
- Ontario Ministry of the Environment, Conservation and Parks (MECP). 2011a. Ontario Regulation 153/04, as amended, made under the Environmental Protection Act. July 1, 2011.
- Ontario Ministry of the Environment, Conservation and Parks (MECP). 2011b. Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. July 1, 2011.
- Ontario Ministry of the Environment, Conservation and Parks (MECP). 2011c. Protocol for Analytical Methods Used in the Assessment of Properties under Past XV.1 of the Environmental Protection Act. July 1, 2011.
- Ontario Ministry of the Environment, Conservation and Parks (MECP). 2013. Ontario Regulation 903: "Wells." R.R.O. 1990, under the Ontario Water Resources Act, as amended by O.Reg. 331/13.
- WSP Canada Inc. (WSP). 2018. Phase One Environmental Site Assessment, 958-960 East Avenue, Mississauga, ON. October 23, 2018

TABLES

Notes for Soil & Groundwater Summary Tables

- 1. mbgs = metres below ground surface
- 2. ORPs = other regulated parameters
- 3. PHCs = petroleum hydrocarbons
- 4. VOCs = volatile organic compounds
- 5. PAHs = polycyclic aromatic hydrocarbons
- 6. = parameter not analyzed
- 7. Units for all soil analyses are in $\mu g/g$ (ppm) unless otherwise indicated
- 8. Units for all groundwater analyses are in μ g/L (ppb) unless otherwise indicated
- Table 3 = Full Depth Generic Site Condition Standards in a Non Potable Ground Water Condition with Medium to Fine Textured Soils as contained in Table 3 of the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", published by the MOECP on April 15, 2011
- 10. For soil and groundwater analytical results: bold = Concentration exceeds the 2011 MECP Table 3 SCS

wsp

Table 1 Monitoring Well Installation and Groundwater Levels

	Monitorir	ng Well ID	BH18-1S	BH18-1D	BH18-2S	BH18-2D	BH18-4	BH18-5	BH18-7
	Installed By		WSP						
	Installation Date		2-Nov-18	2-Nov-18	6-Nov-18	6-Nov-18	8-Nov-18	9-Nov-18	9-Nov-18
	Well Status		Active						
We	ll Inner Diameter	(mm)	50	50	50	50	50	50	50
Тор с	of Pipe Elevation	(masl)	83.32	83.32	82.08	82.08	82.82	83.09	82.64
Ground S	urface Elevation	(masl)	82.43	82.43	82.08	82.08	81.93	82.20	81.75
Bottom of Conc	crete Seal/Top of	(mbgs)	0.3	0.3	0.3	0.3	0.3	0.3	0.3
	Bentonite Seal	(masl)	82.13	82.13	81.78	81.78	81.63	81.90	81.45
Bottom of Bentonite S	Seal/Top of Sand	(mbgs)	1.0	10.2	1.0	8.0	1.0	1.0	1.0
	Pack	(masl)	81.4	72.2	81.1	74.1	80.9	81.2	80.8
То	n of Wall Scroon	(mbgs)	1.6	10.8	1.6	8.6	1.6	1.6	1.6
10	p of well Screen	(masl)	80.8	71.6	80.5	73.5	80.3	80.6	80.1
	Screen Length	(m)	3.0	1.5	3.0	1.5	2.7	3.0	3.0
	Pottom of Scroon	(mbgs)	4.6	12.3	4.6	10.1	4.3	4.6	4.6
L	Solion of Screen	(masl)	77.8	70.1	77.5	72.0	77.6	77.6	77.1
14 Nov 18	Depth of GW	(mbgs)	2.8	2.1	2.1	5.2	1.9	1.9	Dry
14-1107-10	GW Elevation	(masl)	79.6	80.3	80.0	76.9	80.0	80.3	Dry
21 Nov 18	Depth of GW	(mbgs)	3.0	3.0	1.5	5.2	1.8	2.1	4.0
21-1100-10	GW Elevation	(masl)	79.5	79.5	80.6	76.9	80.1	80.1	77.7
12 Doc 19	Depth of GW	(mbgs)	2.9	2.2	1.9	4.1	2.0	2.1	3.2
12-Dec-10	GW Elevation	(masl)	79.6	80.3	80.2	78.0	80.0	80.1	78.5
19-Dec-18	Depth of GW	(mbgs)	3.0	2.1	2.1	4.1	2.0	2.2	3.3
19-Dec-10	GW Elevation	(masl)	79.4	80.3	80.0	78.0	80.0	80.0	78.5

See "Notes for Soil and Groundwater Summary

Tables" included at the beginning of this Section

Table 2 Summary of Soil Samples Submitted for Chemical Analysis

Borehole ID	Sample ID	Depth (mbgs)	Date	Soil Type	Laboratory Analyses
	SS1	0.0 - 0.6		Fill - Silty Clay	Metals and ORPs
	SS2	00.44	4 Nov 40		PAHs
BH18-1	QAQC-1	0.8 - 1.4	1-INOV-18	Sitty Clay Thi	PAHs
	SS3	1.5 - 2.1		Silty Clay Till	PHCs and BTEX, VOCs
	SS2	0.8 - 1.4		Fill - Silty Clay	Metals and ORPs, PAHs
BH18-2	SS3	15-21	5-Nov-18	Silty Clay Till	EC/SAR, VOCs, PHCs and BTEX
	QAQC-2	1.0 2.1			VOCs
	SS1	0.0 - 0.6		Fill - Silty Clay	Metals and ORPs
	SS2	0.8 - 1.4	6 Nov 18	Fill - Silty Clay	PAHs
DITI0-3	SS3	15-21	0-1100-18	Silty Clay Till	PHCs and BTEX, VOCs
	QAQC-3	1.5 2.1			PHCs and BTEX
	SS1	0.0 - 0.6		Fill - Silty Clay	Metals and ORPs
BH18-4	SS2	0.8 - 1.4	8-Nov-18	Fill - Silty Clay	PAHs
	SS3	1.5 - 2.1		Fill - Silty Clay	PHCs and BTEX, VOCs
	SS1	0.0 - 0.6		Fill - Silty Clay	Metals and ORPs
	SS2	08-14	0 Nov 18	Fill Silty Clay	PAHs
DITI0-5	QA/QC-4	0.0 - 1.4	3-1100-10		PAHs
	SS3	1.5 - 2.1		Silty Clay Till	PHCs and BTEX, VOCs
	SS1	0.0 - 0.6		Fill - Silty Clay	Metals and ORPs
BH18-6	SS2	0.8 - 1.4	8-Nov-18	Silty Clay Till	PAHs
	SS3	1.5 - 2.1		Silty Clay Till	PHCs and BTEX, VOCs
	SS1	0.0 - 0.6		Fill - Silty Clay	Metals and ORPs
BH18-7	SS2	0.8 - 1.4	9-Nov-18	Silty Clay Till	PAHs
	SS3	1.5 - 2.1		Silty Clay Till	PHCs and BTEX, VOCs
	SS1	0.0 - 0.6		Fill - Silty Clay	Metals and ORPs
BH18-8	SS2	0.8 - 1.4	8-Nov-18	Silty Clay Till	PAHs
	SS3	1.5 - 2.1		Silty Clay Till	PHCs and BTEX, VOCs
TP18-1	S1A	0-0.3	2-Nov-18	Fill - Silty Clay	PCBs

See "Notes for Soil and Groundwater Summary Tables" included at the beginning of this Section

Table 3: Summary of Groundwater Samples Submitted for Chemical Analysis

Monitoring Well ID	Screened Interval (mbgs)	Date		Parameters	i
			M&ORP	PHCs	VOCs
BH18-1S	1546	21 Nov 19	✓	✓	✓
QAQC 18-2	1.5-4.0	21-1100-18	-	✓	-
BH18-2S	4.5-4.6	21-Nov-18	√	✓	√
BH18-4		21-Nov-18	√	✓	✓
BH18-4	1.5-4.3	6-Dec-18	-	✓	-
BH18-4		12-Dec-18	-	✓	-
BH18-5	1546	21 Nov 19	√	✓	√
QAQC 18-1	1.5-4.0	21-1000-10	-	-	1
BH18-7	1.5-4.6	21-Nov-18	√	1	1

See "Notes for Soil and Groundwater Summary Tables" included at the beginning of this Section

Table 4 Soil Analytical Results - Metals&ORPs

Parameter		BH18-1 SS1	BH18-2 SS2	BH18-2 SS3	BH18-2 SS4	BH18-2 SS5	BH18-3 SS1	BH18-4 SS1
Date of Collection		Nov 01, 2018	Nov 05, 2018	Nov 05, 2018	Nov 05, 2018	Nov 05, 2018	Nov 06, 2018	Nov 08, 2018
Date Reported	Table 3 RPI	Nov 12, 2018	Nov 14, 2018	Nov 14, 2018	Nov 30, 2018	Nov 30, 2018	Nov 14, 2018	Nov 19, 2018
Sampling Depth (mbgs)	MFT	0 - 0.6	0.8 - 1.4	1.5-2.1	2.3-2.9	3.0-3.7	0 - 0.6	0-0.6
Analytical Report Reference No.	-	IET106	IFR992	IFR993	IHZ422	IHZ423	IFR995	IGK826
Antimony	7.5	<0.20	<0.20	-	-	-	0.21	0.86
Arsenic	18	4	4.9	-	-	-	5	4.9
Barium	390	78	140	-	-	-	69	69
Beryllium	5	0.72	1.2	-	-	-	0.75	0.5
Boron (Hot Water Soluble)	1.5	0.21	0.27	-	-	-	0.1	0.45
Cadmium	1.2	0.17	0.15	-	-	-	0.21	0.25
Chromium	160	22	35	-	-	-	21	16
Chromium VI	10	<0.2	<0.2	-	-	-	<0.2	<0.2
Cobalt	22	10	16	-	-	-	10	6.4
Copper	180	22	31	-	-	-	24	22
Lead	120	23	13	-	-	-	23	35
Mercury	1.8	<0.050	<0.050	-	-	-	<0.050	0.058
Molybdenum	6.9	<0.50	<0.50	-	-	-	<0.50	<0.50
Nickel	130	20	36	-	-	-	21	13
Selenium	2.4	<0.50	<0.50	-	-	-	<0.50	<0.50
Silver	25	<0.20	<0.20	-	-	-	<0.20	<0.20
Thallium	1	0.14	0.2	-	-	-	0.14	0.1
Vanadium	86	31	47	-	-	-	31	25
Zinc	340	67	79	-	-	-	76	79
pH (pH Units)	5 to 9	7.49	7.76	-	-	-	7.66	7.55
Conductivity (ms/cm)	0.7	0.32	2.9	2	1.8	0.44	0.26	0.32
Sodium Adsorption Ratio	5	1.4	24	3.5	-	-	2.2	1.5
Cyanide, Free	0.051	<0.01	0.01	-	-	-	<0.01	0.01
Chloride	NA	-	-	-	-	-	-	-
Boron (Total)	120	6.2	10	-	-	-	7.3	5.3
Uranium	23	0.63	0.63	-	-	-	0.61	0.53

See "Notes for Soil and Groundwater Summary

Tables" included at the beginning of this Section

Table 4 Soil Analytical Results - Metals&ORPs

Parameter		BH18-5 SS1	BH18-6 SS1	BH18-7 SS1	BH18-8 SS1
Date of Collection		Nov 09, 2018	Nov 08, 2018	Nov 09, 2018	Nov 08, 2018
Date Reported	Table 3 RPI	Nov 19, 2018	Nov 19, 2018	Nov 19, 2018	Nov 19, 2018
Sampling Depth (mbgs)	MFT	0-0.6	0-0.6	0-0.6	0-0.6
Analytical Report Reference No.		IGS370	IGK829	IGS373	IGK832
Antimony	7.5	<0.20	<0.20	<0.20	0.26
Arsenic	18	5.1	4.2	2.7	3.6
Barium	390	56	47	54	80
Beryllium	5	0.74	0.58	0.48	0.7
Boron (Hot Water Soluble)	1.5	0.23	0.17	0.34	0.28
Cadmium	1.2	0.14	0.17	0.12	0.14
Chromium	160	23	17	18	21
Chromium VI	10	<0.2	<0.2	<0.2	0.3
Cobalt	22	14	9.9	7.1	9.3
Copper	180	30	23	13	20
Lead	120	14	17	18	19
Mercury	1.8	<0.050	<0.050	<0.050	<0.050
Molybdenum	6.9	<0.50	<0.50	<0.50	<0.50
Nickel	130	30	21	15	23
Selenium	2.4	<0.50	<0.50	<0.50	<0.50
Silver	25	<0.20	<0.20	<0.20	<0.20
Thallium	1	0.13	0.11	0.13	0.14
Vanadium	86	30	26	27	31
Zinc	340	76	57	56	63
pH (pH Units)	5 to 9	7.55	7.66	6.66	6.69
Conductivity (ms/cm)	0.7	0.29	0.19	0.13	0.12
Sodium Adsorption Ratio	5	1.3	0.24	0.49	0.29
Cyanide, Free	0.051	<0.01	<0.01	<0.01	<0.01
Chloride	NA	-	-	-	-
Boron (Total)	120	9.4	6.2	<5.0	<5.0
Uranium	23	0.67	0.51	0.41	0.5

See "Notes for Soil and Groundwater Summary

Tables" included at the beginning of this Section

wsp

Table 5 Soil Analytical Results - PHCs & BTEX

Parameter		BH18-1 SS3	BH18-2 SS3	BH18-3 SS3	QAQC3	BH18-4 SS3	BH18-5 SS3	BH18-6 SS3
Date of Collection		Nov 01, 2018	Nov 05, 2018	Nov 06, 2018	Nov 06, 2018	Nov 08, 2018	Nov 09, 2018	Nov 08, 2018
Date Reported	Table 3 RPI	Nov 12, 2018	Nov 14, 2018	Nov 14, 2018	Nov 14, 2018	Nov 19, 2018	Nov 19, 2018	Nov 19, 2018
Sampling Depth (mbgs)	MFT	1.5 - 2.1	1.5 - 2.1	1.5	- 2.1	1.5-2.1	1.5-2.1	1.5-2.1
Analytical Report Reference No.		IET109	IFR993	IFR997	IFR998	IGK828	IGS372	IGK831
Benzene	0.17	<0.02	<0.02	<0.02	<0.02	<0.020	<0.020	<0.020
Toluene	6	<0.05	<0.05	<0.05	<0.05	<0.020	<0.020	<0.020
Ethylbenzene	15	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Total Xylenes	25	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
F1 (C6 to C10) minus BTEX	65	<10	<10	<10	<10	<10	<10	<10
F2 (C10 to C16)	150	<10	<10	<10	<10	56	<10	<10
F3 (C16 to C34)	1300	<50	<50	<50	<50	83	<50	<50
F4 (C34 to C50)	5600	<50	<50	<50	<50	<50	<50	<50

See "Notes for Soil and Groundwater Summary Tables" included at the beginning of this Section

Table 5 Soil Analytical Results - PHCs & BTE)

Parameter		BH18-7 SS3	BH18-8 SS3
Date of Collection		Nov 09, 2018	Nov 08, 2018
Date Reported	Table 3 RPI	Nov 19, 2018	Nov 19, 2018
Sampling Depth (mbgs)	MFT	1.5-2.1	1.5-2.1
Analytical Report Reference No.		IGS375	IGK834
Benzene	0.17	<0.020	<0.020
Toluene	6	<0.020	<0.020
Ethylbenzene	15	<0.020	<0.020
Total Xylenes	25	<0.020	<0.020
F1 (C6 to C10) minus BTEX	65	<10	<10
F2 (C10 to C16)	150	<10	<10
F3 (C16 to C34)	1300	<50	<50
F4 (C34 to C50)	5600	<50	<50

See "Notes for Soil and Groundwater Summary

Tables" included at the beginning of this Section

Table 6 Soil Analytical Results - VOCs

Parameter		BH18-1 SS3	BH18-2 SS3	QAQC2	BH18-3 SS3	BH18-4 SS3
Date of Collection		Nov 01, 2018	Nov 05, 2018	Nov 05, 2018	Nov 06, 2018	Nov 08, 2018
Date Reported	Table 3	Nov 12, 2018	Nov 12, 2018	Nov 14, 2018	Nov 14, 2018	Nov 19, 2018
Sampling Depth (mbgs)	RPI MFT	1.5 - 2.1	1.5	- 2.1	1.5 - 2.1	1.5 - 2.1
Analytical Report Reference No.		IET109	IFR993	IFR994	IFR997	IGK828
Acetone	28	<0.50	<0.50	<0.50	<0.50	<0.50
Benzene	0.17	<0.020	<0.020	<0.020	<0.020	<0.020
Bromodichloromethane	13	<0.050	<0.050	<0.050	<0.050	<0.050
Bromoform	0.26	<0.050	<0.050	<0.050	<0.050	<0.050
Bromomethane	0.05	<0.050	<0.050	<0.050	<0.050	<0.050
Carbon Tetrachloride	0.12	<0.050	<0.050	<0.050	<0.050	<0.050
Chlorobenzene	2.7	<0.050	<0.050	<0.050	<0.050	<0.050
Chloroform	0.18	<0.050	<0.050	<0.050	<0.050	<0.050
Dibromochloromethane	9.4	<0.050	<0.050	<0.050	<0.050	<0.050
1,2-Dichlorobenzene	4.3	<0.050	<0.050	<0.050	<0.050	<0.050
1,3-Dichlorobenzene	6	<0.050	<0.050	<0.050	<0.050	<0.050
1,4-Dichlorobenzene	0.097	<0.050	<0.050	<0.050	<0.050	<0.050
1,1-Dichloroethane	11	<0.050	<0.050	<0.050	<0.050	<0.050
1,2-Dichloroethane	0.05	<0.050	<0.050	<0.050	<0.050	<0.050
1,1-Dichloroethylene	0.05	<0.050	<0.050	<0.050	<0.050	<0.050
Cis-1,2-Dichloroethylene	30	<0.050	<0.050	<0.050	<0.050	<0.050
Trans-1,2-Dichloroethylene	0.75	<0.050	<0.050	<0.050	<0.050	<0.050
1,2-Dichloropropane	0.085	<0.050	<0.050	<0.050	<0.050	<0.050
Cis-1,3-Dichloropropylene	NV	<0.030	<0.030	<0.030	<0.030	< 0.030
Trans-1,3-Dichloropropylene	NV	<0.040	<0.040	<0.040	<0.040	<0.040
Ethylbenzene	15	<0.020	<0.020	<0.020	<0.020	<0.020
Ethylene Dibromide	0.05	<0.050	<0.050	<0.050	<0.050	<0.050
Methyl Ethyl Ketone	44	<0.50	<0.50	<0.50	<0.50	<0.50
Methylene Chloride	0.96	<0.050	<0.050	<0.050	<0.050	<0.050
Methyl Isobutyl Ketone	4.3	<0.50	<0.50	<0.50	<0.50	<0.50
Methyl-t-Butyl Ether	1.4	<0.050	<0.050	<0.050	<0.050	<0.050
Styrene	2.2	<0.050	<0.050	<0.050	<0.050	<0.050
1,1,1,2-Tetrachloroethane	0.05	<0.050	<0.050	<0.050	<0.050	<0.050
1,1,2,2-Tetrachloroethane	0.05	<0.050	<0.050	<0.050	<0.050	<0.050
Toluene	6	<0.020	<0.020	<0.020	<0.020	<0.020
Tetrachloroethylene	2.3	<0.050	<0.050	<0.050	<0.050	<0.050
1,1,1-Trichloroethane	3.4	<0.050	<0.050	<0.050	<0.050	<0.050
1,1,2-Trichloroethane	0.05	<0.050	<0.050	<0.050	<0.050	<0.050
Trichloroethylene	0.52	<0.050	<0.050	<0.050	<0.050	<0.050
Vinyl Chloride	0.022	<0.020	<0.020	<0.020	<0.020	<0.020
m-Xylene & p-Xylene	NV	<0.020	<0.020	<0.020	<0.020	<0.020
o-Xylene	NV	<0.020	<0.020	<0.020	<0.020	<0.020
Total Xylenes	25	<0.020	<0.020	<0.020	<0.020	<0.020
Dichlorodifluoromethane	25	<0.050	<0.050	<0.050	<0.050	<0.050
Dioxane, 1,4-	1.8	-	-	-	-	-
Hexane(n)	34	<0.050	<0.050	<0.050	<0.050	<0.050
Trichlorofluoromethane	5.8	<0.050	<0.050	<0.050	<0.050	<0.050
1,3-Dichloropropene (cis + trans)	0.083	<0.050	<0.050	< 0.050	<0.050	<0.050

See "Notes for Soil and Groundwater

Summary Tables" included at the beginning of this Section

Phase Two Environmental Site Assessment 958 - 960 East Avenue, Mississauga, Ontario The Region of Peel

Table 6 Soil Analytical Results - VOCs

Parameter		BH18-5 SS3	BH18-6 SS3	BH18-7 SS3	BH18-8 SS3
Date of Collection		Nov 09, 2018	Nov 08, 2018	Nov 09, 2018	Nov 08, 2018
Date Reported	Table 3	Nov 19, 2018	Nov 19, 2018	Nov 19, 2018	Nov 19, 2018
Sampling Depth (mbgs)	RPI MFT	1.5-2.1	1.5 - 2.1	1.5-2.1	1.5 - 2.1
Analytical Report Reference No.		IGS372	IGK831	IGS375	IGK834
Acetone	28	<0.50	<0.50	<0.50	<0.50
Benzene	0.17	<0.020	<0.020	<0.020	<0.020
Bromodichloromethane	13	<0.050	<0.050	<0.050	<0.050
Bromoform	0.26	<0.050	<0.050	<0.050	<0.050
Bromomethane	0.05	<0.050	<0.050	<0.050	<0.050
Carbon Tetrachloride	0.12	<0.050	<0.050	<0.050	<0.050
Chlorobenzene	2.7	<0.050	<0.050	<0.050	<0.050
Chloroform	0.18	<0.050	<0.050	<0.050	<0.050
Dibromochloromethane	9.4	<0.050	<0.050	<0.050	<0.050
1,2-Dichlorobenzene	4.3	<0.050	<0.050	<0.050	<0.050
1,3-Dichlorobenzene	6	<0.050	<0.050	<0.050	<0.050
1,4-Dichlorobenzene	0.097	<0.050	<0.050	<0.050	<0.050
1,1-Dichloroethane	11	<0.050	<0.050	<0.050	<0.050
1,2-Dichloroethane	0.05	<0.050	<0.050	<0.050	<0.050
1,1-Dichloroethylene	0.05	<0.050	<0.050	<0.050	<0.050
Cis-1,2-Dichloroethylene	30	<0.050	<0.050	<0.050	<0.050
Trans-1,2-Dichloroethylene	0.75	<0.050	<0.050	<0.050	<0.050
1,2-Dichloropropane	0.085	<0.050	<0.050	<0.050	<0.050
Cis-1,3-Dichloropropylene	NV	<0.030	<0.030	<0.030	<0.030
Trans-1,3-Dichloropropylene	NV	<0.040	<0.040	<0.040	<0.040
Ethylbenzene	15	<0.020	<0.020	<0.020	<0.020
Ethylene Dibromide	0.05	<0.050	<0.050	<0.050	<0.050
Methyl Ethyl Ketone	44	<0.50	<0.50	<0.50	<0.50
Methylene Chloride	0.96	<0.050	<0.050	<0.050	<0.050
Methyl Isobutyl Ketone	4.3	<0.50	<0.50	<0.50	<0.50
Methyl-t-Butyl Ether	1.4	<0.050	<0.050	<0.050	<0.050
Styrene	2.2	<0.050	<0.050	<0.050	<0.050
1,1,1,2-Tetrachloroethane	0.05	<0.050	<0.050	<0.050	<0.050
1,1,2,2-Tetrachloroethane	0.05	<0.050	<0.050	<0.050	<0.050
Toluene	6	<0.020	<0.020	<0.020	<0.020
Tetrachloroethylene	2.3	<0.050	<0.050	<0.050	<0.050
1,1,1-Trichloroethane	3.4	<0.050	<0.050	<0.050	<0.050
1,1,2-Trichloroethane	0.05	<0.050	<0.050	<0.050	<0.050
Trichloroethylene	0.52	<0.050	<0.050	<0.050	<0.050
Vinyl Chloride	0.022	<0.020	<0.020	<0.020	<0.020
m-Xylene & p-Xylene	NV	<0.020	<0.020	<0.020	<0.020
o-Xylene	NV	<0.020	<0.020	<0.020	<0.020
Total Xylenes	25	<0.020	<0.020	<0.020	<0.020
Dichlorodifluoromethane	25	<0.050	<0.050	<0.050	<0.050
Dioxane, 1,4-	1.8	-	-	-	-
Hexane(n)	34	<0.050	<0.050	<0.050	<0.050
Trichlorofluoromethane	5.8	<0.050	<0.050	<0.050	<0.050
1,3-Dichloropropene (cis + trans)	0.083	<0.050	<0.050	<0.050	<0.050

See "Notes for Soil and Groundwater

Summary Tables" included at the beginning of this Section

Phase Two Environmental Site Assessment 958 - 960 East Avenue, Mississauga, Ontario The Region of Peel

Table 7 Soil Analytical Results - PAHs

Parameter		BH18-1 SS2	QAQC-1	BH18-2 SS2	BH18-3 SS2	BH18-4 SS2	BH18-5 SS2	QAQC-4
Date of Collection		Nov 01, 2018	Nov 01, 2018	Nov 05, 2018	Nov 06, 2018	Nov 08, 2018	Nov 09, 2018	Nov 09, 2018
Date Reported	Table 3	Nov 12, 2018	Nov 12, 2018	Nov 14, 2018	Nov 14, 2018	Nov 19, 2018	Nov 19, 2018	Nov 19, 2018
Sampling Depth (mbgs)	RPI MFT	0.8	- 1.4	0.8 - 1.4	0.8 - 1.4	0.8 - 1.4	0.8	- 1.4
Analytical Report Reference No.		IET107	IET110	IFR992	IFR996	IGK827	IGS371	IGS376
Acenaphthene	58	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0059
Acenaphthylene	0.17	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0058
Anthracene	0.74	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.013	0.02
Benzo(a)anthracene	0.63	<0.0050	<0.0050	<0.0050	<0.0050	0.011	0.035	0.063
Benzo(a)pyrene	0.3	<0.0050	<0.0050	<0.0050	<0.0050	0.0095	0.035	0.069
Benzo(b/j)fluoranthene	0.78	<0.0050	<0.0050	<0.0050	<0.0050	0.014	0.049	0.092
Benzo(ghi)perylene	7.8	<0.0050	<0.0050	<0.0050	<0.0050	0.0071	0.025	0.055
Benzo(k)fluoranthene	0.78	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.016	0.032
Chrysene	7.8	<0.0050	<0.0050	<0.0050	<0.0050	0.0097	0.033	0.064
Dibenzo(a,h)anthracene	0.1	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0053	0.01
Fluoranthene	0.69	0.0071	<0.0050	<0.0050	<0.0050	0.021	0.081	0.14
Fluorene	69	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.006	0.0064
Indeno(1,2,3-cd)pyrene	0.48	<0.0050	<0.0050	<0.0050	<0.0050	0.0077	0.026	0.053
1-Methylnaphthalene	3.4	<0.0050	<0.0050	<0.0050	<0.0050	0.0061	0.0091	0.015
2-Methylnaphthalene	3.4	<0.0050	<0.0050	<0.0050	<0.0050	0.01	0.0085	0.014
Naphthalene	0.75	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0057	0.0089
Phenanthrene	7.8	<0.0050	<0.0050	<0.0050	<0.0050	0.012	0.056	0.078
Pyrene	78	0.0058	<0.0050	<0.0050	<0.0050	0.02	0.066	0.12
Methylnaphthalene, 2-(1-)	3.4	<0.0071	<0.0071	<0.0071	<0.0071	0.016	0.018	0.029

See "Notes for Soil and Groundwater Summary

Tables" included at the beginning of this

Section

Table 7 Soil Analytical Results - PAHs

Parameter		BH18-6 SS2	BH18-7 SS2	BH18-8 SS2
Date of Collection		Nov 08, 2018	Nov 09, 2018	Nov 08, 2018
Date Reported	Table 3	Nov 19, 2018	Nov 19, 2018	Nov 19, 2018
Sampling Depth (mbgs)	RPI MFT	0.8 - 1.4	0.8 - 1.4	0.8 - 1.4
Analytical Report Reference No.		IGK830	IGS374	IGK833
Acenaphthene	58	<0.0050	<0.0050	<0.0050
Acenaphthylene	0.17	<0.0050	<0.0050	<0.0050
Anthracene	0.74	<0.0050	<0.0050	<0.0050
Benzo(a)anthracene	0.63	0.011	<0.0050	<0.0050
Benzo(a)pyrene	0.3	0.011	<0.0050	<0.0050
Benzo(b/j)fluoranthene	0.78	0.017	<0.0050	<0.0050
Benzo(ghi)perylene	7.8	0.0081	<0.0050	<0.0050
Benzo(k)fluoranthene	0.78	<0.0050	<0.0050	<0.0050
Chrysene	7.8	0.01	<0.0050	<0.0050
Dibenzo(a,h)anthracene	0.1	<0.0050	<0.0050	<0.0050
Fluoranthene	0.69	0.024	<0.0050	<0.0050
Fluorene	69	<0.0050	<0.0050	<0.0050
Indeno(1,2,3-cd)pyrene	0.48	0.0084	<0.0050	<0.0050
1-Methylnaphthalene	3.4	<0.0050	<0.0050	<0.0050
2-Methylnaphthalene	3.4	<0.0050	<0.0050	<0.0050
Naphthalene	0.75	<0.0050	<0.0050	<0.0050
Phenanthrene	7.8	0.012	<0.0050	<0.0050
Pyrene	78	0.02	<0.0050	<0.0050
Methylnaphthalene, 2-(1-)	3.4	<0.0071	<0.0071	<0.0071

See "Notes for Soil and Groundwater Summary

Tables" included at the beginning of this

Section

Table 8 Soil Analytical Results - TCLP

Parameter		COMP-1
Date of Collection	Schedule 4	Nov 01, 2018
Date Reported	Leachate	Nov 12, 2018
Sampling Depth (mbgs)	Quality	-
Analytical Report Reference No.	Criteria	ICY695
Inorganics		
Leachable Fluoride (F-)	150	0.29
Leachable WAD Cyanide (Free)	20	<0.010
Leachable Nitrite (N)	-	<0.10
Leachable Nitrate (N)	-	<1.0
Leachable Nitrate + Nitrite (N)	1000	<1.0
Metals		
Leachable Mercury (Hg)	0.1	<0.0010
Leachable Arsenic (As)	2.5	<0.2
Leachable Barium (Ba)	100	0.4
Leachable Boron (B)	500	0.3
Leachable Cadmium (Cd)	0.5	<0.05
Leachable Chromium (Cr)	5	<0.1
Leachable Lead (Pb)	5	<0.1
Leachable Selenium (Se)	1	<0.1
Leachable Silver (Ag)	5	<0.01
Leachable Uranium (U)	10	<0.01
PCBs		
Leachable Total PCB	300	<0.0071
Volatile Organics		
Leachable Benzene	0.5	<0.020
Leachable Carbon Tetrachloride	0.5	<0.020
Leachable Chlorobenzene	8	<0.020
Leachable Chloroform	10	<0.020
Leachable 1,2-Dichlorobenzene	20	<0.050
Leachable 1,4-Dichlorobenzene	0.5	<0.050
Leachable 1,2-Dichloroethane	0.5	<0.050
Leachable 1,1-Dichloroethylene	1.4	<0.020
Leachable Methylene Chloride	5	<0.20
Leachable Methyl Ethyl Ketone	200	<1.0
Leachable Tetrachloroethylene	3	<0.020
Leachable Trichloroethylene	5	<0.020
Leachable Vinyl Chloride	0.2	<0.020

See "Notes for Soil and Groundwater Summary Tables" included at the beginning of this Section

Table 9 Soil Analytical Results - PCBs

Parameter		TP18-1 S1A
Date of Collection		Nov 02, 2018
Date Reported	Table 3 RPI	Nov 12, 2018
Sampling Depth (m bgs)	MFT	0 - 0.3
Analytical Report Reference No.		IET111
Polychlorinated Biphenyls	0.35	<0.010

See "Notes for Soil and Groundwater Summary Tables" included at the begining of this Section

Table 10 Groundwater Analytical Results - Metals&ORPs

Parameter		BH18-1S	BH18-2S	BH18-4	BH18-5	BH18-7
Date of Collection		Nov 21, 2018	Nov 21, 2018	Nov 21, 2018	Nov 21, 2018	Nov 27, 2018
Date Reported	Table 3 Non-	Nov 30, 2018	Nov 30, 2018	Nov 30, 2018	Nov 30, 2018	Dec 04, 2018
Screened Depth (mbgs)	GroundwaterMFT	1.5-4.6	1.5-4.6	1.5-4.3	1.5-4.6	1.5-4.6
Analytical Report Reference No.		B8V1705	B8V1705	B8V1705	B8V1705	B8V1705
Antimony	20000	0.93	<0.50	<0.50	<0.50	3.5
Arsenic	1900	2.1	1	4.6	<1.0	8.6
Barium	29000	95	150	350	75	76
Beryllium	67	<0.50	<0.50	<0.50	<0.50	<0.50
Boron	45000	170	120	160	430	1200
Cadmium	2.7	<0.10	<0.10	<0.10	<0.10	<0.10
Chromium	810	<5.0	<5.0	33	<5.0	<5.0
Chromium VI	140	<0.50	<0.50	<0.50	<0.50	<0.50
Cobalt	66	2.5	2.5	54	<0.50	2
Copper	87	<1.0	2.7	15	<1.0	<1.0
Lead	25	<0.50	0.57	5.5	<0.50	<0.50
Mercury	2.8	<0.1	<0.1	<0.1	<0.1	<0.1
Molybdenum	9200	3.6	1.1	4.9	3.2	29
Nickel	490	3.3	3.9	11	<1.0	3.3
Sodium	2300000	310000	570000	230000	830000	190000
Selenium	63	<2.0	<2.0	<2.0	<2.0	2
Silver	1.5	<0.10	<0.10	<0.10	<0.10	<0.10
Thallium	510	<0.050	<0.050	<0.050	<0.050	0.12
Vanadium	250	0.83	1.4	12	<0.50	1.5
Zinc	1100	<5.0	<5.0	21	<5.0	<5.0
Cyanide, Free	66	<1	<1	<1	<1	<1
Nitrate	NV	-	-	-	-	-
Nitrite	NV	-	-	-	-	-
Chloride (mg/L)	2300000	1000	1500	660	1500	240
Uranium	420	2.5	1.9	1.8	0.43	9.5

wsp

Table 11 Groundwater Analytical Results - PHCs&BTEX

Parameter		BH18-1S	QAQC 18-2	BH18-2S	BH18-4	BH18-4	BH18-4	BH18-5
Date of Collection		Nov 21, 2018	Nov 21, 2018	Nov 21, 2018	Nov 21, 2018	Dec 06, 2018	Dec 12, 2018	Nov 21, 2018
Date Reported	Table 3 Non-	Nov 30, 2018	Nov 30, 2018	Nov 30, 2018	Nov 30, 2018	Dec 13, 2018	Dec 19, 2018	Nov 30, 2018
Screened Depth (mbgs)	GroundwaterMFT	1.5	-4.6	1.5-4.6	1.5-4.3	1.5-4.3	1.5-4.3	1.5-4.6
Analytical Report Reference No.		B8V1705	B8V1705	B8V1705	B8V1705	B8W6343	B8X3170	B8V1705
Benzene	430	<0.20	-	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	18000	<0.20	-	<0.20	<0.20	<0.20	<0.20	<0.20
Ethylbenzene	2300	<0.20	-	<0.20	<0.20	<0.20	<0.20	<0.20
Xylene Mixture	4200	<0.20	-	<0.20	<0.20	<0.40	<0.20	<0.20
F1 (C6 to C10) minus BTEX	750	<25	-	<25	<25	<25	<25	<25
F2 (C10 to C16)	150	<100	<100	<100	170	<110	<100	<100
F3 (C16 to C34)	500	<200	<200	<200	<220	<220	<200	<200
F4 (C34 to C50)	500	<200	<200	<200	<220	<220	<200	<200

See "Notes for Soil and Groundwater Summary Tables" included at the beginning of this Section

Table 11 Groundwater Analytical Results - PHCs&BTE

Parameter		BH18-7	TRIP BLANK	TRIP BLANK
Date of Collection		Nov 21, 2018	Dec 06, 2018	Dec 06, 2018
Date Reported	Table 3 Non-	Nov 30, 2018	Dec 13, 2018	Dec 13, 2018
Screened Depth (mbgs)	GroundwaterMFT	1.5-4.6	-	-
Analytical Report Reference No.		IIY742	B8W6343	B8X3170
Benzene	430	1.1	<0.20	<0.20
Toluene	18000	0.35	<0.20	<0.20
Ethylbenzene	2300	<0.20	<0.20	<0.20
Xylene Mixture	4200	<0.20	<0.40	<0.40
F1 (C6 to C10) minus BTEX	750	<25	<25	<25
F2 (C10 to C16)	150	<100	<100	<100
F3 (C16 to C34)	500	<200	<200	<200
F4 (C34 to C50)	500	<200	<200	<200

See "Notes for Soil and Groundwater Summary Tables"

included at the beginning of this Section

wsp

Table 12 Groundwater Analytical Results - VOCs

Date of Collection Date Reported Table 3 Non- potable Nov 21, 2018 Nov 30, 2018 <th colspan="2">Parameter</th>	Parameter	
Date Reported Screened Depth (mbgs) potable Groundwater/MF T Nov 30, 2018 Nov 30,	Date of Collection	
Screened Depth (mbgs) Groundwater/MF 1.5-4.6 1.5-4.6 1.5-4.3 1.5-4.6 1.5-4.6 Analytical Report Reference No. T B8V1705	Date Reported	
Analytical Report Reference No. I B8V1705 C10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	Screened Depth (mbgs)	
Acetone 130000 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	nalytical Report Reference No.	
Benzene 430 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 1.1 Bromodichloromethane 85000 <0.50	9	
Bromodichloromethane 85000 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 </td <td>e</td>	e	
Bromoform 770 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	lichloromethane	
Bromomethane 56 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 Carbon Tetrachloride 8.4 <0.20	orm	
Carbon Tetrachloride 8.4 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <td>nethane</td>	nethane	
Chlorobenzene 630 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	Tetrachloride	
Chloroform 22 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <	enzene	
Dibromochloromethane 82000 <0.50 <0.50 <0.50 <0.50 <0.50 1,2-Dichlorobenzene 9600 <0.50	orm	
1.2-Dichlorobenzene 9600 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 1,3-Dichlorobenzene 9600 <0.50	ochloromethane	
1,3-Dichlorobenzene 9600 <0.50 <0.50 <0.50 <0.50 <0.50 1,4-Dichlorobenzene 67 <0.50	nlorobenzene	
1,4-Dichlorobenzene 67 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	nlorobenzene	
1,1-Dichloroethane 3100 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	nlorobenzene	
	nloroethane	
1,2-Dichloroethane 12 <0.50 <0.50 <0.50 <0.50 <0.50	nloroethane	
1,1-Dichloroethylene 17 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	nloroethylene	
Cis-1,2-Dichloroethylene 17 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	Dichloroethylene	
Trans-1,2-Dichloroethylene 17 <0.50 <0.50 <0.50 <0.50 <0.50	,2-Dichloroethylene	
1,2-Dichloropropane 140 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	nloropropane	
Cis-1,3-Dichloropropylene NV <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 <0.30	Dichloropropylene	
Trans-1,3-Dichloropropylene NV <0.40 <0.40 <0.40 <0.40 <0.40 <0.40	,3-Dichloropropylene	
Ethylbenzene 2300 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	nzene	
Ethylene Dibromide 0.83 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	e Dibromide	
Methyl Ethyl Ketone 1500000 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	Ethyl Ketone	
Methylene Chloride 5500 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <td>ne Chloride</td>	ne Chloride	
Methyl Isobutyl Ketone 580000 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <	sobutyl Ketone	
Methyl-t-Butyl Ether 1400 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	t-Butyl Ether	
Styrene 9100 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50		
1,1,1,2-Tetrachloroethane 28 <0.50 <0.50 <0.50 <0.50 <0.50	Tetrachloroethane	
1,1,2,2-Tetrachloroethane 15 <0.50 <0.50 <0.50 <0.50 <0.50	Tetrachloroethane	
Toluene 18000 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 0.35	9	
Tetrachloroethylene 17 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	loroethylene	
1,1,1-Trichloroethane 6700 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	richloroethane	
1,1,2-Trichloroethane 30 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	richloroethane	
Trichloroethylene 17 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	oethylene	
Vinyl Chloride 1.7 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	nloride	
m-Xylene & p-Xylene NV <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	ne & p-Xylene	
o-Xylene NV <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	e	
Total Xylenes 4200 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	/lenes	
Dichlorodifluoromethane 4400 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1	odifluoromethane	
Dioxane, 1,4- 7300000	e, 1,4-	
Hexane(n) 520 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	(n)	
Trichlorofluoromethane 2500 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	ofluoromethane	
1,3-Dichloropropene (cis + trans) 45 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	nloropropene (cis + trans)	

See "Notes for Soil and Groundwater Summary Tables'

included at the beginning of this Section

Table 12 Groundwater Analytical Results - VOCs

Date of Collection Date Reported Screened Depth (mtgs) Table 3 Non potable GroundwaterMF Nov 30, 2018 Analytical Report Reference No. T B8V1705 Acetone 130000 <10 Benzene 430 <0.20 Bromodichloromethane 85000 <0.50 Bromodichloromethane 66 <0.50 Bromodichloromethane 86000 <0.20 Carbon Tetrachloride 8.4 <0.20 Chlorobenzene 630 <0.20 Chlorobenzene 9600 <0.50 1,3-Dichlorobenzene 9600 <0.50 1,1-Dichlorobenzene 9600 <0.50 1,1-Dichloroethane 3100 <0.20 1,1-Dichloroethane 117 <0.50 1,1-Dichloroethylene 117 <0.50 1,2-Dichloroethylene NV <0.30 Trans-1,3-Dichloropropylene NV <0.30 Cis-1,3-Dichloropropylene NV <0.30 Trans-1,3-Dichloropropylene NV <0.40 Ethylbenzene 2300	Parameter		TRIP BLANK
Date Reported Screened Depth (mbgs) potable GroundwaterMF T Nov 30, 2018 Analytical Report Reference No. T B8V1705 Acetone 130000 <10	Date of Collection	Table 3 Non-	Nov 21, 2018
Screened Depth (mbgs) GroundwaterMF - Analytical Report Reference No. T B8V1705 Acetone 130000 <10	Date Reported	potable	Nov 30, 2018
Analytical Report Reference No. I B8V1705 Acetone 130000 <10	Screened Depth (mbgs)	GroundwaterMF	-
Acetone 130000 <10 Benzene 430 <0.20	Analytical Report Reference No.	Т	B8V1705
Benzene 430 <0.20 Bromodichloromethane 85000 <0.50	Acetone	130000	<10
Bromodichloromethane 85000 <0.50 Bromoform 770 <1.0	Benzene	430	<0.20
Bromoform 770 <1.0 Bromomethane 56 <0.50	Bromodichloromethane	85000	<0.50
Bromomethane 56 <0.50 Carbon Tetrachloride 8.4 <0.20	Bromoform	770	<1.0
Carbon Tetrachloride 8.4 <0.20 Chlorobenzene 630 <0.20	Bromomethane	56	<0.50
Chlorobenzene 630 <0.20 Chloroform 22 <0.20	Carbon Tetrachloride	8.4	<0.20
22 <0.20	Chlorobenzene	630	<0.20
Dibromochloromethane 82000 <0.50 1,2-Dichlorobenzene 9600 <0.50	Chloroform	22	<0.20
1,2-Dichlorobenzene 9600 <0.50 1,3-Dichlorobenzene 9600 <0.50	Dibromochloromethane	82000	<0.50
1,3-Dichlorobenzene 9600 <0.50 1,4-Dichlorobenzene 67 <0.50	1,2-Dichlorobenzene	9600	<0.50
1,4-Dichlorobenzene 67 <0.50	1,3-Dichlorobenzene	9600	<0.50
1,1-Dichloroethane 3100 <0.20	1,4-Dichlorobenzene	67	<0.50
1,2-Dichloroethane 12 <0.50	1,1-Dichloroethane	3100	<0.20
1,1-Dichloroethylene 17 <0.20	1,2-Dichloroethane	12	<0.50
Cis-1,2-Dichloroethylene 17 <0.50 Trans-1,2-Dichloroethylene 17 <0.50	1,1-Dichloroethylene	17	<0.20
Trans-1,2-Dichloroethylene 17 <0.50 1,2-Dichloropropane 140 <0.20	Cis-1,2-Dichloroethylene	17	<0.50
1,2-Dichloropropane 140 <0.20	Trans-1,2-Dichloroethylene	17	<0.50
Cis-1,3-Dichloropropylene NV <0.30 Trans-1,3-Dichloropropylene NV <0.40	1,2-Dichloropropane	140	<0.20
Trans-1,3-Dichloropropylene NV <0.40 Ethylbenzene 2300 <0.20	Cis-1,3-Dichloropropylene	NV	<0.30
Ethylbenzene 2300 <0.20 Ethylene Dibromide 0.83 <0.20	Trans-1,3-Dichloropropylene	NV	<0.40
Ethylene Dibromide 0.83 <0.20 Methyl Ethyl Ketone 1500000 <10	Ethylbenzene	2300	<0.20
Methyl Ethyl Ketone 1500000 <10 Methylene Chloride 5500 <2.0	Ethylene Dibromide	0.83	<0.20
Methylene Chloride 5500 <2.0 Methyl Isobutyl Ketone 580000 <5.0	Methyl Ethyl Ketone	1500000	<10
Methyl Isobutyl Ketone 580000 <5.0 Methyl-t-Butyl Ether 1400 <0.50	Methylene Chloride	5500	<2.0
Methyl-t-Butyl Ether 1400 <0.50 Styrene 9100 <0.50	Methyl Isobutyl Ketone	580000	<5.0
Styrene 9100 <0.50 1,1,1,2-Tetrachloroethane 28 <0.50	Methyl-t-Butyl Ether	1400	<0.50
1,1,2-Tetrachloroethane 28 <0.50 1,1,2-Tetrachloroethane 15 <0.50	Styrene	9100	<0.50
1,1,2,2-Tetrachloroethane 15 <0.50	1,1,1,2-Tetrachloroethane	28	<0.50
Toluene 18000 <0.20 Tetrachloroethylene 17 <0.20	1,1,2,2-Tetrachloroethane	15	<0.50
Tetrachloroethylene 17 <0.20 1,1,1-Trichloroethane 6700 <0.20	Toluene	18000	<0.20
1,1,1-Trichloroethane 6700 <0.20 1,1,2-Trichloroethane 30 <0.50	Tetrachloroethylene	17	<0.20
1,1,2-Trichloroethane 30 <0.50 Trichloroethylene 17 <0.20	1,1,1-Trichloroethane	6700	<0.20
Trichloroethylene 17 <0.20 Vinyl Chloride 1.7 <0.20	1,1,2-Trichloroethane	30	<0.50
Vinyl Chloride 1.7 <0.20 m-Xylene & p-Xylene NV <0.20	Trichloroethylene	17	<0.20
NV <0.20 o-Xylene NV <0.20	Vinyl Chloride	1.7	<0.20
NV <0.20 Total Xylenes 4200 <0.20	m-Xylene & p-Xylene	NV	<0.20
Total Xylenes 4200 <0.20 Dichlorodifluoromethane 4400 <1.0	o-Xylene	NV	<0.20
Dichlorodifluoromethane 4400 <1.0 Dioxane, 1,4- 7300000 - Hexane(n) 520 <1.0	Total Xylenes	4200	<0.20
Dioxane, 1,4- 7300000 - Hexane(n) 520 <1.0	Dichlorodifluoromethane	4400	<1.0
Hexane(n) 520 <1.0 Trichlorofluoromethane 2500 <0.50	Dioxane, 1,4-	7300000	-
Trichlorofluoromethane2500<0.501,3-Dichloropropene (cis + trans)45<0.50	Hexane(n)	520	<1.0
1,3-Dichloropropene (cis + trans) 45 <0.50	Trichlorofluoromethane	2500	<0.50
	1,3-Dichloropropene (cis + trans)	45	<0.50

See "Notes for Soil and Groundwater Summary Tables" included at the beginning of this Section

Table 13 Summary of Maximum Concentrations in Soil

Group	Parameter	Table 3 RPI MFT	Maximum Concentration	Location
	Antimony	7.5	0.86	BH18-4 SS1
	Arsenic	18	5.1	BH18-5 SS1
	Barium	390	140	BH18-2 SS2
	Beryllium	5	1.2	BH18-2 SS2
	Boron (Hot Water Soluble)	1.5	0.45	BH18-4 SS1
	Cadmium	1.2	0.25	BH18-4 SS1
	Chromium	160	35	BH18-2 SS2
	Chromium VI	10	0.3	BH18-8 SS1
	Cobalt	22	16	BH18-2 SS2
	Copper	180	31	BH18-2 SS2
RPs	Lead	120	35	BH18-4 SS1
2 2 2	Mercury	1.8	0.058	BH18-4 SS1
tals	Molybdenum	6.9	<0.50	all samples
Me	Nickel	130	36	BH18-2 SS2
	Selenium	2.4	<0.50	all samples
	Silver	25	<0.20	all samples
	Thallium	1	0.2	BH18-2 SS2
	Vanadium	86	47	BH18-2 SS2
	Zinc	340	79	BH18-2 SS2
	pH (pH Units)	5 to 9	7.76	BH18-2 SS2
	Conductivity (ms/cm)	0.7	2.9	BH18-2 SS2
	Sodium Adsorption Ratio	5	24	BH18-2 SS2
	Sodium Adsorption Ratio	5	0.01	BH18-2 SS2
	Cyanide, Free	0.051	-	BH18-2 SS2
	Benzene	0.17	<0.02	all samples
	Toluene	6	<0.05	all samples
	Ethylbenzene	15	<0.020	all samples
<u> </u>	Total Xylenes	25	<0.020	all samples
숩	F1 (C6 to C10) minus BTEX	65	<10	all samples
	F2 (C10 to C16)	150	56	BH18-4 SS3
	F3 (C16 to C34)	1300	83	BH18-4 SS3
	F4 (C34 to C50)	5600	<50	all samples
	Acetone	28	<0.50	all samples
	Benzene	0.17	<0.020	all samples
	Bromodichloromethane	13	<0.050	all samples
	Bromoform	0.26	<0.050	all samples
	Bromomethane	0.05	<0.050	all samples
S	Carbon Tetrachloride	0.12	<0.050	all samples
100	Chlorobenzene	2.7	<0.050	all samples
	Chloroform	0.18	<0.050	all samples
	Dibromochloromethane	9.4	<0.050	all samples
	1,2-Dichlorobenzene	4.3	<0.050	all samples
	1,3-Dichlorobenzene	6	<0.050	all samples
	1,4-Dichlorobenzene	0.097	<0.050	all samples
	1,1-Dichloroethane	11	<0.050	all samples

Table 13 Summary of Maximum Concentrations in Soil

Group	Parameter	Table 3 RPI MFT	Maximum Concentration	Location
	1,2-Dichloroethane	0.05	<0.050	all samples
	1,1-Dichloroethylene	0.05	<0.050	all samples
	Cis-1,2-Dichloroethylene	30	<0.050	all samples
	Trans-1,2-Dichloroethylene	0.75	<0.050	all samples
	1,2-Dichloropropane	0.085	<0.050	all samples
	Cis-1,3-Dichloropropylene	NV	<0.030	all samples
	Trans-1,3-Dichloropropylene	NV	<0.040	all samples
	Ethylbenzene	15	<0.020	all samples
	Ethylene Dibromide	0.05	<0.050	all samples
	Methyl Ethyl Ketone	44	<0.50	all samples
	Methylene Chloride	0.96	<0.050	all samples
S	Methyl Isobutyl Ketone	4.3	<0.50	all samples
,oc	Methyl-t-Butyl Ether	1.4	<0.050	all samples
-	Styrene	2.2	<0.050	all samples
	1,1,1,2-Tetrachloroethane	0.05	<0.050	all samples
	1,1,2,2-Tetrachloroethane	0.05	<0.050	all samples
	Toluene	6	<0.020	all samples
	Tetrachloroethylene	2.3	<0.050	all samples
	1,1,1-Trichloroethane	3.4	<0.050	all samples
	Total Xylenes	25	<0.020	all samples
	Dichlorodifluoromethane	25	<0.050	all samples
	Dioxane, 1,4-	1.8	-	all samples
	Hexane(n)	34	<0.050	all samples
	Trichlorofluoromethane	5.8	<0.050	all samples
	1,3-Dichloropropene (cis + trans)	0.083	<0.050	all samples
	Acenaphthene	58	0.0059	QAQC-4
	Acenaphthylene	0.17	0.0058	QAQC-4
	Anthracene	0.74	0.02	QAQC-4
	Benzo(a)anthracene	0.63	0.063	QAQC-4
	Benzo(a)pyrene	0.3	0.069	QAQC-4
	Benzo(b/j)fluoranthene	0.78	0.092	QAQC-4
	Benzo(ghi)perylene	7.8	0.055	QAQC-4
S	Benzo(k)fluoranthene	0.78	0.032	QAQC-4
HAG	Chrysene	7.8	0.064	QAQC-4
-	Dibenzo(a,h)anthracene	0.1	0.01	QAQC-4
	Fluoranthene	0.69	0.14	QAQC-4
	Fluorene	69	0.0064	QAQC-4
	Indeno(1,2,3-cd)pyrene	0.48	0.053	QAQC-4
	1-Methylnaphthalene	3.4	0.015	QAQC-4
	2-Methylnaphthalene	3.4	0.014	QAQC-4
	Pyrene	78	0.12	QAQC-4
	Methylnaphthalene, 2-(1-)	3.4	0.029	QAQC-4
PCBs	Polychlorinated Biphenyls	0.35	<0.010	all samples

See "Notes for Soil and Groundwater Summary Tables" included at the beginning of this Section

Table 14 Summary of Maximum Concentrations in Groundwater

Group	Parameter	Table 3 Non-potable GroundwaterMFT	Maximum Concentration	Location
	Antimony	20000	3.5	BH18-7
	Arsenic	1900	8.6	BH18-7
	Barium	29000	350	BH18-4
	Beryllium	67	<0.50	all samples
	Boron	45000	1200	BH18-7
	Cadmium	2.7	<0.10	all samples
	Chromium	810	33	BH18-4
	Chromium VI	140	<0.50	all samples
	Cobalt	66	54	BH18-4
SC	Copper	87	15	BH18-4
ORI	Lead	25	5.5	BH18-4
s &	Mercury	2.8	<0.1	all samples
letal	Molybdenum	9200	29	BH18-7
Σ	Nickel	490	11	BH18-4
	Sodium	2300000	830000	BH18-5
	Selenium	63	2	BH18-7
	Silver	1.5	<0.10	all samples
	Thallium	510	0.12	BH18-7
	Vanadium	250	12	BH18-4
	Zinc	1100	21	BH18-4
	Cyanide, Free	66	<1	all samples
	Nitrate	NV	-	all samples
	Uranium	420	9.5	BH18-7
	Benzene	430	1.1	BH18-7
	Toluene	18000	<0.20	BH18-7
	Ethylbenzene	2300	<0.20	all samples
CS	Xylene Mixture	4200	<0.20	all samples
Ч	F1 (C6 to C10) minus BTEX	750	<25	all samples
	F2 (C10 to C16)	150	170	BH18-4
	F3 (C16 to C34)	500	<200	all samples
	F4 (C34 to C50)	500	<200	all samples
	Acetone	130000	<10	all samples
	Benzene	430	1.1	BH18-7
	Bromodichloromethane	85000	<0.50	all samples
	Bromoform	770	<1.0	all samples
	Bromomethane	56	<0.50	all samples
	Carbon Tetrachloride	8.4	<0.20	all samples
	Chlorobenzene	630	<0.20	all samples
	Chloroform	22	<0.20	all samples
	Dibromochloromethane	82000	<0.50	all samples
	1,2-Dichlorobenzene	9600	<0.50	all samples
	1,3-Dichlorobenzene	9600	<0.50	all samples
	1,4-Dichlorobenzene	67	<0.50	all samples
	1,1-Dichloroethane	3100	<0.20	all samples

Table 14 Summary of Maximum Concentrations in Groundwater

Group	Parameter	Table 3 Non-potable GroundwaterMFT	Maximum Concentration	Location
	1,2-Dichloroethane	12	<0.50	all samples
	1,1-Dichloroethylene	17	<0.20	all samples
	Cis-1,2-Dichloroethylene	17	<0.50	all samples
	Trans-1,2-Dichloroethylene	17	<0.50	all samples
	1,2-Dichloropropane	140	<0.20	all samples
	Cis-1,3-Dichloropropylene	NV	<0.30	all samples
	Trans-1,3-Dichloropropylene	NV	<0.40	all samples
S	Ethylbenzene	2300	<0.20	all samples
/0Cs	Ethylene Dibromide	0.83	<0.20	all samples
	Methyl Ethyl Ketone	1500000	<10	all samples
	Methylene Chloride	5500	<2.0	all samples
	Methyl Isobutyl Ketone	580000	<5.0	all samples
	Methyl-t-Butyl Ether	1400	<0.50	all samples
	Styrene	9100	<0.50	all samples
	1,1,1,2-Tetrachloroethane	28	<0.50	all samples
	1,1,2,2-Tetrachloroethane	15	<0.50	all samples
	Toluene	18000	0.35	all samples
	Tetrachloroethylene	17	<0.20	all samples
	1,1,1-Trichloroethane	6700	<0.20	all samples
	1,1,2-Trichloroethane	30	<0.50	all samples
	Trichloroethylene	17	<0.20	all samples
	Vinyl Chloride	1.7	<0.20	all samples
	m-Xylene & p-Xylene	NV	<0.20	all samples
	o-Xylene	NV	<0.20	all samples
	Total Xylenes	4200	<0.20	all samples
	Dichlorodifluoromethane	4400	<1.0	all samples
	Dioxane, 1,4-	7300000	-	BH18-7
	Hexane(n)	520	<1.0	all samples
	Trichlorofluoromethane	2500	<0.50	all samples
	1,3-Dichloropropene (cis + trans	45	<0.50	all samples

See "Notes for Soil and Groundwater Summary Tables" included at the beginning of this Section

FIGURES

Legend:

- Phase One Property
- MOECC Water Well
- Topographic Contours Line (#) PCA Not Contributing to APEC
- Inferred Groundwater Flow Direction
- UST
- **#** PCA Contributing to APEC

51 CONSTELLATION COURT TORONTO, ONTARIO CANADA M9W 1K4 TEL.: 416-798-0065 | FAX: 416-798-0518 | WWW.WSP.COM

Client: THE REG	ION OF PEEL
Drawn: LWS	Aproved: MB
oate: October 2018	Scale: 1:3000
orginal Size: Tabloid	Rev: N/A

7	N<		
		at "Atha Aa	
6		Junt Range Dougan Rent Part	
	1. 1. 10		
		Phase One Property	
		Lake Ontario	
f.	100	KEY PLAN	
	2		
E-	Et.	2 PCA 2 - Adhesives and Resins Manufacturing	
	100	Processing and Bulk Storage	
	A.	(8) PCA 8 - Chemical Manufacturing, Processing and	
-	A BA	Bulk Storage	
- 9	14	(10) PCA10 - Commercial Autobody Shops	
1	C/	(27) PCA27 - Garages and Maintenance and Repair of	
1	917	Railcars, Marine Vehicles and Aviation Vehicles	
-	1 AV	(28) PCA28 - Gasoline and Associated Products Storage	
X		in Fixed Tanks	
		30 PCA30 - Importation of Fill Material of Unknown Quality	
		(31) PCA31 - Ink Manufacturing, Processing and Bulk Storage	
1	15	34) PCA34 - Metal Fabrication	
k	1	(37) PCA37 - Operation of Dry Cleaning Equipment	
	1.00	(where chemicals are used)	
		(43) PCA43 - Plastics (including Fibreglass) Manufacturing	
20		and Processing	
1		(45) PCA45 - Pulp, Paper and Paperboard Manufacturing	
	XS	and Processing	
E.	123	(47) PCA47 - Rubber Manufacturing and Processing	
3	1 Sal	(49) PCA49 - Salvage Yard, including automobile wrecking	
Æ.	Start .	(54) PCA54 - Textile Manufacturing and Processing	
A	DE	55 PCA55 - Transformer Manufacturing, Processing and Use)
-01	MENADE	56) PCASE - Treatment of Sewage equal to of greater than	
pko		57 PC 457 Vehicles and Associated Parts Manufacturing	
	200	58 PCA58 - Waste Disposal and Waste Management	
	Contraction of	(59) PCA59 - Wood Treating and Preservative Facility and Bull	_k
00	100	Storage of Treated and Preserved Wood Produc	cts
Met	ers	(A) PCA N/S - Application of De-Icing Compounds	
	Project No	D.: 181-11306-00 Figure No.: 1	┥
	Discipline:	ENVIRONMENTAL	
	Title:	Phase One Conceptual Site Model	

Phase One Environmental Site Assessmer	nt
958 - 960 East Avenue, Mississauga, Ontar	rio

Project:

Inferred Groundwater Flow Direction

APEC3 \rightarrow

UST

APEC 4

51 CONSTELLATION COURT TORONTO, ONTARIO CANADA M9W 1K4 TEL.: 416-798-0065 | FAX: 416-798-0518 | WWW.WSP.COM

Client: THE REG	THE REGION OF PEEL		181-11306-00	Figure No.:	2
Drawn: LWS	Aproved: MB	Discipline:	ENVIRG	ONMENTAL	
Date: October 2018	Scale: 1:1500	Title:	Areas of Potenta	al Environmental	Concern
Orginal Size: Tabloid	Rev: N/A	Project:	Phase One Environm 958 – 960 East Avenu	ental Site Assess e, Mississauga, O	ment ntario

POTENTIALLY CONTAMINATING ACTIVITIES (PCAs)

- (10) PCA10 Commercial Autobody Shops
- (27) PCA27 Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles
- (28) PCA28 Gasoline and Associated Products Storage in Fixed Tanks
- (31) PCA31 Ink Manufacturing, Processing and Bulk Storage
- (34) PCA34 Metal Fabrication
- (37) PCA37 Operation of Dry Cleaning Equipment (where chemicals are used)
- (43) PCA43 Plastics (including Fibreglass) Manufacturing and Processing
- (45) PCA45 Pulp, Paper and Paperboard Manufacturing and Processing
- (47) PCA47 Rubber Manufacturing and Processing
- (49) PCA49 Salvage Yard, including automobile wrecking
- (54) PCA54 Textile Manufacturing and Processing
- (57) PCA57 Vehicles and Associated Parts Manufacturing
- (58) PCA58 Waste Disposal and Waste Management

⁽⁵⁹⁾ PCA59 - Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products

(A) PCA N/S - Application of De-icing Compounds

- **#** PCA Contributing to APEC
- (#) PCA Not Contributing to APEC

1	7	10		/
-	1	The second second		
Result		10th		
1-Nov-	18			
	SCS	120		
Cs <t3 rpl<="" td=""><td>SCS</td><td>and the second</td><td></td><td></td></t3>	SCS	and the second		
				13
		-	1.182	100
Dome we observe	Result		- 9	500
Parameter	5-Nov-18		0	Sto.
PAHs	<t3 rpi="" scs<="" td=""><td></td><td>1 the trained</td><td>23</td></t3>		1 the trained	23
Metals & ORPs	>T3 RPI SCS		Y	
PHCs, VOCs	<t3 rpi="" scs<="" td=""><td>5/</td><td>phillipping and and and and and and and and and and</td><td>-13</td></t3>	5/	phillipping and	-13
EC/SAR	>T3 RPI SCS		the man the	
EC	>T3 RPI SCS	-	MI CARLAND	1 P
EC	<t3 rpi="" scs<="" td=""><td>1000</td><td>and the stand</td><td>the state of the</td></t3>	1000	and the stand	the state of the
	10	0	Part all all to	19
	00		1 2 2 11 31	St.
		11 11	and the second	24
	WE ST		and the first	
	A.	11/2	and still	11
Peault		Pr	-119	1
Result B-Nov-18				
3 RPI SCS		A State of the sta		
3 RPI SCS	A.C.	NY NY	CAR .	
S RPI SCS			95	
the state		6 1	AT THE PARTY	1000
1			The second se	1000 11
and the second s		407		2.M
- 1				
1			D	
1				
1				1 and 1
1				
1				
1				
1				
1				X
/				
/				A A
/				6 6
/				(c) A
0	10	20 30 4	40 50m	Co de
0	10	20 30 4	40 50m	A A
0	10	20 30 4	40 50m	6 4
0	10	20 30 4	40 50m	E A
	Result Inversion RPS CS CS Parameter PAHs Metals & ORPs PHCs, VOCs EC/SAR EC EC EC Result Nov-18 3RPI SCS 3RPI SCS 3RPI SCS	Result Iter Iter 1-Nov-18 RPs <t3 rpi="" scs<="" td=""> ICS <t3 rpi="" scs<="" td=""> Metals & >T3 RPI SCS ICS <t3 rpi="" scs<="" td=""> EC >T3 RPI SCS EC >T3 RPI SCS EC <t3 rpi="" scs<="" td=""> EC <t3 rpi="" scs<="" td=""> ICS Result Nov-18 3RPI SCS 3RPI SCS 3RPI SCS 3RPI SCS</t3></t3></t3></t3></t3></t3></t3></t3></t3></t3></t3>	Result 1-Nov-18 RPS <13 RPI SCS	Result 1-Nov-18 Rps < T3 RPI SCS

T NO: 181-11306-00	DATE: December 2018	TITLE:		
101-11500-00	2000			
ED BY:		SUMMARY OF CHEMICAL ANALYSIS IN SOIL		
BY:				
D BY:		ENVIRONMENT		
		ISSUE:	RV. #	
NO:	SCALE:			
5	as shown	DATE OF:	0	

51 CONSTELLATION COURT
TORONTO, ONTARIO CANADA M9W 1K4
TEL.: 416-798-0065 FAX: 416-798-0518 WWW.WSP.COM

OSoil sample meets the MECP Table 3 RPI SCS
OSoil sample exceeds the MECP Table 3 RPI SCS

Monitoring Well

Parameter	MECP Table 3 RPI SCS
Electrical Conductivity (EC)	0.7
Sodium Adsorption Ratio (SAR)	5

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 958-960 EAST AVENUE, MISSISSAUGA, ON

CLIENT REF. #:

PROJECT:

 Result

 1-Nov-18

 0.32

 1.4

Depth (mbgs)	Parameter	Result
(iiibgs)		5-1100-10
08-14	EC	2.9
0.8 - 1.4	SAR	24
1 5 2 1	EC	2
1.5 - 2.1	SAR	3.5
2220	EC	1.8
2.3-2.9	SAR	-
2027	EC	0.44
3.0-3.7	SAR	-
		100
	Depth (mbgs) 0.8 - 1.4 1.5 - 2.1 2.3-2.9 3.0-3.7	Depth (mbgs) Parameter 0.8 - 1.4 EC 1.5 - 2.1 EC 2.3-2.9 EC 3.0-3.7 EC

er	Result
	8-Nov-18
	0.32
	1.5

	and the				
1(0 20	30	40	50m	
				1.14	

CE B

PROJECT NO: 181-11306-00	DATE: December 2018	TITLE:		
DESIGNED BY: SL		CHEMICAL EXCEEDANCES IN SOIL ORPs		
DRAWN BY:				
OB		DISCIPLINE: ENVIRONMENT		
CHECKED BY:				
MVV		ISSUE:	RV. #	
FIGURE NO:	SCALE:			
6	as shown	DATE OF:	0	

1		1						
	Daramator	Result						
s)	Parameter	21-Nov-18						
	Metals&ORPs	<t3 scs<="" td=""></t3>						
	PHCs	<t3 scs<="" td=""></t3>						
	VOCs	<t3 scs<="" td=""></t3>						
_								

		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Screened	Darameter	Result
_	Depth (mbgs)	Parameter	21-Nov-18
	1.6-4.6	Metals&ORPs	<t3 scs<="" td=""></t3>
		PHCs	<t3 scs<="" td=""></t3>
		VOCs	<t3 scs<="" td=""></t3>

12.20			
Darameter		Result	
Parameter	21-Nov-18	6-Dec-18	12-Dec-18
Metals&ORPs	<t3 scs<="" td=""><td>-</td><td>-</td></t3>	-	-
PHCs	>T3 SCS	<t3 scs<="" td=""><td><t3 scs<="" td=""></t3></td></t3>	<t3 scs<="" td=""></t3>
VOCs	<t3 scs<="" td=""><td>-</td><td>-</td></t3>	-	-

0 10 20 30 40 50m

T NO:	DATE:	TITLE:								
181-11306-00	December 2018	3								
ED BY:		IN GROUNDWATER								
BY:										
D BY:		ENVIRONMENT								
		ISSUE:	RV. #							
NO:	SCALE:		0							
1	as snown	DATE OF:	0							

		DISCIPLINE: FNVIRONMENT	
) BY:			
		ISSUE:	RV. #
8	SCALE: as shown	DATE OF:	0

LEGEND:		Project No
[-] - NO Receptor considered to be present and/or Pathway Incomplete	NSD	Project: <mark>9</mark>
 [A] - Receptor is considered to be present and Pathway Complete X - Exposure Pathway considered blocked (<i>indicate</i> Risk Management <i>and/or</i> Remediation) (<i>To be Shown after completion of Remediation/Risk Assessment</i>) 		Date: Dece

-Sit	te Rec	ceptor	S		¢	Off-Si	te Rec	eptoi	ſS
Worker	Construction Worker	Landscape Worker	Property Visitor/ Trespasser		Property Resident (Adult and Child)	Long-term Indoor Worker	Construction Worker	Landscape Worker	Property Visitor/ Trespasser
				_					
-	—	—	—		—	—	—	—	—
-	-	-	-	J	-	—	—	-	—
_	—	_	_	1	—	—	_	_	_
				1					
-	—	—	—		—	—	—	—	—
-	-	-	-	l	_	-	-	_	-
_	_	_	_	1	—	—	_	_	_
-	_	_	_	1	_	_	_	_	—
				1					
-	-		_	J	_	_			-
_		_		1					
-	_	-	—	1	_	—	_	—	
No	.: 181 -	11306	-00			Figu	re No.:	9	
95	58-96	0 East	t Aver	nue,	Missi	issau	ga, ON	l	
ece	embe	r 2018		Dra	wn: ۸	1W	Appr	oved:	МВ

LEGEND:

 $[-\!\!-]$ - NO Receptor considered to be present and/or Pathway Incomplete

 $[\blacktriangle]$ - Receptor is considered to be present and Pathway Complete

X - Exposure Pathway considered blocked (indicate Risk Management and/or Remediation) (To be Shown after completion of Remediation/Risk Assessment)

Project No.: 181-11306-00 **\\S**D Project: 958-960 East Avenue, Date: December 2018

Drawn: MW

¢	Off-Si	te Rec	eptor	5
Terrestrial Vegetation	Soil Investebrates	Mammals and Birds	Aquatic Vegetation	Aquatic Animals
-			_	
_	—	_	-	—
	_			
-	—	_	-	—
_				
_	_		_	_
-	—	—	-	—
-	_	_	—	—
_	_	_	_	_
_	_	_	_	—
	Figu	re No.:	10	
Missi	issau	ga, ON	1	

Approved: MB

A LEGAL SURVEY

LAKESHORE ROAD EAST ο. SERVICE ROAD 5-0" CONCRETE WALK AREA TO BE 5.0 CONCRETE WALK DRIVEWAY 8 SPACES 250.00 PROPERTY LINE PLANTING SPECIFICATIONS All TREES SHALL BE BALLED AND BURLAPED AS WELL AS STAKED OR GUY WIRED WITH PROPER STAKES OR WIRE IN ACCORDANCE WITH GOOD LOCAL PRACTICE. ALL PLANTING MATERIAL SHALL CONFIRM TO THE STANDARDS OF THE CANADIAN ASSOCIATION OF NURGERYMEN, DRIED OUT PLANTS SHALL NOT BE USED. PITS FOR TREE PLANTING SHALL BE AT LEAST 24" DEEP AND HAVE A DIAMETER OF AT LEAST 6" BEYOND THE ROOT SPREAD. PITS FOR SHRUB PLANTING BEDS SHALL BE REFILLED WITH SANDY LOAM AND 4 OZ. OF BONE MEAL AND 4 OZ. OF ACTIVATED SLUGE SHALL BE THOROUGHLY MIXED WITH EACH BUSHEL OF SANDY LOAM. EACH PLANT SHALL BE THOROUGHLY WATERED WHEN THE HOLE IS TWO THIRDS FILLED WITH SOIL. AFTER FINAL BACKFILLING AND WATERING THE SOIL SHALL BE LEFT AT LEAST I" LOWER THAN THE SURROUNDING GROUND LEVEL FORMING A SHALLOW PEPRESSION TO COLLECT RAINWATER. PRUNING OF PLANTING MATERIAL SHALL BE DONE IN ACCORDANCE WITH GOOD LOCAL PRACTICE.

SODDING AND SEEDING SPECIFICATIONS All AREAS MARKED LAWN SHALL BE SODDED WITH GOOD QUALITY NURSERY SOD LAID OVER 4" OF TOP SOIL, SODS SHALL BE LAID EVENLY TO PROPER GRADE, WATERED AND ROLLED. ALL AREAS MARKED GRASS SHALL BE SEEDED WITH PERMANENT LAWN GRASS SPECIES AT THE PATE OF 4 TO 5 LBS. OF SEED PER 1000 SQ FEET.

GRADING SPECIFICATIONS THE SITE SHALL BE GRADED SO AS TO DIRECT SURFACE WATER AWAY FROM BUILDINGS, THE FINISHED GRADE SURFACE SHALL SLOPE AWAY FROM THE FOUNDATIONS NOT LESS THAN 3" IN 10-0" NOR MORE THAN 7" IN 10-0" FOR A MINIMUM DISTANCE OF 10-0"

L.

2345	GLEDITSIA TRIACANTHOS SCHADEMASTER ACER SACCHARUM ACER RUBRUM SACCHARINUM	8' - 10' 10' - 12' 10' - 12' 10' - 12'	5 M 2 M
6 7 8	LARGE EVERGREEN TREES PICEA CLAUCA PINUS STROBUS ABIES CONCOLOR	4 - 5 4 - 5 4 - 5	S G G
9 10 11	FLOWERING FORMAL TREES CRATAEGUS OXYACANTHA PAULS SCARLET MALUS ALMEY PRUNUS PISSARDI FLOWERING SHRURS	G' STEM G' STEM G' STEM	N 4 4
4 B U D III	FORSYTHIA OVATA LONICERA TATARICA ROSEA SYRINGA VULGARIS KOLKWITZIA AMABILIS PHILADELPUS COROMARIUS DEUTZIAEFLORUS	4 4 4	୦) <u>୦</u> ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦

ALL PATIOS SHALL BE 24" × 24" PRECAST CONCRETE SLABS LAD OVER 4" SAND BED.

PROPOSED LANDSCAPING FOR SENIOR CITIZENS TORONTO TOWNISHIP, ONTARIO. LA SCALA CONSTRUCTION LTD.

See. 18

APPENDIX B SAMPLING AND ANALYSIS PLAN

SAMPLING AND ANALYSIS PLAN

WSP was retained by the Region of Peel to conduct a Phase Two ESA for the land municipally identified as 958-960 East Avenue, Mississauga, Ontario (the Site). The purpose of the proposed Phase Two ESA program is to assess the current subsurface environmental conditions to support redevelopment of the property and filing a RSC.

The Phase Two ESA will involve intrusive investigation in the areas determined in the Site visit to be APECs, and will be completed in general accordance with O.Reg 153/04. Based on the findings of the field and laboratory analyses, a Phase Two ESA report will be prepared.

The Site Investigation Program will be completed as follows:

Public and private underground utilities and services will be cleared prior to commencement of intrusive investigation activities

A Health and Safety Plan will be prepared and all work will be executed safely

Eight (8) boreholes will be advanced on the Phase Two Property, to an approximate maximum depth of 12.8 mbgs using a track-mounted drill rig. The soil profile from each borehole will be logged in the field and samples will be screened for TOV with a PID. The location of the boreholes will be selected to investigate any APECs identified during the Site visit, as well as to delineate the horizontal and vertical extents of relevant parameters of concern.

Based on field screening and visual/olfactory observations, worst-case/representative soil samples from the boreholes will be submitted for laboratory testing of relevant parameters of concern.

Five (5) groundwater monitoring wells will be installed within the boreholes to assess groundwater quality below the Site and determine the direction of groundwater flow;

The groundwater levels in the wells will be measured at least 24 hours after well development has been completed, to determine the groundwater table elevation. The wells will be surveyed to a geodetic benchmark to determine groundwater flow direction.

The groundwater wells will be purged to remove stagnant water and sampled for laboratory testing of relevant parameters of concern.

Both soil and groundwater samples will be submitted for chemical analysis by a CALA laboratory in accordance with the Ontario MECP standards and requirements of O.Reg. 153/04 under the Environmental Protection Act.

The proposed analytical program is outlined below (proposed program subject to change as a result of site observations/findings). All soil and groundwater sampling will be carried out in accordance with WSP's Standard Operating Procedures (SOPs).

Soils:

Eight (8) soil samples for Metals and ORPs

Eight (8) soil samples for PAHs

Eight (8) soil samples for VOCs

Eight (8) soil samples for PHCs

One (1) soil sample for PCBs

Four (4) soil sample for QA/QC purposes (duplicates)

Groundwater:

Five (5) groundwater samples for Metals and ORPs

Five (5) groundwater samples for VOCs

Five (5) groundwater samples for PHCs

Two (2) groundwater samples for QA/QC purposes (one duplicate and one trip blank)

Following receipt of all of the results, a report in accordance with O.Reg. 153/04 will be prepared.

It is noted that if the Phase Two ESA reveals parameter concentrations greater than the applicable standards set out in *Ontario Regulation 153/04*, then additional work (i.e., supplemental delineation, additional drilling, sampling, analysis, and/or site remediation activities) will be deemed necessary prior to RSC filing, should an RSC be required. The costs for any additional work, if necessary, are beyond the current scope of work.

Finalized Sampling & Analysis Plan

The finalized SAP was created based on the request to complete a Phase Two ESA for due diligence purposes. The SAP was compiled to collect data to provide information on soil and/or groundwater quality in each APEC.

Figure 3 outlines the borehole/monitoring well investigation locations. Table 4-1 provides the proposed and implemented SAP, which includes the specific requirements for sampling and analysis for the areas to be investigated.

Additional delineation may be required following the implementation of this SAP to meet the requirements of O.Reg. 153/04 which requires delineation of all areas where concentrations are above the applicable SCS such as in the following conditions:

Unexpected contamination not previously discovered, or not related to identified APECs, will need to be further delineated to identify source(s); and

Requirement for a minimum of three monitoring wells per stratigraphic unit would have to extend to underlying units if there is evidence of contamination extending into it; the SAP assumes contamination is limited to the upper stratigraphic unit (confirmed with clean sample) then the underlying units do not necessarily have to be characterized. The SAP has been developed using the available data, and may require additional delineation if sampling results come out suggesting impacts are deeper than initially expected.

C BOREHOLE LOGS

\\SD

LOG OF BOREHOLE BH18-1 (Deep)

PROJECT: 958-960 East Avenue

CLIENT: Region of Peel

PROJECT LOCATION: 958-96 Lake Avenue, Mississauga

DATUM: Geodetic

Method: Hollow Stem Augers

Diameter: 216/63.5mm Date: Nov/01/2018 to Nov/02/2018 REF. NO.: 181-11306-00 ENCL NO.: 1

BH LOCATION: N 4825338.2 E 616012.4

Measurement $\stackrel{1st}{\checkmark} \stackrel{2nd}{\blacktriangledown} \stackrel{3rd}{\blacktriangledown} \stackrel{4th}{\blacktriangledown}$

NOTES

11

LOG OF BOREHOLE BH18-1 (Deep)

PROJECT: 958-960 East Avenue

CLIENT: Region of Peel

PROJECT LOCATION: 958-96 Lake Avenue, Mississauga

DATUM: Geodetic

Method: Hollow Stem Augers

Diameter: 216/63.5mm Date: Nov/01/2018 to Nov/02/2018 REF. NO.: 181-11306-00 ENCL NO.: 1

BHL	OCATION: N 4825338.2 E 616012.4		1			i		i										1	-		
	SOIL PROFILE		5	SAMPL	.ES	с		н	ead S	pace	Com	bustik	ole	PLAST		URAL	LIQUID		Þ	REM	IARKS
(m)		5				ATE S			Va	apor r (pr	m)	ng		LIMIT	CON	ITENT	LIMIT	a) PEN.	JNIT (A	ND N SIZE
ELEV	DESCRIPTION	LC PLC	с		3 m	N OI	NOI				,			W _P		w 0	W _L	E S S	RAL L	DISTR	BUTION
DEPTH	BESCRIPTION	RATP	ABE	ш	OBLO		VAT		D	\geq				WA	TER CO	ONTEN	T (%)	90	U T U	(*	%)
	Continued	STF	Ñ	Ľ	ż	GR	E	:	2 4	4 (6 8	8 1	10	1	0 2	20 3	30		-	GR SA	SI CL
-	SHALE: grey weathered shale		5	CORE				-													
-	/limestone.(Continued)							-													
E							Sand	-													
-								-													
11								-													
-								-													
-						ŀ.⊟∶.	71	-													
-			6	CORE		目 -	Scree	n													
-								-													
12								-													
70.1						.:目:		Ē													
12.3	END OF BOREHOLE																				
	1) Borehole was open and dry upon																				
	completion.																				
	installed upon completion.																				
	Water Level Readings:																				
	Date W.L.Depth (m)																				
	NOV. 14, 2018 2.08																				
			1															1	1		
1			1	1									1	1	1	1	1	1	1	1	

V

LOG OF BOREHOLE BH18-1 (Shallow)

PROJECT: 958-960 East Avenue

CLIENT: Region of Peel

PROJECT LOCATION: 958-96 Lake Avenue, Mississauga

DATUM: Geodetic

Method: Hollow Stem Augers

Diameter: 216mm Date: Nov/01/2018 to Nov/02/2018 REF. NO.: 181-11306-00 ENCL NO.: 1a

Out Produit Ownersa Base Confluxation Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	BHTC	SOU BROELE				ES	1		<u> </u>										1	<u> </u>	
Import DESCRIPTION Big with a gray of the second s			1					Vapor Reading			le	PLASTIC NATURAL MOISTURE LIQUI				-	TW.	REMARKS			
Line DESCRIPTION Solution	(m)		LoT			ଷ୍ଟ	NS	z			(pr	om)	0		WP	CON	TENT N	WL	ET PEI (kPa)	LINU (°m)	GRAIN SIZE
B2.4 Cround Suffice Water Control (n)	ELEV DEPTH	DESCRIPTION	TAP	Ë		0.3 n		ATIO		,		L					0		(CU)	TURAI (KN	DISTRIBUTION
824 Ground Suffine a 2 b			TRA	NMB	ΥΡΕ		ROU	LEV/		· ·	4		0 1	0	WA	TER CC		Г (%)	£	¥	(70)
10.2 winning (Linbogy methods) argune generation and the second sec	82.4 8 0 .0	Ground Surface Direct Drilling to Depth of 4.6 m	0	z	-	-		Risinc		asing	4 (0.89 r	n)			'					<u> </u>	GR SA SI CL
all all <td>0.2</td> <td>Without Sampling. Lithology</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Sand</td> <td> </td> <td> </td> <td></td>	0.2	Without Sampling. Lithology						Sand													
a 1.5 a .9.6 a .9.7	-	interred from BHT6-1 (Deep)	\otimes					82	-												
913 10 10 10 10 10 10 10 10 10 10			\bigotimes						-												
2 73.4 2 78.4 2 78.4	_ 81.5 _1 0.9		XX XQ						-												auqure
178.4 30.<	-								-												grinding
4-foliepting a T3-4 3-3 - 78 - 7	-			1				81													augure grinding
4. PRO CF BOREHOLE Note: 1, 2018 4. PRO CF BOREHOLE Note: 1, 2018 7. Borthole was open and dry upon 1, 284 1, 284	-			1				-Holep	lug F												augure arinding
4.78.4 30	2			1					-												augure
a 79.4 3.0 80 augure grinding a 27.8 W. L. 79.6 m augure augure 7.8 70 70 augure 7.8 70 70 augure 7.8 70 70 augure 9 70 70 augure 9 78 78 augure 10 78 augure grinding augure 78 augure augure 10 78 augure augure 10 78 augure augure 10 78 augure augure 10 10 10 10 augure 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <td>-</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>grinding</td>	-			1					-												grinding
178.4 3.0 178.4 1.0 1.0 1.4 20.6 m. augure grinding 178.4 7.0 7.0 1.0 1.4 20.6 m. augure grinding 178.4 7.0 7.0 1.0 1.0 1.0 augure grinding 1.0 1.0 1.0 1.0 1.0 1.0 1.0 augure grinding 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0				1				80	<u> </u>										-		augure
179.4 3.0 W.L. 79.6 m Nov 14. 2018 augure grinding 178.4 4.0 79				1					-												grinding
3.0 Image: Screen fragment of the screen frag	- ₃ 79.4			1			<u>¥</u>	W. L. 1	┠ 79.6 m												augure
A 178.4 A 2 18 A 2 1	3.0							Nov 14	1, 2018 F	3											giniang
Soreen	-							79	-												augure grinding
4 78.4 4.0									-												
2-78.4.0 77.8								Scree	r n.												augure grinding
77.8 78	- 4.0 <u>-</u>		29						-												
7.7.8 Image: Contract of the second seco	-							78	-												
Notes: 1) Notes: 1) Signal de was open and dry upon completion. 2) Somm dia. monitoring well was installed upon completion. Water Level Readings: Date W1.Depth (m) Nov. 14, 2018 2.34	77.8		_						-												augure
Completion. 2) 50mm dia. monitoring well was installed upon completion. Water Level Readings: Date W.L.Depth (m) Nov. 14, 2018 2.84	4.0	Notes:																			grinaing
2) Summ dia. monitoring well was installed upon completion. Water Level Readings: Date W.L.Depth (m) Nov. 14, 2018 2.84		completion.																			
Water Level Readings: Date WLDepth (m) Nov. 14, 2018 2.84		2) 50mm dia. monitoring well was installed upon completion.																			
Date W.L.Depth (m) Nov. 14, 2018 2.84		Water Level Readings:																			
		Date W.L.Depth (m) Nov 14 2018 2 84																			

11

LOG OF BOREHOLE BH18-2 (Deep)

PROJECT: 958-960 East Avenue

CLIENT: Region of Peel

DATUM: Geodetic

PROJECT LOCATION: 958-96 Lake Avenue, Mississauga

Method: Hollow Stem Augers Diameter: 216/63.5mm

Date: Nov/05/2018 to Nov/06/2018

REF. NO.: 181-11306-00 ENCL NO.: 2

BHL	OCATION: N 4825304 E 616036		1			-		<u> </u>	
	SOIL PROFILE		5	SAMPL	ES	щ			S
(m) <u>ELEV</u> DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ГҮРЕ	N" <u>BLOWS</u> 0.3 m	SROUND WATE	ELEVATION	(ppm) (ppm)	ZE ION
82.1	ASPHALT: 100mm	0)	2	-	-		Flush		
- 0.1	GRANULAR BASE /SUBBASE: 500mm (gravelly sand)	×	1	SS	7		Sand		
- 0.0 - - - - -	FILL: sing clay, trace sand, trace gravel, shale fragment, rootlets, wood fragment, trace organic, brown to dark brown, moist, stiff.		2	SS	8		81		
80.6 1.5	SILTY CLAY TILL: trace sand, trace gravel, shale fragment, brownish grey, moist, very stiff to hard		3	SS	16		80		
- - - - - - - - - - - - - - - - - - -			4	SS	27			grinding augure	
- 3.1	SILTY CLAY TILL/SHALE COMPLEX: shale and limestone fragment, grey, dry, hard		5	SS	50/ 0mm		79	grinding spoon/ham bouncing	ıme
- - - - - -			6	SS	50/ 0mm		78 -Holep	Image: speed of the speed o	ime
- - - - - - - -			7	SS	50/ 1 <u>25mr</u>	⊻	77 W. L.	7	ime
- - - - - - 6			8	SS	50/ 0mm		Nov 1-	4, 2018 grinding grinding spoon/ham bouncing augure grinding	ime
- - - <u>75.6</u> - 6.5	SHALE: grey weathered shale interbedded with siltstone		9 10 1	SS SS CORE	50/ 1 <u>25mr</u> 50/ 0mm			L augure grinding L Spoon/ham L Spoon/ham F Spoon/ham	ıme ıme
- <u>7</u> - - - - - -			2	CORE			75		
- - - - -							74 Sand		
- - - - - - - - -			3	CORE			73 Scree		
- - 10	Continued Next Page								
<u>GROU</u>	NDWATER ELEVATIONS					<u>GRAPH</u> NOTES	+ 3	, X ³ . Numbers refer to Sensitivity O ^{8=3%} Strain at Failure	

wsp

LOG OF BOREHOLE BH18-2 (Deep)

PROJECT: 958-960 East Avenue

CLIENT: Region of Peel

DATUM: Geodetic

PROJECT LOCATION: 958-96 Lake Avenue, Mississauga

Method: Hollow Stem Augers

Diameter: 216/63.5mm Date: Nov/05/2018 to Nov/06/2018 REF. NO.: 181-11306-00 ENCL NO.: 2

BH LOCATION: N 4825304 E 616036

BHL	OCATION: N 4825304 E 616036							-										l I		
	SOIL PROFILE	-	5	SAMPL	.ES	ъ		Н	ead S	pace	Com	bustib	le	PLAST			LIQUID		M	REMARKS
(m)		5				ATE S			Ve	apor r ag)	m)	ng		LIMIT	CON	TENT	LIMIT	PEN.	TIN (AND
ELEV	DESCRIPTION	Б	~		N E	N N N	NO				,			w _P ⊢	(// 0	WL	Ка Е́Я	RN/m	DISTRIBUTION
DEPTH	DESCRIPTION	ATA	1BEF	ш	BLO		VAT			\geq	I			WA	TER CO		F (%)	90 00	NTUF)	(%)
	Continued	STR.	NUN	IγPi	z	GRC CON	ELEY		2	4 6	- 6 6 - 6	8 1	0		0 2	20 3	80		z	GR SA SI CI
-	SHALE: grey weathered shale		4	CORE				_												
-	interbedded with siltstone						Sanu	ŀ												
71.6	/limestone.(Continued)						-Bento	nite L												
10.5	Notes:																			
	1) Borehole was open and dry upon completion.																			
	2) 50mm dia. monitoring well was																			
	Installed upon completion.																			
	Water Level Readings:																			
	Nov. 14, 2018 5.22																			
	- ,																			

11

LOG OF BOREHOLE BH18-2 (Shallow)

PROJECT: 958-960 East Avenue

CLIENT: Region of Peel

DATUM: Geodetic

PROJECT LOCATION: 958-96 Lake Avenue, Mississauga

Method: Hollow Stem Augers/Coring Diameter: 216mm

Date: Nov/05/2018 to Nov/05/2018

REF. NO.: 181-11306-00 ENCL NO.: 2a

BH LOCATION: N 4825306 E 616038		
SOIL PROFILE SAMPLES Head Space Combustible	ASTIC NATURAL MOISTURE L	
[m] $[m]$	VIII CONTENT	
	·	
	WATER CONTENT (
82.1 Ground Surface $\overline{5}$ \overline{z} \overline	10 20 30	GR SA SI CL
- 82.0 Direct Drilling to Depth of 4.5 m		
inferred from BH18-2 (Deep)		
Holeplug		
E 80.6		
		augure
		grinding
		grinding
		augure
79.0		augure
		grinding
		grinding
		augure
		augure
		augure
		grinding
4.6 END OF BOREHOLE		grinding
1) Borehole was open and dry upon		
2) 50mm dia. monitoring well was		
installed upon completion.		
Water Level Readings:		
Nov. 14, 2018 2.12		
		1 1 1

11

LOG OF BOREHOLE BH18-3

PROJECT: 958-960 East Avenue

CLIENT: Region of Peel

PROJECT LOCATION: 958-96 Lake Avenue, Mississauga

DATUM: Geodetic

Method: Hollow Stem Augers

Diameter: 216/63.5mm Date: Nov/06/2018 to Nov/07/2018 REF. NO.: 181-11306-00 ENCL NO.: 3

BH LOCATION: N 4825322.5 E 616002.4

	SOIL PROFILE		5	SAMPL	.ES			Γ	He	ad S	pace	Con	nbu	ustib	le	DLAC	N/	ATUF	RAL			F	REM	ARKS	-
(m) <u>ELEV</u> DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	гуре	'N" BLOWS 0.3 m	GROUND WATER	ELEVATION		2	Vá	apor (p	Read pm) 	ling 8	1	0			DIST DNTI W 		LIQUID LIMIT WL T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT W (kN/m ³)	Al GRAII DISTRI (¹ GR SA	ND N SIZE BUTION %)	N
- 82.9 - 82.9 - 82.9 - - - - -	FILL: silty clay, trace sand, trace gravel, shale fragment, rootlets, brown to dark brown, moist, firm to stiff.		1	SS	5		82					3													
- - <u>1</u> - - - - - 81.0			2	SS	9		01																		
- 1.5	SILTY CLAY TILL: trace sand, trace gravel, shale fragment, brownish grey, moist, very stiff to hard		3	SS	20	-	81																		
- - - - - -			4	SS	31		80														-				
- <u>79.4</u> - 3.1 - <u>78.7</u> - <u>3.8</u>	SILTY CLAY TILL/SHALE COMPLEX: shale and limestone fragment, grey, dry, hard SHALE: grey weathered shale		5	SS SS	50/ 25mm		79														-		spoon/ bounci augure grindin	າamm າg ດ	e
- <u>4</u> 	interbedded with siltstone /limestone.		1	CORE			78														-		spoon/ bounci	ຳamm າg	e
- 5 - - - - - - - - - - - - - - - - - -			2	CORE			77														_				
- - - - -						-	76														-				
- - - - - -			3	CORE			75														-				
8 - - - - - - - - - - -			4	CORE			74														-				
- - - - - -						-	73														_				
GROU	Continued Next Page					<u>GRAPH</u> NOTES	+ 3,	, ×	(³ : N to	umber Sensi	s refer tivity		0 ⁸	=3%	Strain	at Failu	ire			1		•			

wsp

LOG OF BOREHOLE BH18-3

PROJECT: 958-960 East Avenue

CLIENT: Region of Peel

PROJECT LOCATION: 958-96 Lake Avenue, Mississauga

DATUM: Geodetic

BH LOCATION: N 4825322.5 E 616002.4

Method: Hollow Stem Augers

Diameter: 216/63.5mm Date: Nov/06/2018 to Nov/07/2018 REF. NO.: 181-11306-00 ENCL NO.: 3

	SOIL PROFILE	l	S	SAMPL	ES			H	ead S	pace	Com	bustib	le		_ NAT	URAL			⊢	REM	ARKS	
(m)						TER			Va	apor F	Readi	ng		LIMIT	C MOIS	TURE	LIQUID	ż	N⊥I	A	ND	
(m)		0			Sε	NA NO	z			(pp	om)			W _P	١	N	$W_{\rm L}$	(KPa (KPa	L UN	GRAI	N SIZE	
DEPTH	DESCRIPTION	TAF	Ë		0.3		ATIO		1					I		э———		ŠŐ.	NA NA	DISTR	BUTIO %)	N
		L RA	JMB	PE	ш 5	SND	N N N				X			WA	TER CC	ONTEN	T (%)	L.	¥	(/0)	
	Continued	LS I	ž	ŕ	2 :	50	Ш	2	2 4	4 6	6 i	8 1	0	1	0 2	20 3	30			GR SA	SI (CL
10:1	END OF BOREHOLE	<u> </u>																				-
	Notes:		5	CORE																		
	1) Borehole was open and dry upon completion																					
1																						
1																						
1																						
1																						
1																						
1																						
1																						
																	1	1				
1																						
1		1															1	1				

V

LOG OF BOREHOLE BH18-4

PROJECT: 958-960 East Avenue

CLIENT: Region of Peel

DATUM: Geodetic

PROJECT LOCATION: 958-96 Lake Avenue, Mississauga

Method: Hollow Stem Augers Diameter: 216mm

Date: Nov/08/2018 to Nov/08/2018

REF. NO.: 181-11306-00 ENCL NO.: 4

впц	SOIL PROFILE		S	AMPL	.ES			Hear	Space	Comh	ustihle			NIA 71					DEMADIZO
(m)		Ч				ATER ⟩			Vapor I	Readin	g	PL	ASTIC N	MOIST CONT	TURE	LIQUID LIMIT	PEN. a)	NIT WT	AND
ELEV	DESCRIPTION	A PLO	R		OWS 3 m	ID W/	NOI					v	V _P	w 0	v >	WL	CKET I CU) (KP	(kN/m ³	GRAIN SIZE
DEPTH		FRAT/	JMBE	ΡE			-EVA-						WATEF	RCO	NTENT	「(%)	000	NATL	(%)
81.9	Ground Surface TOPSOIL: 120mm	5 	Ň	F	2	<u></u> σö	司 -Rising	2 Up Casin	4 Ia (0.89 r	6 8 n)	10		10	20	0 3	i0			GR SA SI CL
- 0.1	FILL: silty clay, trace sand, trace	\bigotimes	1	SS	9	•	-Sand	T											
-	trace organic, brown to dark brown, moist firm to stiff	\bigotimes																	
-		\bigotimes					-Holen												
<u>-</u> -		\bigotimes	2	SS	5		noiop												
-		\bigotimes																	
-		\bigotimes																	
- - ² 79.8		\bigotimes	3	SS	3		۹۵ W. L. 8	30.0 m											
- 2.1	SILTY CLAY TILL: trace sand, trace gravel, shale fragment,		1	66	50/		Nov 14	i, 2018											
-	brownish grey, moist, very stiff to hard		4		25mr														spoon/hammer
-							-Sand)	-											augure
-			5	SS ,	50/														augure
-					<u>Y5mm</u>														augure
78.2	SILTY CLAY TILL/SHALE																		spoon/hammer bouncing
4	COMPLEX: shale and limestone		6	SS	50/ 100mn		78												augure grinding
77.6	inferred bedrock	μÌ			607		Scree	t n											augure grinding
4.5	Notes: 1) Borehole was open and dry upon		•	00	0mm														spoon/hammer bouncing
	completion. 2) 50mm dia. monitoring well was																		bouncing
	installed upon completion.																		
	Water Level Readings: Date W.L.Depth (m)																		
	Nov. 14, 2018 1.9																		

V

LOG OF BOREHOLE BH18-5

PROJECT: 958-960 East Avenue

CLIENT: Region of Peel

PROJECT LOCATION: 958-96 Lake Avenue, Mississauga

DATUM: Geodetic

Method: Solid Stem Augers

Diameter: 102mm Date: Nov/09/2018 to Nov/09/2018 REF. NO.: 181-11306-00 ENCL NO.: 5

BH LOCATION: N 4825300 E 615072 5

BITE	SOIL PROFILE		s	SAMPL	ES			Гн	ead S	Snace	Com	hustik	ble							DEMARKO
						ER			V	apor l	Readi	ng		PLAST LIMIT	IC MOIS	URAL STURE	LIQUID LIMIT	z.	IT WT	AND
(m) ELEV		PLOI			Sε	WA NS	z			(pp	om)			W _P	001	w	WL	(KPa)	AL UN N/m ³)	GRAIN SIZE
DEPTH	DESCRIPTION	ATA	1BER	ш	BLO 0.3		VATIO							wa	TER CO		Т (%)	DO DO	ATUR (k	(%)
82.2	Ground Surface	STR	NUN	L	ż	GRC CON	ELE		2	4	6	8 1	10		10 2	20 3	30		z	GR SA SI CL
82.9	TOPSOIL: 100mm	1.4 <i>l.4</i>					Rising	Up C	asing	(0.89 r	n)									
- 0.1	FILL: silty clay, trace sand, trace	\otimes	1	SS	12	ेः ः	-Sand'	-	Ŧ									1		
_	trace organic, brown to dark brown,	\bigotimes						E												
-	moist, son to sun.						-Holep	Luq												
1		\otimes	2	22	3			F												
-			-	00			81		H									1		
80.7							Sand	-												
- 1.5	trace gravel, shale fragment,					日		-												
2	brownish grey, moist, stiff to very stiff		3	SS	8		wi	[80.3 m												
-							Nov 14	4, 201	3									1		
-						1 目:	·	-												
-			4	SS	27			E	≰											
- 3 79.2								-												
3.0	SILTY CLAY TILL/SHALE		5	22	50/		Scree	r n I												
-	fragment, grey, dry, hard		Ļ	00	125mn	▮目		-	-											
-								Ē												augure
-						目	·	È.												spoon/hammer
-								-												bouncing augure
-						日	/8	-												grinding augure
- 77.6	inferred bedrock	ľ E	6	SS	50/	<u>: 日:</u>		-												grinding
4.0	Notes:		Ŭ		0mm															bouncing
	1) Borehole was open and dry upon completion.																			grinding
	2) 50mm dia. monitoring well was installed upon completion.																			spoon/hammer bouncing
	Water Level Readings																			-
	Date W.L.Depth (m)																			
	NOV. 14, 2018 1.9																			
																		1		
																		1		
		1		L				·	1	1	I	1	1	I	1	1	1			

11

LOG OF BOREHOLE BH18-6

PROJECT: 958-960 East Avenue

CLIENT: Region of Peel

PROJECT LOCATION: 958-96 Lake Avenue, Mississauga

DATUM: Geodetic

Method: Solid Stem Augers

Diameter: 102mm Date: Nov/08/2018 to Nov/08/2018 REF. NO.: 181-11306-00 ENCL NO.: 6

BH LOCATION: N 4825258 E 616003 1

BHIC	CATION: N 4825258 E 616003.1																		<u> </u>	
<u> </u>	SOIL PROFILE	1	s	Sampl	.ES	Н		He	ead S Va	pace apor F	Com Readi	bustik ng	ble	PLAST	C NAT	URAL		z	T WT	REMARKS
(m)		LOT			Sε	WAT	z			(pp	om)	•		Wp	CON	W W	WL	ET PE (kPa)	(m) (Thus)	GRAIN SIZE
DEPTH	DESCRIPTION	TA F	BER		3LOV	UND	ATIC									0		Cu)	(KN (KN	DISTRIBUTION (%)
00.4	Oreveral Curfage	STRA	MU	LγPE	ż	SRO	ELEV	2	2	4 e		8 .	10	WA 1	0 2	20 :	1 (%) 30		Ž	
82.1	TOPSOIL · 150mm	1 14.	-			00	 						1							GR SA SI CL
0.2	FILL: silty clay, trace sand, trace	$\overline{\mathbb{X}}$	1	22	۵		02		1											
Ē	gravel, shale fragment, rootlets, trace organic, brown to dark brown	\bigotimes	Ľ					[]	-											
-	moist, stiff.							-												
⁻ 81.2	SILTY CLAY TILL : trace sand	X						-												
- 0.0	trace gravel, shale fragment,		2	SS	24		81	-	1											
-	hard					-		-												auqure
-						-		-												grinding
Ē			3	SS	33															
2						_	80	-												
- E						-														augure grinding
Ē			4	ss	64															
-		19.						ŧΠ												
⁻ ₃ 79.1 - 3.0	SILTY CLAY TILL/SHALE						70	-												
-	COMPLEX: shale and limestone fragment grey dry hard		5	SS	50/ 125mn		,,,	- ≰												
	nagmont, groy, ary, nara							Ē												spoon/hamme
Ē						_		-												bouncing
4			6	<u>_ 55</u> _	50/ 50mm		70	-												grinding
Ē			7	00	50/		/8	_												spoon/hamme
-			\vdash	. 33	75mm															augure arindina
-								-												spoon/hamme
5 4.9	SHALE: grey weathered shale							-												augure
-	interbedded with siltstone /limestone.						77	-												grinding
Ē			8	AS																grinding
-								-												augure grinding
6																				augure
75.9			9	SS	.50/		76													augure
6.2	Notes:				0mm															spoon/hamme
	 Borehole was open and dry upon completion. 																			bouncing
	•																			
				1	1					1	1	1	1		1	1	1		1 1	

O ^{8=3%} Strain at Failure

V

LOG OF BOREHOLE BH18-7

PROJECT: 958-960 East Avenue

CLIENT: Region of Peel

PROJECT LOCATION: 958-96 Lake Avenue, Mississauga

DATUM: Geodetic

Method: Solid Stem Augers

Diameter: 102mm Date: Nov/09/2018 to Nov/09/2018 REF. NO.: 181-11306-00 ENCL NO.: 7

BH L	OCATION: N 4825247.2 E 615945.6					r															
	SOIL PROFILE		s	ampl	.ES	~			Head	Spac	ce_Co	mbu	stib	le		NAT	JRAL			5	REMARKS
(m) ELEV	DESCRIPTION	A PLOT	н		.3 m	JD WATEF TIONS	TION		``	/apo (■	r Rea ppm)	iding					TURE TENT W		DCKET PEN. Cu) (kPa)	JRAL UNIT W (kN/m ³)	AND GRAIN SIZE DISTRIBUTION
DEPTH		IRAT,	JMBE	ΓPE			EVA-							_	WA	TER CO	ONTEN	Г (%)	95	NATU	(%)
81.7	Ground Surface	S S	ž	Ę	ŗ	<u>5</u> 5	ш		2	4	6	8	10)	1	0 2	20 3	30			GR SA SI CL
- 80,0 - 0.1 - - -	TOPSOIL: 100mm FILL: silty clay, trace sand, trace gravel, shale fragment, rootlets, trace organic, brown to dark brown, moist, stiff.		1	SS	6		-Rising -Sand 81) Up - - - - -	Casing	(0.89 1	9 m)								-		
<u>80.8</u> 1 0.9	SILTY CLAY TILL: trace sand, trace gravel, shale fragment, brownish grey, moist, very stiff to hard		2	SS	40		Sand	- - - -		Ť											
- - - - -			3	SS	28		80	-	1										-		augure
- - - - - - - - - - - - - - - - - - -			4	SS	50/ 200mr		79			 									-		grinding spoon/hammer bouncing
<u>3 78.7</u> - 3.0 - -	SILTY CLAY TILL/SHALE COMPLEX: shale and limestone fragment, grey, dry, hard		5	SS	50/ 1 <u>25mr</u>		Scree			1											augure grinding spoon/hammer bouncing
- 77.8			6	00	50/		78	-													
4 3.9	SHALE: grey weathered shale interbedded with siltstone /limestone.			_ 33_	75mm			-													spoon/hammer bouncing augure arinding
4.6	END OF BOREHOLE			ss ,	50/																spoon/hammer
<u>- 77.1</u> 4.6	END OF BOREHOLE Notes: 1) Borehole was open and dry upon completion. 2) 50mm dia. monitoring well was installed upon completion. Water Level Readings: Date W.L.Depth (m) Nov. 14, 2018 Dry			58	0 50/ 0 mm			-													spoon/hammer bouncing

11

LOG OF BOREHOLE BH18-8

PROJECT: 958-960 East Avenue

CLIENT: Region of Peel

PROJECT LOCATION: 958-96 Lake Avenue, Mississauga

DATUM: Geodetic

Method: Solid Stem Augers

Diameter: 102mm Date: Nov/08/2018 to Nov/08/2018 REF. NO.: 181-11306-00 ENCL NO.: 8

BH LOCATION: N 4825227.7 E 615973.4

	SOIL PROFILE		S	SAMPL	ES			Γ	Head	Sp	ace	Com	bust	ible	1	NAT			1		DEMADKO
(m) <u>ELEV</u> DEPTH	DESCRIPTION	FRATA PLOT	JMBER	/PE	l" <u>BLOWS</u> 0.3 m	ROUND WATER ONDITIONS	EVATION		- Total	Vap	por F (pp	Read	ing		PLASTI LIMIT W _P L			LIQUID LIMIT WL T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	AND GRAIN SIZE DISTRIBUTION (%)
81.1	Ground Surface	S.	ž	F	f	ΰŭ	Ē		2	4		j ⊨	8	10	1	0 2	20 :	30			GR SA SI CL
- 80.0 - 0.1 - - - - - -	FILL: silty clay, trace sand, trace gravel, shale fragment, rootlets, trace organic, brown to dark brown, moist, stiff.		1	SS	9	-	81		T										-		
- 0.9 - 0.9 	SILTY CLAY TILL: trace sand, trace gravel, shale fragment, brownish grey, moist, very stiff to hard		2	SS	32	-	80			3											
- - - - - 78.8			3	SS	82	-	79														augure grinding augure
- 2.3	SILTY CLAY TILL/SHALE COMPLEX: shale and limestone fragment, grey, dry, hard		4	SS	50/ 250mn	n -															grinding spoon/hammer
<u>3</u> - - -			5	SS	50/ 1 <u>25m</u> ŋ	n N	78			Ŧ									-		bouncing augure grinding spoon/hammei bouncing
- - - - - - - - - - - - - - - - - - -			6	AS			77	-											-		augure grinding augure grinding augure grinding augure augure
- 4.6	SHALE: grey weathered shale interbedded with siltstone /limestone.		7	<u>SS</u>	50/ <u></u> 75mm		76												-		spoon/hammer bouncing augure grinding augure
- - - - - - - - - - - - - - - - - - -			8	AS	50/		75														grinding augure grinding augure grinding spoon/hamme
6.1	END OF BOREHOLE Notes: 1) Borehole was open and dry upon completion.		9	SS	50/ 0mm,																spoon/hamme bouncing

Tested By: LXQ

Tested By: LXQ

Tested By: LXQ

APENDIX D CERTIFICATES OF ANALYSIS

APPENDIX D-1 SOIL

Your Project #: 181-11306-00 PL 220 Site Location: 958-960 EAST AVE Your C.O.C. #: n/a

Attention: Michael Wilson

WSP Canada Inc 51 Constellation Court Toronto, ON CANADA M9W 1K4

> Report Date: 2018/11/29 Report #: R5504846 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8U7372 Received: 2018/11/16, 16:16

Sample Matrix: Soil # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Conductivity	2	2018/11/27	2018/11/27	CAM SOP-00414	OMOE E3530 v1 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ashton Gibson, Project Manager Email: AGibson@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 1 Page 1 of 8

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

WSP Canada Inc Client Project #: 181-11306-00 PL 220 Site Location: 958-960 EAST AVE Sampler Initials: BS

RESULTS OF ANALYSES OF SOIL

Maxxam ID				IHZ422	IHZ423		
Sampling Date				2018/11/05	2018/11/05		
COC Number				n/a	n/a		
		UNITS	Criteria	BH18-2 SS4	BH18-2 SS5	RDL	QC Batch
Inorganics							
Conductivity		mS/cm	0.7	1.8	0.44	0.002	5856892
No Fill	No Exceedar	nce					
Grey	Exceeds 1 cr	iteria po	licy/level				
Black	Exceeds bot	h criteria	/levels				
RDL = Reportal	ble Detection L	imit					
QC Batch = Qua	ality Control Ba	atch					
Criteria: Ontari	o Reg. 153/04	(Amende	ed April 1	5, 2011)			
Table 3: Full De	epth Generic Si	te Condi	tion Stan	dards in a Nor	n-Potable Gro	und Wa	ater
Condition							
Soil - Residenti	al/Parkland/In:	stitution	al Proper	ty Use - Coars	e Textured Sc	oil	

Report Date: 2018/11/29

WSP Canada Inc Client Project #: 181-11306-00 PL 220 Site Location: 958-960 EAST AVE Sampler Initials: BS

TEST SUMMARY

Maxxam ID: Sample ID:	IHZ422 BH18-2 SS4					Collected: Shipped:	2018/11/05
Matrix:	Soil					Received:	2018/11/16
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Conductivity		AT	5856892	2018/11/27	2018/11/27	Kazzandra	Adeva
Maxxam ID: Sample ID: Matrix:	IHZ423 BH18-2 SS5 Soil					Collected: Shipped: Received:	2018/11/05 2018/11/16
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Conductivity		AT	5856892	2018/11/27	2018/11/27	Kazzandra	Adeva

Maxxam Job #: B8U/3/2 Report Date: 2018/11/29 WSP Canada Inc Client Project #: 181-11306-00 PL 220 Site Location: 958-960 EAST AVE Sampler Initials: BS

GENERAL COMMENTS

Results relate only to the items tested.

Maxxam Job #: B8U7372 Report Date: 2018/11/29

QUALITY ASSURANCE REPORT

WSP Canada Inc Client Project #: 181-11306-00 PL 220 Site Location: 958-960 EAST AVE Sampler Initials: BS

		SPIKED	BLANK	Method B	lank	RPD						
QC Batch	Parameter	Date	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits				
5856892	Conductivity	2018/11/27	103	90 - 110	<0.002	mS/cm	1.4	10				
Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.												
Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.												
Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.												

Report Date: 2018/11/29

WSP Canada Inc Client Project #: 181-11306-00 PL 220 Site Location: 958-960 EAST AVE Sampler Initials: BS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Service Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

11:10																		6		ыл ж		5
A Bureau Veritas Group Company A Bureau Veritas Group Company	Campobello Road, Missis e: 905-817-5700 Fax: 9 FCD-01191/2	sauga, Ontario 05-817-5779	L5N 2L8 Toll Free: 8	300-563	6266	·			CH	AIN	OF C	USTO	DY F	RECO	RD	Page / of /			×			948 9
Invoice Information		Report	Information	n (if diffe	ers from	involce)	_		Project	Informa	ation (whe	ere app	licable)		Turnaround Time (TAT) Required	1					
any Name: WSP	Comp	any Name:	WSF)					Quotatio	n#:						Regular TAT (5-7 days) Most analyses	1					
t Name:	Conta	ct Name:	Micha	ael W	ilson				P.O. #/ A	E#:					-	PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS	1 3					
51 Constellation Cour	t Addre	address: 51 Constellation Court			Project #: 181-11306-00 PL 220			02 27	10	Rush TAT (Surcharges will be applied)	1 32											
Toronto, ON			Toror	ito, O	N				Site Locat	ion:	1113					1 Day 2 Days 3-4 Days			саў			- 1 j
416-798-0065 Fax: 416-798	3-0518 Phone	416-798	3-0065	• 3	Fax: 41	6-79	8-051	8	Site #:	1	758-9	60 E	Enst	An			1 m - 1					
payables.ontario@wsp.com	Email:	michae	I.wilson	@ws	o.com		-		Sampled	By:	BS					Date Required:	1					8
MOE REGULATED DRINKING WATE	R OR WATER INTENDED FO	R HUMAN CON	SUMPTION	MUST B	E SUBMI	ITED O	N THE M	AXXAN	DRINKING	WATE	R CHAIN	OF CUSTO	DDY	5.6		Rush Confirmation #:	1			Y		ð.
Regulation 153	Other R	egulations			-		_		Analysis	Reques	ted		_			LABORATORY USE ONLY -	1					
ble 2 Ind/Comm Coarse		itary sewer Byla rm Sewer Bylaw ion	aw /		/ Crivi		B	EFER TO	BACK OF							CUSTODY SEAL COOLER TEMPERATURES						
	Other (Specify)		(RED)	g	etals / Hg		NICS		NS - B)				ľ			ZI33	1					æ
Criteria on Certificate of Analysis: (Y) /	N	DATIATILO	(NED)	BMITT	LE) M		IORGA	SI	tals, HV					-	YZE	Sector 1						
AMPLES MUST BE KEPT COOL (< 10 °C) FROM TI	ME OF SAMPLING UNTIL D	ELIVERY TO MA	AXXAM	ERS 5U	0 (CIRC		11 8 27	S META	LS AS Met	AR					ANAL		1					
				NTAIN	LTEREE HC F1	Z.	META	ICPMS	META 11, ICPN	:15					O NOT	COOLING MEDIA PRESENT: Y / N	1					
SAMPLE IDENTIFICATION	(YYYY/MM/DD)	(HH:MM)	MATRIX	OF CO	TEX/ P	HCs F2	0CX EG 153	EG 153	EG 153 tg. Cr \	G					DLD-D	COMMENTS	1					
BH18-2 554	2018/11/05	PM	50	1	u 10	-	> #	œ	11 L	×	+		+		¥	Not Y	· · ·					
BH 18-7 555	al all	PM	1	T			-			×	+-				X	Nold - a					940	
211. E 22.0	- X					\vdash				-	+-		+		1	Hold -						
						+	+			+	+		+	-			{					
						\vdash	+			-	-	32	+	_			h .					
					-	\vdash				-	+	1	+	-							~	
/		1		2	-	\vdash				_	-			_								
			-		_	\square	_		_	_	-											
																-						
																16-Nov-18 16:16	,					
																Ashton Gibson					с. ж	
RELINQUISHED BY: (Signature/Print)	DATE: (YYYY/MM/DD)	TIME: (HH:N	MM)	10 RI	ECEIVED	BY: (Sig	nature/	Print)		DATE	(YYYY/	MM/DD)	TIM	ME: (HH:	MM)		10.6					
100 114 Midrod When	2018/11/16	09.30		tto	7 0	1	Sint	1su	e	201	slul	16	16	116	0	B8U7372			×			
*		1.000		V			1				11		1		_	LIDE ENULTRE						
					-											UKE ENV-1156		1.5				

.

WSP Canada Inc Client Project #: 181-11306-00 PL 220 Site Location: 958-960 EAST AVE Sampler Initials: BS

Exceedence Summary Table – Reg153/04 T3-Soil/Res-C

Result Exceedences

Sample ID	Maxxam ID	Parameter	Criteria	Result	DL	Units				
BH18-2 SS4	IHZ422-01	Conductivity	0.7	1.8	0.002	mS/cm				
The exceedence summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance										
to applicable regulatory guidelines.										

Your Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE Your C.O.C. #: N/A

Attention: Michael Wilson

WSP Canada Inc 51 Constellation Court Toronto, ON CANADA M9W 1K4

> **Report Date: 2018/11/21** Report #: R5493681 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B8T6953

Received: 2018/11/07, 14:13

Sample Matrix: Soil # Samples Received: 7

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum	2	N/A	2018/11/13	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	1	2018/11/10	2018/11/12	CAM SOP-00408	R153 Ana. Prot. 2011
Hot Water Extractable Boron	1	2018/11/12	2018/11/12	CAM SOP-00408	R153 Ana. Prot. 2011
1,3-Dichloropropene Sum	2	N/A	2018/11/09		EPA 8260C m
1,3-Dichloropropene Sum	1	N/A	2018/11/13		EPA 8260C m
Free (WAD) Cyanide	1	2018/11/09	2018/11/12	CAM SOP-00457	OMOE E3015 m
Free (WAD) Cyanide	1	2018/11/12	2018/11/13	CAM SOP-00457	OMOE E3015 m
Conductivity	1	2018/11/12	2018/11/12	CAM SOP-00414	OMOE E3530 v1 m
Conductivity	1	2018/11/13	2018/11/13	CAM SOP-00414	OMOE E3530 v1 m
Conductivity	1	2018/11/20	2018/11/20	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	2	2018/11/09	2018/11/13	CAM SOP-00436	EPA 3060/7199 m
Petroleum Hydro. CCME F1 & BTEX in Soil (2)	1	N/A	2018/11/12	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (3)	3	2018/11/09	2018/11/13	CAM SOP-00316	CCME CWS m
Strong Acid Leachable Metals by ICPMS	2	2018/11/10	2018/11/12	CAM SOP-00447	EPA 6020B m
Moisture	6	N/A	2018/11/08	CAM SOP-00445	Carter 2nd ed 51.2 m
Moisture	1	N/A	2018/11/12	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	2	2018/11/09	2018/11/10	CAM SOP-00318	EPA 8270D m
pH CaCl2 EXTRACT	2	2018/11/12	2018/11/12	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	1	N/A	2018/11/13	CAM SOP-00102	EPA 6010C
Sodium Adsorption Ratio (SAR)	1	N/A	2018/11/14	CAM SOP-00102	EPA 6010C
Sodium Adsorption Ratio (SAR)	1	N/A	2018/11/21	CAM SOP-00102	EPA 6010C
Volatile Organic Compounds and F1 PHCs	1	N/A	2018/11/08	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds and F1 PHCs	1	N/A	2018/11/09	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds in Soil	1	N/A	2018/11/12	CAM SOP-00228	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All

Your Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE Your C.O.C. #: N/A

Attention: Michael Wilson

WSP Canada Inc 51 Constellation Court Toronto, ON CANADA M9W 1K4

> Report Date: 2018/11/21 Report #: R5493681 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B8T6953 Received: 2018/11/07, 14:13

data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Soils are reported on a dry weight basis unless otherwise specified.

(2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated. (3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ashton Gibson, Project Manager Email: AGibson@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 25

O.REG 153 METALS & INORGANICS PKG (SOIL)

Maxxam ID				IFR992			IFR995		
Sampling Date				2018/11/05			2018/11/06		
COC Number				N/A			N/A		
		UNITS	Criteria	BH18-2 SS2	RDL	QC Batch	BH18-3 SS1	RDL	QC Batch
Calculated Parameters									
Sodium Adsorption Ratio)	N/A	5.0	24		5824976	2.2		5824976
Inorganics							1		
Conductivity		mS/cm	0.7	2.9	0.002	5832611	0.26	0.002	5832165
Moisture		%	-				16	1.0	5832697
Available (CaCl2) pH		рН	-	7.76		5832266	7.66		5832266
WAD Cyanide (Free)		ug/g	0.051	0.01	0.01	5829714	<0.01	0.01	5832898
Chromium (VI)		ug/g	8	<0.2	0.2	5829630	<0.2	0.2	5829630
Metals									
Hot Water Ext. Boron (B))	ug/g	1.5	0.27	0.050	5832167	0.10	0.050	5831223
Acid Extractable Antimor	ny (Sb)	ug/g	7.5	<0.20	0.20	5831295	0.21	0.20	5831295
Acid Extractable Arsenic (As)		ug/g	18	4.9	1.0	5831295	5.0	1.0	5831295
Acid Extractable Barium (Ba)		ug/g	390	140	0.50	5831295	69	0.50	5831295
Acid Extractable Beryllium (Be)		ug/g	4	1.2	0.20	5831295	0.75	0.20	5831295
Acid Extractable Boron (B)		ug/g	120	10	5.0	5831295	7.3	5.0	5831295
Acid Extractable Cadmium (Cd)		ug/g	1.2	0.15	0.10	5831295	0.21	0.10	5831295
Acid Extractable Chromit	um (Cr)	ug/g	160	35	1.0	5831295	21	1.0	5831295
Acid Extractable Cobalt (Co)	ug/g	22	16	0.10	5831295	10	0.10	5831295
Acid Extractable Copper	(Cu)	ug/g	140	31	0.50	5831295	24	0.50	5831295
Acid Extractable Lead (Pl	b)	ug/g	120	13	1.0	5831295	23	1.0	5831295
Acid Extractable Molybd	enum (Mo)	ug/g	6.9	<0.50	0.50	5831295	<0.50	0.50	5831295
Acid Extractable Nickel (I	Ni)	ug/g	100	36	0.50	5831295	21	0.50	5831295
Acid Extractable Seleniur	m (Se)	ug/g	2.4	<0.50	0.50	5831295	<0.50	0.50	5831295
Acid Extractable Silver (A	Ag)	ug/g	20	<0.20	0.20	5831295	<0.20	0.20	5831295
Acid Extractable Thalliun	n (TI)	ug/g	1	0.20	0.050	5831295	0.14	0.050	5831295
Acid Extractable Uraniun	n (U)	ug/g	23	0.63	0.050	5831295	0.61	0.050	5831295
Acid Extractable Vanadium (V)		ug/g	86	47	5.0	5831295	31	5.0	5831295
Acid Extractable Zinc (Zn)		ug/g	340	79	5.0	5831295	76	5.0	5831295
Acid Extractable Mercury	Acid Extractable Mercury (Hg) ug/g 0.27 <0.050 0.050 5831295 <0.050 0.050 583129							5831295	
No Fill No	Exceedance								
Grey Exc	ceeds 1 criter	ia policy,	/level						
Black Exc	ceeds both cr	iteria/lev	vels						
RDL = Reportable Detect	ion Limit								
QC Batch = Quality Contr	rol Batch								

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

O.REG 153 PAHS (SOIL)

Maxxam ID	kam ID IFR992			IFR996				
Sampling Date				2018/11/05		2018/11/06		
COC Number				N/A		N/A		
		UNITS	Criteria	BH18-2 SS2	QC Batch	BH18-3 SS2	RDL	QC Batch
Inorganics								
Moisture		%	-	23	5828728	22	1.0	5828411
Calculated Paramete	ers						ļ	L
Methylnaphthalene,	2-(1-)	ug/g	0.99	<0.0071	5824630	<0.0071	0.0071	5824630
Polyaromatic Hydrocarbons								
Acenaphthene		ug/g	7.9	<0.0050	5829805	<0.0050	0.0050	5829805
Acenaphthylene		ug/g	0.15	<0.0050	5829805	<0.0050	0.0050	5829805
Anthracene		ug/g	0.67	<0.0050	5829805	<0.0050	0.0050	5829805
Benzo(a)anthracene		ug/g	0.5	<0.0050	5829805	<0.0050	0.0050	5829805
Benzo(a)pyrene		ug/g	0.3	<0.0050	5829805	<0.0050	0.0050	5829805
Benzo(b/j)fluoranthe	ene	ug/g	0.78	<0.0050	5829805	<0.0050	0.0050	5829805
Benzo(g,h,i)perylene		ug/g	6.6	<0.0050	5829805	<0.0050	0.0050	5829805
Benzo(k)fluoranthene		ug/g	0.78	<0.0050	5829805	<0.0050	0.0050	5829805
Chrysene		ug/g	7	<0.0050	5829805	<0.0050	0.0050	5829805
Dibenz(a,h)anthracene		ug/g	0.1	<0.0050	5829805	<0.0050	0.0050	5829805
Fluoranthene		ug/g	0.69	<0.0050	5829805	<0.0050	0.0050	5829805
Fluorene		ug/g	62	<0.0050	5829805	<0.0050	0.0050	5829805
Indeno(1,2,3-cd)pyre	ene	ug/g	0.38	<0.0050	5829805	<0.0050	0.0050	5829805
1-Methylnaphthalen	e	ug/g	0.99	<0.0050	5829805	<0.0050	0.0050	5829805
2-Methylnaphthalen	e	ug/g	0.99	<0.0050	5829805	<0.0050	0.0050	5829805
Naphthalene		ug/g	0.6	<0.0050	5829805	<0.0050	0.0050	5829805
Phenanthrene		ug/g	6.2	<0.0050	5829805	<0.0050	0.0050	5829805
Pyrene		ug/g	78	<0.0050	5829805	<0.0050	0.0050	5829805
Surrogate Recovery	(%)							
D10-Anthracene		%	-	96	5829805	93		5829805
D14-Terphenyl (FS)		%	-	84	5829805	91		5829805
D8-Acenaphthylene		%	-	84	5829805	86		5829805
No Fill N	lo Exceed	ance						
Grey E	Trey Exceeds 1 criteria policy/level							
Black Exceeds both criteria/levels								
RDL = Reportable De	RDL = Reportable Detection Limit							
QC Batch = Quality C	ontrol Ba	tch						
Criteria: Ontario Reg Table 3: Full Depth G Soil - Residential/Par	. 153/04 (ieneric Sit kland/Ins	(Amend te Cond titution	led April 1 ition Stan Ial Proper	15, 2011) Idards in a Nor ty Use - Coarsi	n-Potable G e Textured	round Water C Soil	condition	

Maxxam ID IFR998 Sampling Date 2018/11/06 COC Number N/A UNITS Criteria QAQC3 RDL QC Batch

O.REG 153 PETROLEUM HYDROCARBONS (SOIL)

		1				-
Inorganics						
Moisture		%	-	14	1.0	5828260
BTEX & F1 H	ydrocarbons					
Benzene		ug/g	0.21	<0.020	0.020	5832366
Toluene		ug/g	2.3	<0.020	0.020	5832366
Ethylbenzen	e	ug/g	2	<0.020	0.020	5832366
o-Xylene		ug/g	-	<0.020	0.020	5832366
p+m-Xylene		ug/g	-	<0.040	0.040	5832366
Total Xylene	S	ug/g	3.1	<0.040	0.040	5832366
F1 (C6-C10)		ug/g	55	<10	10	5832366
F1 (C6-C10) - BTEX		ug/g	55	<10	10	5832366
F2-F4 Hydro	carbons					
F2 (C10-C16	Hydrocarbons)	ug/g	98	<10	10	5830668
F3 (C16-C34	Hydrocarbons)	ug/g	300	<50	50	5830668
F4 (C34-C50	Hydrocarbons)	ug/g	2800	<50	50	5830668
Reached Bas	eline at C50	ug/g	-	Yes		5830668
Surrogate Re	ecovery (%)					
1,4-Difluorol	penzene	%	-	99		5832366
4-Bromofluo	robenzene	%	-	101		5832366
D10-Ethylbenzene		%	-	95		5832366
D4-1,2-Dichloroethane		%	-	101		5832366
o-Terphenyl		%	-	95		5830668
No Fill	No Exceedance	5				
Grey	Exceeds 1 crite	eria polio	cy/level			

Grey

Black

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable

Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID				IFR993	IFR997		
Sampling Date				2018/11/05	2018/11/06		
COC Number				N/A	N/A		
		UNITS	Criteria	BH18-2 SS3	BH18-3 SS3	RDL	QC Batch
Inorganics							
Moisture		%	-	15	16	1.0	5828260
Calculated Param	neters						
1,3-Dichloroprop	ene (cis+trans)	ug/g	0.05	<0.050	<0.050	0.050	5824975
Volatile Organics							
Acetone (2-Propa	inone)	ug/g	16	<0.50	<0.50	0.50	5827005
Benzene		ug/g	0.21	<0.020	<0.020	0.020	5827005
Bromodichlorom	ethane	ug/g	13	<0.050	<0.050	0.050	5827005
Bromoform		ug/g	0.27	<0.050	<0.050	0.050	5827005
Bromomethane		ug/g	0.05	<0.050	<0.050	0.050	5827005
Carbon Tetrachlo	ride	ug/g	0.05	<0.050	<0.050	0.050	5827005
Chlorobenzene		ug/g	2.4	<0.050	<0.050	0.050	5827005
Chloroform		ug/g	0.05	<0.050	<0.050	0.050	5827005
Dibromochloromethane		ug/g	9.4	<0.050	<0.050	0.050	5827005
1,2-Dichlorobenzene		ug/g	3.4	<0.050	<0.050	0.050	5827005
1,3-Dichlorobenzene		ug/g	4.8	<0.050	<0.050	0.050	5827005
1,4-Dichlorobenz	ene	ug/g	0.083	<0.050	<0.050	0.050	5827005
Dichlorodifluoror	nethane (FREON 12)	ug/g	16	<0.050	<0.050	0.050	5827005
1,1-Dichloroetha	ne	ug/g	3.5	<0.050	<0.050	0.050	5827005
1,2-Dichloroetha	ne	ug/g	0.05	<0.050	<0.050	0.050	5827005
1,1-Dichloroethyl	ene	ug/g	0.05	<0.050	<0.050	0.050	5827005
cis-1,2-Dichloroet	thylene	ug/g	3.4	<0.050	<0.050	0.050	5827005
trans-1,2-Dichlor	oethylene	ug/g	0.084	<0.050	<0.050	0.050	5827005
1,2-Dichloroprop	ane	ug/g	0.05	<0.050	<0.050	0.050	5827005
cis-1,3-Dichlorop	ropene	ug/g	0.05	<0.030	<0.030	0.030	5827005
trans-1,3-Dichlor	opropene	ug/g	0.05	<0.040	<0.040	0.040	5827005
Ethylbenzene		ug/g	2	<0.020	<0.020	0.020	5827005
Ethylene Dibromide		ug/g	0.05	<0.050	<0.050	0.050	5827005
Hexane		ug/g	2.8	<0.050	<0.050	0.050	5827005
Methylene Chlori	de(Dichloromethane)	ug/g	0.1	<0.050	<0.050	0.050	5827005
No Fill	No Exceedance						
Grey	Exceeds 1 criteria poli	icy/leve	I				
Black	Exceeds both criteria	/levels					
RDL = Reportable	Detection Limit						
QC Batch = Quality Control Batch							

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID				IFR993	IFR997		
Sampling Date				2018/11/05	2018/11/06		
COC Number				N/A	N/A		
		UNITS	Criteria	BH18-2 SS3	BH18-3 SS3	RDL	QC Batch
Methyl Ethyl Keto	one (2-Butanone)	ug/g	16	<0.50	<0.50	0.50	5827005
Methyl Isobutyl K	Cetone	ug/g	1.7	<0.50	<0.50	0.50	5827005
Methyl t-butyl et	her (MTBE)	ug/g	0.75	<0.050	<0.050	0.050	5827005
Styrene		ug/g	0.7	<0.050	<0.050	0.050	5827005
1,1,1,2-Tetrachlo	roethane	ug/g	0.058	<0.050	<0.050	0.050	5827005
1,1,2,2-Tetrachlo	roethane	ug/g	0.05	<0.050	<0.050	0.050	5827005
Tetrachloroethyle	ene	ug/g	0.28	<0.050	<0.050	0.050	5827005
Toluene		ug/g	2.3	<0.020	<0.020	0.020	5827005
1,1,1-Trichloroet	hane	ug/g	0.38	<0.050	<0.050	0.050	5827005
1,1,2-Trichloroeth	hane	ug/g	0.05	<0.050	<0.050	0.050	5827005
Trichloroethylene	5	ug/g	0.061	<0.050	<0.050	0.050	5827005
Trichlorofluorom	ethane (FREON 11)	ug/g	4	<0.050	<0.050	0.050	5827005
Vinyl Chloride		ug/g	0.02	<0.020	<0.020	0.020	5827005
p+m-Xylene		ug/g	-	<0.020	<0.020	0.020	5827005
o-Xylene		ug/g	-	<0.020	<0.020	0.020	5827005
Total Xylenes		ug/g	3.1	<0.020	<0.020	0.020	5827005
F1 (C6-C10)		ug/g	55	<10	<10	10	5827005
F1 (C6-C10) - BTE	X	ug/g	55	<10	<10	10	5827005
F2-F4 Hydrocarbo	ons						
F2 (C10-C16 Hydr	ocarbons)	ug/g	98	<10	<10	10	5830668
F3 (C16-C34 Hydr	ocarbons)	ug/g	300	<50	<50	50	5830668
F4 (C34-C50 Hydr	ocarbons)	ug/g	2800	<50	<50	50	5830668
Reached Baseline	e at C50	ug/g	-	Yes	Yes		5830668
Surrogate Recove	ery (%)						
o-Terphenyl		%	-	101	89		5830668
4-Bromofluorobe	nzene	%	-	97	98		5827005
D10-o-Xylene		%	-	102	104		5827005
D4-1,2-Dichloroe	thane	%	-	101	103		5827005
D8-Toluene		%	-	99	99		5827005
No Fill	No Exceedance						
Grey	y Exceeds 1 criteria policy/level						
Black	Black Exceeds both criteria/levels						
RDL = Reportable	Detection Limit						
QC Batch = Qualit	ty Control Batch						
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)							

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water ConditionSoil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

O.REG 153 VOCS BY HS (SOIL)

Maxxam ID	Maxxam ID IFR994						
Sampling Date			2018/11/05				
COC Number			N/A				
	UNITS	Criteria	QAQC2	RDL	QC Batch		
Inorganics							
Moisture	%	-	15	1.0	5827432		
Calculated Parameters							
1,3-Dichloropropene (cis+trans)	ug/g	0.05	<0.050	0.050	5824975		
Volatile Organics							
Acetone (2-Propanone)	ug/g	16	<0.50	0.50	5829333		
Benzene	ug/g	0.21	<0.020	0.020	5829333		
Bromodichloromethane	ug/g	13	<0.050	0.050	5829333		
Bromoform	ug/g	0.27	<0.050	0.050	5829333		
Bromomethane	ug/g	0.05	<0.050	0.050	5829333		
Carbon Tetrachloride	ug/g	0.05	<0.050	0.050	5829333		
Chlorobenzene	ug/g	2.4	<0.050	0.050	5829333		
Chloroform	ug/g	0.05	<0.050	0.050	5829333		
Dibromochloromethane	ug/g	9.4	<0.050	0.050	5829333		
1,2-Dichlorobenzene	ug/g	3.4	<0.050	0.050	5829333		
1,3-Dichlorobenzene	ug/g	4.8	<0.050	0.050	5829333		
1,4-Dichlorobenzene	ug/g	0.083	<0.050	0.050	5829333		
Dichlorodifluoromethane (FREON 12)	ug/g	16	<0.050	0.050	5829333		
1,1-Dichloroethane	ug/g	3.5	<0.050	0.050	5829333		
1,2-Dichloroethane	ug/g	0.05	<0.050	0.050	5829333		
1,1-Dichloroethylene	ug/g	0.05	<0.050	0.050	5829333		
cis-1,2-Dichloroethylene	ug/g	3.4	<0.050	0.050	5829333		
trans-1,2-Dichloroethylene	ug/g	0.084	<0.050	0.050	5829333		
1,2-Dichloropropane	ug/g	0.05	<0.050	0.050	5829333		
cis-1,3-Dichloropropene	ug/g	0.05	<0.030	0.030	5829333		
trans-1,3-Dichloropropene	ug/g	0.05	<0.040	0.040	5829333		
Ethylbenzene	ug/g	2	<0.020	0.020	5829333		
Ethylene Dibromide	ug/g	0.05	<0.050	0.050	5829333		
Hexane	ug/g	2.8	<0.050	0.050	5829333		
Methylene Chloride(Dichloromethane)	ug/g	0.1	<0.050	0.050	5829333		
No Fill No Exceedance							
Grey Exceeds 1 criteria policy	/level						
Black Exceeds both criteria/levels							
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							
Criteria: Ontario Reg. 153/04 (Amended Table 3: Full Depth Generic Site Conditio Condition	April 15 n Standa	, 2011) ards in a I	Non-Potable (Ground	Water		
Soil - Residential/Parkland/Institutional F	Property	Use - Co	arse Textured	l Soil			

O.REG 153 VOCS BY HS (SOIL)

Maxxam ID	Maxxam ID IFR994					
Sampling Date				2018/11/05		
COC Number				N/A		
		UNITS	Criteria	QAQC2	RDL	QC Batch
Methyl Ethyl K	etone (2-Butanone)	ug/g	16	<0.50	0.50	5829333
Methyl Isobutyl Ketone		ug/g	1.7	<0.50	0.50	5829333
Methyl t-butyl	ether (MTBE)	ug/g	0.75	<0.050	0.050	5829333
Styrene		ug/g	0.7	<0.050	0.050	5829333
1,1,1,2-Tetrack	nloroethane	ug/g	0.058	<0.050	0.050	5829333
1,1,2,2-Tetrack	nloroethane	ug/g	0.05	<0.050	0.050	5829333
Tetrachloroeth	ylene	ug/g	0.28	<0.050	0.050	5829333
Toluene		ug/g	2.3	<0.020	0.020	5829333
1,1,1-Trichloroethane		ug/g	0.38	<0.050	0.050	5829333
1,1,2-Trichloroethane		ug/g	0.05	<0.050	0.050	5829333
Trichloroethylene		ug/g	0.061	<0.050	0.050	5829333
Trichlorofluoromethane (FREON 11)		ug/g	4	<0.050	0.050	5829333
Vinyl Chloride		ug/g	0.02	<0.020	0.020	5829333
p+m-Xylene		ug/g	-	<0.020	0.020	5829333
o-Xylene		ug/g	-	<0.020	0.020	5829333
Total Xylenes		ug/g	3.1	<0.020	0.020	5829333
Surrogate Rec	overy (%)					
4-Bromofluoro	benzene	%	-	94		5829333
D10-o-Xylene		%	-	112		5829333
D4-1,2-Dichlor	oethane	%	-	100		5829333
D8-Toluene		%	-	98		5829333
No Fill	No Exceedance					
Grey	Exceeds 1 criteria policy	/level				
Black	Black Exceeds both criteria/levels					
RDL = Reportable Detection Limit						
QC Batch = Quality Control Batch						
Criteria: Ontar Table 3: Full De Condition	Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition					
RDL = Reportable Detection Limit QC Batch = Quality Control Batch Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil						

RESULTS OF ANALYSES OF SOIL

Maxxam ID	laxxam ID IFR993					
Sampling Date				2018/11/05		
COC Number				N/A		
		UNITS	Criteria	BH18-2 SS3	RDL	QC Batch
Calculated Pa	arameters					
Sodium Adso	rption Ratio	N/A	5.0	3.5		5838733
Inorganics						
Conductivity	mS/cm	0.7	2.0	0.002	5846829	
No Fill	No Exceedance	9				
Grey	Exceeds 1 crite	eria polic	y/level			
Black	Exceeds both o	criteria/le	evels			
RDL = Report	able Detection L	imit				
QC Batch = Q	uality Control Ba	itch				
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition						
Son - Nesider	itial/Farklanu/III	stitution	arrioper	Ly USE - COals	erextu	ii eu 301

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE

TEST SUMMARY

Maxxam ID:	IFR992
Sample ID:	BH18-2 SS2
Matrix:	Soil

Collected:	2018/11/05
Shipped:	
Received:	2018/11/07

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5824630	N/A	2018/11/13	Automated Statchk
Hot Water Extractable Boron	ICP	5832167	2018/11/12	2018/11/12	Suban Kanapathippllai
Free (WAD) Cyanide	TECH	5829714	2018/11/09	2018/11/12	Xuanhong Qiu
Conductivity	AT	5832611	2018/11/13	2018/11/13	Barbara Kalbasi Esfahani
Hexavalent Chromium in Soil by IC	IC/SPEC	5829630	2018/11/09	2018/11/13	Sally Norouz
Strong Acid Leachable Metals by ICPMS	ICP/MS	5831295	2018/11/10	2018/11/12	Daniel Teclu
Moisture	BAL	5828728	N/A	2018/11/08	Min Yang
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5829805	2018/11/09	2018/11/10	Jett Wu
pH CaCl2 EXTRACT	AT	5832266	2018/11/12	2018/11/12	Gnana Thomas
Sodium Adsorption Ratio (SAR)	CALC/MET	5824976	N/A	2018/11/14	Automated Statchk

Maxxam ID:	IFR993
Sample ID:	BH18-2 SS3
Matrix:	Soil

Automated	
Collected:	2018/11/05
Received:	2018/11/07

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5824975	N/A	2018/11/09	Automated Statchk
Conductivity	AT	5846829	2018/11/20	2018/11/20	Barbara Kalbasi Esfahani
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5830668	2018/11/09	2018/11/13	Zhiyue (Frank) Zhu
Moisture	BAL	5828260	N/A	2018/11/08	Min Yang
Sodium Adsorption Ratio (SAR)	CALC/MET	5838733	N/A	2018/11/21	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5827005	N/A	2018/11/08	Manpreet Sarao

Maxxam ID: Sample ID:	IFR993 Dup BH18-2 SS3					Collected: Shipped:	2018/11/05
Matrix:	Soil					Received:	2018/11/07
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Conductivity		AT	5846829	2018/11/20	2018/11/20	Barbara Ka	albasi Esfahani
Maxxam ID: Sample ID: Matrix:	IFR994 QAQC2 Soil					Collected: Shipped: Received:	2018/11/05 2018/11/07
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	ו	CALC	5824975	N/A	2018/11/13	Automate	d Statchk
Moisture		BAL	5827432	N/A	2018/11/08	Min Yang	
Volatile Organic Compou	nds in Soil	GC/MS	5829333	N/A	2018/11/12	Karen Hug	hes

Maxxam ID: Sample ID: Matrix:	IFR994 Dup QAQC2 Soil					Collected: Shipped: Received:	2018/11/05 2018/11/07
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Volatile Organic Compour	nds in Soil	GC/MS	5829333	N/A	2018/11/12	Karen Hug	hes

Page 11 of 25

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE

TEST SUMMARY

Maxxam ID:	IFR995	Collected:	2018/11/06
Sample ID:	BH18-3 SS1	Shipped:	2018/11/07
Matrix:	Soil	Received:	

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	5831223	2018/11/10	2018/11/12	Suban Kanapathippllai
Free (WAD) Cyanide	TECH	5832898	2018/11/12	2018/11/13	Louise Harding
Conductivity	AT	5832165	2018/11/12	2018/11/12	Surinder Rai
Hexavalent Chromium in Soil by IC	IC/SPEC	5829630	2018/11/09	2018/11/13	Sally Norouz
Strong Acid Leachable Metals by ICPMS	ICP/MS	5831295	2018/11/10	2018/11/12	Daniel Teclu
Moisture	BAL	5832697	N/A	2018/11/12	Min Yang
pH CaCl2 EXTRACT	AT	5832266	2018/11/12	2018/11/12	Gnana Thomas
Sodium Adsorption Ratio (SAR)	CALC/MET	5824976	N/A	2018/11/13	Automated Statchk

Maxxam ID:	IFR996
Sample ID:	BH18-3 SS2
Matrix:	Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5824630	N/A	2018/11/13	Automated Statchk
Moisture	BAL	5828411	N/A	2018/11/08	Min Yang
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5829805	2018/11/09	2018/11/10	Jett Wu

Maxxam ID: IFR997 Sample ID: BH18-3 SS3 Matrix: Soil

Collected:	2018/11/06
Shipped:	
Received:	2018/11/07

Collected: 2018/11/06 Shipped: Received: 2018/11/07

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5824975	N/A	2018/11/09	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5830668	2018/11/09	2018/11/13	Zhiyue (Frank) Zhu
Moisture	BAL	5828260	N/A	2018/11/08	Min Yang
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5827005	N/A	2018/11/09	Manpreet Sarao

Maxxam ID: Sample ID: Matrix:	IFR998 QAQC3 Soil					Collected: 2018/11/06 Shipped: Received: 2018/11/07
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F	1 & BTEX in Soil	HSGC/MSFD	5832366	N/A	2018/11/12	Abdi Mohamud
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	5830668	2018/11/09	2018/11/13	Zhiyue (Frank) Zhu
Moisture		BAL	5828260	N/A	2018/11/08	Min Yang

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE

GENERAL COMMENTS

Revised[2018/11/21]: EC and SAR added to sample BH18-2 SS3.

Custody seal was present but not intact

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5827005	4-Bromofluorobenzene	2018/11/08	101	60 - 140	101	60 - 140	100	%		
5827005	D10-o-Xylene	2018/11/08	100	60 - 130	105	60 - 130	95	%		
5827005	D4-1,2-Dichloroethane	2018/11/08	99	60 - 140	98	60 - 140	98	%		
5827005	D8-Toluene	2018/11/08	102	60 - 140	102	60 - 140	99	%		
5829333	4-Bromofluorobenzene	2018/11/12	99	60 - 140	98	60 - 140	95	%		
5829333	D10-o-Xylene	2018/11/12	120	60 - 130	114	60 - 130	107	%		
5829333	D4-1,2-Dichloroethane	2018/11/12	97	60 - 140	101	60 - 140	105	%		
5829333	D8-Toluene	2018/11/12	128	60 - 140	105	60 - 140	96	%		
5829805	D10-Anthracene	2018/11/09	98	50 - 130	94	50 - 130	100	%		
5829805	D14-Terphenyl (FS)	2018/11/09	103	50 - 130	100	50 - 130	101	%		
5829805	D8-Acenaphthylene	2018/11/09	88	50 - 130	89	50 - 130	87	%		
5830668	o-Terphenyl	2018/11/13	128	60 - 130	112	60 - 130	120	%		
5832366	1,4-Difluorobenzene	2018/11/12	101	60 - 140	99	60 - 140	102	%		
5832366	4-Bromofluorobenzene	2018/11/12	100	60 - 140	102	60 - 140	103	%		
5832366	D10-Ethylbenzene	2018/11/12	93	60 - 140	104	60 - 140	90	%		
5832366	D4-1,2-Dichloroethane	2018/11/12	101	60 - 140	99	60 - 140	101	%		
5827005	1,1,1,2-Tetrachloroethane	2018/11/08	97	60 - 140	97	60 - 130	<0.050	ug/g	NC	50
5827005	1,1,1-Trichloroethane	2018/11/08	95	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
5827005	1,1,2,2-Tetrachloroethane	2018/11/08	97	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5827005	1,1,2-Trichloroethane	2018/11/08	95	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
5827005	1,1-Dichloroethane	2018/11/08	94	60 - 140	93	60 - 130	<0.050	ug/g	NC	50
5827005	1,1-Dichloroethylene	2018/11/08	91	60 - 140	90	60 - 130	<0.050	ug/g	NC	50
5827005	1,2-Dichlorobenzene	2018/11/08	93	60 - 140	93	60 - 130	<0.050	ug/g	NC	50
5827005	1,2-Dichloroethane	2018/11/08	96	60 - 140	95	60 - 130	<0.050	ug/g	NC	50
5827005	1,2-Dichloropropane	2018/11/08	97	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5827005	1,3-Dichlorobenzene	2018/11/08	93	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
5827005	1,4-Dichlorobenzene	2018/11/08	92	60 - 140	93	60 - 130	<0.050	ug/g	NC	50
5827005	Acetone (2-Propanone)	2018/11/08	98	60 - 140	94	60 - 140	<0.50	ug/g	NC	50
5827005	Benzene	2018/11/08	92	60 - 140	91	60 - 130	<0.020	ug/g	NC	50
5827005	Bromodichloromethane	2018/11/08	94	60 - 140	93	60 - 130	<0.050	ug/g	NC	50
5827005	Bromoform	2018/11/08	98	60 - 140	98	60 - 130	<0.050	ug/g	NC	50

QUALITY ASSURANCE REPORT(CONT'D)

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI	כ
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5827005	Bromomethane	2018/11/08	98	60 - 140	96	60 - 140	<0.050	ug/g	NC	50
5827005	Carbon Tetrachloride	2018/11/08	93	60 - 140	92	60 - 130	<0.050	ug/g	NC	50
5827005	Chlorobenzene	2018/11/08	94	60 - 140	93	60 - 130	<0.050	ug/g	NC	50
5827005	Chloroform	2018/11/08	93	60 - 140	92	60 - 130	<0.050	ug/g	NC	50
5827005	cis-1,2-Dichloroethylene	2018/11/08	89	60 - 140	88	60 - 130	<0.050	ug/g	NC	50
5827005	cis-1,3-Dichloropropene	2018/11/08	89	60 - 140	88	60 - 130	<0.030	ug/g	NC	50
5827005	Dibromochloromethane	2018/11/08	102	60 - 140	101	60 - 130	<0.050	ug/g	NC	50
5827005	Dichlorodifluoromethane (FREON 12)	2018/11/08	99	60 - 140	99	60 - 140	<0.050	ug/g	NC	50
5827005	Ethylbenzene	2018/11/08	94	60 - 140	94	60 - 130	<0.020	ug/g	NC	50
5827005	Ethylene Dibromide	2018/11/08	100	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5827005	F1 (C6-C10) - BTEX	2018/11/08					<10	ug/g	NC	30
5827005	F1 (C6-C10)	2018/11/08	89	60 - 140	87	80 - 120	<10	ug/g	NC	30
5827005	Hexane	2018/11/08	89	60 - 140	88	60 - 130	<0.050	ug/g	NC	50
5827005	Methyl Ethyl Ketone (2-Butanone)	2018/11/08	99	60 - 140	96	60 - 140	<0.50	ug/g	NC	50
5827005	Methyl Isobutyl Ketone	2018/11/08	94	60 - 140	93	60 - 130	<0.50	ug/g	NC	50
5827005	Methyl t-butyl ether (MTBE)	2018/11/08	96	60 - 140	95	60 - 130	<0.050	ug/g	NC	50
5827005	Methylene Chloride(Dichloromethane)	2018/11/08	99	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
5827005	o-Xylene	2018/11/08	92	60 - 140	93	60 - 130	<0.020	ug/g	NC	50
5827005	p+m-Xylene	2018/11/08	90	60 - 140	91	60 - 130	<0.020	ug/g	NC	50
5827005	Styrene	2018/11/08	93	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
5827005	Tetrachloroethylene	2018/11/08	96	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5827005	Toluene	2018/11/08	90	60 - 140	89	60 - 130	<0.020	ug/g	NC	50
5827005	Total Xylenes	2018/11/08					<0.020	ug/g	NC	50
5827005	trans-1,2-Dichloroethylene	2018/11/08	91	60 - 140	91	60 - 130	<0.050	ug/g	NC	50
5827005	trans-1,3-Dichloropropene	2018/11/08	95	60 - 140	91	60 - 130	<0.040	ug/g	NC	50
5827005	Trichloroethylene	2018/11/08	94	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
5827005	Trichlorofluoromethane (FREON 11)	2018/11/08	99	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
5827005	Vinyl Chloride	2018/11/08	94	60 - 140	93	60 - 130	<0.020	ug/g	NC	50
5827432	Moisture	2018/11/08							0	20
5828260	Moisture	2018/11/08							0.97	20
5828411	Moisture	2018/11/08							1.5	20

QUALITY ASSURANCE REPORT(CONT'D)

			Matrix	Spike	SPIKED	BLANK	Method B	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5828728	Moisture	2018/11/08							0.67	20
5829333	1,1,1,2-Tetrachloroethane	2018/11/12	100	60 - 140	100	60 - 130	<0.050	ug/g	NC	50
5829333	1,1,1-Trichloroethane	2018/11/12	98	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5829333	1,1,2,2-Tetrachloroethane	2018/11/12	92	60 - 140	101	60 - 130	<0.050	ug/g	NC	50
5829333	1,1,2-Trichloroethane	2018/11/12	95	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5829333	1,1-Dichloroethane	2018/11/12	97	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5829333	1,1-Dichloroethylene	2018/11/12	99	60 - 140	95	60 - 130	<0.050	ug/g	NC	50
5829333	1,2-Dichlorobenzene	2018/11/12	100	60 - 140	102	60 - 130	<0.050	ug/g	NC	50
5829333	1,2-Dichloroethane	2018/11/12	93	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5829333	1,2-Dichloropropane	2018/11/12	94	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5829333	1,3-Dichlorobenzene	2018/11/12	104	60 - 140	102	60 - 130	<0.050	ug/g	NC	50
5829333	1,4-Dichlorobenzene	2018/11/12	103	60 - 140	103	60 - 130	<0.050	ug/g	NC	50
5829333	Acetone (2-Propanone)	2018/11/12	88	60 - 140	96	60 - 140	<0.50	ug/g	NC	50
5829333	Benzene	2018/11/12	94	60 - 140	93	60 - 130	<0.020	ug/g	NC	50
5829333	Bromodichloromethane	2018/11/12	93	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5829333	Bromoform	2018/11/12	92	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5829333	Bromomethane	2018/11/12	105	60 - 140	100	60 - 140	<0.050	ug/g	NC	50
5829333	Carbon Tetrachloride	2018/11/12	98	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5829333	Chlorobenzene	2018/11/12	96	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5829333	Chloroform	2018/11/12	97	60 - 140	97	60 - 130	<0.050	ug/g	NC	50
5829333	cis-1,2-Dichloroethylene	2018/11/12	95	60 - 140	95	60 - 130	<0.050	ug/g	NC	50
5829333	cis-1,3-Dichloropropene	2018/11/12	98	60 - 140	95	60 - 130	<0.030	ug/g	NC	50
5829333	Dibromochloromethane	2018/11/12	95	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
5829333	Dichlorodifluoromethane (FREON 12)	2018/11/12	106	60 - 140	103	60 - 140	<0.050	ug/g	NC	50
5829333	Ethylbenzene	2018/11/12	100	60 - 140	96	60 - 130	<0.020	ug/g	NC	50
5829333	Ethylene Dibromide	2018/11/12	94	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5829333	Hexane	2018/11/12	104	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
5829333	Methyl Ethyl Ketone (2-Butanone)	2018/11/12	86	60 - 140	98	60 - 140	<0.50	ug/g	NC	50
5829333	Methyl Isobutyl Ketone	2018/11/12	89	60 - 140	102	60 - 130	<0.50	ug/g	NC	50
5829333	Methyl t-butyl ether (MTBE)	2018/11/12	91	60 - 140	93	60 - 130	<0.050	ug/g	NC	50
5829333	Methylene Chloride(Dichloromethane)	2018/11/12	90	60 - 140	91	60 - 130	<0.050	ug/g	NC	50

QUALITY ASSURANCE REPORT(CONT'D)

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5829333	o-Xylene	2018/11/12	100	60 - 140	98	60 - 130	<0.020	ug/g	NC	50
5829333	p+m-Xylene	2018/11/12	101	60 - 140	97	60 - 130	<0.020	ug/g	NC	50
5829333	Styrene	2018/11/12	102	60 - 140	103	60 - 130	<0.050	ug/g	NC	50
5829333	Tetrachloroethylene	2018/11/12	102	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
5829333	Toluene	2018/11/12	98	60 - 140	96	60 - 130	<0.020	ug/g	NC	50
5829333	Total Xylenes	2018/11/12					<0.020	ug/g	NC	50
5829333	trans-1,2-Dichloroethylene	2018/11/12	98	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5829333	trans-1,3-Dichloropropene	2018/11/12	106	60 - 140	98	60 - 130	<0.040	ug/g	NC	50
5829333	Trichloroethylene	2018/11/12	97	60 - 140	95	60 - 130	<0.050	ug/g	NC	50
5829333	Trichlorofluoromethane (FREON 11)	2018/11/12	104	60 - 140	100	60 - 130	<0.050	ug/g	NC	50
5829333	Vinyl Chloride	2018/11/12	102	60 - 140	99	60 - 130	<0.020	ug/g	NC	50
5829630	Chromium (VI)	2018/11/13	52 (1)	70 - 130	91	80 - 120	<0.2	ug/g	NC	35
5829714	WAD Cyanide (Free)	2018/11/12	100	75 - 125	105	80 - 120	<0.01	ug/g	NC	35
5829805	1-Methylnaphthalene	2018/11/09	106	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
5829805	2-Methylnaphthalene	2018/11/09	94	50 - 130	85	50 - 130	<0.0050	ug/g	NC	40
5829805	Acenaphthene	2018/11/09	100	50 - 130	93	50 - 130	<0.0050	ug/g	NC	40
5829805	Acenaphthylene	2018/11/09	92	50 - 130	87	50 - 130	<0.0050	ug/g	NC	40
5829805	Anthracene	2018/11/09	107	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40
5829805	Benzo(a)anthracene	2018/11/09	102	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
5829805	Benzo(a)pyrene	2018/11/09	94	50 - 130	84	50 - 130	<0.0050	ug/g	NC	40
5829805	Benzo(b/j)fluoranthene	2018/11/09	103	50 - 130	98	50 - 130	<0.0050	ug/g	NC	40
5829805	Benzo(g,h,i)perylene	2018/11/09	92	50 - 130	86	50 - 130	<0.0050	ug/g	NC	40
5829805	Benzo(k)fluoranthene	2018/11/09	95	50 - 130	89	50 - 130	<0.0050	ug/g	NC	40
5829805	Chrysene	2018/11/09	103	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
5829805	Dibenz(a,h)anthracene	2018/11/09	95	50 - 130	87	50 - 130	<0.0050	ug/g	NC	40
5829805	Fluoranthene	2018/11/09	110	50 - 130	102	50 - 130	<0.0050	ug/g	NC	40
5829805	Fluorene	2018/11/09	98	50 - 130	91	50 - 130	<0.0050	ug/g	NC	40
5829805	Indeno(1,2,3-cd)pyrene	2018/11/09	98	50 - 130	87	50 - 130	<0.0050	ug/g	NC	40
5829805	Naphthalene	2018/11/09	96	50 - 130	91	50 - 130	<0.0050	ug/g	NC	40
5829805	Phenanthrene	2018/11/09	103	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40
5829805	Pyrene	2018/11/09	114	50 - 130	105	50 - 130	<0.0050	ug/g	NC	40

QUALITY ASSURANCE REPORT(CONT'D)

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5830668	F2 (C10-C16 Hydrocarbons)	2018/11/13	NC	50 - 130	110	80 - 120	<10	ug/g	40 (2)	30
5830668	F3 (C16-C34 Hydrocarbons)	2018/11/13	NC	50 - 130	113	80 - 120	<50	ug/g	42 (2)	30
5830668	F4 (C34-C50 Hydrocarbons)	2018/11/13	112	50 - 130	110	80 - 120	<50	ug/g	NC	30
5831223	Hot Water Ext. Boron (B)	2018/11/12	97	75 - 125	95	75 - 125	<0.050	ug/g	13	40
5831295	Acid Extractable Antimony (Sb)	2018/11/12	96	75 - 125	102	80 - 120	<0.20	ug/g	24	30
5831295	Acid Extractable Arsenic (As)	2018/11/12	104	75 - 125	100	80 - 120	<1.0	ug/g	5.5	30
5831295	Acid Extractable Barium (Ba)	2018/11/12	NC	75 - 125	99	80 - 120	<0.50	ug/g	8.6	30
5831295	Acid Extractable Beryllium (Be)	2018/11/12	102	75 - 125	97	80 - 120	<0.20	ug/g	5.7	30
5831295	Acid Extractable Boron (B)	2018/11/12	99	75 - 125	95	80 - 120	<5.0	ug/g	3.3	30
5831295	Acid Extractable Cadmium (Cd)	2018/11/12	104	75 - 125	100	80 - 120	<0.10	ug/g	14	30
5831295	Acid Extractable Chromium (Cr)	2018/11/12	108	75 - 125	100	80 - 120	<1.0	ug/g	1.9	30
5831295	Acid Extractable Cobalt (Co)	2018/11/12	102	75 - 125	100	80 - 120	<0.10	ug/g	0.47	30
5831295	Acid Extractable Copper (Cu)	2018/11/12	NC	75 - 125	98	80 - 120	<0.50	ug/g	0.12	30
5831295	Acid Extractable Lead (Pb)	2018/11/12	NC	75 - 125	102	80 - 120	<1.0	ug/g	3.9	30
5831295	Acid Extractable Mercury (Hg)	2018/11/12	99	75 - 125	98	80 - 120	<0.050	ug/g	7.3	30
5831295	Acid Extractable Molybdenum (Mo)	2018/11/12	104	75 - 125	99	80 - 120	<0.50	ug/g	0.97	30
5831295	Acid Extractable Nickel (Ni)	2018/11/12	106	75 - 125	100	80 - 120	<0.50	ug/g	0.83	30
5831295	Acid Extractable Selenium (Se)	2018/11/12	104	75 - 125	100	80 - 120	<0.50	ug/g	NC	30
5831295	Acid Extractable Silver (Ag)	2018/11/12	101	75 - 125	97	80 - 120	<0.20	ug/g	NC	30
5831295	Acid Extractable Thallium (TI)	2018/11/12	101	75 - 125	102	80 - 120	<0.050	ug/g	6.2	30
5831295	Acid Extractable Uranium (U)	2018/11/12	100	75 - 125	99	80 - 120	<0.050	ug/g	5.9	30
5831295	Acid Extractable Vanadium (V)	2018/11/12	NC	75 - 125	97	80 - 120	<5.0	ug/g	0.60	30
5831295	Acid Extractable Zinc (Zn)	2018/11/12	NC	75 - 125	104	80 - 120	<5.0	ug/g	0.95	30
5832165	Conductivity	2018/11/12			104	90 - 110	<0.002	mS/cm	0.40	10
5832167	Hot Water Ext. Boron (B)	2018/11/12	97	75 - 125	101	75 - 125	<0.050	ug/g	NC	40
5832266	Available (CaCl2) pH	2018/11/12			100	97 - 103			1.6	N/A
5832366	Benzene	2018/11/12	84	60 - 140	104	60 - 140	<0.020	ug/g	NC	50
5832366	Ethylbenzene	2018/11/12	93	60 - 140	109	60 - 140	<0.020	ug/g	NC	50
5832366	F1 (C6-C10) - BTEX	2018/11/12					<10	ug/g	NC	30
5832366	F1 (C6-C10)	2018/11/12	85	60 - 140	92	80 - 120	<10	ug/g	NC	30
5832366	o-Xylene	2018/11/12	92	60 - 140	106	60 - 140	<0.020	ug/g	NC	50

QUALITY ASSURANCE REPORT(CONT'D)

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5832366	p+m-Xylene	2018/11/12	93	60 - 140	110	60 - 140	<0.040	ug/g	NC	50
5832366	Toluene	2018/11/12	90	60 - 140	107	60 - 140	<0.020	ug/g	11	50
5832366	Total Xylenes	2018/11/12					<0.040	ug/g	NC	50
5832611	Conductivity	2018/11/13			104	90 - 110	< 0.002	mS/cm	2.7	10
5832697	Moisture	2018/11/12							6.9	20
5832898	WAD Cyanide (Free)	2018/11/13	99	75 - 125	96	80 - 120	<0.01	ug/g	NC	35
5846829	Conductivity	2018/11/20			105	90 - 110	<0.002	mS/cm	0.49	10

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample. The sample was reanalyzed with the same results.

(2) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

A Bureau Veritas Group Company Phone: 905-81 CAM FCD-011	7-5700 Fax: 905 91/2	5-817-5779	Toll Free: 8	00-563-6	266		•	CH.	AIN C	OF CUS	TOD	REC	ORD		Page of	_					
Invoice Information		Report in	nformation	(if differ	s from inv	oice)	_		Project	Informatio	n (where	applicable	e)	Tur	naround Time (TAT) Required	-		- 14			
Company Name: WSP	Compar	ny Name:	WSP	2	-		-	Quotatio	in #:					Regula	ar TAT (5-7 days) Most analyses					045	
Contact Name:	Contact	Name:	Micha	el Wil	Ison		6 11 1	P.O. #/ A	FE#:			1		PLEASE PROV	IDE ADVANCE NOTICE FOR RUSH PROJECTS						
ddress: - * 51 Constellation Court	Address	8	51 C	onstel	lation (Court		Project #	1	81-113	\$06-0	oph	220	Rush	TAT (Surcharges will be applied)	1.4			e		
Toronto, ON			Toron	to, ON	1			Site Loca	tion: <u>9</u>	58-960	Eqs	t Au	e	1 Day	2 Days 3-4 Days						
hone: 416-798-0065 Fax: 416-798-0518	Phone:	416-798-	-0065	· a Fa	ax: 416	-798-0	518	Site #:	-	-			a			-				-	
mail: payables.ontario@wsp.com	Email:	michael.	.wilson(@wsp	.com			Sampled	Ву:	B.S	-			Date Require	d:					*	
MOE REGULATED DRINKING WATER OR WA	TER INTENDED FOR	HUMAN CONS	UMPTION	MUST BE	SUPMITT	ED ON THI	E MAXXA	M DRINKING	G WATER	CHAIN OF	CUSTODY		- 186	Rush Confirm	ation #:						
Regulation 153	Other Re	gulations		+	TT		DECED	Analysis	Reques	ted	TT		-	CUICTOR	LABORATORY USE ONLY	4					
Table 2 Dind/Comm Coarse	MISA Storr	n Sewer Bylaw			2		KLIEK	COC			-			Y/N	COOLER TEMPERATURES			*			
Table 3 Agri/ Other	PWQO Regin	on	- 7		Hg / C						T			Present I	Intact	-					
	Other (Specify)		RED)		etals /		NICS	WS - B		11				4	N 5/8/8	4					
clude Criteria on Certificate of Analysis:	NCG 330 (MIN. 3 C	ATTATISEQUI	(CO)	LLINBI	Ś.		NDRGA	tals, H	Ŧ		11		TYZE		I			*			
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME OF S	MPLING UNTIL DE	LIVERY TO MA	XXAM	ERS SL	0 (CBC		S MET	MS Me	2				T ANA				ł	-			
				NTAIN	HC F1	- 2	I META	S META	SI		11		ON DO	COOLING MED	A PRESENT:			×			
SAMPLE IDENTIFICATION	(YYYY/MM/DD)	TIME SAMPLED (HH:MM)	MATRIX	OF CO	TEX/ P	HCs F2 OCs	EG 15:	EG 15: 4g. Cr	2		11		OLD- I	- · ·	COMMENTS			14			
1 Ru18-2 SS2	2018/11/05	AM	Sa	1	4 00	a. 12	X	4.5	×							1					
2 Rule 7 552	*	AM		2	X	××				++	++						1				•
3 04012	T.	-		2					++							-					
PILLS 2 SEL	20121.1.1	A 10		7		-			-	++	++	++				-	2			$V = \omega$	
BR 10-3 201	2018/11/06	am		1		-					+					-					
BH18-3 >>C		AM	+	1						++	++					-					
BH18-3 222		Y/M	+	3	X	XX			+	+	+				3	-					
QARCZ	X	-	×	3	×	×			+		++			_							e.
8			L			_		_								4.		2			
9														1						. P.	
0			r							-				1	07-Nov-18 14:13						
RELINQUISHED BY: (Signature/Print) DATE	: (YYYY/MM/DD)	TIME: (HH:N	(MN	RE	ECEIVED B	Y: (Signat	ure/Prin	t)	DATE	: (YYYY/M	M/DD)	TIME: ((HH:MM)	Asht	ton Gibson				· ·		
While John Glavin 201	5/11/07	14:13	1.	WAITU	IN VE	mexi	nsie	no	20	18/11/	07	14:12	5								
		0.111								8				I	38T6953						
the second se														-							

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Project name: 958-960 EAST AVE Client ID: BH18-2 SS3

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Project name: 958-960 EAST AVE Client ID: BH18-3 SS3

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Project name: 958-960 EAST AVE Client ID: QAQC3

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Exceedence Summary Table – Reg153/04 T3-Soil/Res-C

Result Exceedences

Sample ID	Maxxam ID	Parameter	Criteria	Result	DL	Units
BH18-2 SS2	IFR992-01	Conductivity	0.7	2.9	0.002	mS/cm
BH18-2 SS2	IFR992-01	Sodium Adsorption Ratio	5.0	24		N/A
BH18-2 SS3	IFR993-01	Conductivity	0.7	2.0	0.002	mS/cm
BH18-2 SS3	IFR993-01-Lab Dup	Conductivity	0.7	2.0	0.002	mS/cm

The exceedence summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Your Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE. Your C.O.C. #: na

Attention: Michael Wilson

WSP Canada Inc 51 Constellation Court Toronto, ON CANADA M9W 1K4

> Report Date: 2018/11/19 Report #: R5490455 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8U2612 Received: 2018/11/13, 14:33

Sample Matrix: Soil

Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Cyanide (WAD) in Leachates	1	N/A	2018/11/15	CAM SOP-00457	OMOE 3015 m
Fluoride by ISE in Leachates	1	2018/11/15	2018/11/15	CAM SOP-00449	SM 23 4500-F- C m
Mercury (TCLP Leachable) (mg/L)	1	N/A	2018/11/15	CAM SOP-00453	EPA 7470A m
Total Metals in TCLP Leachate by ICPMS	1	2018/11/15	2018/11/15	CAM SOP-00447	EPA 6020B m
Nitrate(NO3) + Nitrite(NO2) in Leachate	1	N/A	2018/11/15	CAM SOP-00440	SM 23 4500-NO3I/NO2B
Polychlorinated Biphenyl in Leachate	1	2018/11/16	2018/11/17	CAM SOP-00309	EPA 8082A m
TCLP - % Solids	1	2018/11/14	2018/11/15	CAM SOP-00401	EPA 1311 Update I m
TCLP - Extraction Fluid	1	N/A	2018/11/15	CAM SOP-00401	EPA 1311 Update I m
TCLP - Initial and final pH	1	N/A	2018/11/15	CAM SOP-00401	EPA 1311 Update I m
TCLP Zero Headspace Extraction	1	2018/11/14	2018/11/15	CAM SOP-00430	EPA 1311 m
VOCs in ZHE Leachates	1	2018/11/15	2018/11/15	CAM SOP-00228	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Your Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE. Your C.O.C. #: na

Attention: Michael Wilson

WSP Canada Inc 51 Constellation Court Toronto, ON CANADA M9W 1K4

> Report Date: 2018/11/19 Report #: R5490455 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8U2612

Received: 2018/11/13, 14:33 * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ashton Gibson, Project Manager Email: AGibson@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam ID				IGY695		
Sampling Date	e			2018/11/01		
COC Number				na		
		UNITS	Criteria	COMP-1	RDL	QC Batch
Inorganics						
Leachable Flue	oride (F-)	mg/L	150	0.29	0.10	5838922
Leachable WA	D Cyanide (Free)	mg/L	20	<0.010	0.010	5838929
Leachable Niti	rite (N)	mg/L	-	<0.10	0.10	5838928
Leachable Niti	rate (N)	mg/L	-	<1.0	1.0	5838928
Leachable Niti	rate + Nitrite (N)	mg/L	1000	<1.0	1.0	5838928
Metals						
Leachable Me	rcury (Hg)	mg/L	0.1	<0.0010	0.0010	5838795
Leachable Ars	enic (As)	mg/L	2.5	<0.2	0.2	5838798
Leachable Bar	ium (Ba)	mg/L	100	0.4	0.2	5838798
Leachable Bor	on (B)	mg/L	500	0.3	0.1	5838798
Leachable Cac	lmium (Cd)	mg/L	0.5	<0.05	0.05	5838798
Leachable Chr	omium (Cr)	mg/L	5	<0.1	0.1	5838798
Leachable Lea	d (Pb)	mg/L	5	<0.1	0.1	5838798
Leachable Sele	enium (Se)	mg/L	1	<0.1	0.1	5838798
Leachable Silv	er (Ag)	mg/L	5	<0.01	0.01	5838798
Leachable Ura	nium (U)	mg/L	10	<0.01	0.01	5838798
No Fill	No Exceedance					
Grey	Exceeds 1 criteri	a policy,	/level			
Black	Exceeds both cri	teria/lev	vels			
RDL = Reporta	ble Detection Lim	it				
QC Batch = Qu	ality Control Batcl	h				
i -						

O.REG 558 TCLP INORGANICS PACKAGE (SOIL)

Criteria: Ontario Reg. 347/90 Schedule 4 Leachate Quality Criteria (as amended by Reg 558/00)

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE.

O.REG 558 TCLP LEACHATE PREPARATION (SOIL)

Maxxam ID		IGY695		
Sampling Date		2018/11/01		
COC Number		na		
	UNITS	COMP-1	RDL	QC Batch
Inorganics				
Final pH	рН	6.18		5837194
Initial pH	рН	8.84		5837194
TCLP - % Solids	%	100	0.2	5837190
TCLP Extraction Fluid	N/A	FLUID 1		5837193
RDL = Reportable Detection L	imit			
QC Batch = Quality Control Ba	atch			

O.REG 558 TCLP PCBS (SOIL)

Maxxam ID				IGY695			
Sampling Da	te			2018/11/01			
COC Number	r			na			
		UNITS	Criteria	COMP-1	RDL	QC Batch	
PCBs							
Leachable To	otal PCB	ug/L	300	<3.0	3.0	5841386	
Surrogate Re	ecovery (%)						
Leachable De	ecachlorobiphenyl	%	-	70		5841386	
No Fill	No Exceedance						
Grey	Exceeds 1 criteria	a policy/	level				
Black	Exceeds both crit	eria/lev	els				
RDL = Report	table Detection Lim	it					
QC Batch = Quality Control Batch							
Criteria: Ontario Reg. 347/90 Schedule 4 Leachate Quality Criteria (as amended by Reg 558/00)							

O.REG 558 TCLP VOLATILE ORGANICS HS (SOIL)

Maxxam ID				IGY695					
Sampling Date				2018/11/01					
COC Number				na					
		UNITS	Criteria	COMP-1	RDL	QC Batch			
Charge/Prep Ana	alysis								
Amount Extracte	d (Wet Weight) (g)	N/A	-	23	N/A	5836329			
Volatile Organics	5								
Leachable Benze	ne	mg/L	0.5	<0.020	0.020	5838479			
Leachable Carbo	n Tetrachloride	mg/L	0.5	<0.020	0.020	5838479			
Leachable Chloro	benzene	mg/L	8	<0.020	0.020	5838479			
Leachable Chloro	oform	mg/L	10	<0.020	0.020	5838479			
Leachable 1,2-Di	chlorobenzene	mg/L	20	<0.050	0.050	5838479			
Leachable 1,4-Di	chlorobenzene	mg/L	0.5	<0.050	0.050	5838479			
Leachable 1,2-Di	chloroethane	mg/L	0.5	0.5 <0.050		5838479			
Leachable 1,1-Dichloroethylene			1.4 <0.020		0.020	5838479			
Leachable Methylene Chloride(Dichloromethane)			5	5 <0.20		5838479			
Leachable Methyl Ethyl Ketone (2-Butanone)			200	<1.0	1.0	5838479			
Leachable Tetrac	hloroethylene	mg/L	3	<0.020	0.020	5838479			
Leachable Trichlo	proethylene	mg/L	5	<0.020	0.020	5838479			
Leachable Vinyl (Chloride	mg/L	0.2	<0.020	0.020	5838479			
Surrogate Recov	ery (%)								
Leachable 4-Bror	nofluorobenzene	%	-	- 99		5838479			
Leachable D4-1,2	2-Dichloroethane	%	-	104		5838479			
Leachable D8-To	luene	%	-	91		5838479			
No Fill	No Exceedance								
Grey	Exceeds 1 criteria policy/level								
Black Exceeds both criteria/levels									
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
Criteria: Ontario Reg. 347/90 Schedule 4 Leachate Quality Criteria (as amended by Reg 558/00)									
N/A = Not Applicable									

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE.

TEST SUMMARY

Maxxam ID:	IGY695
Sample ID:	COMP-1
Matrix:	Soil

Collected:	2018/11/01
Received:	2018/11/13

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Cyanide (WAD) in Leachates	SKAL/CN	5838929	N/A	2018/11/15	Christine Pham
Fluoride by ISE in Leachates	ISE	5838922	2018/11/15	2018/11/15	Surinder Rai
Mercury (TCLP Leachable) (mg/L)	CV/AA	5838795	N/A	2018/11/15	Ron Morrison
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	5838798	2018/11/15	2018/11/15	Arefa Dabhad
Nitrate(NO3) + Nitrite(NO2) in Leachate	LACH	5838928	N/A	2018/11/15	Chandra Nandlal
Polychlorinated Biphenyl in Leachate	GC/ECD	5841386	2018/11/16	2018/11/17	Svitlana Shaula
TCLP - % Solids	BAL	5837190	2018/11/14	2018/11/15	Jian (Ken) Wang
TCLP - Extraction Fluid		5837193	N/A	2018/11/15	Jian (Ken) Wang
TCLP - Initial and final pH	PH	5837194	N/A	2018/11/15	Jian (Ken) Wang
TCLP Zero Headspace Extraction		5836329	2018/11/14	2018/11/15	Walt Wang
VOCs in ZHE Leachates	GC/MS	5838479	2018/11/15	2018/11/15	Rebecca McClean

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE.

GENERAL COMMENTS

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		Leachate Blank	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
5838479	Leachable 4-Bromofluorobenzene	2018/11/15	104	70 - 130	104	70 - 130	98	%				
5838479	Leachable D4-1,2-Dichloroethane	2018/11/15	100	70 - 130	99	70 - 130	102	%				
5838479	Leachable D8-Toluene	2018/11/15	103	70 - 130	104	70 - 130	92	%				
5841386	Leachable Decachlorobiphenyl	2018/11/16	86	30 - 130	84	30 - 130	83	%				
5838479	Leachable 1,1-Dichloroethylene	2018/11/15	89	70 - 130	89	70 - 130	<0.020	mg/L	NC	30		
5838479	Leachable 1,2-Dichlorobenzene	2018/11/15	95	70 - 130	95	70 - 130	<0.050	mg/L	NC	30		
5838479	Leachable 1,2-Dichloroethane	2018/11/15	95	70 - 130	94	70 - 130	<0.050	mg/L	NC	30		
5838479	Leachable 1,4-Dichlorobenzene	2018/11/15	95	70 - 130	96	70 - 130	<0.050	mg/L	NC	30		
5838479	Leachable Benzene	2018/11/15	95	70 - 130	95	70 - 130	<0.020	mg/L	NC	30		
5838479	Leachable Carbon Tetrachloride	2018/11/15	99	70 - 130	97	70 - 130	<0.020	mg/L	NC	30		
5838479	Leachable Chlorobenzene	2018/11/15	94	70 - 130	94	70 - 130	<0.020	mg/L	NC	30		
5838479	Leachable Chloroform	2018/11/15	97	70 - 130	97	70 - 130	<0.020	mg/L	NC	30		
5838479	Leachable Methyl Ethyl Ketone (2-Butanone)	2018/11/15	102	60 - 140	104	60 - 140	<1.0	mg/L	NC	30		
5838479	Leachable Methylene Chloride(Dichloromethane)	2018/11/15	95	70 - 130	94	70 - 130	<0.20	mg/L	NC	30		
5838479	Leachable Tetrachloroethylene	2018/11/15	96	70 - 130	96	70 - 130	<0.020	mg/L	NC	30		
5838479	Leachable Trichloroethylene	2018/11/15	95	70 - 130	96	70 - 130	<0.020	mg/L	NC	30		
5838479	Leachable Vinyl Chloride	2018/11/15	91	70 - 130	92	70 - 130	<0.020	mg/L	NC	30		
5838795	Leachable Mercury (Hg)	2018/11/15	96	75 - 125	96	80 - 120	<0.0010	mg/L	NC	25	<0.0010	mg/L
5838798	Leachable Arsenic (As)	2018/11/15	102	80 - 120	98	80 - 120	<0.2	mg/L	NC	35	<0.2	mg/L
5838798	Leachable Barium (Ba)	2018/11/15	103	80 - 120	102	80 - 120	<0.2	mg/L	5.9	35	<0.2	mg/L
5838798	Leachable Boron (B)	2018/11/15	109	80 - 120	103	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
5838798	Leachable Cadmium (Cd)	2018/11/15	100	80 - 120	97	80 - 120	<0.05	mg/L	NC	35	<0.05	mg/L
5838798	Leachable Chromium (Cr)	2018/11/15	94	80 - 120	92	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
5838798	Leachable Lead (Pb)	2018/11/15	95	80 - 120	96	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
5838798	Leachable Selenium (Se)	2018/11/15	100	80 - 120	96	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
5838798	Leachable Silver (Ag)	2018/11/15	95	80 - 120	94	80 - 120	<0.01	mg/L	NC	35	<0.01	mg/L
5838798	Leachable Uranium (U)	2018/11/15	95	80 - 120	95	80 - 120	<0.01	mg/L	NC	35	<0.01	mg/L
5838922	Leachable Fluoride (F-)	2018/11/15	105	80 - 120	101	80 - 120	<0.10	mg/L	20	25	<0.10	mg/L
5838928	Leachable Nitrate (N)	2018/11/15	98	80 - 120	99	80 - 120	<1.0	mg/L	NC	25	<1.0	mg/L
5838928	Leachable Nitrate + Nitrite (N)	2018/11/15	100	80 - 120	100	80 - 120	<1.0	mg/L	NC	25	<1.0	mg/L

QUALITY ASSURANCE REPORT(CONT'D)

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE.

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		Leachate Blank	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
5838928	Leachable Nitrite (N)	2018/11/15	108	80 - 120	102	80 - 120	<0.10	mg/L	NC	25	<0.10	mg/L
5838929	Leachable WAD Cyanide (Free)	2018/11/17	94	80 - 120	103	80 - 120	<0.0020	mg/L	NC	20	<0.0020	mg/L
5841386	Leachable Total PCB	2018/11/16	106	30 - 130	102	30 - 130	<3.0	ug/L	NC	40		
Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.												
Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.												
Leachate Blank: A blank matrix containing all reagents used in the leaching procedure. Used to determine any process contamination.												
Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.												
Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.												
Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.												

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Eve R Eva Prai CHEMIST

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

6740 Campobello Road, Mississauga, Ontario L5N 2L8 Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266 CAM FCD-01191/2

Comito	01131/2							_		CH	AIN	OF	CUST	ODY R	ECO	RD	Page of
Invoice Information		Report In	formation	(if dif	fers fr	om in	voice)		_		Proje	ct Infor	mation (v	here appli	cable)	_	Turnaround Time (TAT) Required
Company Name: WSP	Company	Name:	WSP	8 6		13			11.11	Quotatic	on #:		9,118	#	14		Regular TAT (5-7 days) Most analyses
Contact Name:	Contact M	Name:	Micha	el V	Vilso	n				P.O. #/ A	FE#:						PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PR
Address: 51 Constellation Court	Address:	5	51 Co	onste	ellat	ion	Cou	rt		Project #	h .	181	-11306	-00 01	. 221	2	Rush TAT (Surcharges will be applied)
Toronto, ON	1 1 1 4 1 1 M		Toront	o, C	N		1			Site Loca	tion:	758-	960 1	East A	A		1 Day 2 Days 3-4 Days
Phone: 416-798-0065 Fax: 416-798-05	518 Phone:	416-798-0	0065	Sur.	Fax:	416	-798	8-05	18	Site #:				. Y X		150	
mail: payables.ontario@wsp.com	Email:	michael.v	wilson@	Dws	p.co	om	E.			Sampled	By:	B.S	ί.		waites	541	Date Required:
MOE REGULATED DRINKING WATER OR	WATER INTENDED FOR H	IUMAN CONSU	IMPTION N	NUST E	BE SU	MITT	ED ON	THEN	AXXA	M DRINKIN	G WAT	ER CHA	IN OF CUS	TODY			Rush Confirmation #:
Regulation 153	Other Regi	ulations			_					Analysis	Reque	ested					LABORATORY USE ONLY
Table 1 Res/Park Med/Fine Table 2 Ind/Comm Coarse Table 3 Agri/ Other Table FOR RSC (PLEASE CIRCLE) (X)/ N	CCME Sanitar MISA Storm PWQO Region Other (Specify)	ry Sewer Bylaw Sewer Bylaw		60	tals / Hg / CrVI		2	NICE	EFER TI	BACK OF							CUSTODY SEAL V N Present Intact 0///2
rollindo (ritaria an Cartificate of Applicate	CREG 558 (MIN. 3 DA	TAT REQUIRE	:D)	BANTTE	E) Me			ORGAL	Ŋ	Is, Hv	-	5	ŝ			ZE	
SAMPLES MILET BE VEBT COOL / -10 % VEDOM TIME				RS SUI	(CIRCI			5 & IN	METAI	S Meta	tr.	07	200	11		ANALY	
SAMPLES MOST BE REPT COOL (< 10 C) FROM TIME O	OF SAMPLING UNTIL DEL	IVERY TO MAX	хам	ITAINE	TERED	E	F	METAL	CPMS	AETAL ICPM	5	1	ī.			NOT	COOLING MEDIA PRESENT: (Y) N
SAMPLE IDENTIFICATION	DATE SAMPLED (YYYY/MM/DD)	TIME SAMPLED (HH:MM)	MATRIX	# OF CON	FIELD FR.	BTEX/ PH	PHCs F2 -	VOCs REG 153 /	REG 1531	REG 153 (Hg. Cr VI	TULP	TCLP	TCL			HOLD- DC	COMMENTS
1 (omp-1	2018/11/01	-	50	2	1						X	X	X				
2				1.1									1			1.34	
3				150	1						\square					217	
4									1		\square				+	-	
5						+	+		+		\vdash		++	++	+		
6				4		+		+	1		H	-	+	++	-		
7				1.15	202	+	-		+		\vdash	-	++				
8						+	-	+-	+		\vdash	-	++	++	+-		
9						+	+		+		+	-	++	+	+-		
10				153	20	+	-		-		\vdash	+	+				13-Nov-18 14:33
BELINOUISHED BY: (Signature / Brint)	ATE: (YYYY/MMA/DD)	TIME- /ullipan	a		PECCO	150 0	4.100		(D-1-1)								13-1404-10 14.3.
MLL John Gaily Z	018/11/13	2:32pm	<pre> </pre>	2			T3		Print)	λ.	DAT V	181	11/13	5) TIM	e: (HH:	MM) 3	B8U2612
			4	_	_		1	/									J L ENV-937

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE.

Exceedence Summary Table – Ontario Regulation 558/00

Result Exceedences

Sample ID	Maxxam ID	Parameter	Criteria	Result	DL	Units
No Exceedences						
The exceedence summ	ary table is for information p	ourposes only and should not	be considered a compret	nensive listing or	statement of	conformance
to applicable regulatory	y guidelines.					

Your Project #: 181- 11306- 00 PH 220 Site Location: 958- 960 EAST AVE Your C.O.C. #: na

Attention: Michael Wilson

WSP Canada Inc 51 Constellation Court Toronto, ON CANADA M9W 1K4

> Report Date: 2018/11/19 Report #: R5489964 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8U1483

Received: 2018/11/12, 13:10

Sample Matrix: Soil # Samples Received: 7

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum	3	N/A	2018/11/16	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	2	2018/11/14	2018/11/14	CAM SOP-00408	R153 Ana. Prot. 2011
1,3-Dichloropropene Sum	2	N/A	2018/11/15		EPA 8260C m
Free (WAD) Cyanide	2	2018/11/14	2018/11/15	CAM SOP-00457	OMOE E3015 m
Conductivity	2	2018/11/15	2018/11/15	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	2	2018/11/13	2018/11/16	CAM SOP-00436	EPA 3060/7199 m
Petroleum Hydrocarbons F2-F4 in Soil (2)	2	2018/11/13	2018/11/14	CAM SOP-00316	CCME CWS m
Strong Acid Leachable Metals by ICPMS	2	2018/11/13	2018/11/13	CAM SOP-00447	EPA 6020B m
Moisture	7	N/A	2018/11/13	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	3	2018/11/15	2018/11/16	CAM SOP-00318	EPA 8270D m
pH CaCl2 EXTRACT	2	2018/11/15	2018/11/15	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	2	N/A	2018/11/19	CAM SOP-00102	EPA 6010C
Volatile Organic Compounds and F1 PHCs	2	N/A	2018/11/14	CAM SOP-00230	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

Your Project #: 181- 11306- 00 PH 220 Site Location: 958- 960 EAST AVE Your C.O.C. #: na

Attention: Michael Wilson

WSP Canada Inc 51 Constellation Court Toronto, ON CANADA M9W 1K4

> Report Date: 2018/11/19 Report #: R5489964 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8U1483 Received: 2018/11/12, 13:10

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Soils are reported on a dry weight basis unless otherwise specified.

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ashton Gibson, Project Manager Email: AGibson@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 19

WSP Canada Inc Client Project #: 181- 11306- 00 PH 220 Site Location: 958-960 EAST AVE Sampler Initials: BS

O.REG 153 METALS & INORGANICS PKG (SOIL)

Maxxam ID			IGS370		IGS373		
Sampling Date			2018/11/09		2018/11/09		
COC Number			na		na		
	UNITS	Criteria	BH18-5 SS1	QC Batch	BH18-7 SS1	RDL	QC Batch
Calculated Parameters							
Sodium Adsorption Ratio	N/A	5.0	1.3	5832437	0.49		5832437
Inorganics						•	
Conductivity	mS/cm	0.7	0.29	5836808	0.13	0.002	5836808
Moisture	%	-	14	5834710	17	1.0	5835373
Available (CaCl2) pH	рН	-	7.55	5838796	6.66		5838796
WAD Cyanide (Free)	ug/g	0.051	<0.01	5836848	<0.01	0.01	5836848
Chromium (VI)	ug/g	8	<0.2	5834106	<0.2	0.2	5834106
Metals							
Hot Water Ext. Boron (B)	ug/g	1.5	0.23	5836059	0.34	0.050	5836059
Acid Extractable Antimony (Sb)	ug/g	7.5	<0.20	5834504	<0.20	0.20	5834504
Acid Extractable Arsenic (As)	ug/g	18	5.1	5834504	2.7	1.0	5834504
Acid Extractable Barium (Ba)	ug/g	390	56	5834504	54	0.50	5834504
Acid Extractable Beryllium (Be)	ug/g	4	0.74	5834504	0.48	0.20	5834504
Acid Extractable Boron (B)	ug/g	120	9.4	5834504	<5.0	5.0	5834504
Acid Extractable Cadmium (Cd)	ug/g	1.2	0.14	5834504	0.12	0.10	5834504
Acid Extractable Chromium (Cr)	ug/g	160	23	5834504	18	1.0	5834504
Acid Extractable Cobalt (Co)	ug/g	22	14	5834504	7.1	0.10	5834504
Acid Extractable Copper (Cu)	ug/g	140	30	5834504	13	0.50	5834504
Acid Extractable Lead (Pb)	ug/g	120	14	5834504	18	1.0	5834504
Acid Extractable Molybdenum (Mo) ug/g	6.9	<0.50	5834504	<0.50	0.50	5834504
Acid Extractable Nickel (Ni)	ug/g	100	30	5834504	15	0.50	5834504
Acid Extractable Selenium (Se)	ug/g	2.4	<0.50	5834504	<0.50	0.50	5834504
Acid Extractable Silver (Ag)	ug/g	20	<0.20	5834504	<0.20	0.20	5834504
Acid Extractable Thallium (TI)	ug/g	1	0.13	5834504	0.13	0.050	5834504
Acid Extractable Uranium (U)	ug/g	23	0.67	5834504	0.41	0.050	5834504
Acid Extractable Vanadium (V)	ug/g	86	30	5834504	27	5.0	5834504
Acid Extractable Zinc (Zn)	ug/g	340	76	5834504	56	5.0	5834504
Acid Extractable Mercury (Hg)	ug/g	0.27	<0.050	5834504	<0.050	0.050	5834504
No Fill No Exceedance	e	•		•			
Grey Exceeds 1 crite	eria policy/l	evel					
Black Exceeds both (criteria/leve	els					

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

WSP Canada Inc Client Project #: 181- 11306- 00 PH 220 Site Location: 958- 960 EAST AVE Sampler Initials: BS

O.REG 153 PAHS (SOIL)

Maxxam ID			IGS371	IGS374	IGS376				
Sampling Date			2018/11/09	2018/11/09	2018/11/09				
COC Number			na	na	na				
	UNITS	Criteria	BH18-5 SS2	BH18-7 SS2	QAQC-4	RDL	QC Batch		
Inorganics									
Moisture	%	-	28 13		17	1.0	5833888		
Calculated Parameter	s								
Methylnaphthalene, 2	-(1-) ug/g	0.018	<0.0071	0.029	0.0071	5832317			
Polyaromatic Hydroca	arbons								
Acenaphthene	ug/g	7.9	<0.0050	<0.0050	0.0059	0.0050	5839351		
Acenaphthylene	ug/g	0.15	<0.0050	<0.0050	0.0058	0.0050	5839351		
Anthracene	ug/g	0.67	0.013	<0.0050	0.020	0.0050	5839351		
Benzo(a)anthracene	ug/g	0.5	0.035	<0.0050	0.063	0.0050	5839351		
Benzo(a)pyrene	ug/g	0.3	0.035	<0.0050	0.069	0.0050	5839351		
Benzo(b/j)fluoranthen	ie ug/g	0.78	0.049	<0.0050	0.092	0.0050	5839351		
Benzo(g,h,i)perylene	ug/g	6.6	0.025	<0.0050	0.055	0.0050	5839351		
Benzo(k)fluoranthene	ug/g	0.78	0.016	<0.0050	0.032	0.0050	5839351		
Chrysene	ug/g	7	0.033	<0.0050 0.064		0.0050	5839351		
Dibenz(a,h)anthracene	e ug/g	0.1	0.0053	<0.0050	0.010	0.0050	5839351		
Fluoranthene	ug/g	0.69	0.081	<0.0050	0.14	0.0050	5839351		
Fluorene	ug/g	62	0.0060	<0.0050	0.0064	0.0050	5839351		
Indeno(1,2,3-cd)pyren	ne ug/g	0.38	0.026	<0.0050	0.053	0.0050	5839351		
1-Methylnaphthalene	ug/g	0.99	0.0091	<0.0050	0.015	0.0050	5839351		
2-Methylnaphthalene	ug/g	0.99	0.0085	<0.0050	0.014	0.0050	5839351		
Naphthalene	ug/g	0.6	0.0057	<0.0050	0.0089	0.0050	5839351		
Phenanthrene	ug/g	6.2	0.056	<0.0050	0.078	0.0050	5839351		
Pyrene	ug/g	78	0.066	<0.0050	0.12	0.0050	5839351		
Surrogate Recovery (%	%)								
D10-Anthracene	%	-	94	95	92		5839351		
D14-Terphenyl (FS)	%	-	99	97	99		5839351		
D8-Acenaphthylene	%	-	93	91	90		5839351		
No Fill No	o Exceedance								
Grey Ex	Grey Exceeds 1 criteria policy/level								
Black Exceeds both criteria/levels									
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
Criteria: Ontario Reg. : Table 3: Full Depth Ge Soil - Residential/Park	153/04 (Ameno neric Site Cond land/Institutior	led April : lition Star nal Propei	15, 2011) Idards in a Nor ty Use - Coarse	-Potable Grou e Textured Soil	nd Water Con	dition			

WSP Canada Inc Client Project #: 181- 11306- 00 PH 220 Site Location: 958- 960 EAST AVE Sampler Initials: BS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID				IGS372	IGS375			
Sampling Date				2018/11/09	2018/11/09			
COC Number				na	na			
		UNITS	Criteria	BH18-5 SS3	BH18-7 SS3	RDL	QC Batch	
Inorganics		<u> </u>		<u> </u>		<u> </u>		
Moisture		%	-	24	12	1.0	5833888	
Calculated Parame	eters	I	J	<u></u>		I	<u> </u>	
1,3-Dichloroprope	ne (cis+trans)	ug/g	0.05	<0.050	<0.050	0.050	5832254	
Volatile Organics		•	I	I	ļ	•	L	
Acetone (2-Propar	none)	ug/g	16	<0.50	<0.50	0.50	5834164	
Benzene		ug/g	0.21	<0.020	<0.020	0.020	5834164	
Bromodichlorome	thane	ug/g	13	<0.050	<0.050	0.050	5834164	
Bromoform		ug/g	0.27	<0.050	<0.050	0.050	5834164	
Bromomethane		ug/g	0.05	<0.050	<0.050	0.050	5834164	
Carbon Tetrachlor	ide	ug/g	0.05	<0.050	<0.050	0.050	5834164	
Chlorobenzene		ug/g	2.4	<0.050	<0.050	0.050	5834164	
Chloroform		ug/g	0.05	<0.050	<0.050	0.050	5834164	
Dibromochlorome	thane	ug/g	9.4	<0.050	<0.050	0.050	5834164	
1,2-Dichlorobenzene		ug/g	3.4	<0.050	<0.050	0.050	5834164	
1,3-Dichlorobenze	ne	ug/g	4.8	<0.050	<0.050	0.050	5834164	
1,4-Dichlorobenze	ne	ug/g	0.083	<0.050	<0.050	0.050	5834164	
Dichlorodifluorom	ethane (FREON 12)	ug/g	16	<0.050	<0.050	0.050	5834164	
1,1-Dichloroethan	e	ug/g	3.5	<0.050	<0.050	0.050	5834164	
1,2-Dichloroethan	e	ug/g	0.05	<0.050	<0.050	0.050	5834164	
1,1-Dichloroethyle	ene	ug/g	0.05	<0.050	<0.050	0.050	5834164	
cis-1,2-Dichloroeth	hylene	ug/g	3.4	<0.050	<0.050	0.050	5834164	
trans-1,2-Dichloro	ethylene	ug/g	0.084	<0.050	<0.050	0.050	5834164	
1,2-Dichloropropa	ne	ug/g	0.05	<0.050	<0.050	0.050	5834164	
cis-1,3-Dichloropro	opene	ug/g	0.05	<0.030	<0.030	0.030	5834164	
trans-1,3-Dichloro	propene	ug/g	0.05	<0.040	<0.040	0.040	5834164	
Ethylbenzene		ug/g	2	<0.020	<0.020	0.020	5834164	
Ethylene Dibromid	le	ug/g	0.05	<0.050	<0.050	0.050	5834164	
Hexane		ug/g	ug/g 2.8 <0.050 <0.050		<0.050	0.050	5834164	
No Fill No Exceedance						·		
Grey	Exceeds 1 criteria policy/level							
Black	Exceeds both criteria	levels						
RDL = Reportable I	Detection Limit							

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

WSP Canada Inc Client Project #: 181- 11306- 00 PH 220 Site Location: 958- 960 EAST AVE Sampler Initials: BS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID	IGS372 IGS375								
Sampling Date			2018/11/09	2018/11/09					
COC Number			na	na					
	UNITS	Criteria	BH18-5 SS3	BH18-7 SS3	RDL	QC Batch			
Methylene Chloride(Dichloromethane)	ug/g	0.1	<0.050	<0.050	0.050	5834164			
Methyl Ethyl Ketone (2-Butanone)	ug/g	16	<0.50	<0.50 <0.50		5834164			
Methyl Isobutyl Ketone	ug/g	1.7	<0.50	<0.50	0.50	5834164			
Methyl t-butyl ether (MTBE)	ug/g	0.75	<0.050	<0.050	0.050	5834164			
Styrene	ug/g	0.7	<0.050	<0.050	0.050	5834164			
1,1,1,2-Tetrachloroethane	ug/g	0.058	<0.050	<0.050	0.050	5834164			
1,1,2,2-Tetrachloroethane	ug/g	0.05	<0.050	<0.050	0.050	5834164			
Tetrachloroethylene	ug/g	0.28	<0.050	<0.050	0.050	5834164			
Toluene	ug/g	2.3	<0.020	<0.020	0.020	5834164			
1,1,1-Trichloroethane	ug/g	0.38	<0.050	<0.050	0.050	5834164			
1,1,2-Trichloroethane	ug/g	0.05	<0.050	<0.050	0.050	5834164			
Trichloroethylene	ug/g	0.061	<0.050	<0.050	0.050	5834164			
Trichlorofluoromethane (FREON 11)	ug/g	4	<0.050	<0.050	0.050	5834164			
Vinyl Chloride	ug/g	0.02	<0.020	0 <0.020		5834164			
p+m-Xylene	ug/g	-	<0.020	<0.020	0.020	5834164			
o-Xylene	ug/g	-	<0.020	<0.020	0.020	5834164			
Total Xylenes	ug/g	3.1	<0.020	<0.020	0.020	5834164			
F1 (C6-C10)	ug/g	55	<10	<10		5834164			
F1 (C6-C10) - BTEX	ug/g	55	<10	<10	10	5834164			
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/g	98	<10	<10	10	5834581			
F3 (C16-C34 Hydrocarbons)	ug/g	300	<50	<50	50	5834581			
F4 (C34-C50 Hydrocarbons)	ug/g	2800	<50	<50	50	5834581			
Reached Baseline at C50	ug/g	-	Yes	Yes		5834581			
Surrogate Recovery (%)									
o-Terphenyl	%	-	97	100		5834581			
4-Bromofluorobenzene	%	-	87	87		5834164			
D10-o-Xylene	%	-	86	81		5834164			
D4-1,2-Dichloroethane	%	-	110	112		5834164			
No Fill No Exceedance									
Grey Exceeds 1 criteria poli	Exceeds 1 criteria policy/level								
Black Exceeds both criteria/	'levels								
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
Criteria: Ontario Reg. 153/04 (Amended) Table 3: Full Depth Generic Site Conditio	Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition								

WSP Canada Inc Client Project #: 181- 11306- 00 PH 220 Site Location: 958- 960 EAST AVE Sampler Initials: BS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID				IGS372	IGS375				
Sampling Date		2018/11/09	2018/11/09						
COC Number			na	na					
		UNITS	Criteria	BH18-5 SS3	BH18-7 SS3	RDL	QC Batch		
D8-Toluene		%	-	93	93		5834164		
No Fill	No Exceedance								
Grey	Exceeds 1 criteria policy/level								
Black	Exceeds both criteria/	levels							
RDL = Reportable	e Detection Limit								
QC Batch = Quali	ty Control Batch								
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil									

WSP Canada Inc Client Project #: 181- 11306- 00 PH 220 Site Location: 958- 960 EAST AVE Sampler Initials: BS

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	IGS370 BH18-5 SS1 Soil					Collected: Shipped: Received:	2018/11/09 2018/11/12
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hot Water Extractable Bo	ron	ICP	5836059	2018/11/14	2018/11/14	Suban Kan	apathippllai
Free (WAD) Cyanide		TECH	5836848	2018/11/14	2018/11/15	Louise Har	ding
Conductivity		AT	5836808	2018/11/15	2018/11/15	Barbara Ka	albasi Esfahani
Hexavalent Chromium in S	Soil by IC	IC/SPEC	5834106	2018/11/13	2018/11/16	Sally Noro	uz
Strong Acid Leachable Me	tals by ICPMS	ICP/MS	5834504	2018/11/13	2018/11/13	Daniel Tec	lu
Moisture		BAL	5834710	N/A	2018/11/13	Min Yang	
pH CaCl2 EXTRACT		AT	5838796	2018/11/15	2018/11/15	Gnana Tho	omas
Sodium Adsorption Ratio	(SAR)	CALC/MET	5832437	N/A	2018/11/19	Automate	d Statchk

Maxxam ID: IGS371 Sample ID: BH18-5 SS2 Matrix: Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5832317	N/A	2018/11/16	Automated Statchk
Moisture	BAL	5833888	N/A	2018/11/13	Prgya Panchal
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5839351	2018/11/15	2018/11/16	Mitesh Raj

Maxxam ID: IGS372 Sample ID: BH18-5 SS3 Matrix: Soil

Collected:	2018/11/09
Shipped:	
Received:	2018/11/12

Received: 2018/11/12

2018/11/09

Collected:

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5832254	N/A	2018/11/15	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5834581	2018/11/13	2018/11/14	Zhiyue (Frank) Zhu
Moisture	BAL	5833888	N/A	2018/11/13	Prgya Panchal
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5834164	N/A	2018/11/14	Xueming Jiang

Maxxam ID: IGS373 Sample ID: BH18-7 SS1 Matrix: Soil Collected: 2018/11/09 Shipped: Received: 2018/11/12

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	5836059	2018/11/14	2018/11/14	Suban Kanapathippllai
Free (WAD) Cyanide	TECH	5836848	2018/11/14	2018/11/15	Louise Harding
Conductivity	AT	5836808	2018/11/15	2018/11/15	Barbara Kalbasi Esfahani
Hexavalent Chromium in Soil by IC	IC/SPEC	5834106	2018/11/13	2018/11/16	Sally Norouz
Strong Acid Leachable Metals by ICPMS	ICP/MS	5834504	2018/11/13	2018/11/13	Daniel Teclu
Moisture	BAL	5835373	N/A	2018/11/13	Min Yang
pH CaCl2 EXTRACT	AT	5838796	2018/11/15	2018/11/15	Gnana Thomas
Sodium Adsorption Ratio (SAR)	CALC/MET	5832437	N/A	2018/11/19	Automated Statchk

PAH Compounds in Soil by GC/MS (SIM)

GC/MS

Report Date: 2018/11/19

WSP Canada Inc Client Project #: 181- 11306- 00 PH 220 Site Location: 958- 960 EAST AVE Sampler Initials: BS

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	IGS374 BH18-7 SS2 Soil					Collected: Shipped: Beceived:	2018/11/09
Test Description	5011	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	2010/11/12
Methylnaphthalene Sum		CALC	5832317	N/A	2018/11/16	Automate	d Statchk
Moisture		BAL	5833888	N/A	2018/11/13	Prgya Pan	chal
PAH Compounds in Soil b	y GC/MS (SIM)	GC/MS	5839351	2018/11/15	2018/11/16	Mitesh Ra	j
Maxxam ID: Sample ID: Matrix:	IGS375 BH18-7 SS3 Soil					Collected: Shipped: Received:	2018/11/09 2018/11/12
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sun	า	CALC	5832254	N/A	2018/11/15	Automate	d Statchk
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	5834581	2018/11/13	2018/11/14	Zhiyue (Fr	ank) Zhu
Moisture		BAL	5833888	N/A	2018/11/13	Prgya Pan	chal
Volatile Organic Compou	nds and F1 PHCs	GC/MSFD	5834164	N/A	2018/11/14	Xueming J	iang
Maxxam ID: Sample ID: Matrix:	IGS376 QAQC-4 Soil					Collected: Shipped: Received:	2018/11/09 2018/11/12
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	5832317	N/A	2018/11/16	Automate	d Statchk
Moisture		BAL	5833888	N/A	2018/11/13	Prgya Pan	chal

5839351

2018/11/15

2018/11/16

Mitesh Raj

WSP Canada Inc Client Project #: 181- 11306- 00 PH 220 Site Location: 958- 960 EAST AVE Sampler Initials: BS

GENERAL COMMENTS

Custody seal was present and intact

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

WSP Canada Inc Client Project #: 181- 11306- 00 PH 220 Site Location: 958- 960 EAST AVE Sampler Initials: BS

			Matrix	Spike	SPIKED	BLANK	Method B	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5834164	4-Bromofluorobenzene	2018/11/14	96	60 - 140	97	60 - 140	89	%		
5834164	D10-o-Xylene	2018/11/14	94	60 - 130	98	60 - 130	81	%		
5834164	D4-1,2-Dichloroethane	2018/11/14	102	60 - 140	105	60 - 140	109	%		
5834164	D8-Toluene	2018/11/14	106	60 - 140	107	60 - 140	95	%		
5834581	o-Terphenyl	2018/11/14	96	60 - 130	97	60 - 130	95	%		
5839351	D10-Anthracene	2018/11/16	90	50 - 130	94	50 - 130	94	%		
5839351	D14-Terphenyl (FS)	2018/11/16	92	50 - 130	97	50 - 130	95	%		
5839351	D8-Acenaphthylene	2018/11/16	84	50 - 130	93	50 - 130	90	%		
5833888	Moisture	2018/11/13							4.2	20
5834106	Chromium (VI)	2018/11/16	43 (1)	70 - 130	90	80 - 120	<0.2	ug/g	NC	35
5834164	1,1,1,2-Tetrachloroethane	2018/11/14	101	60 - 140	97	60 - 130	<0.050	ug/g	NC	50
5834164	1,1,1-Trichloroethane	2018/11/14	107	60 - 140	100	60 - 130	<0.050	ug/g	NC	50
5834164	1,1,2,2-Tetrachloroethane	2018/11/14	95	60 - 140	95	60 - 130	<0.050	ug/g	NC	50
5834164	1,1,2-Trichloroethane	2018/11/14	99	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
5834164	1,1-Dichloroethane	2018/11/14	106	60 - 140	102	60 - 130	<0.050	ug/g	NC	50
5834164	1,1-Dichloroethylene	2018/11/14	105	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5834164	1,2-Dichlorobenzene	2018/11/14	96	60 - 140	93	60 - 130	<0.050	ug/g	NC	50
5834164	1,2-Dichloroethane	2018/11/14	101	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5834164	1,2-Dichloropropane	2018/11/14	101	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5834164	1,3-Dichlorobenzene	2018/11/14	97	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
5834164	1,4-Dichlorobenzene	2018/11/14	95	60 - 140	92	60 - 130	<0.050	ug/g	NC	50
5834164	Acetone (2-Propanone)	2018/11/14	95	60 - 140	95	60 - 140	<0.50	ug/g	NC	50
5834164	Benzene	2018/11/14	101	60 - 140	97	60 - 130	<0.020	ug/g	NC	50
5834164	Bromodichloromethane	2018/11/14	101	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
5834164	Bromoform	2018/11/14	92	60 - 140	91	60 - 130	<0.050	ug/g	NC	50
5834164	Bromomethane	2018/11/14	103	60 - 140	98	60 - 140	<0.050	ug/g	NC	50
5834164	Carbon Tetrachloride	2018/11/14	107	60 - 140	100	60 - 130	<0.050	ug/g	NC	50
5834164	Chlorobenzene	2018/11/14	95	60 - 140	93	60 - 130	<0.050	ug/g	NC	50
5834164	Chloroform	2018/11/14	102	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
5834164	cis-1,2-Dichloroethylene	2018/11/14	102	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
5834164	cis-1,3-Dichloropropene	2018/11/14	86	60 - 140	84	60 - 130	<0.030	ug/g	NC	50

Page 11 of 19

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

QUALITY ASSURANCE REPORT(CONT'D)

WSP Canada Inc Client Project #: 181- 11306- 00 PH 220 Site Location: 958- 960 EAST AVE Sampler Initials: BS

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5834164	Dibromochloromethane	2018/11/14	96	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
5834164	Dichlorodifluoromethane (FREON 12)	2018/11/14	116	60 - 140	110	60 - 140	<0.050	ug/g	NC	50
5834164	Ethylbenzene	2018/11/14	93	60 - 140	90	60 - 130	<0.020	ug/g	NC	50
5834164	Ethylene Dibromide	2018/11/14	94	60 - 140	93	60 - 130	<0.050	ug/g	NC	50
5834164	F1 (C6-C10) - BTEX	2018/11/14					<10	ug/g	NC	30
5834164	F1 (C6-C10)	2018/11/14	111	60 - 140	100	80 - 120	<10	ug/g	NC	30
5834164	Hexane	2018/11/14	105	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
5834164	Methyl Ethyl Ketone (2-Butanone)	2018/11/14	89	60 - 140	89	60 - 140	<0.50	ug/g	NC	50
5834164	Methyl Isobutyl Ketone	2018/11/14	84	60 - 140	85	60 - 130	<0.50	ug/g	NC	50
5834164	Methyl t-butyl ether (MTBE)	2018/11/14	92	60 - 140	89	60 - 130	<0.050	ug/g	NC	50
5834164	Methylene Chloride(Dichloromethane)	2018/11/14	95	60 - 140	92	60 - 130	<0.050	ug/g	NC	50
5834164	o-Xylene	2018/11/14	93	60 - 140	91	60 - 130	<0.020	ug/g	NC	50
5834164	p+m-Xylene	2018/11/14	88	60 - 140	86	60 - 130	<0.020	ug/g	NC	50
5834164	Styrene	2018/11/14	93	60 - 140	91	60 - 130	<0.050	ug/g	NC	50
5834164	Tetrachloroethylene	2018/11/14	106	60 - 140	102	60 - 130	<0.050	ug/g	NC	50
5834164	Toluene	2018/11/14	100	60 - 140	96	60 - 130	<0.020	ug/g	NC	50
5834164	Total Xylenes	2018/11/14					<0.020	ug/g	NC	50
5834164	trans-1,2-Dichloroethylene	2018/11/14	104	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5834164	trans-1,3-Dichloropropene	2018/11/14	93	60 - 140	90	60 - 130	<0.040	ug/g	NC	50
5834164	Trichloroethylene	2018/11/14	101	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5834164	Trichlorofluoromethane (FREON 11)	2018/11/14	112	60 - 140	105	60 - 130	<0.050	ug/g	NC	50
5834164	Vinyl Chloride	2018/11/14	110	60 - 140	104	60 - 130	<0.020	ug/g	NC	50
5834504	Acid Extractable Antimony (Sb)	2018/11/14	114	75 - 125	100	80 - 120	<0.20	ug/g	NC	30
5834504	Acid Extractable Arsenic (As)	2018/11/14	110	75 - 125	101	80 - 120	<1.0	ug/g	7.6	30
5834504	Acid Extractable Barium (Ba)	2018/11/14	93	75 - 125	99	80 - 120	<0.50	ug/g	6.0	30
5834504	Acid Extractable Beryllium (Be)	2018/11/14	111	75 - 125	99	80 - 120	<0.20	ug/g	NC	30
5834504	Acid Extractable Boron (B)	2018/11/14	110	75 - 125	95	80 - 120	<5.0	ug/g	5.4	30
5834504	Acid Extractable Cadmium (Cd)	2018/11/14	108	75 - 125	97	80 - 120	<0.10	ug/g	4.3	30
5834504	Acid Extractable Chromium (Cr)	2018/11/14	116	75 - 125	99	80 - 120	<1.0	ug/g	8.0	30
5834504	Acid Extractable Cobalt (Co)	2018/11/14	112	75 - 125	101	80 - 120	<0.10	ug/g	5.6	30
5834504	Acid Extractable Copper (Cu)	2018/11/14	108	75 - 125	102	80 - 120	<0.50	ug/g	2.8	30

QUALITY ASSURANCE REPORT(CONT'D)

WSP Canada Inc Client Project #: 181- 11306- 00 PH 220 Site Location: 958- 960 EAST AVE Sampler Initials: BS

			Matrix Spike		SPIKED	BLANK	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5834504	Acid Extractable Lead (Pb)	2018/11/14	108	75 - 125	100	80 - 120	<1.0	ug/g	2.8	30
5834504	Acid Extractable Mercury (Hg)	2018/11/14	112	75 - 125	102	80 - 120	<0.050	ug/g	NC	30
5834504	Acid Extractable Molybdenum (Mo)	2018/11/14	113	75 - 125	100	80 - 120	<0.50	ug/g	9.4	30
5834504	Acid Extractable Nickel (Ni)	2018/11/14	115	75 - 125	103	80 - 120	<0.50	ug/g	4.1	30
5834504	Acid Extractable Selenium (Se)	2018/11/14	110	75 - 125	102	80 - 120	<0.50	ug/g	NC	30
5834504	Acid Extractable Silver (Ag)	2018/11/14	109	75 - 125	101	80 - 120	<0.20	ug/g	NC	30
5834504	Acid Extractable Thallium (TI)	2018/11/14	106	75 - 125	99	80 - 120	<0.050	ug/g	9.8	30
5834504	Acid Extractable Uranium (U)	2018/11/14	107	75 - 125	99	80 - 120	<0.050	ug/g	4.3	30
5834504	Acid Extractable Vanadium (V)	2018/11/14	116	75 - 125	102	80 - 120	<5.0	ug/g	0.45	30
5834504	Acid Extractable Zinc (Zn)	2018/11/14	NC	75 - 125	99	80 - 120	<5.0	ug/g	7.3	30
5834581	F2 (C10-C16 Hydrocarbons)	2018/11/14	110	50 - 130	111	80 - 120	<10	ug/g	NC	30
5834581	F3 (C16-C34 Hydrocarbons)	2018/11/14	105	50 - 130	106	80 - 120	<50	ug/g	NC	30
5834581	F4 (C34-C50 Hydrocarbons)	2018/11/14	103	50 - 130	103	80 - 120	<50	ug/g	NC	30
5834710	Moisture	2018/11/13							0	20
5835373	Moisture	2018/11/13							4.0	20
5836059	Hot Water Ext. Boron (B)	2018/11/14	99	75 - 125	95	75 - 125	<0.050	ug/g	NC	40
5836808	Conductivity	2018/11/15			105	90 - 110	<0.002	mS/cm	0.41	10
5836848	WAD Cyanide (Free)	2018/11/15	97	75 - 125	98	80 - 120	<0.01	ug/g	NC	35
5838796	Available (CaCl2) pH	2018/11/15			100	97 - 103			0	N/A
5839351	1-Methylnaphthalene	2018/11/16	119	50 - 130	124	50 - 130	<0.0050	ug/g	NC	40
5839351	2-Methylnaphthalene	2018/11/16	104	50 - 130	108	50 - 130	<0.0050	ug/g	NC	40
5839351	Acenaphthene	2018/11/16	94	50 - 130	96	50 - 130	<0.0050	ug/g	NC	40
5839351	Acenaphthylene	2018/11/16	90	50 - 130	91	50 - 130	<0.0050	ug/g	NC	40
5839351	Anthracene	2018/11/16	99	50 - 130	99	50 - 130	<0.0050	ug/g	NC	40
5839351	Benzo(a)anthracene	2018/11/16	99	50 - 130	100	50 - 130	<0.0050	ug/g		
5839351	Benzo(a)pyrene	2018/11/16	108	50 - 130	110	50 - 130	<0.0050	ug/g		
5839351	Benzo(b/j)fluoranthene	2018/11/16	113	50 - 130	116	50 - 130	<0.0050	ug/g		
5839351	Benzo(g,h,i)perylene	2018/11/16	111	50 - 130	113	50 - 130	<0.0050	ug/g		
5839351	Benzo(k)fluoranthene	2018/11/16	98	50 - 130	101	50 - 130	<0.0050	ug/g		
5839351	Chrysene	2018/11/16	109	50 - 130	110	50 - 130	<0.0050	ug/g		
5839351	Dibenz(a,h)anthracene	2018/11/16	100	50 - 130	102	50 - 130	<0.0050	ug/g		

QUALITY ASSURANCE REPORT(CONT'D)

WSP Canada Inc Client Project #: 181- 11306- 00 PH 220 Site Location: 958- 960 EAST AVE Sampler Initials: BS

			Matrix Spike		SPIKED BLANK		Method Blank		RPD)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5839351	Fluoranthene	2018/11/16	96	50 - 130	98	50 - 130	<0.0050	ug/g	NC	40
5839351	Fluorene	2018/11/16	96	50 - 130	100	50 - 130	<0.0050	ug/g	NC	40
5839351	Indeno(1,2,3-cd)pyrene	2018/11/16	110	50 - 130	112	50 - 130	<0.0050	ug/g		
5839351	Naphthalene	2018/11/16	92	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
5839351	Phenanthrene	2018/11/16	97	50 - 130	100	50 - 130	<0.0050	ug/g	NC	40
5839351	Pyrene	2018/11/16	103	50 - 130	103	50 - 130	<0.0050	ug/g		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample. The sample was reanalyzed with the same results.

WSP Canada Inc Client Project #: 181- 11306- 00 PH 220 Site Location: 958- 960 EAST AVE Sampler Initials: BS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

<i>ж</i> .						4										
														2		
Maxia Group Company A Bureau Veritas Group Company A Bureau Veritas Group Company	ello Road, Mississauga, Onta 17-5700 Fax: 905-817-577 91/2	ario LSN 21.8 79 Toll Free: 8	00-563-6261	6		CH	AIN	OF CUST	OD	YRE	COR	D	Page	а 11	n sas n	
Invoice Information	Rej	port Information	(if differs fr	rom invoic	e)	1	Proje	ct Information (where	e applica	ble)		Turnaround Time (TAT) Required			
Company Name: WSP	Company Name:	WSP				Quotation	1#:		-		-	F	Regular TAT (5-7 days) Most analyses			et.
Contact Name:	Contact Name:	Micha	el Wilso	on 🕯	-	P.O. #/ AF	E#:						PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS			
Address: +51 Constellation Court Toronto, ON	Address:	51 C	onstellat	tion Co	urt	Project #:		181-113	06	-00	ph22	20	Rush TAT (Surcharges will be applied)		-	
Phone: 416-798-0065 Ear 416-798-0518	3 05000 416	798 0065		416-7	98-0518	Site Locat	ion:	458-700	59.	54 M	x .	-	2 Days 3-4 Days			¥
Email: payables.ontario@wsp.com	Email: mich	ael.wilson(Dwsp.c	om	50-0310	Site #1 Sampled I	By:	BS			-		Date Required:			*
MOE REGULATED DRINKING WATER OR WA	TER INTENDED FOR HUMAN	CONSUMPTION	AUST BE SU	BMITTED	ON THE MAX	XAM DRINKING	WAT	ER CHAIN OF CU	STOD	Y			Rush Confirmation #:			
Regulation 153	Other Regulations				March 1	Analysis	Reque	ested	P NO 2	25.11.101			LABORATORY USE ONLY			
Table 1 Res/Park Med/Fine Table 2 Ind/Comm Coarse Table 3 Agri/Other Table FOR RSC (PLEASE CIRCLE) N	CCME Sanitary Sewer MISA Storm Sewer B PWQO Region Other (Specify)	EQUIRED)	TED fetais / Hg / Cr/VI		REFI	R TO BACK OF COC						10 MT	CUSTODY SEAL Y N COOLER TEMPERATURES Present Intact 372		*	
Include Criteria on Certificate of Analysis: 🕥 / N		-	JBMIT		NORG	ALS tais, F	¥					YZE.			*	
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME OF S/	AMPLING UNTIL DELIVERY TO DATE SAMPLED TIME SAM		ONTAINERS SU	PHCF1 2 - F4	a METALS & I	G ICPMS MET	153 PA					DO NOT ANAI	COOLING MEDIA PRESENT: V / N	×.		
SAMPLEIDENTIFICATION	(YYYY/MM/DD) (HH:M	MATRIX	# DF C	BTEX/ PHCs F	VOCs REG 19	REG 15 REG 15 (Hg. Cr	R					HOLD-	COMMENTS			
1 BH 18-5 551	2018/11/09 AM	50	T		X								6 (A)		5.5. j	
2 BH 18-5 552	1 . 41	4 1	1				×									
3 BH 18-5 553	AN	A	3	XX	×			1								
4 BH 18-7 551	PN	A .	1		×	3						14	8 10			
5 BH 18-7 552	PM		1				×									
6 BH 18.7553	Pa	A X	3	xx	X											
7 DAGC-H	* -	e					×									
8							~						2 9 7 8 7			<u>8</u>
9				-					+	-		-				*
10		-					-		+		1		12-Nov-18 13:10			
RELINQUISHED BY: (Signature/Print) DATE	(YYYY/MM/DD) TIME: ((HH:MM)	RECEI	IVED BY: (S	ignature/Pri	int)	DAT	TE: (YYYY/MM/I	(00	TIME	(HH:MI	M)	Ashton Gibson			-
Alle John Glavin 201	8/11/12 1:10	opm A	160-	SU-	1.2.U	Smen	Zo	18/11/1-	Z	13:	10		B8U1483			
The second second second		91										-	MAF ENV-705			
													LINY-700		A	

WSP Canada Inc Client Project #: 181- 11306- 00 PH 220 Project name: 958- 960 EAST AVE Client ID: BH18-5 SS3

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

WSP Canada Inc Client Project #: 181- 11306- 00 PH 220 Project name: 958- 960 EAST AVE Client ID: BH18-7 SS3

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Exceedence Summary Table – Reg153/04 T3-Soil/Res-C

Result Exceedences

Sample ID	Maxxam ID	Parameter	Criteria	Result	DL	Units
No Exceedences						
The exceedence summa	ry table is for information p	ourposes only and should not	be considered a compret	ensive listing or	statement of	conformance
to applicable regulatory	guidelines.					

Your Project #: 181-11306-00 PH220 Site Location: 958-960 EAST AVE Your C.O.C. #: n\a

Attention: Michael Wilson

WSP Canada Inc 51 Constellation Court Toronto, ON CANADA M9W 1K4

> Report Date: 2018/11/19 Report #: R5489950 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8U0291

Received: 2018/11/09, 15:14

Sample Matrix: Soil # Samples Received: 9

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum	3	N/A	2018/11/16	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	2	2018/11/13	2018/11/13	CAM SOP-00408	R153 Ana. Prot. 2011
Hot Water Extractable Boron	1	2018/11/14	2018/11/14	CAM SOP-00408	R153 Ana. Prot. 2011
1,3-Dichloropropene Sum	3	N/A	2018/11/14		EPA 8260C m
Free (WAD) Cyanide	3	2018/11/14	2018/11/15	CAM SOP-00457	OMOE E3015 m
Conductivity	3	2018/11/15	2018/11/15	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	3	2018/11/13	2018/11/16	CAM SOP-00436	EPA 3060/7199 m
Petroleum Hydrocarbons F2-F4 in Soil (2)	3	2018/11/12	2018/11/14	CAM SOP-00316	CCME CWS m
Strong Acid Leachable Metals by ICPMS	3	2018/11/13	2018/11/13	CAM SOP-00447	EPA 6020B m
Moisture	8	N/A	2018/11/12	CAM SOP-00445	Carter 2nd ed 51.2 m
Moisture	1	N/A	2018/11/13	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	3	2018/11/15	2018/11/15	CAM SOP-00318	EPA 8270D m
pH CaCl2 EXTRACT	3	2018/11/15	2018/11/15	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	3	N/A	2018/11/19	CAM SOP-00102	EPA 6010C
Volatile Organic Compounds and F1 PHCs	3	N/A	2018/11/13	CAM SOP-00230	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope

Your Project #: 181-11306-00 PH220 Site Location: 958-960 EAST AVE Your C.O.C. #: n\a

Attention: Michael Wilson

WSP Canada Inc 51 Constellation Court Toronto, ON CANADA M9W 1K4

> Report Date: 2018/11/19 Report #: R5489950 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8U0291

Received: 2018/11/09, 15:14

dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Soils are reported on a dry weight basis unless otherwise specified.

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ashton Gibson, Project Manager Email: AGibson@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

O.REG 153 METALS & INORGANICS PKG (SOIL)

Maxxam ID			IGK826		IGK829	IGK832		
Sampling Date			2018/11/08		2018/11/08	2018/11/08		
COC Number			n\a		n\a	n\a		
	UNITS	Criteria	BH18-4 SS1	QC Batch	BH18-6-SS1	BH18-8 SS1	RDL	QC Batch
Calculated Parameters								
Sodium Adsorption Ratio	N/A	5.0	1.5	5831230	0.24	0.29		5831230
Inorganics								
Conductivity	mS/cm	0.7	0.32	5836808	0.19	0.12	0.002	5836808
Moisture	%	-	14	5833195	10	14	1.0	5833195
Available (CaCl2) pH	рН	-	7.55	5838796	7.66	6.69		5838796
WAD Cyanide (Free)	ug/g	0.051	0.01	5836879	<0.01	<0.01	0.01	5836879
Chromium (VI)	ug/g	8	<0.2	5834106	<0.2	0.3	0.2	5834106
Metals								
Hot Water Ext. Boron (B)	ug/g	1.5	0.45	5836059	0.17	0.28	0.050	5834907
Acid Extractable Antimony (Sb)	ug/g	7.5	0.86	5834504	<0.20	0.26	0.20	5834504
Acid Extractable Arsenic (As)	ug/g	18	4.9	5834504	4.2	3.6	1.0	5834504
Acid Extractable Barium (Ba)	ug/g	390	69	5834504	47	80	0.50	5834504
Acid Extractable Beryllium (Be)	ug/g	4	0.50	5834504	0.58	0.70	0.20	5834504
Acid Extractable Boron (B)	ug/g	120	5.3	5834504	6.2	<5.0	5.0	5834504
Acid Extractable Cadmium (Cd)	ug/g	1.2	0.25	5834504	0.17	0.14	0.10	5834504
Acid Extractable Chromium (Cr)	ug/g	160	16	5834504	17	21	1.0	5834504
Acid Extractable Cobalt (Co)	ug/g	22	6.4	5834504	9.9	9.3	0.10	5834504
Acid Extractable Copper (Cu)	ug/g	140	22	5834504	23	20	0.50	5834504
Acid Extractable Lead (Pb)	ug/g	120	35	5834504	17	19	1.0	5834504
Acid Extractable Molybdenum (Mo)	ug/g	6.9	<0.50	5834504	<0.50	<0.50	0.50	5834504
Acid Extractable Nickel (Ni)	ug/g	100	13	5834504	21	23	0.50	5834504
Acid Extractable Selenium (Se)	ug/g	2.4	<0.50	5834504	<0.50	<0.50	0.50	5834504
Acid Extractable Silver (Ag)	ug/g	20	<0.20	5834504	<0.20	<0.20	0.20	5834504
Acid Extractable Thallium (Tl)	ug/g	1	0.10	5834504	0.11	0.14	0.050	5834504
Acid Extractable Uranium (U)	ug/g	23	0.53	5834504	0.51	0.50	0.050	5834504
Acid Extractable Vanadium (V)	ug/g	86	25	5834504	26	31	5.0	5834504
Acid Extractable Zinc (Zn)	ug/g	340	79	5834504	57	63	5.0	5834504
Acid Extractable Mercury (Hg)	ug/g	0.27	0.058	5834504	<0.050	<0.050	0.050	5834504
No Fill No Exceedance	e							

Grey	
Black	

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

O.REG 153 PAHS (SOIL)

Maxxam ID			IGK827		IGK830		IGK833		
Sampling Date			2018/11/08		2018/11/08		2018/11/08		
COC Number			n\a		n\a		n\a		
	UNITS	Criteria	BH18-4 SS2	QC Batch	BH18-6 SS2	QC Batch	BH18-8 SS2	RDL	QC Batch
Inorganics									
Moisture	%	-	18	5832454	11	5834574	11	1.0	5832454
Calculated Parameters	-								
Methylnaphthalene, 2-(1-)	ug/g	0.99	0.016	5831228	<0.0071	5834127	<0.0071	0.0071	5831228
Polyaromatic Hydrocarbons	-			•					
Acenaphthene	ug/g	7.9	<0.0050	5839505	<0.0050	5839505	<0.0050	0.0050	5839505
Acenaphthylene	ug/g	0.15	<0.0050	5839505	<0.0050	5839505	<0.0050	0.0050	5839505
Anthracene	ug/g	0.67	<0.0050	5839505	<0.0050	5839505	<0.0050	0.0050	5839505
Benzo(a)anthracene	ug/g	0.5	0.011	5839505	0.011	5839505	<0.0050	0.0050	5839505
Benzo(a)pyrene	ug/g	0.3	0.0095	5839505	0.011	5839505	<0.0050	0.0050	5839505
Benzo(b/j)fluoranthene	ug/g	0.78	0.014	5839505	0.017	5839505	<0.0050	0.0050	5839505
Benzo(g,h,i)perylene	ug/g	6.6	0.0071	5839505	0.0081	5839505	<0.0050	0.0050	5839505
Benzo(k)fluoranthene	ug/g	0.78	<0.0050	5839505	<0.0050	5839505	<0.0050	0.0050	5839505
Chrysene	ug/g	7	0.0097	5839505	0.010	5839505	<0.0050	0.0050	5839505
Dibenz(a,h)anthracene	ug/g	0.1	<0.0050	5839505	<0.0050	5839505	<0.0050	0.0050	5839505
Fluoranthene	ug/g	0.69	0.021	5839505	0.024	5839505	<0.0050	0.0050	5839505
Fluorene	ug/g	62	<0.0050	5839505	<0.0050	5839505	<0.0050	0.0050	5839505
Indeno(1,2,3-cd)pyrene	ug/g	0.38	0.0077	5839505	0.0084	5839505	<0.0050	0.0050	5839505
1-Methylnaphthalene	ug/g	0.99	0.0061	5839505	<0.0050	5839505	<0.0050	0.0050	5839505
2-Methylnaphthalene	ug/g	0.99	0.010	5839505	<0.0050	5839505	<0.0050	0.0050	5839505
Naphthalene	ug/g	0.6	<0.0050	5839505	<0.0050	5839505	<0.0050	0.0050	5839505
Phenanthrene	ug/g	6.2	0.012	5839505	0.012	5839505	<0.0050	0.0050	5839505
Pyrene	ug/g	78	0.020	5839505	0.020	5839505	<0.0050	0.0050	5839505
Surrogate Recovery (%)		. <u> </u>		·					
D10-Anthracene	%	-	97	5839505	99	5839505	95		5839505
D14-Terphenyl (FS)	%	-	101	5839505	98	5839505	95		5839505
D8-Acenaphthylene	%	-	102	5839505	101	5839505	97		5839505
No Fill No E	xceedan	ce							
Grey Exce	eds 1 crit	teria polic	:y/level						
Black Exce	eds both	criteria/l	evels						
RDL = Reportable Detection	Limit								
QC Batch = Quality Control B	atch								
Criteria: Ontario Reg. 153/04	riteria: Ontario Reg. 153/04 (Amended April 15, 2011)								

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID			IGK828	IGK831	IGK834		
Sampling Date			2018/11/08	2018/11/08	2018/11/08		
COC Number			n\a	n\a	n\a		
	UNITS	Criteria	BH18-4 SS3	BH18-6 SS3	BH18-8 SS3	RDL	QC Batch
Inorganics							
Moisture	%	-	22	13	12	1.0	5832454
Calculated Parameters							
1,3-Dichloropropene (cis+trans)	ug/g	0.05	<0.050	<0.050	<0.050	0.050	5831229
Volatile Organics							
Acetone (2-Propanone)	ug/g	16	<0.50	<0.50	<0.50	0.50	5832773
Benzene	ug/g	0.21	<0.020	<0.020	<0.020	0.020	5832773
Bromodichloromethane	ug/g	13	<0.050	<0.050	<0.050	0.050	5832773
Bromoform	ug/g	0.27	<0.050	<0.050	<0.050	0.050	5832773
Bromomethane	ug/g	0.05	<0.050	<0.050	<0.050	0.050	5832773
Carbon Tetrachloride	ug/g	0.05	<0.050	<0.050	<0.050	0.050	5832773
Chlorobenzene	ug/g	2.4	<0.050	<0.050	<0.050	0.050	5832773
Chloroform	ug/g	0.05	<0.050	<0.050	<0.050	0.050	5832773
Dibromochloromethane	ug/g	9.4	<0.050	<0.050	<0.050	0.050	5832773
1,2-Dichlorobenzene	ug/g	3.4	<0.050	<0.050	<0.050	0.050	5832773
1,3-Dichlorobenzene	ug/g	4.8	<0.050	<0.050	<0.050	0.050	5832773
1,4-Dichlorobenzene	ug/g	0.083	<0.050	<0.050	<0.050	0.050	5832773
Dichlorodifluoromethane (FREON 12)	ug/g	16	<0.050	<0.050	<0.050	0.050	5832773
1,1-Dichloroethane	ug/g	3.5	<0.050	<0.050	<0.050	0.050	5832773
1,2-Dichloroethane	ug/g	0.05	<0.050	<0.050	<0.050	0.050	5832773
1,1-Dichloroethylene	ug/g	0.05	<0.050	<0.050	<0.050	0.050	5832773
cis-1,2-Dichloroethylene	ug/g	3.4	<0.050	<0.050	<0.050	0.050	5832773
trans-1,2-Dichloroethylene	ug/g	0.084	<0.050	<0.050	<0.050	0.050	5832773
1,2-Dichloropropane	ug/g	0.05	<0.050	<0.050	<0.050	0.050	5832773
cis-1,3-Dichloropropene	ug/g	0.05	<0.030	<0.030	<0.030	0.030	5832773
trans-1,3-Dichloropropene	ug/g	0.05	<0.040	<0.040	<0.040	0.040	5832773
Ethylbenzene	ug/g	2	<0.020	<0.020	<0.020	0.020	5832773
Ethylene Dibromide	ug/g	0.05	<0.050	<0.050	<0.050	0.050	5832773
Hexane	ug/g	2.8	<0.050	<0.050	<0.050	0.050	5832773
Methylene Chloride(Dichloromethane)	ug/g	0.1	<0.050	<0.050	<0.050	0.050	5832773

No Fill No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

Grey Black

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID				IGK828	IGK831	IGK834			
Sampling Date				2018/11/08	2018/11/08	2018/11/08			
COC Number				n\a	n\a	n\a			
		UNITS	Criteria	BH18-4 SS3	BH18-6 SS3	BH18-8 SS3	RDL	QC Batch	
Methyl Ethyl Keton	e (2-Butanone)	ug/g	16	<0.50	<0.50	<0.50	0.50	5832773	
Methyl Isobutyl Ket	one	ug/g	1.7	<0.50	<0.50	<0.50	0.50	5832773	
Methyl t-butyl ethe	r (MTBE)	ug/g	0.75	<0.050	<0.050	<0.050	0.050	5832773	
Styrene		ug/g	0.7	<0.050	<0.050	<0.050	0.050	5832773	
1,1,1,2-Tetrachloro	ethane	ug/g	0.058	<0.050	<0.050	<0.050	0.050	5832773	
1,1,2,2-Tetrachloro	ethane	ug/g	0.05	<0.050	<0.050	<0.050	0.050	5832773	
Tetrachloroethylen	e	ug/g	0.28	<0.050	<0.050	<0.050	0.050	5832773	
Toluene		ug/g	2.3	<0.020	<0.020	<0.020	0.020	5832773	
1,1,1-Trichloroetha	ne	ug/g	0.38	<0.050	<0.050	<0.050	0.050	5832773	
1,1,2-Trichloroetha	ne	ug/g	0.05	<0.050	<0.050	<0.050	0.050	5832773	
Trichloroethylene		ug/g	0.061	<0.050	<0.050	<0.050	0.050	5832773	
Trichlorofluoromet	hane (FREON 11)	ug/g	4	<0.050	<0.050	<0.050	0.050	5832773	
Vinyl Chloride	/inyl Chloride		0.02	<0.020	<0.020	<0.020	0.020	5832773	
p+m-Xylene		ug/g	-	<0.020	<0.020	<0.020	0.020	5832773	
o-Xylene	-Xylene		-	<0.020	<0.020	<0.020	0.020	5832773	
Total Xylenes		ug/g	3.1	<0.020	<0.020	<0.020	0.020	5832773	
F1 (C6-C10)	-1 (C6-C10)		55	<10	<10	<10	10	5832773	
F1 (C6-C10) - BTEX		ug/g	55	<10	<10	<10	10	5832773	
F2-F4 Hydrocarbon	s	-							
F2 (C10-C16 Hydroc	carbons)	ug/g	98	56	<10 <10		10	5832702	
F3 (C16-C34 Hydroc	carbons)	ug/g	300	83	<50	<50	50	5832702	
F4 (C34-C50 Hydroc	carbons)	ug/g	2800	<50	<50	<50	50	5832702	
Reached Baseline a	t C50	ug/g	-	Yes	Yes	Yes		5832702	
Surrogate Recovery	/ (%)								
o-Terphenyl		%	-	103	102	101		5832702	
4-Bromofluorobenz	ene	%	-	90	90	90		5832773	
D10-o-Xylene		%	-	100	94	93		5832773	
D4-1,2-Dichloroeth	ane	%	-	105	102	103		5832773	
D8-Toluene		%	-	95	97	97		5832773	
No Fill	No Exceedance								
Grey	Exceeds 1 criteria policy/level								
Black	Exceeds both criteria/levels								
RDL = Reportable Detection Limit									
QC Batch = Quality	Control Batch								
Criteria: Ontario Re	g. 153/04 (Amended	April 15	, 2011)						

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

WSP Canada Inc Client Project #: 181-11306-00 PH220 Site Location: 958-960 EAST AVE Sampler Initials: BS

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	IGK826 BH18-4 SS1 Soil					Collected: Shipped: Received:	2018/11/08 2018/11/09
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hot Water Extractable Bo	oron	ICP	5836059	2018/11/14	2018/11/14	Suban Kan	apathippllai
Free (WAD) Cyanide		TECH	5836879	2018/11/14	2018/11/15	Louise Har	ding
Conductivity		AT	5836808	2018/11/15	2018/11/15	Barbara Ka	albasi Esfahani
Hexavalent Chromium in	Soil by IC	IC/SPEC	5834106	2018/11/13	2018/11/16	Sally Noro	uz
Strong Acid Leachable M	etals by ICPMS	ICP/MS	5834504	2018/11/13	2018/11/13	Daniel Tec	lu
Moisture		BAL	5833195	N/A	2018/11/12	Min Yang	
pH CaCl2 EXTRACT		AT	5838796	2018/11/15	2018/11/15	Gnana Tho	omas
Sodium Adsorption Ratio	(SAR)	CALC/MET	5831230	N/A	2018/11/19	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	IGK826 Dup BH18-4 SS1 Soil					Collected: Shipped: Received:	2018/11/08 2018/11/09
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hexavalent Chromium in	Soil by IC	IC/SPEC	5834106	2018/11/13	2018/11/16	Sally Noro	uz
Maxxam ID: Sample ID: Matrix:	IGK827 BH18-4 SS2 Soil					Collected: Shipped: Received:	2018/11/08 2018/11/09
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	5831228	N/A	2018/11/16	Automate	d Statchk
Moisture		BAL	5832454	N/A	2018/11/12	Min Yang	
PAH Compounds in Soil b	oy GC/MS (SIM)	GC/MS	5839505	2018/11/15	2018/11/15	Mitesh Ra	j
Maxxam ID: Sample ID: Matrix:	IGK828 BH18-4 SS3 Soil					Collected: Shipped: Received:	2018/11/08 2018/11/09
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sun	n	CALC	5831229	N/A	2018/11/14	Automate	d Statchk
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	5832702	2018/11/12	2018/11/14	Atoosa Ke	shavarz
Moisture		BAL	5832454	N/A	2018/11/12	Min Yang	
Volatile Organic Compou	nds and F1 PHCs	GC/MSFD	5832773	N/A	2018/11/13	Manpreet	Sarao
Maxxam ID: Sample ID: Matrix:	IGK829 BH18-6-SS1 Soil					Collected: Shipped: Received:	2018/11/08 2018/11/09
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hot Water Extractable Bo	ron	ICP	5834907	2018/11/13	2018/11/13	Suban Kan	anathinnllai
-		ICF	5054507	2010/11/15	2010/11/15	Sabali Kal	
Free (WAD) Cyanide		TECH	5836879	2018/11/14	2018/11/15	Louise Har	ding

Page 7 of 20

5834106

5834504

IC/SPEC

ICP/MS

Hexavalent Chromium in Soil by IC

Strong Acid Leachable Metals by ICPMS

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

2018/11/13

2018/11/13

2018/11/16

2018/11/13

Sally Norouz

Daniel Teclu

WSP Canada Inc Client Project #: 181-11306-00 PH220 Site Location: 958-960 EAST AVE Sampler Initials: BS

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	IGK829 BH18-6-SS1 Soil					Collected: Shipped: Received:	2018/11/08 2018/11/09
T			Datab	F to date			
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	5833195	N/A	2018/11/12		
	(6.1.2)		5838796	2018/11/15	2018/11/15	Gnana Ind	omas
Sodium Adsorption Ratio	(SAR)	CALC/MET	5831230	N/A	2018/11/19	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	IGK830 BH18-6 SS2 Soil					Collected: Shipped: Received:	2018/11/08 2018/11/09
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	5834127	N/A	2018/11/16	Automate	d Statchk
Moisture		BAL	5834574	N/A	2018/11/13	Min Yang	
PAH Compounds in Soil b	y GC/MS (SIM)	GC/MS	5839505	2018/11/15	2018/11/15	Mitesh Ra	j
Maxxam ID: Sample ID: Matrix:	IGK831 BH18-6 SS3 Soil					Collected: Shipped: Received:	2018/11/08 2018/11/09
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sun	1	CALC	5831229	N/A	2018/11/14	Automate	d Statchk
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	5832702	2018/11/12	2018/11/14	Atoosa Ke	shavarz
Moisture		BAL	5832454	N/A	2018/11/12	Min Yang	
Volatile Organic Compou	nds and F1 PHCs	GC/MSFD	5832773	N/A	2018/11/13	Manpreet	Sarao
Maxxam ID: Sample ID: Matrix:	IGK832 BH18-8 SS1 Soil					Collected: Shipped: Received:	2018/11/08 2018/11/09
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hot Water Extractable Bo	oron	ICP	5834907	2018/11/13	2018/11/13	Suban Kar	napathippllai
Free (WAD) Cvanide		TECH	5836879	2018/11/14	2018/11/15	Louise Ha	rding
Conductivity		AT	5836808	2018/11/15	2018/11/15	Barbara K	albasi Esfahani
Hexavalent Chromium in	Soil by IC	IC/SPEC	5834106	2018/11/13	2018/11/16	Sally Noro	uz
Strong Acid Leachable M	etals by ICPMS	ICP/MS	5834504	2018/11/13	2018/11/13	Daniel Tec	lu
Moisture		BAI	5833195	N/A	2018/11/12	Min Yang	
nH CaCl2 EXTRACT		AT	5838796	2018/11/15	2018/11/15	Gnana Th	omas
Sodium Adsorption Batio	(SAR)		5831230	N/A	2018/11/19	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	IGK833 BH18-8 SS2 Soil	G. 29, m21			2010/11/10	Collected: Shipped: Received:	2018/11/08 2018/11/09
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	5831228	N/A	2018/11/16	Automate	d Statchk
Moisture		BAL	5832454	N/A	2018/11/12	Min Yang	
PAH Compounds in Soil b	y GC/MS (SIM)	GC/MS	5839505	2018/11/15	2018/11/15	Mitesh Ra	i

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

WSP Canada Inc Client Project #: 181-11306-00 PH220 Site Location: 958-960 EAST AVE Sampler Initials: BS

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	IGK834 BH18-8 SS3 Soil					Collected: Shipped: Received:	2018/11/08 2018/11/09
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	1	CALC	5831229	N/A	2018/11/14	Automate	d Statchk
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	5832702	2018/11/12	2018/11/14	Atoosa Ke	shavarz
Moisture		BAL	5832454	N/A	2018/11/12	Min Yang	
Volatile Organic Compour	nds and F1 PHCs	GC/MSFD	5832773	N/A	2018/11/13	Manpreet	Sarao

WSP Canada Inc Client Project #: 181-11306-00 PH220 Site Location: 958-960 EAST AVE Sampler Initials: BS

GENERAL COMMENTS

Sample IGK829 [BH18-6-SS1] : SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Sample IGK832 [BH18-8 SS1] : SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

WSP Canada Inc Client Project #: 181-11306-00 PH220

Site Location: 958-960 EAST AVE Sampler Initials: BS

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5832702	o-Terphenyl	2018/11/13	102	60 - 130	99	60 - 130	107	%		
5832773	4-Bromofluorobenzene	2018/11/13	96	60 - 140	97	60 - 140	91	%		
5832773	D10-o-Xylene	2018/11/13	95	60 - 130	100	60 - 130	86	%		
5832773	D4-1,2-Dichloroethane	2018/11/13	97	60 - 140	98	60 - 140	99	%		
5832773	D8-Toluene	2018/11/13	104	60 - 140	104	60 - 140	97	%		
5839505	D10-Anthracene	2018/11/15	99	50 - 130	96	50 - 130	95	%		
5839505	D14-Terphenyl (FS)	2018/11/15	106	50 - 130	104	50 - 130	97	%		
5839505	D8-Acenaphthylene	2018/11/15	104	50 - 130	96	50 - 130	93	%		
5832454	Moisture	2018/11/12							0	20
5832702	F2 (C10-C16 Hydrocarbons)	2018/11/14	111	50 - 130	107	80 - 120	<10	ug/g	NC	30
5832702	F3 (C16-C34 Hydrocarbons)	2018/11/14	112	50 - 130	105	80 - 120	<50	ug/g	NC	30
5832702	F4 (C34-C50 Hydrocarbons)	2018/11/14	111	50 - 130	104	80 - 120	<50	ug/g	NC	30
5832773	1,1,1,2-Tetrachloroethane	2018/11/13	100	60 - 140	100	60 - 130	<0.050	ug/g	NC	50
5832773	1,1,1-Trichloroethane	2018/11/13	96	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5832773	1,1,2,2-Tetrachloroethane	2018/11/13	95	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
5832773	1,1,2-Trichloroethane	2018/11/13	92	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
5832773	1,1-Dichloroethane	2018/11/13	96	60 - 140	97	60 - 130	<0.050	ug/g	NC	50
5832773	1,1-Dichloroethylene	2018/11/13	91	60 - 140	92	60 - 130	<0.050	ug/g	NC	50
5832773	1,2-Dichlorobenzene	2018/11/13	95	60 - 140	95	60 - 130	<0.050	ug/g	NC	50
5832773	1,2-Dichloroethane	2018/11/13	91	60 - 140	92	60 - 130	<0.050	ug/g	NC	50
5832773	1,2-Dichloropropane	2018/11/13	96	60 - 140	97	60 - 130	<0.050	ug/g	NC	50
5832773	1,3-Dichlorobenzene	2018/11/13	97	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5832773	1,4-Dichlorobenzene	2018/11/13	95	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
5832773	Acetone (2-Propanone)	2018/11/13	86	60 - 140	90	60 - 140	<0.50	ug/g	NC	50
5832773	Benzene	2018/11/13	93	60 - 140	94	60 - 130	<0.020	ug/g	NC	50
5832773	Bromodichloromethane	2018/11/13	95	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5832773	Bromoform	2018/11/13	95	60 - 140	97	60 - 130	<0.050	ug/g	NC	50
5832773	Bromomethane	2018/11/13	99	60 - 140	102	60 - 140	<0.050	ug/g	NC	50
5832773	Carbon Tetrachloride	2018/11/13	94	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
5832773	Chlorobenzene	2018/11/13	94	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
5832773	Chloroform	2018/11/13	95	60 - 140	96	60 - 130	<0.050	ug/g	NC	50

QUALITY ASSURANCE REPORT(CONT'D)

WSP Canada Inc Client Project #: 181-11306-00 PH220

Site Location: 958-960 EAST AVE Sampler Initials: BS

			Matrix	Spike	SPIKED	SPIKED BLANK Method Blank		RPI)	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5832773	cis-1,2-Dichloroethylene	2018/11/13	91	60 - 140	91	60 - 130	<0.050	ug/g	NC	50
5832773	cis-1,3-Dichloropropene	2018/11/13	86	60 - 140	86	60 - 130	<0.030	ug/g	NC	50
5832773	Dibromochloromethane	2018/11/13	100	60 - 140	103	60 - 130	<0.050	ug/g	NC	50
5832773	Dichlorodifluoromethane (FREON 12)	2018/11/13	85	60 - 140	95	60 - 140	<0.050	ug/g	NC	50
5832773	Ethylbenzene	2018/11/13	90	60 - 140	89	60 - 130	<0.020	ug/g	NC	50
5832773	Ethylene Dibromide	2018/11/13	95	60 - 140	97	60 - 130	<0.050	ug/g	NC	50
5832773	F1 (C6-C10) - BTEX	2018/11/13					<10	ug/g	NC	30
5832773	F1 (C6-C10)	2018/11/13	91	60 - 140	99	80 - 120	<10	ug/g	NC	30
5832773	Hexane	2018/11/13	88	60 - 140	89	60 - 130	<0.050	ug/g	NC	50
5832773	Methyl Ethyl Ketone (2-Butanone)	2018/11/13	86	60 - 140	90	60 - 140	<0.50	ug/g	NC	50
5832773	Methyl Isobutyl Ketone	2018/11/13	80	60 - 140	84	60 - 130	<0.50	ug/g	NC	50
5832773	Methyl t-butyl ether (MTBE)	2018/11/13	85	60 - 140	88	60 - 130	<0.050	ug/g	NC	50
5832773	Methylene Chloride(Dichloromethane)	2018/11/13	101	60 - 140	102	60 - 130	<0.050	ug/g	NC	50
5832773	o-Xylene	2018/11/13	89	60 - 140	88	60 - 130	<0.020	ug/g	NC	50
5832773	p+m-Xylene	2018/11/13	86	60 - 140	85	60 - 130	<0.020	ug/g	NC	50
5832773	Styrene	2018/11/13	91	60 - 140	91	60 - 130	<0.050	ug/g	NC	50
5832773	Tetrachloroethylene	2018/11/13	104	60 - 140	102	60 - 130	<0.050	ug/g	NC	50
5832773	Toluene	2018/11/13	91	60 - 140	90	60 - 130	<0.020	ug/g	NC	50
5832773	Total Xylenes	2018/11/13					<0.020	ug/g	NC	50
5832773	trans-1,2-Dichloroethylene	2018/11/13	97	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5832773	trans-1,3-Dichloropropene	2018/11/13	91	60 - 140	91	60 - 130	<0.040	ug/g	NC	50
5832773	Trichloroethylene	2018/11/13	98	60 - 140	97	60 - 130	<0.050	ug/g	NC	50
5832773	Trichlorofluoromethane (FREON 11)	2018/11/13	99	60 - 140	101	60 - 130	<0.050	ug/g	NC	50
5832773	Vinyl Chloride	2018/11/13	95	60 - 140	98	60 - 130	<0.020	ug/g	NC	50
5833195	Moisture	2018/11/12							1.0	20
5834106	Chromium (VI)	2018/11/16	43 (1)	70 - 130	90	80 - 120	<0.2	ug/g	NC	35
5834504	Acid Extractable Antimony (Sb)	2018/11/14	114	75 - 125	100	80 - 120	<0.20	ug/g	NC	30
5834504	Acid Extractable Arsenic (As)	2018/11/14	110	75 - 125	101	80 - 120	<1.0	ug/g	7.6	30
5834504	Acid Extractable Barium (Ba)	2018/11/14	93	75 - 125	99	80 - 120	<0.50	ug/g	6.0	30
5834504	Acid Extractable Beryllium (Be)	2018/11/14	111	75 - 125	99	80 - 120	<0.20	ug/g	NC	30
5834504	Acid Extractable Boron (B)	2018/11/14	110	75 - 125	95	80 - 120	<5.0	ug/g	5.4	30

QUALITY ASSURANCE REPORT(CONT'D)

WSP Canada Inc Client Project #: 181-11306-00 PH220

Site Location: 958-960 EAST AVE Sampler Initials: BS

		Matrix Spike		SPIKED BLANK		Method Blank		RPI)	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5834504	Acid Extractable Cadmium (Cd)	2018/11/14	108	75 - 125	97	80 - 120	<0.10	ug/g	4.3	30
5834504	Acid Extractable Chromium (Cr)	2018/11/14	116	75 - 125	99	80 - 120	<1.0	ug/g	8.0	30
5834504	Acid Extractable Cobalt (Co)	2018/11/14	112	75 - 125	101	80 - 120	<0.10	ug/g	5.6	30
5834504	Acid Extractable Copper (Cu)	2018/11/14	108	75 - 125	102	80 - 120	<0.50	ug/g	2.8	30
5834504	Acid Extractable Lead (Pb)	2018/11/14	108	75 - 125	100	80 - 120	<1.0	ug/g	2.8	30
5834504	Acid Extractable Mercury (Hg)	2018/11/14	112	75 - 125	102	80 - 120	<0.050	ug/g	NC	30
5834504	Acid Extractable Molybdenum (Mo)	2018/11/14	113	75 - 125	100	80 - 120	<0.50	ug/g	9.4	30
5834504	Acid Extractable Nickel (Ni)	2018/11/14	115	75 - 125	103	80 - 120	<0.50	ug/g	4.1	30
5834504	Acid Extractable Selenium (Se)	2018/11/14	110	75 - 125	102	80 - 120	<0.50	ug/g	NC	30
5834504	Acid Extractable Silver (Ag)	2018/11/14	109	75 - 125	101	80 - 120	<0.20	ug/g	NC	30
5834504	Acid Extractable Thallium (TI)	2018/11/14	106	75 - 125	99	80 - 120	<0.050	ug/g	9.8	30
5834504	Acid Extractable Uranium (U)	2018/11/14	107	75 - 125	99	80 - 120	<0.050	ug/g	4.3	30
5834504	Acid Extractable Vanadium (V)	2018/11/14	116	75 - 125	102	80 - 120	<5.0	ug/g	0.45	30
5834504	Acid Extractable Zinc (Zn)	2018/11/14	NC	75 - 125	99	80 - 120	<5.0	ug/g	7.3	30
5834574	Moisture	2018/11/13							8.7	20
5834907	Hot Water Ext. Boron (B)	2018/11/13	94	75 - 125	95	75 - 125	<0.050	ug/g	1.2	40
5836059	Hot Water Ext. Boron (B)	2018/11/14	99	75 - 125	95	75 - 125	<0.050	ug/g	NC	40
5836808	Conductivity	2018/11/15			105	90 - 110	<0.002	mS/cm	0.41	10
5836879	WAD Cyanide (Free)	2018/11/15	94	75 - 125	97	80 - 120	<0.01	ug/g	NC	35
5838796	Available (CaCl2) pH	2018/11/15			100	97 - 103			0	N/A
5839505	1-Methylnaphthalene	2018/11/15	112	50 - 130	104	50 - 130	<0.0050	ug/g	NC	40
5839505	2-Methylnaphthalene	2018/11/15	102	50 - 130	93	50 - 130	<0.0050	ug/g	NC	40
5839505	Acenaphthene	2018/11/15	100	50 - 130	101	50 - 130	<0.0050	ug/g	NC	40
5839505	Acenaphthylene	2018/11/15	98	50 - 130	91	50 - 130	<0.0050	ug/g	NC	40
5839505	Anthracene	2018/11/15	93	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
5839505	Benzo(a)anthracene	2018/11/15	99	50 - 130	101	50 - 130	<0.0050	ug/g		
5839505	Benzo(a)pyrene	2018/11/15	92	50 - 130	101	50 - 130	<0.0050	ug/g		
5839505	Benzo(b/j)fluoranthene	2018/11/15	111	50 - 130	108	50 - 130	<0.0050	ug/g		
5839505	Benzo(g,h,i)perylene	2018/11/15	99	50 - 130	101	50 - 130	<0.0050	ug/g		
5839505	Benzo(k)fluoranthene	2018/11/15	109	50 - 130	89	50 - 130	<0.0050	ug/g		
5839505	Chrysene	2018/11/15	100	50 - 130	100	50 - 130	<0.0050	ug/g		

Page 13 of 20

QUALITY ASSURANCE REPORT(CONT'D)

WSP Canada Inc Client Project #: 181-11306-00 PH220

Site Location: 958-960 EAST AVE Sampler Initials: BS

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5839505	Dibenz(a,h)anthracene	2018/11/15	113	50 - 130	95	50 - 130	<0.0050	ug/g		
5839505	Fluoranthene	2018/11/15	102	50 - 130	100	50 - 130	<0.0050	ug/g	NC	40
5839505	Fluorene	2018/11/15	98	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
5839505	Indeno(1,2,3-cd)pyrene	2018/11/15	102	50 - 130	104	50 - 130	<0.0050	ug/g		
5839505	Naphthalene	2018/11/15	98	50 - 130	90	50 - 130	<0.0050	ug/g	NC	40
5839505	Phenanthrene	2018/11/15	101	50 - 130	97	50 - 130	<0.0050	ug/g	NC	40
5839505	Pyrene	2018/11/15	111	50 - 130	106	50 - 130	<0.0050	ug/g		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample. The sample was reanalyzed with the same results.

WSP Canada Inc Client Project #: 181-11306-00 PH220 Site Location: 958-960 EAST AVE Sampler Initials: BS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

6740 Campobello Road, Mississauga, Ontario L5N 2L8 Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266 CAM FCP-01191/2

CAM FCD-01	191/2						CHA	IN OF	CUSTO	DY RECO	DRD	Page of
Invoice Information	1	Report Information	if differs fr	om invoi	ce)	_	F	Project Info	rmation (whe	e applicable)	Turnaround Time (TAT) Required
Company Name: WSP	Company Nam	ne: WSP	103	3.4		1	Quotation	#:	ale way		Stat.	Regular TAT (5-7 days) Most analyses
Contact Name:	Contact Name	Micha	el Wilsc	'n			P.O. #/ AFI	E#:				PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECT
Address: 51 Constellation Court	Address:	51 Co	nstellat	ion Co	ourt		Project #:	181	-11306-0	o Ph 2	20	Rush TAT (Surcharges will be applied)
Toronto, ON	No. of the second	Toront	o, ON	130			Site Locati	on: 958	-960 E	st Ave		1 Day 2 Days 3-4 Days
Phone: 416-798-0065 Fax: 416-798-051	8 Phone: 416	6-798-0065	Fax:	416-7	98-051	8	Site #:			1		
Email: payables.ontario@wsp.com	Email: mi	chael.wilson@	wsp.co	om			Sampled B	r B	s			Date Required:
MOE REGULATED DRINKING WATER OR W	ATER INTENDED FOR HUMA	AN CONSUMPTION N	IUST BE SUR	MITTED	ON THE M	XXAM	DRINKING	WATER CH	AIN OF CUSTO	DY		Rush Confirmation #:
Regulation 153	Other Regulatio	ons					Analysis F	lequested				LABORATORY USE ONLY
Table 1 Res/Park Med/ Fine Table 2 Ind/Comm Coarse Table 3 Agri/ Other Table 2 FOR RSC (PLEASE CIRCLE) Y N	CCME Sanitary Sev MISA Storm Seve PWQO Region Other (Specify) REG 558 (MIN. 3 DAY TAT	wer Bylaw er Bylaw T REQUIRED)	ITTED Metals / Hg / CrVI		RI	FER TO CO	BACK OF C (8 - SMH	~				CUSTODY SEAL Y / N Present Intact N N 9/3/5
nclude Criteria on Certificate of Analysis: 🛛 🕜 / N	a estado en	A 12 12-16-78-184	SUBM RCLE)		INOR	TALS	letals,	¥.			ALYZE	
SAMPLES MUST BE KEPT COOL (< 10 $^\circ \rm C$) FROM TIME OF	SAMPLING UNTIL DELIVER	Y TO MAXXAM	INERS ED (CI	-	TALS &	VIS ME	FALS PMS N	Q	11		DT AN	
SAMPLE IDENTIFICATION	DATE SAMPLED TIME (YYYY/MM/DD) (HI	SAMPLED H:MM) MATRIX	II OF CONTA	BTEX/ PHC F PHCs F2 - F4	VOCs REG 153 ME	REG 153 ICPI	REG 153 ME (Hg, Cr VI, IC	Rey(53			HOLD- DO N	COOLING MEDIA PRESENT: (Y) / N COMMENTS
1 BH18-4 SSI	2018/11/08 A	m so	(X							
2 BH18-4 SS2	1 4	In 1	1					X				
3 BH 18-4 553	A	que	3	XX	X							
4 BH 18-6 551	F	PM	1		X							
5 BH 18-6 552		em	1			+						
6 BH 18-6 553		PM	3	XX	×	H						
7 BH 18-8 551	2018/11/08	AW	1			1						
8 BH 18-8 552	1 4	M	1				-	x			- 2.5 - 5	
9 BN 18-8 553		AN X	3	v x	X				-		-	
10		<u>y</u>	-	-				+				09-Nov-18 15:14
RELINQUISHED BY: (Signature/Print) DAT	E: (YYYY/MM/DD) TIM	IE: (HH:MM)	RECEN	VED BY: (Signature/	Print)		DATE: (YY	YY/MM/DD)	TIME: (H	H:MM)	Ashton Gibson
Ald, John Gam 20	8/11/09 3	ispm <	\sim	-2	my	MK	M	tas	111/09	IS.	14	B8U0291
								- 4				

WSP Canada Inc Client Project #: 181-11306-00 PH220 Project name: 958-960 EAST AVE Client ID: BH18-4 SS3

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

WSP Canada Inc Client Project #: 181-11306-00 PH220 Project name: 958-960 EAST AVE Client ID: BH18-6 SS3

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

WSP Canada Inc Client Project #: 181-11306-00 PH220 Project name: 958-960 EAST AVE Client ID: BH18-8 SS3

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

WSP Canada Inc Client Project #: 181-11306-00 PH220 Site Location: 958-960 EAST AVE Sampler Initials: BS

Exceedence Summary Table – Reg153/04 T3-Soil/Res-C

Result Exceedences

Sample ID	Maxxam ID	Parameter	Criteria	Result	DL	Units	
No Exceedences							
The exceedence summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance							
to applicable regulatory guidelines.							

Your Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE Your C.O.C. #: N/A

Attention: Michael Wilson

WSP Canada Inc 51 Constellation Court Toronto, ON CANADA M9W 1K4

> Report Date: 2018/11/14 Report #: R5484218 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8T6953

Received: 2018/11/07, 14:13

Sample Matrix: Soil # Samples Received: 7

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum	2	N/A	2018/11/13	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	1	2018/11/10	2018/11/12	CAM SOP-00408	R153 Ana. Prot. 2011
Hot Water Extractable Boron	1	2018/11/12	2018/11/12	CAM SOP-00408	R153 Ana. Prot. 2011
1,3-Dichloropropene Sum	2	N/A	2018/11/09		EPA 8260C m
1,3-Dichloropropene Sum	1	N/A	2018/11/13		EPA 8260C m
Free (WAD) Cyanide	1	2018/11/09	2018/11/12	CAM SOP-00457	OMOE E3015 m
Free (WAD) Cyanide	1	2018/11/12	2018/11/13	CAM SOP-00457	OMOE E3015 m
Conductivity	1	2018/11/12	2018/11/12	CAM SOP-00414	OMOE E3530 v1 m
Conductivity	1	2018/11/13	2018/11/13	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	2	2018/11/09	2018/11/13	CAM SOP-00436	EPA 3060/7199 m
Petroleum Hydro. CCME F1 & BTEX in Soil (2)	1	N/A	2018/11/12	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (3)	3	2018/11/09	2018/11/13	CAM SOP-00316	CCME CWS m
Strong Acid Leachable Metals by ICPMS	2	2018/11/10	2018/11/12	CAM SOP-00447	EPA 6020B m
Moisture	6	N/A	2018/11/08	CAM SOP-00445	Carter 2nd ed 51.2 m
Moisture	1	N/A	2018/11/12	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	2	2018/11/09	2018/11/10	CAM SOP-00318	EPA 8270D m
pH CaCl2 EXTRACT	2	2018/11/12	2018/11/12	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	1	N/A	2018/11/13	CAM SOP-00102	EPA 6010C
Sodium Adsorption Ratio (SAR)	1	N/A	2018/11/14	CAM SOP-00102	EPA 6010C
Volatile Organic Compounds and F1 PHCs	1	N/A	2018/11/08	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds and F1 PHCs	1	N/A	2018/11/09	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds in Soil	1	N/A	2018/11/12	CAM SOP-00228	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Your Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE Your C.O.C. #: N/A

Attention: Michael Wilson

WSP Canada Inc 51 Constellation Court Toronto, ON CANADA M9W 1K4

> Report Date: 2018/11/14 Report #: R5484218 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8T6953 Received: 2018/11/07, 14:13

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Soils are reported on a dry weight basis unless otherwise specified.

(2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated. (3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ashton Gibson, Project Manager Email: AGibson@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 24

O.REG 153 METALS & INORGANICS PKG (SOIL)

Maxxam ID				IFR992			IFR995		
Sampling Date				2018/11/05			2018/11/06		
COC Number				N/A			N/A		
		UNITS	Criteria	BH18-2 SS2	RDL	QC Batch	BH18-3 SS1	RDL	QC Batch
Calculated Parameters									
Sodium Adsorption	Ratio	N/A	5.0	24		5824976	2.2		5824976
Inorganics									
Conductivity		mS/cm	0.7	2.9	0.002	5832611	0.26	0.002	5832165
Moisture		%	-				16	1.0	5832697
Available (CaCl2) p⊦	1	рН	-	7.76		5832266	7.66		5832266
WAD Cyanide (Free)	ug/g	0.051	0.01	0.01	5829714	<0.01	0.01	5832898
Chromium (VI)		ug/g	8	<0.2	0.2	5829630	<0.2	0.2	5829630
Metals									
Hot Water Ext. Bord	on (B)	ug/g	1.5	0.27	0.050	5832167	0.10	0.050	5831223
Acid Extractable An	timony (Sb)	ug/g	7.5	<0.20	0.20	5831295	0.21	0.20	5831295
Acid Extractable Arsenic (As)		ug/g	18	4.9	1.0	5831295	5.0	1.0	5831295
Acid Extractable Barium (Ba)		ug/g	390	140	0.50	5831295	69	0.50	5831295
Acid Extractable Beryllium (Be)		ug/g	4	1.2	0.20	5831295	0.75	0.20	5831295
Acid Extractable Boron (B)		ug/g	120	10	5.0	5831295	7.3	5.0	5831295
Acid Extractable Cadmium (Cd)		ug/g	1.2	0.15	0.10	5831295	0.21	0.10	5831295
Acid Extractable Chromium (Cr)		ug/g	160	35	1.0	5831295	21	1.0	5831295
Acid Extractable Co	balt (Co)	ug/g	22	16	0.10	5831295	10	0.10	5831295
Acid Extractable Co	pper (Cu)	ug/g	140	31	0.50	5831295	24	0.50	5831295
Acid Extractable Lea	ad (Pb)	ug/g	120	13	1.0	5831295	23	1.0	5831295
Acid Extractable Mo	olybdenum (Mo)	ug/g	6.9	<0.50	0.50	5831295	<0.50	0.50	5831295
Acid Extractable Nic	ckel (Ni)	ug/g	100	36	0.50	5831295	21	0.50	5831295
Acid Extractable Sel	enium (Se)	ug/g	2.4	<0.50	0.50	5831295	<0.50	0.50	5831295
Acid Extractable Silv	ver (Ag)	ug/g	20	<0.20	0.20	5831295	<0.20	0.20	5831295
Acid Extractable Tha	allium (Tl)	ug/g	1	0.20	0.050	5831295	0.14	0.050	5831295
Acid Extractable Ura	anium (U)	ug/g	23	0.63	0.050	5831295	0.61	0.050	5831295
Acid Extractable Va	nadium (V)	ug/g	86	47	5.0	5831295	31	5.0	5831295
Acid Extractable Zin	c (Zn)	ug/g	340	79	5.0	5831295	76	5.0	5831295
Acid Extractable Me	ercury (Hg)	ug/g	0.27	<0.050	0.050	5831295	<0.050	0.050	5831295
No Fill	No Exceedance								
Grey	Exceeds 1 criter	ia policy,	/level						
Black	Black Exceeds both criteria/levels								
RDL = Reportable D	RDL = Reportable Detection Limit								
QC Batch = Quality	Control Batch								
Cultural Cultural D	4 - 2 / 2 4 / 4		4 - 2044						

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

Report Date: 2018/11/14

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE

O.REG 153 PAHS (SOIL)

Maxxam ID				IFR992		IFR996			
Sampling Date				2018/11/05		2018/11/06			
COC Number				N/A		N/A			
		UNITS	Criteria	BH18-2 SS2	QC Batch	BH18-3 SS2	RDL	QC Batch	
Inorganics									
Moisture		%	-	23	5828728	22	1.0	5828411	
Calculated Parameters									
Methylnaphthaler	ne, 2-(1-)	ug/g	0.99	<0.0071	5824630	<0.0071	0.0071	5824630	
Polyaromatic Hyd	Polyaromatic Hydrocarbons								
Acenaphthene		ug/g	7.9	<0.0050	5829805	<0.0050	0.0050	5829805	
Acenaphthylene		ug/g	0.15	<0.0050	5829805	<0.0050	0.0050	5829805	
Anthracene		ug/g	0.67	<0.0050	5829805	<0.0050	0.0050	5829805	
Benzo(a)anthrace	ne	ug/g	0.5	<0.0050	5829805	<0.0050	0.0050	5829805	
Benzo(a)pyrene		ug/g	0.3	<0.0050	5829805	<0.0050	0.0050	5829805	
Benzo(b/j)fluoran	thene	ug/g	0.78	<0.0050	5829805	<0.0050	0.0050	5829805	
Benzo(g,h,i)peryle	ene	ug/g	6.6	<0.0050	5829805	<0.0050	0.0050	5829805	
Benzo(k)fluoranthene		ug/g	0.78	<0.0050	5829805	<0.0050	0.0050	5829805	
Chrysene		ug/g	7	<0.0050	5829805	<0.0050	0.0050	5829805	
Dibenz(a,h)anthracene		ug/g	0.1	<0.0050	5829805	<0.0050	0.0050	5829805	
Fluoranthene		ug/g	0.69	<0.0050	5829805	<0.0050	0.0050	5829805	
Fluorene		ug/g	62	<0.0050	5829805	<0.0050	0.0050	5829805	
Indeno(1,2,3-cd)p	yrene	ug/g	0.38	<0.0050	5829805	<0.0050	0.0050	5829805	
1-Methylnaphtha	lene	ug/g	0.99	<0.0050	5829805	<0.0050	0.0050	5829805	
2-Methylnaphtha	lene	ug/g	0.99	<0.0050	5829805	<0.0050	0.0050	5829805	
Naphthalene		ug/g	0.6	<0.0050	5829805	<0.0050	0.0050	5829805	
Phenanthrene		ug/g	6.2	<0.0050	5829805	<0.0050	0.0050	5829805	
Pyrene		ug/g	78	<0.0050	5829805	<0.0050	0.0050	5829805	
Surrogate Recove	ry (%)								
D10-Anthracene		%	-	96	5829805	93		5829805	
D14-Terphenyl (FS	s)	%	-	84	5829805	91		5829805	
D8-Acenaphthyle	ne	%	-	84	5829805	86		5829805	
No Fill	No Exceed	lance							
Grey	Exceeds 1	criteria	policy/lev	vel					
Black	Black Exceeds both criteria/levels								
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
Criteria: Ontario R Table 3: Full Dept Soil - Residential/I	keg. 153/04 h Generic Si Parkland/In:	(Amend te Cond stitutior	led April 1 ition Stan nal Proper	15, 2011) Idards in a Nor Ity Use - Coars	n-Potable G e Textured	round Water C Soil	Condition	1	

Report Date: 2018/11/14

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE

Maxxam ID			IFR998				
Sampling Date			2018/11/06				
COC Number			N/A				
	UNITS	Criteria	QAQC3	RDL	QC Batch		
Inorganics							
Moisture	%	-	14	1.0	5828260		
BTEX & F1 Hydrocarbons	•						
Benzene	ug/g	0.21	<0.020	0.020	5832366		
Toluene	ug/g	2.3	<0.020	0.020	5832366		
Ethylbenzene	ug/g	2	<0.020	0.020	5832366		
o-Xylene	ug/g	-	<0.020	0.020	5832366		
p+m-Xylene	ug/g	-	<0.040	0.040	5832366		
Total Xylenes	ug/g	3.1	<0.040	0.040	5832366		
F1 (C6-C10)	ug/g	55	<10	10	5832366		
F1 (C6-C10) - BTEX	ug/g	55	<10	10	5832366		
F2-F4 Hydrocarbons							
F2 (C10-C16 Hydrocarbons)	ug/g	98	<10	10	5830668		
F3 (C16-C34 Hydrocarbons)	ug/g	300	<50	50	5830668		
F4 (C34-C50 Hydrocarbons)	ug/g	2800	<50	50	5830668		
Reached Baseline at C50	ug/g	-	Yes		5830668		
Surrogate Recovery (%)							
1,4-Difluorobenzene	%	-	99		5832366		
4-Bromofluorobenzene	%	-	101		5832366		
D10-Ethylbenzene	%	-	95		5832366		
D4-1,2-Dichloroethane	%	-	101		5832366		
o-Terphenyl	%	-	95		5830668		
No Fill No Exceedance	e						
Grey Exceeds 1 crit	eria polio	cy/level					
Black Exceeds both	ack Exceeds both criteria/levels						
RDL = Reportable Detection	Limit						
QC Batch = Quality Control B	atch						
Criteria: Ontario Reg. 153/04 Table 3: Full Depth Generic S Ground Water Condition	(Amend ite Cond	led April : ition Star	15, 2011) ndards in a Nc	on-Pota	ble		

~ 4 - -

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID			IFR993	IFR997					
Sampling Date			2018/11/05	2018/11/06					
COC Number			N/A	N/A					
	UNITS	Criteria	BH18-2 SS3	BH18-3 SS3	RDL	QC Batch			
Inorganics	Inorganics								
Moisture	%	-	15	16	1.0	5828260			
Calculated Parameters									
1,3-Dichloropropene (cis+trans)	ug/g	0.05	<0.050	<0.050	0.050	5824975			
Volatile Organics	•								
Acetone (2-Propanone)	ug/g	16	<0.50	<0.50	0.50	5827005			
Benzene	ug/g	0.21	<0.020	<0.020	0.020	5827005			
Bromodichloromethane	ug/g	13	<0.050	<0.050	0.050	5827005			
Bromoform	ug/g	0.27	<0.050	<0.050	0.050	5827005			
Bromomethane	ug/g	0.05	<0.050	<0.050	0.050	5827005			
Carbon Tetrachloride	ug/g	0.05	<0.050	<0.050	0.050	5827005			
Chlorobenzene		2.4	<0.050	<0.050	0.050	5827005			
Chloroform		0.05	<0.050	<0.050	0.050	5827005			
Dibromochloromethane		9.4	<0.050	<0.050	0.050	5827005			
1,2-Dichlorobenzene		3.4	<0.050	<0.050	0.050	5827005			
1,3-Dichlorobenzene		4.8	<0.050	<0.050	0.050	5827005			
1,4-Dichlorobenzene		0.083	<0.050	<0.050	0.050	5827005			
Dichlorodifluoromethane (FREON 12)		16	<0.050	<0.050	0.050	5827005			
1,1-Dichloroethane	ug/g	3.5	<0.050	<0.050	0.050	5827005			
1,2-Dichloroethane	ug/g	0.05	<0.050	<0.050	0.050	5827005			
1,1-Dichloroethylene	ug/g	0.05	<0.050	<0.050	0.050	5827005			
cis-1,2-Dichloroethylene	ug/g	3.4	<0.050	<0.050	0.050	5827005			
trans-1,2-Dichloroethylene	ug/g	0.084	<0.050	<0.050	0.050	5827005			
1,2-Dichloropropane	ug/g	0.05	<0.050	<0.050	0.050	5827005			
cis-1,3-Dichloropropene	ug/g	0.05	<0.030	<0.030	0.030	5827005			
trans-1,3-Dichloropropene	ug/g	0.05	<0.040	<0.040	0.040	5827005			
Ethylbenzene	ug/g	2	<0.020	<0.020	0.020	5827005			
Ethylene Dibromide	ug/g	0.05	<0.050	<0.050	0.050	5827005			
Hexane	ug/g	2.8	<0.050	<0.050 <0.050		5827005			
Methylene Chloride(Dichloromethane)	ug/g	0.1	<0.050	<0.050	0.050	5827005			
No Fill No Exceedance									
Grey Exceeds 1 criteria pol	Grey Exceeds 1 criteria policy/level								
Black Exceeds both criteria/levels									
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
		2044							

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID				IFR993	IFR997		
Sampling Date				2018/11/05	2018/11/06		
COC Number				N/A	N/A		
		UNITS	Criteria	BH18-2 SS3	BH18-3 SS3	RDL	QC Batch
Methyl Ethyl Keto	one (2-Butanone)	ug/g	16	<0.50	<0.50	0.50	5827005
Methyl Isobutyl K	Cetone	ug/g	1.7	<0.50	<0.50	0.50	5827005
Methyl t-butyl et	her (MTBE)	ug/g	0.75	<0.050	<0.050	0.050	5827005
Styrene		ug/g	0.7	<0.050	<0.050	0.050	5827005
1,1,1,2-Tetrachlo	roethane	ug/g	0.058	<0.050	<0.050	0.050	5827005
1,1,2,2-Tetrachlo	roethane	ug/g	0.05	<0.050	<0.050	0.050	5827005
Tetrachloroethyle	ene	ug/g	0.28	<0.050	<0.050	0.050	5827005
Toluene		ug/g	2.3	<0.020	<0.020	0.020	5827005
1,1,1-Trichloroet	hane	ug/g	0.38	<0.050	<0.050	0.050	5827005
1,1,2-Trichloroet	hane	ug/g	0.05	<0.050	<0.050	0.050	5827005
Trichloroethylene	5	ug/g	0.061	<0.050	<0.050	0.050	5827005
Trichlorofluoromethane (FREON 11)		ug/g	4	<0.050	<0.050	0.050	5827005
Vinyl Chloride		ug/g	0.02	<0.020	<0.020	0.020	5827005
p+m-Xylene		ug/g	-	<0.020	<0.020	0.020	5827005
o-Xylene		ug/g	-	<0.020	<0.020	0.020	5827005
Total Xylenes		ug/g	3.1	<0.020	<0.020	0.020	5827005
F1 (C6-C10)		ug/g	55	<10	<10	10	5827005
F1 (C6-C10) - BTE	X	ug/g	55	<10	<10	10	5827005
F2-F4 Hydrocarbo	ons						
F2 (C10-C16 Hydr	ocarbons)	ug/g	98	<10	<10	10	5830668
F3 (C16-C34 Hydr	ocarbons)	ug/g	300	<50	<50	50	5830668
F4 (C34-C50 Hydr	ocarbons)	ug/g	2800	<50	<50	50	5830668
Reached Baseline	e at C50	ug/g	-	Yes	Yes		5830668
Surrogate Recove	ery (%)						
o-Terphenyl		%	-	101	89		5830668
4-Bromofluorobe	nzene	%	-	97	98		5827005
D10-o-Xylene		%	-	102	104		5827005
D4-1,2-Dichloroe	thane	%	-	101	103		5827005
D8-Toluene		%	-	99	99		5827005
No Fill	No Exceedance						
Grey	Exceeds 1 criteria policy/level						
Black	Exceeds both criteria/levels						
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							
Criteria: Ontario I	Reg. 153/04 (Amended	April 15	, 2011)				

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water ConditionSoil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

O.REG 153 VOCS BY HS (SOIL)

Maxxam ID				IFR994				
Sampling Date	!			2018/11/05				
COC Number	COC Number			N/A				
		UNITS	Criteria	QAQC2	RDL	QC Batch		
Inorganics								
Moisture		%	-	15	1.0	5827432		
Calculated Par	Calculated Parameters							
1,3-Dichloropr	opene (cis+trans)	ug/g	0.05	<0.050	0.050	5824975		
Volatile Organ	ics							
Acetone (2-Pro	ppanone)	ug/g	16	<0.50	0.50	5829333		
Benzene		ug/g	0.21	<0.020	0.020	5829333		
Bromodichloro	omethane	ug/g	13	<0.050	0.050	5829333		
Bromoform		ug/g	0.27	<0.050	0.050	5829333		
Bromomethan	e	ug/g	0.05	<0.050	0.050	5829333		
Carbon Tetrach	nloride	ug/g	0.05	<0.050	0.050	5829333		
Chlorobenzene	2	ug/g	2.4	<0.050	0.050	5829333		
Chloroform		ug/g	0.05	<0.050	0.050	5829333		
Dibromochloro	ug/g	9.4	<0.050	0.050	5829333			
1,2-Dichlorobe	ug/g	3.4	<0.050	0.050	5829333			
1,3-Dichlorobe	ug/g	4.8	<0.050	0.050	5829333			
1,4-Dichlorobenzene		ug/g	0.083	<0.050	0.050	5829333		
Dichlorodifluor	ug/g	16	<0.050	0.050	5829333			
1,1-Dichloroet	ug/g	3.5	<0.050	0.050	5829333			
1,2-Dichloroet	ug/g	0.05	<0.050	0.050	5829333			
1,1-Dichloroet	hylene	ug/g	0.05	<0.050	0.050	5829333		
cis-1,2-Dichlor	oethylene	ug/g	3.4	<0.050	0.050	5829333		
trans-1,2-Dichl	oroethylene	ug/g	0.084	<0.050	0.050	5829333		
1,2-Dichloropr	opane	ug/g	0.05	<0.050	0.050	5829333		
cis-1,3-Dichlor	opropene	ug/g	0.05	<0.030	0.030	5829333		
trans-1,3-Dichl	oropropene	ug/g	0.05	<0.040	0.040	5829333		
Ethylbenzene		ug/g	2	<0.020	0.020	5829333		
Ethylene Dibro	mide	ug/g	0.05	<0.050	0.050	5829333		
Hexane		ug/g	2.8	<0.050	0.050	5829333		
Methylene Chl	oride(Dichloromethane)	ug/g	0.1	<0.050	0.050	5829333		
No Fill	No Exceedance							
Grey	Exceeds 1 criteria policy	/level						
Black	Exceeds both criteria/le	vels						
RDL = Reportal	ble Detection Limit							
QC Batch = Qu	QC Batch = Quality Control Batch							
Criteria: Ontari Table 3: Full De	io Reg. 153/04 (Amended epth Generic Site Conditio	April 15 n Standa	, 2011) ards in a I	Non-Potable (Ground	Water		
Soil - Residenti	al/Parkland/Institutional F	Property	Use - Co	arse Textured	l Soil			
	-	. ,						

O.REG 153 VOCS BY HS (SOIL)

Maxxam ID				IFR994			
Sampling Date	1			2018/11/05			
COC Number				N/A			
		UNITS	Criteria	QAQC2	RDL	QC Batch	
Methyl Ethyl K	etone (2-Butanone)	ug/g	16	<0.50	0.50	5829333	
Methyl Isobuty	/l Ketone	ug/g	1.7	<0.50	0.50	5829333	
Methyl t-butyl	ether (MTBE)	ug/g	0.75	<0.050	0.050	5829333	
Styrene		ug/g	0.7	<0.050	0.050	5829333	
1,1,1,2-Tetrack	nloroethane	ug/g	0.058	<0.050	0.050	5829333	
1,1,2,2-Tetrack	nloroethane	ug/g	0.05	<0.050	0.050	5829333	
Tetrachloroeth	ylene	ug/g	0.28	<0.050	0.050	5829333	
Toluene		ug/g	2.3	<0.020	0.020	5829333	
1,1,1-Trichloro	ethane	ug/g	0.38	<0.050	0.050	5829333	
1,1,2-Trichloroethane		ug/g	0.05	<0.050	0.050	5829333	
Trichloroethylene		ug/g	0.061	<0.050	0.050	5829333	
Trichlorofluoromethane (FREON 11)		ug/g	4	<0.050	0.050	5829333	
Vinyl Chloride		ug/g	0.02	<0.020	0.020	5829333	
p+m-Xylene		ug/g	-	<0.020	0.020	5829333	
o-Xylene		ug/g	-	<0.020	0.020	5829333	
Total Xylenes		ug/g	3.1	<0.020	0.020	5829333	
Surrogate Rec	overy (%)						
4-Bromofluoro	benzene	%	-	94		5829333	
D10-o-Xylene		%	-	112		5829333	
D4-1,2-Dichlor	oethane	%	-	100		5829333	
D8-Toluene		%	-	98		5829333	
No Fill	No Exceedance						
Grey	Exceeds 1 criteria policy	/level					
Black	Exceeds both criteria/le	vels					
RDL = Reporta	ble Detection Limit						
QC Batch = Quality Control Batch							
Criteria: Ontar Table 3: Full Do Condition Soil - Residenti	io Reg. 153/04 (Amended epth Generic Site Conditio al/Parkland/Institutional F	April 15 n Standa Property	, 2011) ards in a l 7 Use - Co	Non-Potable (arse Textured	Ground I Soil	Water	

Report Date: 2018/11/14

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE

TEST SUMMARY

Maxxam ID:	IFR992
Sample ID:	BH18-2 SS2
Matrix:	Soil

Collected:	2018/11/05
Shipped:	
Received:	2018/11/07

Collected: 2018/11/05

Received: 2018/11/07

Received: 2018/11/07

2018/11/05

Shipped:

Collected:

Shipped:

Surinder Rai

Sally Norouz

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5824630	N/A	2018/11/13	Automated Statchk
Hot Water Extractable Boron	ICP	5832167	2018/11/12	2018/11/12	Suban Kanapathippllai
Free (WAD) Cyanide	TECH	5829714	2018/11/09	2018/11/12	Xuanhong Qiu
Conductivity	AT	5832611	2018/11/13	2018/11/13	Barbara Kalbasi Esfahani
Hexavalent Chromium in Soil by IC	IC/SPEC	5829630	2018/11/09	2018/11/13	Sally Norouz
Strong Acid Leachable Metals by ICPMS	ICP/MS	5831295	2018/11/10	2018/11/12	Daniel Teclu
Moisture	BAL	5828728	N/A	2018/11/08	Min Yang
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5829805	2018/11/09	2018/11/10	Jett Wu
pH CaCl2 EXTRACT	AT	5832266	2018/11/12	2018/11/12	Gnana Thomas
Sodium Adsorption Ratio (SAR)	CALC/MET	5824976	N/A	2018/11/14	Automated Statchk

IFR993
BH18-2 SS3
Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5824975	N/A	2018/11/09	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5830668	2018/11/09	2018/11/13	Zhiyue (Frank) Zhu
Moisture	BAL	5828260	N/A	2018/11/08	Min Yang
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5827005	N/A	2018/11/08	Manpreet Sarao

Maxxam ID:	IFR994
Sample ID:	QAQC2
Matrix:	Soil

Conductivity

Hexavalent Chromium in Soil by IC

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5824975	N/A	2018/11/13	Automated Statchk
Moisture	BAL	5827432	N/A	2018/11/08	Min Yang
Volatile Organic Compounds in Soil	GC/MS	5829333	N/A	2018/11/12	Karen Hughes

Maxxam ID: Sample ID: Matrix:	IFR994 Dup QAQC2 Soil					Collected: Shipped: Received:	2018/11/05 2018/11/07
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Volatile Organic Compou	npounds in Soil GC/MS 5829333 N/A 2018/11/12 Karen F		Karen Hug	ghes			
Maxxam ID: Sample ID: Matrix:	IFR995 BH18-3 SS1 Soil					Collected: Shipped: Received:	2018/11/06 2018/11/07
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hot Water Extractable Bo	oron	ICP	5831223	2018/11/10	2018/11/12	Suban Kar	napathippllai
Free (WAD) Cvanide		TECH	5832898	2018/11/12	2018/11/13	Louise Ha	rding

Page 10	of	24
---------	----	----

2018/11/12

2018/11/09

2018/11/12

2018/11/13

5832165

5829630

AT

IC/SPEC

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Report Date: 2018/11/14

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	IFR995 BH18-3 SS1 Soil					Collected: Shipped: Received:	2018/11/06 2018/11/07
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	5831295	2018/11/10	2018/11/12	Daniel Tec	lu
Moisture		BAL	5832697	N/A	2018/11/12	Min Yang	
pH CaCl2 EXTRACT		AT	5832266	2018/11/12	2018/11/12	Gnana Tho	omas
Sodium Adsorption Ratio	(SAR)	CALC/MET	5824976	N/A	2018/11/13	Automate	d Statchk
Maxxam ID: Sample ID:	IFR996 BH18-3 SS2					Collected: Shipped:	2018/11/06
Matrix:	Soil					Received:	2018/11/07
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	5824630	N/A	2018/11/13	Automate	d Statchk
Moisture		BAL	5828411	N/A	2018/11/08	Min Yang	
PAH Compounds in Soil b	y GC/MS (SIM)	GC/MS	5829805	2018/11/09	2018/11/10	Jett Wu	
Maxxam ID: Sample ID: Matrix:	IFR997 BH18-3 SS3 Soil					Collected: Shipped: Received:	2018/11/06 2018/11/07
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sun	n	CALC	5824975	N/A	2018/11/09	Automate	d Statchk
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	5830668	2018/11/09	2018/11/13	Zhiyue (Fra	ank) Zhu
Moisture		BAL	5828260	N/A	2018/11/08	Min Yang	
Volatile Organic Compou	nds and F1 PHCs	GC/MSFD	5827005	N/A	2018/11/09	Manpreet	Sarao
Maxxam ID: Sample ID: Matrix:	IFR998 QAQC3 Soil					Collected: Shipped: Received:	2018/11/06 2018/11/07
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Soil	HSGC/MSFD	5832366	N/A	2018/11/12	Abdi Moha	amud
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	5830668	2018/11/09	2018/11/13	Zhiyue (Fra	ank) Zhu
Moisture		BAL	5828260	N/A	2018/11/08	Min Yang	

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE

GENERAL COMMENTS

Custody seal was present but not intact

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5827005	4-Bromofluorobenzene	2018/11/08	101	60 - 140	101	60 - 140	100	%		
5827005	D10-o-Xylene	2018/11/08	100	60 - 130	105	60 - 130	95	%		
5827005	D4-1,2-Dichloroethane	2018/11/08	99	60 - 140	98	60 - 140	98	%		
5827005	D8-Toluene	2018/11/08	102	60 - 140	102	60 - 140	99	%		
5829333	4-Bromofluorobenzene	2018/11/12	99	60 - 140	98	60 - 140	95	%		
5829333	D10-o-Xylene	2018/11/12	120	60 - 130	114	60 - 130	107	%		
5829333	D4-1,2-Dichloroethane	2018/11/12	97	60 - 140	101	60 - 140	105	%		
5829333	D8-Toluene	2018/11/12	128	60 - 140	105	60 - 140	96	%		
5829805	D10-Anthracene	2018/11/09	98	50 - 130	94	50 - 130	100	%		
5829805	D14-Terphenyl (FS)	2018/11/09	103	50 - 130	100	50 - 130	101	%		
5829805	D8-Acenaphthylene	2018/11/09	88	50 - 130	89	50 - 130	87	%		
5830668	o-Terphenyl	2018/11/13	128	60 - 130	112	60 - 130	120	%		
5832366	1,4-Difluorobenzene	2018/11/12	101	60 - 140	99	60 - 140	102	%		
5832366	4-Bromofluorobenzene	2018/11/12	100	60 - 140	102	60 - 140	103	%		
5832366	D10-Ethylbenzene	2018/11/12	93	60 - 140	104	60 - 140	90	%		
5832366	D4-1,2-Dichloroethane	2018/11/12	101	60 - 140	99	60 - 140	101	%		
5827005	1,1,1,2-Tetrachloroethane	2018/11/08	97	60 - 140	97	60 - 130	<0.050	ug/g	NC	50
5827005	1,1,1-Trichloroethane	2018/11/08	95	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
5827005	1,1,2,2-Tetrachloroethane	2018/11/08	97	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5827005	1,1,2-Trichloroethane	2018/11/08	95	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
5827005	1,1-Dichloroethane	2018/11/08	94	60 - 140	93	60 - 130	<0.050	ug/g	NC	50
5827005	1,1-Dichloroethylene	2018/11/08	91	60 - 140	90	60 - 130	<0.050	ug/g	NC	50
5827005	1,2-Dichlorobenzene	2018/11/08	93	60 - 140	93	60 - 130	<0.050	ug/g	NC	50
5827005	1,2-Dichloroethane	2018/11/08	96	60 - 140	95	60 - 130	<0.050	ug/g	NC	50
5827005	1,2-Dichloropropane	2018/11/08	97	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5827005	1,3-Dichlorobenzene	2018/11/08	93	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
5827005	1,4-Dichlorobenzene	2018/11/08	92	60 - 140	93	60 - 130	<0.050	ug/g	NC	50
5827005	Acetone (2-Propanone)	2018/11/08	98	60 - 140	94	60 - 140	<0.50	ug/g	NC	50
5827005	Benzene	2018/11/08	92	60 - 140	91	60 - 130	<0.020	ug/g	NC	50
5827005	Bromodichloromethane	2018/11/08	94	60 - 140	93	60 - 130	<0.050	ug/g	NC	50
5827005	Bromoform	2018/11/08	98	60 - 140	98	60 - 130	<0.050	ug/g	NC	50

QUALITY ASSURANCE REPORT(CONT'D)

			Matrix	Spike	SPIKED	SPIKED BLANK Method Blank		Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5827005	Bromomethane	2018/11/08	98	60 - 140	96	60 - 140	<0.050	ug/g	NC	50
5827005	Carbon Tetrachloride	2018/11/08	93	60 - 140	92	60 - 130	<0.050	ug/g	NC	50
5827005	Chlorobenzene	2018/11/08	94	60 - 140	93	60 - 130	<0.050	ug/g	NC	50
5827005	Chloroform	2018/11/08	93	60 - 140	92	60 - 130	<0.050	ug/g	NC	50
5827005	cis-1,2-Dichloroethylene	2018/11/08	89	60 - 140	88	60 - 130	<0.050	ug/g	NC	50
5827005	cis-1,3-Dichloropropene	2018/11/08	89	60 - 140	88	60 - 130	<0.030	ug/g	NC	50
5827005	Dibromochloromethane	2018/11/08	102	60 - 140	101	60 - 130	<0.050	ug/g	NC	50
5827005	Dichlorodifluoromethane (FREON 12)	2018/11/08	99	60 - 140	99	60 - 140	<0.050	ug/g	NC	50
5827005	Ethylbenzene	2018/11/08	94	60 - 140	94	60 - 130	<0.020	ug/g	NC	50
5827005	Ethylene Dibromide	2018/11/08	100	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5827005	F1 (C6-C10) - BTEX	2018/11/08					<10	ug/g	NC	30
5827005	F1 (C6-C10)	2018/11/08	89	60 - 140	87	80 - 120	<10	ug/g	NC	30
5827005	Hexane	2018/11/08	89	60 - 140	88	60 - 130	<0.050	ug/g	NC	50
5827005	Methyl Ethyl Ketone (2-Butanone)	2018/11/08	99	60 - 140	96	60 - 140	<0.50	ug/g	NC	50
5827005	Methyl Isobutyl Ketone	2018/11/08	94	60 - 140	93	60 - 130	<0.50	ug/g	NC	50
5827005	Methyl t-butyl ether (MTBE)	2018/11/08	96	60 - 140	95	60 - 130	<0.050	ug/g	NC	50
5827005	Methylene Chloride(Dichloromethane)	2018/11/08	99	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
5827005	o-Xylene	2018/11/08	92	60 - 140	93	60 - 130	<0.020	ug/g	NC	50
5827005	p+m-Xylene	2018/11/08	90	60 - 140	91	60 - 130	<0.020	ug/g	NC	50
5827005	Styrene	2018/11/08	93	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
5827005	Tetrachloroethylene	2018/11/08	96	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5827005	Toluene	2018/11/08	90	60 - 140	89	60 - 130	<0.020	ug/g	NC	50
5827005	Total Xylenes	2018/11/08					<0.020	ug/g	NC	50
5827005	trans-1,2-Dichloroethylene	2018/11/08	91	60 - 140	91	60 - 130	<0.050	ug/g	NC	50
5827005	trans-1,3-Dichloropropene	2018/11/08	95	60 - 140	91	60 - 130	<0.040	ug/g	NC	50
5827005	Trichloroethylene	2018/11/08	94	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
5827005	Trichlorofluoromethane (FREON 11)	2018/11/08	99	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
5827005	Vinyl Chloride	2018/11/08	94	60 - 140	93	60 - 130	<0.020	ug/g	NC	50
5827432	Moisture	2018/11/08							0	20
5828260	Moisture	2018/11/08							0.97	20
5828411	Moisture	2018/11/08							1.5	20

QUALITY ASSURANCE REPORT(CONT'D)

			Matrix	Matrix Spike SPI		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	
5828728	Moisture	2018/11/08							0.67	20	
5829333	1,1,1,2-Tetrachloroethane	2018/11/12	100	60 - 140	100	60 - 130	<0.050	ug/g	NC	50	
5829333	1,1,1-Trichloroethane	2018/11/12	98	60 - 140	96	60 - 130	<0.050	ug/g	NC	50	
5829333	1,1,2,2-Tetrachloroethane	2018/11/12	92	60 - 140	101	60 - 130	<0.050	ug/g	NC	50	
5829333	1,1,2-Trichloroethane	2018/11/12	95	60 - 140	99	60 - 130	<0.050	ug/g	NC	50	
5829333	1,1-Dichloroethane	2018/11/12	97	60 - 140	96	60 - 130	<0.050	ug/g	NC	50	
5829333	1,1-Dichloroethylene	2018/11/12	99	60 - 140	95	60 - 130	<0.050	ug/g	NC	50	
5829333	1,2-Dichlorobenzene	2018/11/12	100	60 - 140	102	60 - 130	<0.050	ug/g	NC	50	
5829333	1,2-Dichloroethane	2018/11/12	93	60 - 140	96	60 - 130	<0.050	ug/g	NC	50	
5829333	1,2-Dichloropropane	2018/11/12	94	60 - 140	96	60 - 130	<0.050	ug/g	NC	50	
5829333	1,3-Dichlorobenzene	2018/11/12	104	60 - 140	102	60 - 130	<0.050	ug/g	NC	50	
5829333	1,4-Dichlorobenzene	2018/11/12	103	60 - 140	103	60 - 130	<0.050	ug/g	NC	50	
5829333	Acetone (2-Propanone)	2018/11/12	88	60 - 140	96	60 - 140	<0.50	ug/g	NC	50	
5829333	Benzene	2018/11/12	94	60 - 140	93	60 - 130	<0.020	ug/g	NC	50	
5829333	Bromodichloromethane	2018/11/12	93	60 - 140	96	60 - 130	<0.050	ug/g	NC	50	
5829333	Bromoform	2018/11/12	92	60 - 140	99	60 - 130	<0.050	ug/g	NC	50	
5829333	Bromomethane	2018/11/12	105	60 - 140	100	60 - 140	<0.050	ug/g	NC	50	
5829333	Carbon Tetrachloride	2018/11/12	98	60 - 140	96	60 - 130	<0.050	ug/g	NC	50	
5829333	Chlorobenzene	2018/11/12	96	60 - 140	96	60 - 130	<0.050	ug/g	NC	50	
5829333	Chloroform	2018/11/12	97	60 - 140	97	60 - 130	<0.050	ug/g	NC	50	
5829333	cis-1,2-Dichloroethylene	2018/11/12	95	60 - 140	95	60 - 130	<0.050	ug/g	NC	50	
5829333	cis-1,3-Dichloropropene	2018/11/12	98	60 - 140	95	60 - 130	<0.030	ug/g	NC	50	
5829333	Dibromochloromethane	2018/11/12	95	60 - 140	98	60 - 130	<0.050	ug/g	NC	50	
5829333	Dichlorodifluoromethane (FREON 12)	2018/11/12	106	60 - 140	103	60 - 140	<0.050	ug/g	NC	50	
5829333	Ethylbenzene	2018/11/12	100	60 - 140	96	60 - 130	<0.020	ug/g	NC	50	
5829333	Ethylene Dibromide	2018/11/12	94	60 - 140	99	60 - 130	<0.050	ug/g	NC	50	
5829333	Hexane	2018/11/12	104	60 - 140	98	60 - 130	<0.050	ug/g	NC	50	
5829333	Methyl Ethyl Ketone (2-Butanone)	2018/11/12	86	60 - 140	98	60 - 140	<0.50	ug/g	NC	50	
5829333	Methyl Isobutyl Ketone	2018/11/12	89	60 - 140	102	60 - 130	<0.50	ug/g	NC	50	
5829333	Methyl t-butyl ether (MTBE)	2018/11/12	91	60 - 140	93	60 - 130	<0.050	ug/g	NC	50	
5829333	Methylene Chloride(Dichloromethane)	2018/11/12	90	60 - 140	91	60 - 130	<0.050	ug/g	NC	50	

QUALITY ASSURANCE REPORT(CONT'D)

		Matrix Spike		Spike	SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5829333	o-Xylene	2018/11/12	100	60 - 140	98	60 - 130	<0.020	ug/g	NC	50
5829333	p+m-Xylene	2018/11/12	101	60 - 140	97	60 - 130	<0.020	ug/g	NC	50
5829333	Styrene	2018/11/12	102	60 - 140	103	60 - 130	<0.050	ug/g	NC	50
5829333	Tetrachloroethylene	2018/11/12	102	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
5829333	Toluene	2018/11/12	98	60 - 140	96	60 - 130	<0.020	ug/g	NC	50
5829333	Total Xylenes	2018/11/12					<0.020	ug/g	NC	50
5829333	trans-1,2-Dichloroethylene	2018/11/12	98	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5829333	trans-1,3-Dichloropropene	2018/11/12	106	60 - 140	98	60 - 130	<0.040	ug/g	NC	50
5829333	Trichloroethylene	2018/11/12	97	60 - 140	95	60 - 130	<0.050	ug/g	NC	50
5829333	Trichlorofluoromethane (FREON 11)	2018/11/12	104	60 - 140	100	60 - 130	<0.050	ug/g	NC	50
5829333	Vinyl Chloride	2018/11/12	102	60 - 140	99	60 - 130	<0.020	ug/g	NC	50
5829630	Chromium (VI)	2018/11/13	52 (1)	70 - 130	91	80 - 120	<0.2	ug/g	NC	35
5829714	WAD Cyanide (Free)	2018/11/12	100	75 - 125	105	80 - 120	<0.01	ug/g	NC	35
5829805	1-Methylnaphthalene	2018/11/09	106	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
5829805	2-Methylnaphthalene	2018/11/09	94	50 - 130	85	50 - 130	<0.0050	ug/g	NC	40
5829805	Acenaphthene	2018/11/09	100	50 - 130	93	50 - 130	<0.0050	ug/g	NC	40
5829805	Acenaphthylene	2018/11/09	92	50 - 130	87	50 - 130	<0.0050	ug/g	NC	40
5829805	Anthracene	2018/11/09	107	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40
5829805	Benzo(a)anthracene	2018/11/09	102	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
5829805	Benzo(a)pyrene	2018/11/09	94	50 - 130	84	50 - 130	<0.0050	ug/g	NC	40
5829805	Benzo(b/j)fluoranthene	2018/11/09	103	50 - 130	98	50 - 130	<0.0050	ug/g	NC	40
5829805	Benzo(g,h,i)perylene	2018/11/09	92	50 - 130	86	50 - 130	<0.0050	ug/g	NC	40
5829805	Benzo(k)fluoranthene	2018/11/09	95	50 - 130	89	50 - 130	<0.0050	ug/g	NC	40
5829805	Chrysene	2018/11/09	103	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
5829805	Dibenz(a,h)anthracene	2018/11/09	95	50 - 130	87	50 - 130	<0.0050	ug/g	NC	40
5829805	Fluoranthene	2018/11/09	110	50 - 130	102	50 - 130	<0.0050	ug/g	NC	40
5829805	Fluorene	2018/11/09	98	50 - 130	91	50 - 130	<0.0050	ug/g	NC	40
5829805	Indeno(1,2,3-cd)pyrene	2018/11/09	98	50 - 130	87	50 - 130	<0.0050	ug/g	NC	40
5829805	Naphthalene	2018/11/09	96	50 - 130	91	50 - 130	<0.0050	ug/g	NC	40
5829805	Phenanthrene	2018/11/09	103	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40
5829805	Pyrene	2018/11/09	114	50 - 130	105	50 - 130	<0.0050	ug/g	NC	40

QUALITY ASSURANCE REPORT(CONT'D)

			Matrix	Spike	SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5830668	F2 (C10-C16 Hydrocarbons)	2018/11/13	NC	50 - 130	110	80 - 120	<10	ug/g	40 (2)	30
5830668	F3 (C16-C34 Hydrocarbons)	2018/11/13	NC	50 - 130	113	80 - 120	<50	ug/g	42 (2)	30
5830668	F4 (C34-C50 Hydrocarbons)	2018/11/13	112	50 - 130	110	80 - 120	<50	ug/g	NC	30
5831223	Hot Water Ext. Boron (B)	2018/11/12	97	75 - 125	95	75 - 125	<0.050	ug/g	13	40
5831295	Acid Extractable Antimony (Sb)	2018/11/12	96	75 - 125	102	80 - 120	<0.20	ug/g	24	30
5831295	Acid Extractable Arsenic (As)	2018/11/12	104	75 - 125	100	80 - 120	<1.0	ug/g	5.5	30
5831295	Acid Extractable Barium (Ba)	2018/11/12	NC	75 - 125	99	80 - 120	<0.50	ug/g	8.6	30
5831295	Acid Extractable Beryllium (Be)	2018/11/12	102	75 - 125	97	80 - 120	<0.20	ug/g	5.7	30
5831295	Acid Extractable Boron (B)	2018/11/12	99	75 - 125	95	80 - 120	<5.0	ug/g	3.3	30
5831295	Acid Extractable Cadmium (Cd)	2018/11/12	104	75 - 125	100	80 - 120	<0.10	ug/g	14	30
5831295	Acid Extractable Chromium (Cr)	2018/11/12	108	75 - 125	100	80 - 120	<1.0	ug/g	1.9	30
5831295	Acid Extractable Cobalt (Co)	2018/11/12	102	75 - 125	100	80 - 120	<0.10	ug/g	0.47	30
5831295	Acid Extractable Copper (Cu)	2018/11/12	NC	75 - 125	98	80 - 120	<0.50	ug/g	0.12	30
5831295	Acid Extractable Lead (Pb)	2018/11/12	NC	75 - 125	102	80 - 120	<1.0	ug/g	3.9	30
5831295	Acid Extractable Mercury (Hg)	2018/11/12	99	75 - 125	98	80 - 120	<0.050	ug/g	7.3	30
5831295	Acid Extractable Molybdenum (Mo)	2018/11/12	104	75 - 125	99	80 - 120	<0.50	ug/g	0.97	30
5831295	Acid Extractable Nickel (Ni)	2018/11/12	106	75 - 125	100	80 - 120	<0.50	ug/g	0.83	30
5831295	Acid Extractable Selenium (Se)	2018/11/12	104	75 - 125	100	80 - 120	<0.50	ug/g	NC	30
5831295	Acid Extractable Silver (Ag)	2018/11/12	101	75 - 125	97	80 - 120	<0.20	ug/g	NC	30
5831295	Acid Extractable Thallium (TI)	2018/11/12	101	75 - 125	102	80 - 120	<0.050	ug/g	6.2	30
5831295	Acid Extractable Uranium (U)	2018/11/12	100	75 - 125	99	80 - 120	<0.050	ug/g	5.9	30
5831295	Acid Extractable Vanadium (V)	2018/11/12	NC	75 - 125	97	80 - 120	<5.0	ug/g	0.60	30
5831295	Acid Extractable Zinc (Zn)	2018/11/12	NC	75 - 125	104	80 - 120	<5.0	ug/g	0.95	30
5832165	Conductivity	2018/11/12			104	90 - 110	<0.002	mS/cm	0.40	10
5832167	Hot Water Ext. Boron (B)	2018/11/12	97	75 - 125	101	75 - 125	<0.050	ug/g	NC	40
5832266	Available (CaCl2) pH	2018/11/12			100	97 - 103			1.6	N/A
5832366	Benzene	2018/11/12	84	60 - 140	104	60 - 140	<0.020	ug/g	NC	50
5832366	Ethylbenzene	2018/11/12	93	60 - 140	109	60 - 140	<0.020	ug/g	NC	50
5832366	F1 (C6-C10) - BTEX	2018/11/12					<10	ug/g	NC	30
5832366	F1 (C6-C10)	2018/11/12	85	60 - 140	92	80 - 120	<10	ug/g	NC	30
5832366	o-Xylene	2018/11/12	92	60 - 140	106	60 - 140	<0.020	ug/g	NC	50

QUALITY ASSURANCE REPORT(CONT'D)

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE

				Matrix Spike		SPIKED BLANK		Method Blank		כ
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5832366	p+m-Xylene	2018/11/12	93	60 - 140	110	60 - 140	<0.040	ug/g	NC	50
5832366	Toluene	2018/11/12	90	60 - 140	107	60 - 140	<0.020	ug/g	11	50
5832366	Total Xylenes	2018/11/12					<0.040	ug/g	NC	50
5832611	Conductivity	2018/11/13			104	90 - 110	<0.002	mS/cm	2.7	10
5832697	Moisture	2018/11/12							6.9	20
5832898	WAD Cyanide (Free)	2018/11/13	99	75 - 125	96	80 - 120	<0.01	ug/g	NC	35

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample. The sample was reanalyzed with the same results.

(2) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Report Date: 2018/11/14

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Eve R Eva Prai CHEMIST

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

CAM FCD-011	17-5700 Fax: 90! 91/2	5-817-5779	Toll Free: 80	0-563-6	266		•	CH.	AIN C	DF CUS	TOD	REC	ORD	š	Pageof			1407 1			
Invoice Information		Report In	formation	(if differ	s from inv	oice)	_		Project	nformatio	n (where	applicable	:)	Turnar	round Time (TAT) Required	1		5. <u>-</u> 18			
Company Name: WSP	Compar	y Name:	WSP				-	Quotatio	n #:				-	Regular T	AT (5-7 days) Most analyses					045)	
Contact Name:	Contact	Name:	Micha	el Wil	son		6 m	P.O. #/ A	FE#:			1		PLEASE PROVIDE	ADVANCE NOTICE FOR RUSH PROJECTS						
ddress: • * 51 Constellation Court	Address	54	51 Co	onstell	lation (Court		Project #	1	81-113	\$06-0	oph	220	Rush TAJ	(Surcharges will be applied)	1.00			S		
Toronto, ON	111		Toront	to, ON	1			Site Loca	tion: 9	58-960	Eqs	+ Au	د	1 Day	Z Days 3-4 Days						
hone: 416-798-0065 Fax: 416-798-0518	B Phone:	416-798-	-0065	· e Fa	ax: 416	-798-0	518	Site #:	-						Delivers' 1	-				-	
mail: payables.ontario@wsp.com	Email:	michael.	wilson(@wsp.	.com			Sampled	Ву:	B.S	-			Date Required:						*	
MOE REGULATED DRINKING WATER OR WA	TER INTENDED FOR	HUMAN CONS	UMPTION N	NUST BE	SUPMITT	ED ON THI	E MAXXA	M DRINKING	G WATER	CHAIN OF	CUSTODY			Rush Confirmatio	on #:						
Regulation 153	Other Re	gulations		1	TT		OFFER	Analysis	Request	ed	TT	Т	-	LA	ABORATORY USE ONLY	4					
Table 2 Dind/Comm Coarse	MISA Storr	n Sewer Bylaw		1	2		KULK	COC			-			Y / N	COOLER TEMPERATURES						
Table 3 Agri/ Other	PWQO Regin	on	-		Hg / C						T			Present Inta	act in the second	-					
	Other (Specify)		(ED)	E	etais /		NICS	WS - B		14				YN	5/8/8	4					
clude Criteria on Certificate of Analysis:	Tires and future are	AT IAT IL QUI		LTIM8L	W		NDRG4	tals, H	Ŧ		11		LYZE	_	l=			*			
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME OF S	AMPLING UNTIL DE	LIVERY TO MA	ххам	IERS SL	0 (CRC		ALS & I	ALS MS Me	2				T ANA		(all a second s						
				INTAIN	HC F1	14	3 METJ	3 METU	SI		11		DO NO	COOLING MEDIA P	RESENT: Y/N			· _			
SAMPLE IDENTIFICATION	(YYYY/MM/DD)	(HH:MM)	MATRIX	I OF CC	IELD F	HCs F	86 15 86 15	teg 15 Hg. Cr	2		11	.	-qio	- · ·	COMMENTS			1			
1 BH18-2 SS2	2018/11/05	AM	So	1			X		×							1					
2 Bull. 7 552	*	AM		2	X	xx					++				A	1	-				•
3 040/2	×.	_		2		X							. *			1					
PU18-2 SSI	1018/1101	A.10		7		-	~			++	++			- 1 ²						¥	
5 500 6 657	1010100	440		1				-		++	++					1					
BH18-3 33C		Paa		1		~		-	1	++	++	++	-	-		-					
RH18-3 223		Y/M		>	X	XX			+	++	+		-		3	-					
QARC3	X	-	7	3	×	×			+		++				2. 4					22	5
8						_			++	++	++					4.		2			
9																				(9) (9)	
10			'											. (7-Nov-18 14:13						
RELINQUISHED BY: (Signature/Print) DATE	(YYYY/MM/DD)	TIME: (HH:N	/M)	RE	CEIVED B	Y: (Signat	ure/Print	t)	DATE	: [YYYY/M	M/DD)	TIME: (HH:MM)	Ashtor	n Gibson				·.		
While John Glavin 201	5/11/07	14:13		MAITU	IN VP	nexu	n six	, pro	20	18/11/	07	14:15			I B B I B I B I B I B I B I B I B I B I						
The Second Se		* 111					,			5	T			B8	3T6953						
														-							

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Project name: 958-960 EAST AVE Client ID: BH18-2 SS3

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Project name: 958-960 EAST AVE Client ID: BH18-3 SS3

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Project name: 958-960 EAST AVE Client ID: QAQC3

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Exceedence Summary Table – Reg153/04 T3-Soil/Res-C

Result Exceedences

Sample ID	Maxxam ID	Parameter	Criteria	Result	DL	Units			
BH18-2 SS2	IFR992-01	Conductivity	0.7	2.9	0.002	mS/cm			
BH18-2 SS2	IFR992-01	Sodium Adsorption Ratio	5.0	24		N/A			
The exceedence summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance									

Your Project #: 181-11306-00 PH220 Site Location: 958-960 EAST AVE. Your C.O.C. #: N\A

Attention: Michael Wilson

WSP Canada Inc 51 Constellation Court Toronto, ON CANADA M9W 1K4

> Report Date: 2018/11/12 Report #: R5481409 Version: 2 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8T2736

Received: 2018/11/02, 13:23

Sample Matrix: Soil # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum	2	N/A	2018/11/08	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	1	2018/11/05	2018/11/06	CAM SOP-00408	R153 Ana. Prot. 2011
1,3-Dichloropropene Sum	1	N/A	2018/11/07		EPA 8260C m
Free (WAD) Cyanide	1	2018/11/06	2018/11/07	CAM SOP-00457	OMOE E3015 m
Conductivity	1	2018/11/07	2018/11/08	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	1	2018/11/06	2018/11/08	CAM SOP-00436	EPA 3060/7199 m
Petroleum Hydrocarbons F2-F4 in Soil (2)	1	2018/11/05	2018/11/06	CAM SOP-00316	CCME CWS m
Strong Acid Leachable Metals by ICPMS	1	2018/11/05	2018/11/06	CAM SOP-00447	EPA 6020B m
Moisture	5	N/A	2018/11/03	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	2	2018/11/07	2018/11/07	CAM SOP-00318	EPA 8270D m
Polychlorinated Biphenyl in Soil	1	2018/11/05	2018/11/06	CAM SOP-00309	EPA 8082A m
pH CaCl2 EXTRACT	1	2018/11/07	2018/11/07	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	1	N/A	2018/11/12	CAM SOP-00102	EPA 6010C
Volatile Organic Compounds and F1 PHCs	1	N/A	2018/11/06	CAM SOP-00230	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Your Project #: 181-11306-00 PH220 Site Location: 958-960 EAST AVE. Your C.O.C. #: N\A

Attention: Michael Wilson

WSP Canada Inc 51 Constellation Court Toronto, ON CANADA M9W 1K4

> Report Date: 2018/11/12 Report #: R5481409 Version: 2 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8T2736 Received: 2018/11/02, 13:23

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Soils are reported on a dry weight basis unless otherwise specified.

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ashton Gibson, Project Manager Email: AGibson@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

WSP Canada Inc Client Project #: 181-11306-00 PH220 Site Location: 958-960 EAST AVE. Sampler Initials: BS

O.REG 153 METALS & INORGANICS PKG (SOIL)

Maxxam ID				IET106					
Sampling Date	2			2018/11/01					
COC Number				N\A					
		UNITS	Criteria	BH18-1 SS1	RDL	QC Batch			
Calculated Par	ameters								
Sodium Adsorp	otion Ratio	N/A	5.0	1.4		5817853			
Inorganics									
Conductivity		mS/cm	0.7	0.32	0.002	5822940			
Moisture	%	-	11	1.0	5819559				
Available (CaC	l2) pH	рН	-	7.49		5824612			
WAD Cyanide	(Free)	ug/g	0.051	<0.01	0.01	5822732			
Chromium (VI)		ug/g	8	<0.2	0.2	5821908			
Metals									
Hot Water Ext.	. Boron (B)	ug/g	1.5	0.21	0.050	5821159			
Acid Extractab	le Antimony (Sb)	ug/g	7.5	<0.20	0.20	5821053			
Acid Extractab	le Arsenic (As)	ug/g	18	4.0	1.0	5821053			
Acid Extractab	le Barium (Ba)	ug/g	390	78	0.50	5821053			
Acid Extractable Beryllium (Be)		ug/g	4	0.72	0.20	5821053			
Acid Extractable Boron (B)		ug/g	120	6.2	5.0	5821053			
Acid Extractable Cadmium (Cd)		ug/g	1.2	0.17	0.10	5821053			
Acid Extractable Chromium (Cr)		ug/g	160	22	1.0	5821053			
Acid Extractab	le Cobalt (Co)	ug/g	22	10	0.10	5821053			
Acid Extractab	le Copper (Cu)	ug/g	140	22	0.50	5821053			
Acid Extractab	le Lead (Pb)	ug/g	120	23	1.0	5821053			
Acid Extractab	le Molybdenum (Mo)	ug/g	6.9	<0.50	0.50	5821053			
Acid Extractab	le Nickel (Ni)	ug/g	100	20	0.50	5821053			
Acid Extractab	le Selenium (Se)	ug/g	2.4	<0.50	0.50	5821053			
Acid Extractab	le Silver (Ag)	ug/g	20	<0.20	0.20	5821053			
Acid Extractab	le Thallium (Tl)	ug/g	1	0.14	0.050	5821053			
Acid Extractab	le Uranium (U)	ug/g	23	0.63	0.050	5821053			
Acid Extractab	le Vanadium (V)	ug/g	86	31	5.0	5821053			
Acid Extractab	le Zinc (Zn)	ug/g	340	67	5.0	5821053			
No Fill	No Exceedance								
Grey	Exceeds 1 criteria po	licy/level							
Black	Black Exceeds both criteria/levels								
RDL = Reportable Detection Limit									
QC Batch = Qu	ality Control Batch								
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition									
Soil - Residenti	ial/Parkland/Institution	al Prope	rty Use -	Coarse Textur	ed Soil				

WSP Canada Inc Client Project #: 181-11306-00 PH220 Site Location: 958-960 EAST AVE. Sampler Initials: BS

O.REG 153 METALS & INORGANICS PKG (SOIL)

Maxxam ID				IET106					
Sampling Date	e			2018/11/01					
COC Number				N\A					
		UNITS	Criteria	BH18-1 SS1	RDL	QC Batch			
Acid Extractat	le Mercury (Hg)	ug/g	0.27	<0.050	0.050	5821053			
No Fill	No Fill No Exceedance								
Grey	Exceeds 1 criteria policy/level								
Black	Exceeds both criteria	/levels							
RDL = Reporta	ble Detection Limit								
QC Batch = Qu	ality Control Batch								
Criteria: Ontai	rio Reg. 153/04 (Amend	ed April	15, 2011)						
Table 3: Full D	epth Generic Site Cond	ition Sta	ndards in	a Non-Potabl	e Grou	nd Water			
Condition									
Soil - Resident	ial/Parkland/Institution	al Prope	rty Use -	Coarse Textur	ed Soil				

Report Date: 2018/11/12

WSP Canada Inc Client Project #: 181-11306-00 PH220 Site Location: 958-960 EAST AVE. Sampler Initials: BS

O.REG 153 PAHS (SOIL)

Maxxam ID				IET107	IET110			
Sampling Date				2018/11/01	2018/11/01			
COC Number				N\A	N\A			
		UNITS	Criteria	BH18-1 SS2	QAQC-1	RDL	QC Batch	
Inorganics								
Moisture		%	-	11	11	1.0	5819559	
Calculated Para	meters							
Methylnaphtha	lene, 2-(1-)	ug/g	0.99	<0.0071	<0.0071	0.0071	5818511	
Polyaromatic H	ydrocarbons	ļ				JI		
Acenaphthene		ug/g	7.9	<0.0050	<0.0050	0.0050	5825102	
Acenaphthylene	9	ug/g	0.15	<0.0050	<0.0050	0.0050	5825102	
Anthracene		ug/g	0.67	<0.0050	<0.0050	0.0050	5825102	
Benzo(a)anthra	cene	ug/g	0.5	<0.0050	<0.0050	0.0050	5825102	
Benzo(a)pyrene		ug/g	0.3	<0.0050	<0.0050	0.0050	5825102	
Benzo(b/j)fluora	anthene	ug/g	0.78	<0.0050	<0.0050	0.0050	5825102	
Benzo(g,h,i)pery	ylene	ug/g	6.6	<0.0050	<0.0050	0.0050	5825102	
Benzo(k)fluoranthene		ug/g	0.78	<0.0050	<0.0050	0.0050	5825102	
Chrysene		ug/g	7	<0.0050	<0.0050	0.0050	5825102	
Dibenz(a,h)anthracene		ug/g	0.1	<0.0050	<0.0050	0.0050	5825102	
Fluoranthene		ug/g	0.69	0.0071	<0.0050	0.0050	5825102	
Fluorene		ug/g	62	<0.0050	<0.0050	0.0050	5825102	
Indeno(1,2,3-cd)pyrene	ug/g	0.38	<0.0050	<0.0050	0.0050	5825102	
1-Methylnaphth	nalene	ug/g	0.99	<0.0050	<0.0050	0.0050	5825102	
2-Methylnaphth	nalene	ug/g	0.99	<0.0050	<0.0050	0.0050	5825102	
Naphthalene		ug/g	0.6	<0.0050	<0.0050	0.0050	5825102	
Phenanthrene		ug/g	6.2	<0.0050	<0.0050	0.0050	5825102	
Pyrene		ug/g	78	0.0058	<0.0050	0.0050	5825102	
Surrogate Reco	very (%)	-				-		
D10-Anthracene	9	%	-	99	105		5825102	
D14-Terphenyl	(FS)	%	-	101	104		5825102	
D8-Acenaphthy	lene	%	-	97	99		5825102	
No Fill	No Exceeda	nce						
Grey	Exceeds 1 criteria policy/level							
Black	Exceeds bot	th criter	ia/levels					
RDL = Reportab	le Detection L	imit						
QC Batch = Qua	lity Control Ba	atch						
Criteria: Ontaric Table 3: Full De Condition	Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Fable 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water							

WSP Canada Inc Client Project #: 181-11306-00 PH220 Site Location: 958-960 EAST AVE. Sampler Initials: BS

O.REG 153 PCBS (SOIL)

Maxxam ID				IET111		
Sampling Da	te			2018/11/02		
COC Numbe	r			N\A		
		UNITS	Criteria	TP18-1 S1A	RDL	QC Batch
Inorganics						
Moisture		%	-	18	1.0	5819559
PCBs						
Aroclor 1242		ug/g	-	<0.010	0.010	5820619
Aroclor 1248	ug/g	-	<0.010	0.010	5820619	
Aroclor 1254	Ļ	ug/g	-	<0.025 (1)	0.025	5820619
Aroclor 1260)	ug/g	-	<0.010	0.010	5820619
Total PCB		ug/g	0.35	<0.010	0.010	5820619
Surrogate Re	ecovery (%)	-				
Decachlorob	iphenyl	%	-	79		5820619
No Fill	No Exceedance	9				
Grey	Exceeds 1 crite	eria polio	cy/level			
Black	Exceeds both o	riteria/	levels			
RDL = Report	table Detection L	imit				
QC Batch = C	Quality Control Ba	atch				
Criteria: Ont	ario Reg. 153/04	(Amend	led April :	15, 2011)		
Table 3: Full	Depth Generic Si	te Cond	ition Star	ndards in a No	n-Pota	ble
Ground Wat	er Condition				- .	
Soil - Resider	ntial/Parkland/In	stitutior	iai Propei	rty Use - Coar	se Text	ured Soil
(1) PCB analy	sis:Detection Lin	nit was r	aised due	e to matrix int	erferer	nces.

WSP Canada Inc Client Project #: 181-11306-00 PH220 Site Location: 958-960 EAST AVE. Sampler Initials: BS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID				IET109						
Sampling Date				2018/11/01						
COC Number				N\A						
-		UNITS	Criteria	BH18-1 SS3	RDL	QC Batch				
Inorganics										
Moisture		%	-	11	1.0	5819559				
Calculated Par	ameters	1			J					
1,3-Dichloropro	opene (cis+trans)	ug/g	0.05	<0.050	0.050	5818512				
Volatile Organ	ics	•								
Acetone (2-Pro	panone)	ug/g	16	<0.50	0.50	5819502				
Benzene		ug/g	0.21	<0.020	0.020	5819502				
Bromodichloro	methane	ug/g	13	<0.050	0.050	5819502				
Bromoform		ug/g	0.27	<0.050	0.050	5819502				
Bromomethan	e	ug/g	0.05	<0.050	0.050	5819502				
Carbon Tetrach	nloride	ug/g	0.05	<0.050	0.050	5819502				
Chlorobenzene		ug/g	2.4	<0.050	0.050	5819502				
Chloroform		ug/g	0.05	<0.050	0.050	5819502				
Dibromochloro	ochloromethane		9.4	<0.050	0.050	5819502				
1,2-Dichlorobe	ug/g	3.4	<0.050	0.050	5819502					
1,3-Dichlorobenzene		ug/g	4.8	<0.050	0.050	5819502				
1,4-Dichlorobe	nzene	ug/g	0.083	<0.050	0.050	5819502				
Dichlorodifluor	omethane (FREON 12)	ug/g	16	<0.050	0.050	5819502				
1,1-Dichloroet	nane	ug/g	3.5	<0.050	0.050	5819502				
1,2-Dichloroet	nane	ug/g	0.05	<0.050	0.050	5819502				
1,1-Dichloroet	nylene	ug/g	0.05	<0.050	0.050	5819502				
cis-1,2-Dichlor	pethylene	ug/g	3.4	<0.050	0.050	5819502				
trans-1,2-Dichl	oroethylene	ug/g	0.084	<0.050	0.050	5819502				
1,2-Dichloropro	opane	ug/g	0.05	<0.050	0.050	5819502				
cis-1,3-Dichloro	opropene	ug/g	0.05	<0.030	0.030	5819502				
trans-1,3-Dichl	oropropene	ug/g	0.05	<0.040	0.040	5819502				
Ethylbenzene		ug/g	2	<0.020	0.020	5819502				
Ethylene Dibro	mide	ug/g	0.05	<0.050	0.050	5819502				
Hexane		ug/g	2.8	<0.050	0.050	5819502				
No Fill	No Exceedance									
Grey	Exceeds 1 criteria policy	/level								
Black	Exceeds both criteria/le	vels								
RDL = Reportal	ole Detection Limit									
QC Batch = Qua	ality Control Batch									
Criteria: Ontari Table 3: Full De Condition	Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition									
Soil - Residenti	Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil									

WSP Canada Inc Client Project #: 181-11306-00 PH220 Site Location: 958-960 EAST AVE. Sampler Initials: BS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID				IET109					
Sampling Date				2018/11/01					
COC Number				N\A					
		UNITS	Criteria	BH18-1 SS3	RDL	QC Batch			
Methylene Chl	oride(Dichloromethane)	ug/g	0.1	<0.050	0.050	5819502			
Methyl Ethyl K	etone (2-Butanone)	ug/g	16	<0.50	0.50	5819502			
Methyl Isobuty	/l Ketone	ug/g	1.7	<0.50	0.50	5819502			
Methyl t-butyl	ether (MTBE)	ug/g	0.75	<0.050	0.050	5819502			
Styrene		ug/g	0.7	<0.050	0.050	5819502			
1,1,1,2-Tetrach	loroethane	ug/g	0.058	<0.050	0.050	5819502			
1,1,2,2-Tetrach	loroethane	ug/g	0.05	<0.050	0.050	5819502			
Tetrachloroeth	ylene	ug/g	0.28	<0.050	0.050	5819502			
Toluene		ug/g	2.3	<0.020	0.020	5819502			
1,1,1-Trichloro	ethane	ug/g	0.38	<0.050	0.050	5819502			
1,1,2-Trichloro	ethane	ug/g	0.05	<0.050	0.050	5819502			
Trichloroethyle	ene	ug/g	0.061	<0.050	0.050	5819502			
Trichlorofluoro	methane (FREON 11)	ug/g	4	<0.050	0.050	5819502			
Vinyl Chloride		ug/g	0.02	<0.020	0.020	5819502			
p+m-Xylene		ug/g - <0.020 0.		0.020	5819502				
o-Xylene		ug/g	-	<0.020	0.020	5819502			
Total Xylenes		ug/g	3.1	<0.020	0.020	5819502			
F1 (C6-C10)		ug/g	55	<10	10	5819502			
F1 (C6-C10) - B	TEX	ug/g	55	<10	10	5819502			
F2-F4 Hydroca	rbons								
F2 (C10-C16 Hy	/drocarbons)	ug/g	98	98 <10		5820664			
F3 (C16-C34 Hy	/drocarbons)	ug/g	300	<50	50	5820664			
F4 (C34-C50 Hy	/drocarbons)	ug/g	2800	<50	50	5820664			
Reached Baseli	ine at C50	ug/g	-	Yes		5820664			
Surrogate Reco	overy (%)	1							
o-Terphenyl		%	-	95		5820664			
4-Bromofluoro	benzene	%	-	90		5819502			
D10-o-Xylene		%	-	94		5819502			
D4-1,2-Dichlor	oethane	%	-	109		5819502			
No Fill	No Exceedance								
Grey	Exceeds 1 criteria policy	/level							
Black Exceeds both criteria/levels									
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
Criteria: Ontari	o Reg. 153/04 (Amended	April 15	, 2011)		• ·				
Table 3: Full De	epth Generic Site Conditio	n Standa	ards in a l	Non-Potable (roundء	Water			
Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil									

WSP Canada Inc Client Project #: 181-11306-00 PH220 Site Location: 958-960 EAST AVE. Sampler Initials: BS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID				IET109					
Sampling Date				2018/11/01					
COC Number				N\A					
	BH18-1 SS3	RDL	QC Batch						
D8-Toluene		%	-	97		5819502			
No Fill	No Exceedance								
Grey	Exceeds 1 criteria policy/level								
Black	Exceeds both criteria/le	vels							
RDL = Reporta	ble Detection Limit								
QC Batch = Qu	ality Control Batch								
Criteria: Ontar	io Reg. 153/04 (Amended	April 15	, 2011)						
Table 3: Full De	epth Generic Site Conditio	n Standa	ards in a l	Non-Potable C	Ground	Water			
Condition									
Soil - Residenti	Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil								

PAH Compounds in Soil by GC/MS (SIM)

Report Date: 2018/11/12

WSP Canada Inc Client Project #: 181-11306-00 PH220 Site Location: 958-960 EAST AVE. Sampler Initials: BS

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	IET106 BH18-1 SS1 Soil					Collected: Shipped: Received:	2018/11/01 2018/11/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hot Water Extractable Bo	iron	ICP	5821159	2018/11/05	2018/11/06	Suban Kan	apathippllai
Free (WAD) Cyanide		TECH	5822732	2018/11/06	2018/11/07	Louise Har	rding
Conductivity		AT	5822940	2018/11/07	2018/11/08	Barbara Ka	albasi Esfahani
Hexavalent Chromium in	Soil by IC	IC/SPEC	5821908	2018/11/06	2018/11/08	Sally Noro	uz
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	5821053	2018/11/05	2018/11/06	Daniel Tec	lu
Moisture		BAL	5819559	N/A	2018/11/03	Prgya Pan	chal
pH CaCl2 EXTRACT		AT	5824612	2018/11/07	2018/11/07	Gnana Tho	omas
Sodium Adsorption Ratio	(SAR)	CALC/MET	5817853	N/A	2018/11/12	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	IET106 Dup BH18-1 SS1 Soil					Collected: Shipped: Received:	2018/11/01 2018/11/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	5821053	2018/11/05	2018/11/06	Daniel Tec	lu
Maxxam ID: Sample ID: Matrix:	IET107 BH18-1 SS2 Soil					Collected: Shipped: Received:	2018/11/01 2018/11/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	5818511	N/A	2018/11/08	Automate	d Statchk
Moisture		BAL	5819559	N/A	2018/11/03	Prgya Pan	chal
PAH Compounds in Soil b	y GC/MS (SIM)	GC/MS	5825102	2018/11/07	2018/11/07	Jett Wu	
Maxxam ID: Sample ID: Matrix:	IET109 BH18-1 SS3 Soil					Collected: Shipped: Received:	2018/11/01 2018/11/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	١	CALC	5818512	N/A	2018/11/07	Automate	d Statchk
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	5820664	2018/11/05	2018/11/06	Atoosa Ke	shavarz
Moisture		BAL	5819559	N/A	2018/11/03	Prgya Pan	chal
Volatile Organic Compou	nds and F1 PHCs	GC/MSFD	5819502	N/A	2018/11/06	Xueming J	iang
Maxxam ID: Sample ID: Matrix:	IET110 QAQC-1 Soil					Collected: Shipped: Received:	2018/11/01 2018/11/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	5818511	N/A	2018/11/08	Automate	d Statchk
Moisture		BAL	5819559	N/A	2018/11/03	Prgya Pan	chal

2018/11/07

2018/11/07

Jett Wu

5825102

GC/MS

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

WSP Canada Inc Client Project #: 181-11306-00 PH220 Site Location: 958-960 EAST AVE. Sampler Initials: BS

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	IET111 TP18-1 S1A Soil					Collected: 2018/11/02 Shipped: Received: 2018/11/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture		BAL	5819559	N/A	2018/11/03	Prgya Panchal
Polychlorinated Biphenyl	in Soil	GC/ECD	5820619	2018/11/05	2018/11/06	Svitlana Shaula

WSP Canada Inc Client Project #: 181-11306-00 PH220 Site Location: 958-960 EAST AVE. Sampler Initials: BS

GENERAL COMMENTS

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

WSP Canada Inc Client Project #: 181-11306-00 PH220

Site Location: 958-960 EAST AVE. Sampler Initials: BS

			Matrix Spike		SPIKED	BLANK	Method I	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5819502	4-Bromofluorobenzene	2018/11/06	99	60 - 140	97	60 - 140	91	%		
5819502	D10-o-Xylene	2018/11/06	103	60 - 130	95	60 - 130	91	%		
5819502	D4-1,2-Dichloroethane	2018/11/06	98	60 - 140	107	60 - 140	104	%		
5819502	D8-Toluene	2018/11/06	106	60 - 140	103	60 - 140	95	%		
5820619	Decachlorobiphenyl	2018/11/05	95	60 - 130	89	60 - 130	94	%		
5820664	o-Terphenyl	2018/11/06	99	60 - 130	101	60 - 130	96	%		
5825102	D10-Anthracene	2018/11/07	100	50 - 130	103	50 - 130	99	%		
5825102	D14-Terphenyl (FS)	2018/11/07	102	50 - 130	103	50 - 130	102	%		
5825102	D8-Acenaphthylene	2018/11/07	94	50 - 130	97	50 - 130	94	%		
5819502	1,1,1,2-Tetrachloroethane	2018/11/06	102	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
5819502	1,1,1-Trichloroethane	2018/11/06	105	60 - 140	102	60 - 130	<0.050	ug/g	NC	50
5819502	1,1,2,2-Tetrachloroethane	2018/11/06	95	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5819502	1,1,2-Trichloroethane	2018/11/06	96	60 - 140	97	60 - 130	<0.050	ug/g	NC	50
5819502	1,1-Dichloroethane	2018/11/06	102	60 - 140	101	60 - 130	<0.050	ug/g	NC	50
5819502	1,1-Dichloroethylene	2018/11/06	104	60 - 140	100	60 - 130	<0.050	ug/g	NC	50
5819502	1,2-Dichlorobenzene	2018/11/06	99	60 - 140	97	60 - 130	<0.050	ug/g	NC	50
5819502	1,2-Dichloroethane	2018/11/06	99	60 - 140	103	60 - 130	<0.050	ug/g	NC	50
5819502	1,2-Dichloropropane	2018/11/06	98	60 - 140	100	60 - 130	<0.050	ug/g	NC	50
5819502	1,3-Dichlorobenzene	2018/11/06	102	60 - 140	97	60 - 130	<0.050	ug/g	NC	50
5819502	1,4-Dichlorobenzene	2018/11/06	101	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5819502	Acetone (2-Propanone)	2018/11/06	92	60 - 140	100	60 - 140	<0.50	ug/g	NC	50
5819502	Benzene	2018/11/06	100	60 - 140	98	60 - 130	<0.020	ug/g	NC	50
5819502	Bromodichloromethane	2018/11/06	99	60 - 140	101	60 - 130	<0.050	ug/g	NC	50
5819502	Bromoform	2018/11/06	93	60 - 140	95	60 - 130	<0.050	ug/g	NC	50
5819502	Bromomethane	2018/11/06	103	60 - 140	101	60 - 140	<0.050	ug/g	NC	50
5819502	Carbon Tetrachloride	2018/11/06	106	60 - 140	102	60 - 130	<0.050	ug/g	NC	50
5819502	Chlorobenzene	2018/11/06	98	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
5819502	Chloroform	2018/11/06	99	60 - 140	100	60 - 130	<0.050	ug/g	NC	50
5819502	cis-1,2-Dichloroethylene	2018/11/06	101	60 - 140	101	60 - 130	<0.050	ug/g	NC	50
5819502	cis-1,3-Dichloropropene	2018/11/06	91	60 - 140	91	60 - 130	<0.030	ug/g	NC	50
5819502	Dibromochloromethane	2018/11/06	98	60 - 140	98	60 - 130	<0.050	ug/g	NC	50

Page 13 of 20

QUALITY ASSURANCE REPORT(CONT'D)

WSP Canada Inc Client Project #: 181-11306-00 PH220

Site Location: 958-960 EAST AVE. Sampler Initials: BS

			Matrix Spike		SPIKED	BLANK	Method	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5819502	Dichlorodifluoromethane (FREON 12)	2018/11/06	109	60 - 140	110	60 - 140	<0.050	ug/g	NC	50
5819502	Ethylbenzene	2018/11/06	99	60 - 140	93	60 - 130	<0.020	ug/g	NC	50
5819502	Ethylene Dibromide	2018/11/06	95	60 - 140	97	60 - 130	<0.050	ug/g	NC	50
5819502	F1 (C6-C10) - BTEX	2018/11/06					<10	ug/g	NC	30
5819502	F1 (C6-C10)	2018/11/06	102	60 - 140	99	80 - 120	<10	ug/g	NC	30
5819502	Hexane	2018/11/06	104	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5819502	Methyl Ethyl Ketone (2-Butanone)	2018/11/06	88	60 - 140	98	60 - 140	<0.50	ug/g	NC	50
5819502	Methyl Isobutyl Ketone	2018/11/06	87	60 - 140	96	60 - 130	<0.50	ug/g	NC	50
5819502	Methyl t-butyl ether (MTBE)	2018/11/06	93	60 - 140	95	60 - 130	<0.050	ug/g	NC	50
5819502	Methylene Chloride(Dichloromethane)	2018/11/06	93	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
5819502	o-Xylene	2018/11/06	99	60 - 140	93	60 - 130	<0.020	ug/g	NC	50
5819502	p+m-Xylene	2018/11/06	96	60 - 140	89	60 - 130	<0.020	ug/g	NC	50
5819502	Styrene	2018/11/06	99	60 - 140	95	60 - 130	<0.050	ug/g	NC	50
5819502	Tetrachloroethylene	2018/11/06	108	60 - 140	100	60 - 130	<0.050	ug/g	NC	50
5819502	Toluene	2018/11/06	101	60 - 140	95	60 - 130	<0.020	ug/g	NC	50
5819502	Total Xylenes	2018/11/06					<0.020	ug/g	NC	50
5819502	trans-1,2-Dichloroethylene	2018/11/06	104	60 - 140	102	60 - 130	<0.050	ug/g	NC	50
5819502	trans-1,3-Dichloropropene	2018/11/06	97	60 - 140	93	60 - 130	<0.040	ug/g	NC	50
5819502	Trichloroethylene	2018/11/06	102	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5819502	Trichlorofluoromethane (FREON 11)	2018/11/06	112	60 - 140	107	60 - 130	<0.050	ug/g	NC	50
5819502	Vinyl Chloride	2018/11/06	110	60 - 140	107	60 - 130	<0.020	ug/g	NC	50
5819559	Moisture	2018/11/03							2.1	20
5820619	Aroclor 1242	2018/11/05					<0.010	ug/g	NC	50
5820619	Aroclor 1248	2018/11/05					<0.010	ug/g	NC	50
5820619	Aroclor 1254	2018/11/05					<0.010	ug/g	NC	50
5820619	Aroclor 1260	2018/11/05	122	30 - 130	113	30 - 130	<0.010	ug/g	NC	50
5820619	Total PCB	2018/11/05	122	30 - 130	113	30 - 130	<0.010	ug/g	NC	50
5820664	F2 (C10-C16 Hydrocarbons)	2018/11/06	93	50 - 130	94	80 - 120	<10	ug/g	NC	30
5820664	F3 (C16-C34 Hydrocarbons)	2018/11/06	93	50 - 130	98	80 - 120	<50	ug/g	NC	30
5820664	F4 (C34-C50 Hydrocarbons)	2018/11/06	85	50 - 130	91	80 - 120	<50	ug/g	NC	30
5821053	Acid Extractable Antimony (Sb)	2018/11/06	98	75 - 125	106	80 - 120	<0.20	ug/g	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

WSP Canada Inc Client Project #: 181-11306-00 PH220

Site Location: 958-960 EAST AVE. Sampler Initials: BS

			Matrix	Matrix Spike SP		BLANK	Method I	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5821053	Acid Extractable Arsenic (As)	2018/11/06	103	75 - 125	102	80 - 120	<1.0	ug/g	3.8	30
5821053	Acid Extractable Barium (Ba)	2018/11/06	NC	75 - 125	98	80 - 120	<0.50	ug/g	0.090	30
5821053	Acid Extractable Beryllium (Be)	2018/11/06	102	75 - 125	100	80 - 120	<0.20	ug/g	1.3	30
5821053	Acid Extractable Boron (B)	2018/11/06	94	75 - 125	99	80 - 120	<5.0	ug/g	7.4	30
5821053	Acid Extractable Cadmium (Cd)	2018/11/06	100	75 - 125	101	80 - 120	<0.10	ug/g	24	30
5821053	Acid Extractable Chromium (Cr)	2018/11/06	105	75 - 125	100	80 - 120	<1.0	ug/g	1.9	30
5821053	Acid Extractable Cobalt (Co)	2018/11/06	98	75 - 125	100	80 - 120	<0.10	ug/g	1.7	30
5821053	Acid Extractable Copper (Cu)	2018/11/06	100	75 - 125	103	80 - 120	<0.50	ug/g	0.83	30
5821053	Acid Extractable Lead (Pb)	2018/11/06	109	75 - 125	102	80 - 120	<1.0	ug/g	3.8	30
5821053	Acid Extractable Mercury (Hg)	2018/11/06	94	75 - 125	99	80 - 120	<0.050	ug/g	6.3	30
5821053	Acid Extractable Molybdenum (Mo)	2018/11/06	101	75 - 125	101	80 - 120	<0.50	ug/g	9.1	30
5821053	Acid Extractable Nickel (Ni)	2018/11/06	106	75 - 125	101	80 - 120	<0.50	ug/g	4.6	30
5821053	Acid Extractable Selenium (Se)	2018/11/06	98	75 - 125	103	80 - 120	<0.50	ug/g	NC	30
5821053	Acid Extractable Silver (Ag)	2018/11/06	101	75 - 125	103	80 - 120	<0.20	ug/g	NC	30
5821053	Acid Extractable Thallium (TI)	2018/11/06	103	75 - 125	103	80 - 120	<0.050	ug/g	17	30
5821053	Acid Extractable Uranium (U)	2018/11/06	102	75 - 125	101	80 - 120	<0.050	ug/g	1.2	30
5821053	Acid Extractable Vanadium (V)	2018/11/06	NC	75 - 125	98	80 - 120	<5.0	ug/g	2.3	30
5821053	Acid Extractable Zinc (Zn)	2018/11/06	NC	75 - 125	96	80 - 120	<5.0	ug/g	1.4	30
5821159	Hot Water Ext. Boron (B)	2018/11/06	99	75 - 125	102	75 - 125	<0.050	ug/g	0.67	40
5821908	Chromium (VI)	2018/11/08	88	70 - 130	101	80 - 120	<0.2	ug/g	0.99	35
5822732	WAD Cyanide (Free)	2018/11/07	92	75 - 125	91	80 - 120	<0.01	ug/g	NC	35
5822940	Conductivity	2018/11/08			105	90 - 110	<0.002	mS/cm	0.17	10
5824612	Available (CaCl2) pH	2018/11/07			100	97 - 103			0.69	N/A
5825102	1-Methylnaphthalene	2018/11/07	105	50 - 130	105	50 - 130	<0.0050	ug/g	NC	40
5825102	2-Methylnaphthalene	2018/11/07	92	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
5825102	Acenaphthene	2018/11/07	96	50 - 130	96	50 - 130	<0.0050	ug/g	NC	40
5825102	Acenaphthylene	2018/11/07	90	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40
5825102	Anthracene	2018/11/07	99	50 - 130	98	50 - 130	<0.0050	ug/g	NC	40
5825102	Benzo(a)anthracene	2018/11/07	99	50 - 130	101	50 - 130	<0.0050	ug/g	NC	40
5825102	Benzo(a)pyrene	2018/11/07	93	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
5825102	Benzo(b/j)fluoranthene	2018/11/07	97	50 - 130	100	50 - 130	<0.0050	ug/g	NC	40

QUALITY ASSURANCE REPORT(CONT'D)

WSP Canada Inc Client Project #: 181-11306-00 PH220

Site Location: 958-960 EAST AVE. Sampler Initials: BS

			Matrix	Matrix Spike		BLANK	Method E	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5825102	Benzo(g,h,i)perylene	2018/11/07	91	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
5825102	Benzo(k)fluoranthene	2018/11/07	95	50 - 130	96	50 - 130	<0.0050	ug/g	NC	40
5825102	Chrysene	2018/11/07	99	50 - 130	100	50 - 130	<0.0050	ug/g	NC	40
5825102	Dibenz(a,h)anthracene	2018/11/07	90	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40
5825102	Fluoranthene	2018/11/07	99	50 - 130	99	50 - 130	<0.0050	ug/g	NC	40
5825102	Fluorene	2018/11/07	94	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
5825102	Indeno(1,2,3-cd)pyrene	2018/11/07	93	50 - 130	99	50 - 130	<0.0050	ug/g	NC	40
5825102	Naphthalene	2018/11/07	92	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
5825102	Phenanthrene	2018/11/07	102	50 - 130	100	50 - 130	<0.0050	ug/g	NC	40
5825102	Pyrene	2018/11/07	101	50 - 130	103	50 - 130	<0.0050	ug/g	NC	40

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

WSP Canada Inc Client Project #: 181-11306-00 PH220 Site Location: 958-960 EAST AVE. Sampler Initials: BS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

			1		
M	a	×	X	a	m
A	Burea	su Veril	tas Gr	oup Co	mpany

 6740 Campobello Road, Mississauga, Ontario
 LSN 2L8

 Phone: 905-817-5700
 Fax: 905-817-5779
 Toll Free: 800-563-6266

Invoice Information		Report I	nformation	(if diff	ers fro	om inv	oice)				Proje	ct informa	tion (wher	e annlicat	le)		Turnaround Time (TAT) Remuted
pany Name: 1048	Compan	V Name:	110				citur,	<u>ب</u>	0	Quotatio	n #:	et morms	tion (when	e applicad	ie)		Regular TAT (5-7 days) Most analyses
act Name: Mileo Mileon	Contact	Name:	1				1			P.O. #/ AFF#-					2.1	PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJ	
ess: SI Constallation (a	Address			1/5		200				181 11306 00 0 770				.00 t	20	Rush TAT (Surcharges will be applied)	
Tooth ON	indui ess		17. A 18 11	1111				The second		Site Loca	tion	958	-910	E d	Ana	2	1 Day 2 Days 3-4 Days
ne: 416-798-0065 Fax: 916-798-	OSI & Phone:		15.98		Fax:	-	124	35		Site #:	uon.	1000	- 160	East /	The		
"michael.witsan@wsp.com	Email:			ni) (A.				Sampled	By:	B.	6.			3	Date Required:
MOE REGULATED DRINKING WATER OR	VATER INTENDED FOR	HUMAN CONS	UMPTION N	AUST B	E SUB	MITTE	D ON	THE M	XXAN	DRINKING	S WAT	ERCHAIN	OF CUSTOR	γ			Rush Confirmation #:
Regulation 153	Other Rep	ulations			_					Analysis	Requ	ested					LABORATORY USE ONLY
Table 1 Res/Park Med/ Fine Table 2 Ind/Comm Coarse Table 3 Agri/ Other Table FOR RSC (PLEASE CIRCLE) X/V/ N	CCME Sanita MISA Storm PWQO Regio Other (Specify) REG 558 (MIN, 3 D	Sewer Bylaw	w RED)	ATTED	Metals / Hg / CrVI			REANICS	FER TO	BACK OF CC (8 - SMH 1		(1)					CUSTODY SEAL Y / N Present Intagt V 9//0/10
de Criteria on Certificate of Analysis: 🛛 🕎 / N		W. Level	1 V . 10	SUBN	IRCLE)			& INOF	ETALS	vletals		to				ALYZE	
SAMPLES MUST BE KEPT COOL (< 10 $^{\circ}$ C) FROM TIME O	F SAMPLING UNTIL DE	LIVERY TO MA	XXAM	AINERS	RED (C	17		TALS (MS M	CTALS CPMS /		t				IOT AN	\rightarrow
SAMPLE IDENTIFICATION	DATE SAMPLED (YYYY/MM/DD)	TIME SAMPLED (HH:MM)	MATRIX	# OF CONT	HELD FILTER	BTEX/ PHC	PHCs F2 - F4	/OCS REG 153 ME	153 ICF	teg 153 ME Hg, Cr VI, I	PAHS	PCBS				IOLD- DO N	COOLING MEDIA PRESENT: V / N COMMENTS
BH18-1 551	2018/00/01	AM	5011	1				X	- the								
BH18-1 552	2013/11/01	AM	Soil	1							X						
BH18-1 553	2018/11/01	AM	soil	3		X	XX	X									
QARC-1	2018/11/01	AM	Soil	1							Х						
TP18-1 51A	2018/11/02	AM	Soil	-								X					
				- 8													
			37														
											-						
				1													02-Nov-18 13:23
				191	T												Ashton Gibson
RELINQUISHED BY: (Signature/Print) D.	TE: (YYYY/MM/DD)	TIME: (HH:	MM)		RECEIV	ED B	r: (Sign	nature/	Print)		DA	TE: (YYYY/	MM/DD)	TIME:	(HH:M	M)	II II II IIIII II II IIIIIII II IIIIIII
M. G. Jon (doid 71	18/11/07	1:270	M	V	~	_	A	ken	01	420	1	Q ICAI	1117	12	12	3	B8T2736
		and the second se							3 X M 7		_	w/w/ \				/	

WSP Canada Inc Client Project #: 181-11306-00 PH220 Project name: 958-960 EAST AVE. Client ID: BH18-1 SS3

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

WSP Canada Inc Client Project #: 181-11306-00 PH220 Site Location: 958-960 EAST AVE. Sampler Initials: BS

Exceedence Summary Table – Reg153/04 T3-Soil/Res-C

Result Exceedences

Sample ID	Maxxam ID	Parameter	Criteria	Result	DL	Units
No Exceedences						
The exceedence summa	ry table is for information p	ourposes only and should not	be considered a compret	ensive listing or	statement of	conformance
to applicable regulatory	guidelines.					

APPENDIX D-2 GROUNDWATER

Your Project #: 181-11306-00 Your C.O.C. #: 692229-01-01

Attention: Michael Wilson

WSP Canada Inc 51 Constellation Court Toronto, ON CANADA M9W 1K4

> Report Date: 2018/11/29 Report #: R5504594 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8V1705 Received: 2018/11/21, 15:10

Sample Matrix: Water # Samples Received: 8

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
1,3-Dichloropropene Sum	7	N/A	2018/11/27		EPA 8260C m
Chloride by Automated Colourimetry	4	N/A	2018/11/26	CAM SOP-00463	EPA 325.2 m
Chromium (VI) in Water	4	N/A	2018/11/28	CAM SOP-00436	EPA 7199 m
Free (WAD) Cyanide	4	N/A	2018/11/26	CAM SOP-00457	OMOE E3015 m
Petroleum Hydro. CCME F1 & BTEX in Water	1	N/A	2018/11/28	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1)	5	2018/11/27	2018/11/28	CAM SOP-00316	CCME PHC-CWS m
Mercury	4	2018/11/27	2018/11/27	CAM SOP-00453	EPA 7470A m
Dissolved Metals by ICPMS	3	N/A	2018/11/26	CAM SOP-00447	EPA 6020B m
Dissolved Metals by ICPMS	1	N/A	2018/11/27	CAM SOP-00447	EPA 6020B m
Volatile Organic Compounds and F1 PHCs	4	N/A	2018/11/27	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds in Water	3	N/A	2018/11/26	CAM SOP-00228	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Your Project #: 181-11306-00 Your C.O.C. #: 692229-01-01

Attention: Michael Wilson

WSP Canada Inc 51 Constellation Court Toronto, ON CANADA M9W 1K4

> Report Date: 2018/11/29 Report #: R5504594 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8V1705 Received: 2018/11/21, 15:10

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ashton Gibson, Project Manager Email: AGibson@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

WSP Canada Inc Client Project #: 181-11306-00 Sampler Initials: KM

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID	IIY742					
Sampling Dat	te			2018/11/21		
				14:00		
COC Number	•			692229-01-01		
				BH18-7	RDL	QC Batch
BTEX & F1 Hydrocarbons						
F1 (C6-C10)		ug/L	750	<25	25	5860643
F1 (C6-C10) -	BTEX	ug/L	750	<25	25	5860643
Surrogate Re	covery (%)					
1,4-Difluorob	%	-	101		5860643	
4-Bromofluo	robenzene	%	-	110		5860643
D10-Ethylber	izene	%	-	102		5860643
D4-1,2-Dichlo	proethane	%	-	93		5860643
No Fill	No Exceedance	9				
Grey	Exceeds 1 crite	eria polio	cy/level			
Black	Exceeds both o	riteria/	levels			
RDL = Report	able Detection L	imit				
QC Batch = Q	QC Batch = Quality Control Batch					
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)						
Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground						
Water Condit	tion					
Non- Potable	Ground Water -	All Type	es of Prop	perty Uses - Coa	rse To	extured So

WSP Canada Inc Client Project #: 181-11306-00 Sampler Initials: KM

O.REG 153 METALS & INORGANICS PKG (WTR)

Maxxam ID			IIY735		IIY736		IIY738		IIY740		
Sampling Date			2018/11/21 09:00		2018/11/21 10:00		2018/11/21 11:00		2018/11/21 12:00		
COC Number			692229-01-01		692229-01-01		692229-01-01		692229-01-01		
	UNITS	Criteria	BH18-1S	RDL	BH18-2S	RDL	BH18-5	RDL	BH18-4	RDL	QC Batch
Inorganics											
WAD Cyanide (Free)	ug/L	66	<1	1	<1	1	<1	1	<1	1	5856228
Dissolved Chloride (Cl-)	mg/L	2300	1000	10	1500	15	1500	15	660	8.0	5854742
Metals											
Chromium (VI)	ug/L	140	<0.50	0.50	<0.50	0.50	<0.50	0.50	<0.50	0.50	5852403
Mercury (Hg)	ug/L	0.29	<0.1	0.1	<0.1	0.1	<0.1	0.1	<0.1	0.1	5858148
Dissolved Antimony (Sb)	ug/L	20000	0.93	0.50	<0.50	0.50	<0.50	0.50	<0.50	0.50	5854506
Dissolved Arsenic (As)	ug/L	1900	2.1	1.0	1.0	1.0	<1.0	1.0	4.6	1.0	5854506
Dissolved Barium (Ba)	ug/L	29000	95	2.0	150	2.0	75	2.0	350	2.0	5854506
Dissolved Beryllium (Be)	ug/L	67	<0.50	0.50	<0.50	0.50	<0.50	0.50	<0.50	0.50	5854506
Dissolved Boron (B)	ug/L	45000	170	10	120	10	430	10	160	10	5854506
Dissolved Cadmium (Cd)	ug/L	2.7	<0.10	0.10	<0.10	0.10	<0.10	0.10	<0.10	0.10	5854506
Dissolved Chromium (Cr)	ug/L	810	<5.0	5.0	<5.0	5.0	<5.0	5.0	33	5.0	5854506
Dissolved Cobalt (Co)	ug/L	66	2.5	0.50	2.5	0.50	<0.50	0.50	54	0.50	5854506
Dissolved Copper (Cu)	ug/L	87	<1.0	1.0	2.7	1.0	<1.0	1.0	15	1.0	5854506
Dissolved Lead (Pb)	ug/L	25	<0.50	0.50	0.57	0.50	<0.50	0.50	5.5	0.50	5854506
Dissolved Molybdenum (Mo)	ug/L	9200	3.6	0.50	1.1	0.50	3.2	0.50	4.9	0.50	5854506
Dissolved Nickel (Ni)	ug/L	490	3.3	1.0	3.9	1.0	<1.0	1.0	11	1.0	5854506
Dissolved Selenium (Se)	ug/L	63	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	5854506
Dissolved Silver (Ag)	ug/L	1.5	<0.10	0.10	<0.10	0.10	<0.10	0.10	<0.10	0.10	5854506
Dissolved Sodium (Na)	ug/L	2300000	310000	100	570000	100	830000	500	230000	100	5854506
Dissolved Thallium (Tl)	ug/L	510	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	5854506
Dissolved Uranium (U)	ug/L	420	2.5	0.10	1.9	0.10	0.43	0.10	1.8	0.10	5854506
Dissolved Vanadium (V)	ug/L	250	0.83	0.50	1.4	0.50	<0.50	0.50	12	0.50	5854506
Dissolved Zinc (Zn)	ug/L	1100	<5.0	5.0	<5.0	5.0	<5.0	5.0	21	5.0	5854506
No Fill No	Exceeda	ince									

Grey Black

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

WSP Canada Inc Client Project #: 181-11306-00 Sampler Initials: KM

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID			IIY735	IIY736			IIY737		
Sampling Date			2018/11/21 09:00	2018/11/21 10:00			2018/11/21 09:00		
COC Number			692229-01-01	692229-01-01			692229-01-01		
	UNITS	Criteria	BH18-1S	BH18-2S	RDL	QC Batch	QAQC 18-2	RDL	QC Batch
Calculated Parameters									
1,3-Dichloropropene (cis+trans)	ug/L	5.2	<0.50	<0.50	0.50	5854075			
Volatile Organics	-								
Acetone (2-Propanone)	ug/L	130000	<10	<10	10	5855428			
Benzene	ug/L	44	<0.20	<0.20	0.20	5855428			
Bromodichloromethane	ug/L	85000	<0.50	<0.50	0.50	5855428			
Bromoform	ug/L	380	<1.0	<1.0	1.0	5855428			
Bromomethane	ug/L	5.6	<0.50	<0.50	0.50	5855428			
Carbon Tetrachloride	ug/L	0.79	<0.20	<0.20	0.20	5855428			
Chlorobenzene	ug/L	630	<0.20	<0.20	0.20	5855428			
Chloroform	ug/L	2.4	<0.20	<0.20	0.20	5855428			
Dibromochloromethane	ug/L	82000	<0.50	<0.50	0.50	5855428			
1,2-Dichlorobenzene	ug/L	4600	<0.50	<0.50	0.50	5855428			
1,3-Dichlorobenzene	ug/L	9600	<0.50	<0.50	0.50	5855428			
1,4-Dichlorobenzene	ug/L	8	<0.50	<0.50	0.50	5855428			
Dichlorodifluoromethane (FREON 12)	ug/L	4400	<1.0	<1.0	1.0	5855428			
1,1-Dichloroethane	ug/L	320	<0.20	<0.20	0.20	5855428			
1,2-Dichloroethane	ug/L	1.6	<0.50	<0.50	0.50	5855428			
1,1-Dichloroethylene	ug/L	1.6	<0.20	<0.20	0.20	5855428			
cis-1,2-Dichloroethylene	ug/L	1.6	<0.50	<0.50	0.50	5855428			
trans-1,2-Dichloroethylene	ug/L	1.6	<0.50	<0.50	0.50	5855428			
1,2-Dichloropropane	ug/L	16	<0.20	<0.20	0.20	5855428			
cis-1,3-Dichloropropene	ug/L	5.2	<0.30	<0.30	0.30	5855428			
trans-1,3-Dichloropropene	ug/L	5.2	<0.40	<0.40	0.40	5855428			
Ethylbenzene	ug/L	2300	<0.20	<0.20	0.20	5855428			
Ethylene Dibromide	ug/L	0.25	<0.20	<0.20	0.20	5855428			
Hexane	ug/L	51	<1.0	<1.0	1.0	5855428			
Methylene Chloride(Dichloromethane)	ug/L	610	<2.0	<2.0	2.0	5855428			
Methyl Ethyl Ketone (2-Butanone)	ug/L	470000	<10	<10	10	5855428			
Methyl Isobutyl Ketone	ug/L	140000	<5.0	<5.0	5.0	5855428			
No Fill No Exceedance	•								
Grey Exceeds 1 criter	ria policy	/level							
Black Exceeds both cr	Black Exceeds both criteria/levels								
RDL = Reportable Detection Limit									
OC Batch = Ouality Control Batch	SUL = REPORTADIE DELECTION LIMIT DC Batch = Quality Control Batch								

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

WSP Canada Inc Client Project #: 181-11306-00 Sampler Initials: KM

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID				IIY735	IIY736			IIY737		
Sampling Date				2018/11/21 09:00	2018/11/21 10:00			2018/11/21 09:00		
COC Number				692229-01-01	692229-01-01			692229-01-01		
		UNITS	Criteria	BH18-1S	BH18-2S	RDL	QC Batch	QAQC 18-2	RDL	QC Batch
Methyl t-butyl ether (N	ITBE)	ug/L	190	<0.50	<0.50	0.50	5855428		T	
Styrene		ug/L	1300	<0.50	<0.50	0.50	5855428			
1,1,1,2-Tetrachloroetha	ane	ug/L	3.3	<0.50	<0.50	0.50	5855428			
1,1,2,2-Tetrachloroetha	ane	ug/L	3.2	<0.50	<0.50	0.50	5855428			
Tetrachloroethylene		ug/L	1.6	<0.20	<0.20	0.20	5855428			
Toluene		ug/L	18000	<0.20	<0.20	0.20	5855428			
1,1,1-Trichloroethane		ug/L	640	<0.20	<0.20	0.20	5855428			
1,1,2-Trichloroethane		ug/L	4.7	<0.50	<0.50	0.50	5855428			
Trichloroethylene		ug/L	1.6	<0.20	<0.20	0.20	5855428			
Trichlorofluoromethan	e (FREON 11)	ug/L	2500	<0.50	<0.50	0.50	5855428			
Vinyl Chloride		ug/L	0.5	<0.20	<0.20	0.20	5855428			
p+m-Xylene		ug/L	-	<0.20	<0.20	0.20	5855428			
o-Xylene		ug/L	-	<0.20	<0.20	0.20	5855428			
Total Xylenes		ug/L	4200	<0.20	<0.20	0.20	5855428			
F1 (C6-C10)		ug/L	750	<25	<25	25	5855428			
F1 (C6-C10) - BTEX		ug/L	750	<25	<25	25	5855428			
F2-F4 Hydrocarbons						-	-			
F2 (C10-C16 Hydrocarb	ons)	ug/L	150	<100	<100	100	5858318	<100	100	5858318
F3 (C16-C34 Hydrocarb	ons)	ug/L	500	<200	<200	200	5858318	<200	200	5858318
F4 (C34-C50 Hydrocarb	ons)	ug/L	500	<200	<200	200	5858318	<200	200	5858318
Reached Baseline at C5	0	ug/L	-	Yes	Yes		5858318	Yes		5858318
Surrogate Recovery (%	5)					-	-			
o-Terphenyl		%	-	94	95		5858318	90		5858318
4-Bromofluorobenzene	2	%	-	88	88		5855428			
D4-1,2-Dichloroethane		%	-	119	124		5855428			
D8-Toluene		%	-	91	91		5855428			
No Fill	No Exceedance									
Grey Exceeds 1 criteria policy/level										
Black Exceeds both criteria/levels										
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										
Criteria: Ontario Reg. 1	Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)									
able 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition										

WSP Canada Inc Client Project #: 181-11306-00 Sampler Initials: KM

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID				IIY738		IIY740		
Sampling Date				2018/11/21		2018/11/21	Γ	
				11:00		12:00		
COC Number				692229-01-01		692229-01-01		
		UNITS	Criteria	BH18-5	RDL	BH18-4	RDL	QC Batch
Calculated Parame	eters							
1,3-Dichloroprope	ne (cis+trans)	ug/L	5.2	<0.50	0.50	<0.50	0.50	5854075
Volatile Organics								
Acetone (2-Propar	ione)	ug/L	130000	<10	10	<10	10	5855428
Benzene		ug/L	44	<0.20	0.20	<0.20	0.20	5855428
Bromodichlorome	thane	ug/L	85000	<0.50	0.50	<0.50	0.50	5855428
Bromoform		ug/L	380	<1.0	1.0	<1.0	1.0	5855428
Bromomethane		ug/L	5.6	<0.50	0.50	<0.50	0.50	5855428
Carbon Tetrachlor	ide	ug/L	0.79	<0.20	0.20	<0.20	0.20	5855428
Chlorobenzene		ug/L	630	<0.20	0.20	<0.20	0.20	5855428
Chloroform		ug/L	2.4	<0.20	0.20	<0.20	0.20	5855428
Dibromochlorome	thane	ug/L	82000	<0.50	0.50	<0.50	0.50	5855428
1,2-Dichlorobenze	ne	ug/L	4600	<0.50	0.50	<0.50	0.50	5855428
1,3-Dichlorobenzene		ug/L	9600	<0.50	0.50	<0.50	0.50	5855428
1,4-Dichlorobenze	ne	ug/L	8	<0.50	0.50	<0.50	0.50	5855428
Dichlorodifluorom	ethane (FREON 12)	ug/L	4400	<1.0	1.0	<1.0	1.0	5855428
1,1-Dichloroethan	e	ug/L	320	<0.20	0.20	<0.20	0.20	5855428
1,2-Dichloroethan	e	ug/L	1.6	<0.50	0.50	<0.50	0.50	5855428
1,1-Dichloroethyle	ne	ug/L	1.6	<0.20	0.20	<0.20	0.20	5855428
cis-1,2-Dichloroeth	nylene	ug/L	1.6	<0.50	0.50	<0.50	0.50	5855428
trans-1,2-Dichloro	ethylene	ug/L	1.6	<0.50	0.50	<0.50	0.50	5855428
1,2-Dichloropropa	ne	ug/L	16	<0.20	0.20	<0.20	0.20	5855428
cis-1,3-Dichloropro	opene	ug/L	5.2	<0.30	0.30	<0.30	0.30	5855428
trans-1,3-Dichloro	propene	ug/L	5.2	<0.40	0.40	<0.40	0.40	5855428
Ethylbenzene		ug/L	2300	<0.20	0.20	<0.20	0.20	5855428
Ethylene Dibromide		ug/L	0.25	<0.20	0.20	<0.20	0.20	5855428
Hexane		ug/L	51	<1.0	1.0	<1.0	1.0	5855428
Methylene Chloride(Dichloromethane)		ug/L	610	<2.0	2.0	<2.0	2.0	5855428
Methyl Ethyl Ketor	ne (2-Butanone)	ug/L	470000	<10	10	<10	10	5855428
No Fill	No Exceedance							
Grey	Exceeds 1 criteria po	olicy/lev	el					

Exceeds both criteria/levels

RDL = Reportable Detection Limit

Black

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

WSP Canada Inc Client Project #: 181-11306-00 Sampler Initials: KM

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID				IIY738		IIY740		
Sampling Date				2018/11/21 11:00		2018/11/21 12:00		
COC Number				692229-01-01		692229-01-01		
		UNITS	Criteria	BH18-5	RDL	BH18-4	RDL	QC Batch
Methyl Isobutyl Ke	tone	ug/L	140000	<5.0	5.0	<5.0	5.0	5855428
Methyl t-butyl ethe	er (MTBE)	ug/L	190	<0.50	0.50	<0.50	0.50	5855428
Styrene		ug/L	1300	<0.50	0.50	<0.50	0.50	5855428
1,1,1,2-Tetrachloro	pethane	ug/L	3.3	<0.50	0.50	<0.50	0.50	5855428
1,1,2,2-Tetrachloro	bethane	ug/L	3.2	<0.50	0.50	<0.50	0.50	5855428
Tetrachloroethyler	ne	ug/L	1.6	<0.20	0.20	<0.20	0.20	5855428
Toluene		ug/L	18000	<0.20	0.20	<0.20	0.20	5855428
1,1,1-Trichloroetha	ane	ug/L	640	<0.20	0.20	<0.20	0.20	5855428
1,1,2-Trichloroetha	ane	ug/L	4.7	<0.50	0.50	<0.50	0.50	5855428
Trichloroethylene		ug/L	1.6	<0.20	0.20	<0.20	0.20	5855428
Trichlorofluoromet	thane (FREON 11)	ug/L	2500	<0.50	0.50	<0.50	0.50	5855428
Vinyl Chloride		ug/L	0.5	<0.20	0.20	<0.20	0.20	5855428
p+m-Xylene		ug/L	-	<0.20	0.20	<0.20	0.20	5855428
o-Xylene		ug/L	-	<0.20	0.20	<0.20	0.20	5855428
Total Xylenes		ug/L	4200	<0.20	0.20	<0.20	0.20	5855428
F1 (C6-C10)		ug/L	750	<25	25	<25	25	5855428
F1 (C6-C10) - BTEX		ug/L	750	<25	25	<25	25	5855428
F2-F4 Hydrocarbor	าร							
F2 (C10-C16 Hydro	carbons)	ug/L	150	<100	100	170	110	5858318
F3 (C16-C34 Hydro	carbons)	ug/L	500	<200	200	<220	220	5858318
F4 (C34-C50 Hydro	carbons)	ug/L	500	<200	200	<220	220	5858318
Reached Baseline a	at C50	ug/L	-	Yes		Yes		5858318
Surrogate Recover	ry (%)							
o-Terphenyl		%	-	99		95		5858318
4-Bromofluoroben	zene	%	-	88		89		5855428
D4-1,2-Dichloroeth	nane	%	-	123		120		5855428
D8-Toluene		%	-	92		92		5855428
No Fill	No Exceedance							
Grey Exceeds 1 criteria policy/level								
Black Exceeds both criteria/levels								
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								
Criteria: Ontario Re	eg. 153/04 (Amended	April 15	, 2011)					

 Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

 Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

WSP Canada Inc Client Project #: 181-11306-00 Sampler Initials: KM

O.REG 153 VOCS BY HS (WATER)

Maxxam ID				IIY739	IIY741		IIY742		
Sampling Date				2018/11/21 11:00	2018/11/21		2018/11/21 14:00		
COC Number				692229-01-01	692229-01-01		692229-01-01		
		UNITS	Criteria	QAQC18-1	TRIP BLANK	QC Batch	BH18-7	RDL	QC Batch
Calculated Parameters									
1,3-Dichloropropene ((cis+trans)	ug/L	5.2	<0.50	<0.50	5854075	<0.50	0.50	5853666
Volatile Organics		•			•				
Acetone (2-Propanone	e)	ug/L	130000	<10	<10	5853237	<10	10	5853237
Benzene		ug/L	44	<0.20	<0.20	5853237	1.1	0.20	5853237
Bromodichlorometha	ne	ug/L	85000	<0.50	<0.50	5853237	<0.50	0.50	5853237
Bromoform		ug/L	380	<1.0	<1.0	5853237	<1.0	1.0	5853237
Bromomethane		ug/L	5.6	<0.50	<0.50	5853237	<0.50	0.50	5853237
Carbon Tetrachloride		ug/L	0.79	<0.20	<0.20	5853237	<0.20	0.20	5853237
Chlorobenzene		ug/L	630	<0.20	<0.20	5853237	<0.20	0.20	5853237
Chloroform		ug/L	2.4	<0.20	<0.20	5853237	<0.20	0.20	5853237
Dibromochloromethane		ug/L	82000	<0.50	<0.50	5853237	<0.50	0.50	5853237
1,2-Dichlorobenzene		ug/L	4600	<0.50	<0.50	5853237	<0.50	0.50	5853237
1,3-Dichlorobenzene		ug/L	9600	<0.50	<0.50	5853237	<0.50	0.50	5853237
1,4-Dichlorobenzene		ug/L	8	<0.50	<0.50	5853237	<0.50	0.50	5853237
Dichlorodifluoromethane (FREON 12)		ug/L	4400	<1.0	<1.0	5853237	<1.0	1.0	5853237
1,1-Dichloroethane		ug/L	320	<0.20	<0.20	5853237	<0.20	0.20	5853237
1,2-Dichloroethane		ug/L	1.6	<0.50	<0.50	5853237	<0.50	0.50	5853237
1,1-Dichloroethylene		ug/L	1.6	<0.20	<0.20	5853237	<0.20	0.20	5853237
cis-1,2-Dichloroethyle	ne	ug/L	1.6	<0.50	<0.50	5853237	<0.50	0.50	5853237
trans-1,2-Dichloroethy	ylene	ug/L	1.6	<0.50	<0.50	5853237	<0.50	0.50	5853237
1,2-Dichloropropane		ug/L	16	<0.20	<0.20	5853237	<0.20	0.20	5853237
cis-1,3-Dichloroprope	ne	ug/L	5.2	<0.30	<0.30	5853237	<0.30	0.30	5853237
trans-1,3-Dichloropro	pene	ug/L	5.2	<0.40	<0.40	5853237	<0.40	0.40	5853237
Ethylbenzene		ug/L	2300	<0.20	<0.20	5853237	<0.20	0.20	5853237
Ethylene Dibromide		ug/L	0.25	<0.20	<0.20	5853237	<0.20	0.20	5853237
Hexane		ug/L	51	<1.0	<1.0	5853237	<1.0	1.0	5853237
Methylene Chloride(Dichloromethane)		ug/L	610	<2.0	<2.0	5853237	<2.0	2.0	5853237
Methyl Ethyl Ketone (2-Butanone)		ug/L	470000	<10	<10	5853237	<10	10	5853237
Methyl Isobutyl Ketone u			140000	<5.0	<5.0	5853237	<5.0	5.0	5853237
No Fill	No Exceedance								
Grey	Exceeds 1 criteria policy/level								
Black	Black Exceeds both criteria/levels								
RDL = Reportable Detection Limit									

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

WSP Canada Inc Client Project #: 181-11306-00 Sampler Initials: KM

O.REG 153 VOCS BY HS (WATER)

Maxxam ID			IIY739	IIY741		IIY742		
Sampling Date			2018/11/21 11:00	2018/11/21		2018/11/21 14:00		
COC Number			692229-01-01	692229-01-01		692229-01-01		
	UNITS	Criteria	QAQC18-1	TRIP BLANK	QC Batch	BH18-7	RDL	QC Batch
Methyl t-butyl ether (MTBE)	ug/L	190	<0.50	<0.50	5853237	<0.50	0.50	5853237
Styrene	ug/L	1300	<0.50	<0.50	5853237	<0.50	0.50	5853237
1,1,1,2-Tetrachloroethane	ug/L	3.3	<0.50	<0.50	5853237	<0.50	0.50	5853237
1,1,2,2-Tetrachloroethane	ug/L	3.2	<0.50	<0.50	5853237	<0.50	0.50	5853237
Tetrachloroethylene	ug/L	1.6	<0.20	<0.20	5853237	<0.20	0.20	5853237
Toluene	ug/L	18000	<0.20	<0.20	5853237	0.35	0.20	5853237
1,1,1-Trichloroethane	ug/L	640	<0.20	<0.20	5853237	<0.20	0.20	5853237
1,1,2-Trichloroethane	ug/L	4.7	<0.50	<0.50	5853237	<0.50	0.50	5853237
Trichloroethylene	ug/L	1.6	<0.20	<0.20	5853237	<0.20	0.20	5853237
Trichlorofluoromethane (FREON 11)	ug/L	2500	<0.50	<0.50	5853237	<0.50	0.50	5853237
Vinyl Chloride	ug/L	0.5	<0.20	<0.20	5853237	<0.20	0.20	5853237
p+m-Xylene	ug/L	-	<0.20	<0.20	5853237	<0.20	0.20	5853237
o-Xylene	ug/L	-	<0.20	<0.20	5853237	<0.20	0.20	5853237
Total Xylenes	ug/L	4200	<0.20	<0.20	5853237	<0.20	0.20	5853237
Surrogate Recovery (%)								
4-Bromofluorobenzene	%	-	75	74	5853237	75		5853237
D4-1,2-Dichloroethane	%	-	105	106	5853237	105		5853237
D8-Toluene	%	-	94	95	5853237	94		5853237
No Fill No Exceedance								
Grey Exceeds 1 criteria	a policy/	'level						
Black Exceeds both crit	Exceeds both criteria/levels							
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil								

WSP Canada Inc Client Project #: 181-11306-00 Sampler Initials: KM

TEST SUMMARY

Maxxam ID:	IIY735	Collected:	2018/11/21
Sample ID: Matrix:	BH18-1S Water	Shipped: Received:	2018/11/21

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5854075	N/A	2018/11/27	Automated Statchk
Chloride by Automated Colourimetry	KONE	5854742	N/A	2018/11/26	Deonarine Ramnarine
Chromium (VI) in Water	IC	5852403	N/A	2018/11/28	Sally Norouz
Free (WAD) Cyanide	SKAL/CN	5856228	N/A	2018/11/26	Xuanhong Qiu
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5858318	2018/11/27	2018/11/28	Dorina Popa
Mercury	CV/AA	5858148	2018/11/27	2018/11/27	Ron Morrison
Dissolved Metals by ICPMS	ICP/MS	5854506	N/A	2018/11/26	Matthew Ritenburg
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5855428	N/A	2018/11/27	Manpreet Sarao

Maxxam ID:	IIY736
Sample ID:	BH18-2S
Matrix:	Water

Free (WAD) Cyanide

Collected:	2018/11/21
Shipped:	
Received:	2018/11/21

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5854075	N/A	2018/11/27	Automated Statchk
Chloride by Automated Colourimetry	KONE	5854742	N/A	2018/11/26	Deonarine Ramnarine
Chromium (VI) in Water	IC	5852403	N/A	2018/11/28	Sally Norouz
Free (WAD) Cyanide	SKAL/CN	5856228	N/A	2018/11/26	Xuanhong Qiu
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5858318	2018/11/27	2018/11/28	Dorina Popa
Mercury	CV/AA	5858148	2018/11/27	2018/11/27	Ron Morrison
Dissolved Metals by ICPMS	ICP/MS	5854506	N/A	2018/11/26	Matthew Ritenburg
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5855428	N/A	2018/11/27	Manpreet Sarao

Maxxam ID: Sample ID: Matrix:	IIY737 QAQC 18-2 Water					Collected: Shipped: Received:	2018/11/21 2018/11/21
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	5858318	2018/11/27	2018/11/28	Dorina Po	ра
Maxxam ID: Sample ID: Matrix:	IIY737 Dup QAQC 18-2 Water					Collected: Shipped: Received:	2018/11/21 2018/11/21
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	5858318	2018/11/27	2018/11/28	Dorina Po	ра
Maxxam ID: Sample ID: Matrix:	IIY738 BH18-5 Water					Collected: Shipped: Received:	2018/11/21 2018/11/21
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sun	n	CALC	5854075	N/A	2018/11/27	Automate	d Statchk
Chloride by Automated C	Colourimetry	KONE	5854742	N/A	2018/11/26	Deonarine	e Ramnarine
Chromium (VI) in Water		IC	5852403	N/A	2018/11/28	Sally Noro	DUZ

N/A

2018/11/26

Xuanhong Qiu

5856228

SKAL/CN

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

WSP Canada Inc Client Project #: 181-11306-00 Sampler Initials: KM

TEST SUMMARY

Maxxam ID: IIY738 Sample ID: BH18-5 Matrix: Water					Collected: 2018/11/21 Shipped: Received: 2018/11/21
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5858318	2018/11/27	2018/11/28	Dorina Popa
Mercury	CV/AA	5858148	2018/11/27	2018/11/27	Ron Morrison
Dissolved Metals by ICPMS	ICP/MS	5854506	N/A	2018/11/27	Matthew Ritenburg
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5855428	N/A	2018/11/27	Manpreet Sarao
Maxxam ID: IIY739 Sample ID: QAQC18-1 Matrix: Water		5			Collected: 2018/11/21 Shipped: Received: 2018/11/21
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5854075	N/A	2018/11/27	Automated Statchk
Volatile Organic Compounds in Water	GC/MS	5853237	N/A	2018/11/26	Blair Gannon
Maxxam ID: IIY740 Sample ID: BH18-4 Matrix: Water					Collected: 2018/11/21 Shipped: Received: 2018/11/21
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5854075	N/A	2018/11/27	Automated Statchk
Chloride by Automated Colourimetry	KONE	5854742	N/A	2018/11/26	Deonarine Ramnarine
Chromium (VI) in Water	IC	5852403	N/A	2018/11/28	Sally Norouz
Free (WAD) Cyanide	SKAL/CN	5856228	N/A	2018/11/26	Xuanhong Qiu
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5858318	2018/11/27	2018/11/28	Dorina Popa
Mercury	CV/AA	5858148	2018/11/27	2018/11/27	Ron Morrison
Dissolved Metals by ICPMS	ICP/MS	5854506	N/A	2018/11/26	Matthew Ritenburg
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5855428	N/A	2018/11/27	Manpreet Sarao
Maxxam ID: IIY741 Sample ID: TRIP BLANK Matrix: Water					Collected: 2018/11/21 Shipped: Received: 2018/11/21
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5854075	N/A	2018/11/27	Automated Statchk
Volatile Organic Compounds in Water	GC/MS	5853237	N/A	2018/11/26	Blair Gannon
Maxxam ID: IIY742 Sample ID: BH18-7 Matrix: Water		Det i	F		Collected: 2018/11/21 Shipped: Received: 2018/11/21
	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum		5853666	N/A	2018/11/27	Automated Statchk
Volatilo Organic Compounds in Water		5000043		2010/11/28	Jue Palliu Plair Gannon
volatile Organic Compounds in Water		J0J3Z3/	IN/A	2010/11/20	

WSP Canada Inc Client Project #: 181-11306-00 Sampler Initials: KM

GENERAL COMMENTS

All 250mL amber glass bottles for F2-F4 analysis contained visible sediment, which was included in the extraction. All 40mL vials for F1BTEX and VOC analyses contained visible sediment. All 125mL plastic bottles for chromium VI and cyanide analyses contained visible sediment, the 100mL clear glass bottles for mercury analysis contained visible sediment, the 500mL plastic bottles for chloride analysis contained visible sediment.

Sample IIY740 [BH18-4] : F2-F4 Analysis: Due to limited amount of sample available for analyses, a smaller than usual portion of the sample was used. Reporting limits were adjusted accordingly.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

WSP Canada Inc Client Project #: 181-11306-00 Sampler Initials: KM

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5853237	4-Bromofluorobenzene	2018/11/26	80	70 - 130	80	70 - 130	78	%		
5853237	D4-1,2-Dichloroethane	2018/11/26	102	70 - 130	98	70 - 130	100	%		
5853237	D8-Toluene	2018/11/26	101	70 - 130	101	70 - 130	95	%		
5855428	4-Bromofluorobenzene	2018/11/26	99	70 - 130	100	70 - 130	90	%		
5855428	D4-1,2-Dichloroethane	2018/11/26	116	70 - 130	111	70 - 130	119	%		
5855428	D8-Toluene	2018/11/26	103	70 - 130	103	70 - 130	92	%		
5858318	o-Terphenyl	2018/11/28	113	60 - 130	103	60 - 130	96	%		
5860643	1,4-Difluorobenzene	2018/11/28	94	70 - 130	101	70 - 130	102	%		
5860643	4-Bromofluorobenzene	2018/11/28	118	70 - 130	110	70 - 130	110	%		
5860643	D10-Ethylbenzene	2018/11/28	95	70 - 130	105	70 - 130	99	%		
5860643	D4-1,2-Dichloroethane	2018/11/28	109	70 - 130	96	70 - 130	98	%		
5852403	Chromium (VI)	2018/11/28	102	80 - 120	100	80 - 120	<0.50	ug/L	NC	20
5853237	1,1,1,2-Tetrachloroethane	2018/11/26	106	70 - 130	104	70 - 130	<0.50	ug/L	NC	30
5853237	1,1,1-Trichloroethane	2018/11/26	106	70 - 130	106	70 - 130	<0.20	ug/L	NC	30
5853237	1,1,2,2-Tetrachloroethane	2018/11/26	109	70 - 130	104	70 - 130	<0.50	ug/L	NC	30
5853237	1,1,2-Trichloroethane	2018/11/26	106	70 - 130	102	70 - 130	<0.50	ug/L	NC	30
5853237	1,1-Dichloroethane	2018/11/26	108	70 - 130	106	70 - 130	<0.20	ug/L	NC	30
5853237	1,1-Dichloroethylene	2018/11/26	107	70 - 130	107	70 - 130	<0.20	ug/L	NC	30
5853237	1,2-Dichlorobenzene	2018/11/26	103	70 - 130	101	70 - 130	<0.50	ug/L	NC	30
5853237	1,2-Dichloroethane	2018/11/26	108	70 - 130	103	70 - 130	<0.50	ug/L	NC	30
5853237	1,2-Dichloropropane	2018/11/26	108	70 - 130	106	70 - 130	<0.20	ug/L	NC	30
5853237	1,3-Dichlorobenzene	2018/11/26	103	70 - 130	102	70 - 130	<0.50	ug/L	NC	30
5853237	1,4-Dichlorobenzene	2018/11/26	103	70 - 130	103	70 - 130	<0.50	ug/L	NC	30
5853237	Acetone (2-Propanone)	2018/11/26	110	60 - 140	102	60 - 140	<10	ug/L	NC	30
5853237	Benzene	2018/11/26	107	70 - 130	105	70 - 130	<0.20	ug/L	NC	30
5853237	Bromodichloromethane	2018/11/26	107	70 - 130	104	70 - 130	<0.50	ug/L	NC	30
5853237	Bromoform	2018/11/26	107	70 - 130	102	70 - 130	<1.0	ug/L	NC	30
5853237	Bromomethane	2018/11/26	118	60 - 140	110	60 - 140	<0.50	ug/L	NC	30
5853237	Carbon Tetrachloride	2018/11/26	105	70 - 130	106	70 - 130	<0.20	ug/L	NC	30
5853237	Chlorobenzene	2018/11/26	105	70 - 130	103	70 - 130	<0.20	ug/L	NC	30
5853237	Chloroform	2018/11/26	108	70 - 130	106	70 - 130	<0.20	ug/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

WSP Canada Inc Client Project #: 181-11306-00 Sampler Initials: KM

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPE)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5853237	cis-1,2-Dichloroethylene	2018/11/26	109	70 - 130	106	70 - 130	<0.50	ug/L	NC	30
5853237	cis-1,3-Dichloropropene	2018/11/26	110	70 - 130	102	70 - 130	<0.30	ug/L	NC	30
5853237	Dibromochloromethane	2018/11/26	104	70 - 130	100	70 - 130	<0.50	ug/L	NC	30
5853237	Dichlorodifluoromethane (FREON 12)	2018/11/26	127	60 - 140	127	60 - 140	<1.0	ug/L	NC	30
5853237	Ethylbenzene	2018/11/26	104	70 - 130	105	70 - 130	<0.20	ug/L	NC	30
5853237	Ethylene Dibromide	2018/11/26	109	70 - 130	102	70 - 130	<0.20	ug/L	NC	30
5853237	Hexane	2018/11/26	111	70 - 130	111	70 - 130	<1.0	ug/L	NC	30
5853237	Methyl Ethyl Ketone (2-Butanone)	2018/11/26	112	60 - 140	104	60 - 140	<10	ug/L	NC	30
5853237	Methyl Isobutyl Ketone	2018/11/26	113	70 - 130	108	70 - 130	<5.0	ug/L	NC	30
5853237	Methyl t-butyl ether (MTBE)	2018/11/26	104	70 - 130	103	70 - 130	<0.50	ug/L	NC	30
5853237	Methylene Chloride(Dichloromethane)	2018/11/26	117	70 - 130	113	70 - 130	<2.0	ug/L	NC	30
5853237	o-Xylene	2018/11/26	103	70 - 130	105	70 - 130	<0.20	ug/L	NC	30
5853237	p+m-Xylene	2018/11/26	105	70 - 130	106	70 - 130	<0.20	ug/L	NC	30
5853237	Styrene	2018/11/26	109	70 - 130	109	70 - 130	<0.50	ug/L	NC	30
5853237	Tetrachloroethylene	2018/11/26	105	70 - 130	105	70 - 130	<0.20	ug/L	NC	30
5853237	Toluene	2018/11/26	101	70 - 130	100	70 - 130	<0.20	ug/L	NC	30
5853237	Total Xylenes	2018/11/26					<0.20	ug/L	NC	30
5853237	trans-1,2-Dichloroethylene	2018/11/26	108	70 - 130	107	70 - 130	<0.50	ug/L	NC	30
5853237	trans-1,3-Dichloropropene	2018/11/26	99	70 - 130	87	70 - 130	<0.40	ug/L	NC	30
5853237	Trichloroethylene	2018/11/26	107	70 - 130	106	70 - 130	<0.20	ug/L	NC	30
5853237	Trichlorofluoromethane (FREON 11)	2018/11/26	110	70 - 130	110	70 - 130	<0.50	ug/L	NC	30
5853237	Vinyl Chloride	2018/11/26	120	70 - 130	119	70 - 130	<0.20	ug/L	NC	30
5854506	Dissolved Antimony (Sb)	2018/11/26	113	80 - 120	103	80 - 120	<0.50	ug/L		
5854506	Dissolved Arsenic (As)	2018/11/26	104	80 - 120	98	80 - 120	<1.0	ug/L		
5854506	Dissolved Barium (Ba)	2018/11/26	99	80 - 120	100	80 - 120	<2.0	ug/L		
5854506	Dissolved Beryllium (Be)	2018/11/26	102	80 - 120	98	80 - 120	<0.50	ug/L		
5854506	Dissolved Boron (B)	2018/11/26	98	80 - 120	97	80 - 120	<10	ug/L		
5854506	Dissolved Cadmium (Cd)	2018/11/26	105	80 - 120	99	80 - 120	<0.10	ug/L		
5854506	Dissolved Chromium (Cr)	2018/11/28	98	80 - 120	96	80 - 120	<5.0	ug/L	NC	20
5854506	Dissolved Cobalt (Co)	2018/11/26	98	80 - 120	96	80 - 120	<0.50	ug/L		
5854506	Dissolved Copper (Cu)	2018/11/26	103	80 - 120	96	80 - 120	<1.0	ug/L		

Page 15 of 28

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

QUALITY ASSURANCE REPORT(CONT'D)

WSP Canada Inc Client Project #: 181-11306-00 Sampler Initials: KM

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5854506	Dissolved Lead (Pb)	2018/11/26	95	80 - 120	93	80 - 120	<0.50	ug/L		
5854506	Dissolved Molybdenum (Mo)	2018/11/26	111	80 - 120	99	80 - 120	<0.50	ug/L		
5854506	Dissolved Nickel (Ni)	2018/11/26	95	80 - 120	95	80 - 120	<1.0	ug/L		
5854506	Dissolved Selenium (Se)	2018/11/26	101	80 - 120	97	80 - 120	<2.0	ug/L		
5854506	Dissolved Silver (Ag)	2018/11/26	80	80 - 120	95	80 - 120	<0.10	ug/L		
5854506	Dissolved Sodium (Na)	2018/11/26	NC	80 - 120	92	80 - 120	<100	ug/L		
5854506	Dissolved Thallium (TI)	2018/11/26	95	80 - 120	93	80 - 120	<0.050	ug/L		
5854506	Dissolved Uranium (U)	2018/11/26	99	80 - 120	95	80 - 120	<0.10	ug/L		
5854506	Dissolved Vanadium (V)	2018/11/26	101	80 - 120	97	80 - 120	<0.50	ug/L		
5854506	Dissolved Zinc (Zn)	2018/11/26	97	80 - 120	96	80 - 120	<5.0	ug/L		
5854742	Dissolved Chloride (Cl-)	2018/11/26	NC	80 - 120	104	80 - 120	<1.0	mg/L	0.68	20
5855428	1,1,1,2-Tetrachloroethane	2018/11/26	112	70 - 130	110	70 - 130	<0.50	ug/L	NC	30
5855428	1,1,1-Trichloroethane	2018/11/26	105	70 - 130	108	70 - 130	<0.20	ug/L	NC	30
5855428	1,1,2,2-Tetrachloroethane	2018/11/26	119	70 - 130	113	70 - 130	<0.50	ug/L	NC	30
5855428	1,1,2-Trichloroethane	2018/11/26	110	70 - 130	105	70 - 130	<0.50	ug/L	NC	30
5855428	1,1-Dichloroethane	2018/11/26	108	70 - 130	110	70 - 130	<0.20	ug/L	NC	30
5855428	1,1-Dichloroethylene	2018/11/26	101	70 - 130	103	70 - 130	<0.20	ug/L	NC	30
5855428	1,2-Dichlorobenzene	2018/11/26	99	70 - 130	98	70 - 130	<0.50	ug/L	NC	30
5855428	1,2-Dichloroethane	2018/11/26	112	70 - 130	109	70 - 130	<0.50	ug/L	NC	30
5855428	1,2-Dichloropropane	2018/11/26	106	70 - 130	106	70 - 130	<0.20	ug/L	NC	30
5855428	1,3-Dichlorobenzene	2018/11/26	95	70 - 130	96	70 - 130	<0.50	ug/L	NC	30
5855428	1,4-Dichlorobenzene	2018/11/26	94	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
5855428	Acetone (2-Propanone)	2018/11/26	115	60 - 140	110	60 - 140	<10	ug/L	NC	30
5855428	Benzene	2018/11/26	106	70 - 130	105	70 - 130	<0.20	ug/L	NC	30
5855428	Bromodichloromethane	2018/11/26	109	70 - 130	108	70 - 130	<0.50	ug/L	1.9	30
5855428	Bromoform	2018/11/26	118	70 - 130	113	70 - 130	<1.0	ug/L	NC	30
5855428	Bromomethane	2018/11/26	120	60 - 140	120	60 - 140	<0.50	ug/L	NC	30
5855428	Carbon Tetrachloride	2018/11/26	107	70 - 130	109	70 - 130	<0.20	ug/L	NC	30
5855428	Chlorobenzene	2018/11/26	98	70 - 130	97	70 - 130	<0.20	ug/L	NC	30
5855428	Chloroform	2018/11/26	108	70 - 130	109	70 - 130	<0.20	ug/L	2.7	30
5855428	cis-1,2-Dichloroethylene	2018/11/26	110	70 - 130	109	70 - 130	<0.50	ug/L	NC	30

Page 16 of 28

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

QUALITY ASSURANCE REPORT(CONT'D)

WSP Canada Inc Client Project #: 181-11306-00 Sampler Initials: KM

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5855428	cis-1,3-Dichloropropene	2018/11/26	93	70 - 130	88	70 - 130	<0.30	ug/L	NC	30
5855428	Dibromochloromethane	2018/11/26	129	70 - 130	125	70 - 130	<0.50	ug/L	23	30
5855428	Dichlorodifluoromethane (FREON 12)	2018/11/26	130	60 - 140	134	60 - 140	<1.0	ug/L	NC	30
5855428	Ethylbenzene	2018/11/26	86	70 - 130	87	70 - 130	<0.20	ug/L	NC	30
5855428	Ethylene Dibromide	2018/11/26	118	70 - 130	111	70 - 130	<0.20	ug/L	NC	30
5855428	F1 (C6-C10) - BTEX	2018/11/26					<25	ug/L	NC	30
5855428	F1 (C6-C10)	2018/11/26	86	60 - 140	87	60 - 140	<25	ug/L	NC	30
5855428	Hexane	2018/11/26	94	70 - 130	98	70 - 130	<1.0	ug/L	NC	30
5855428	Methyl Ethyl Ketone (2-Butanone)	2018/11/26	118	60 - 140	112	60 - 140	<10	ug/L	NC	30
5855428	Methyl Isobutyl Ketone	2018/11/26	106	70 - 130	103	70 - 130	<5.0	ug/L	NC	30
5855428	Methyl t-butyl ether (MTBE)	2018/11/26	95	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
5855428	Methylene Chloride(Dichloromethane)	2018/11/26	126	70 - 130	125	70 - 130	<2.0	ug/L	NC	30
5855428	o-Xylene	2018/11/26	86	70 - 130	88	70 - 130	<0.20	ug/L	NC	30
5855428	p+m-Xylene	2018/11/26	82	70 - 130	83	70 - 130	<0.20	ug/L	NC	30
5855428	Styrene	2018/11/26	92	70 - 130	96	70 - 130	<0.50	ug/L	NC	30
5855428	Tetrachloroethylene	2018/11/26	107	70 - 130	110	70 - 130	<0.20	ug/L	NC	30
5855428	Toluene	2018/11/26	104	70 - 130	104	70 - 130	<0.20	ug/L	NC	30
5855428	Total Xylenes	2018/11/26					<0.20	ug/L	NC	30
5855428	trans-1,2-Dichloroethylene	2018/11/26	107	70 - 130	110	70 - 130	<0.50	ug/L	NC	30
5855428	trans-1,3-Dichloropropene	2018/11/26	104	70 - 130	95	70 - 130	<0.40	ug/L	NC	30
5855428	Trichloroethylene	2018/11/26	106	70 - 130	108	70 - 130	<0.20	ug/L	NC	30
5855428	Trichlorofluoromethane (FREON 11)	2018/11/26	114	70 - 130	116	70 - 130	<0.50	ug/L	NC	30
5855428	Vinyl Chloride	2018/11/26	116	70 - 130	118	70 - 130	<0.20	ug/L	NC	30
5856228	WAD Cyanide (Free)	2018/11/26	106	80 - 120	101	80 - 120	<1	ug/L	0	20
5858148	Mercury (Hg)	2018/11/27	86	75 - 125	89	80 - 120	<0.1	ug/L	NC	20
5858318	F2 (C10-C16 Hydrocarbons)	2018/11/28	109	50 - 130	87	60 - 130	<100	ug/L	NC	30
5858318	F3 (C16-C34 Hydrocarbons)	2018/11/28	108	50 - 130	97	60 - 130	<200	ug/L	NC	30
5858318	F4 (C34-C50 Hydrocarbons)	2018/11/28	106	50 - 130	93	60 - 130	<200	ug/L	NC	30
5860643	F1 (C6-C10) - BTEX	2018/11/28					<25	ug/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

WSP Canada Inc Client Project #: 181-11306-00 Sampler Initials: KM

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPE)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5860643	F1 (C6-C10)	2018/11/28	101	70 - 130	101	70 - 130	<25	ug/L	NC	30
	•			-						

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

WSP Canada Inc Client Project #: 181-11306-00 Sampler Initials: KM

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

4		1	÷.	č.							P	rese	nce	of V	isib	le Pa	artic	ulate	e/Se	dim	ent					CA	M FCD-	01013 ge 1 o	/5 f 1	
							3	When	there i	s >1ci	mofu	visible	parti	iculat	e/sed	iment	t, the	amou	nt wil	ll be r	ecord	ed in	the fi	eld be	low			0		
			-												Bo	ottle 1	Types													
				Ir	norgan	ics						0	ganio	cs						43	Hyd	rocarl	bons				Vola	tiles		Othe
	' Sample ID	All	CrVI	CN	General	Hg	Metals (Diss.)	Organic 1 of 2	Organic 2 of 2	PCB 1 of 2	PCB 2 of 2	Pest/ Herb 1 of 2	Pest/ Herb 2 of 2	SVOC/ ABN 1 of 2	SVOC/ ABN 2 of 2	PAH 1 of 2	PAH 2 of 2	Dioxin /Furan	F1 Vial 1	F1 Vial 2	F1 Vial 3	F1 Vial 4	F2-F4 1 of 2	F2-F4 2 of 2	F4G	VOC Vial 1	VOC Vial 2	VOC Vial 3	VOC Vial 4	
	BH18-15 .	TS													1	¥.		,											8	
	BH-25	TS												4 			Ĺ													
3	BH918-5	TS											•			~			v.	-								-		
1	QAQC18-1	TS									-				<u>-R</u>															
5	BH18-4	TS																ĥe -		-						0		100		-
5	BH18-7 Palura	0	<u> </u>															•					_			300	S.Ber	0.60	n	-
7																				_			-			1				
8												_							_	1.4	-				-		_			
9										_		_									-	-		_	-				=	
.0									1	1.																		2		
						-	1		j																		_			1
	comments: 'EXCept	m	etc	21x																										
		Leg	gend:	_														r	-											
		Р	Susp	ended	Particula	te									F	Record	ded B	y : (signa	ature/p	rint)	Cy	int	his	. Of	R	C	In?	TIC.	A	12
		TS S	Trace Sedi	e Settle ment g	d Sedime eater tha	ent (jus an (>) T	t covers 'race, bu	bottom i t less tha	of contai an (<) 1 c	ner or l m	ess)										0			X	J					
											÷.			-				35												

2

.

.

difference of the	۱۳	VOICE TO:		1	<u> </u>	REPO	RT TO:	2. A.					PROJEC	T INFORM	ATION:		-	Laboratory U	Page of se Only:
au Mau	#23879 WSP C	anada Inc		Comos	ov Name	1.12					Ouotation	#	B6273	38				Maxxam Job #:	Bottle Order #:
ny near	Accounts Payab	e		Attenti	n: Micha	el Wilson				le pà	P.O.#	3							
10	51 Constellation	Court		Addres	5	-					Project:		181-1	1306-00					692229
a.	Toronto ON M9V	V 1K4	E) 650 2288		(416)	798-0065 Evt	250				Project Na	ime:	<u>11</u>		-			COC #:	Project Manager:
	pavables ontario	@wsp.com	5) 550-2200	Tel:	micha	el.wilson@wsp	.com			·	Site #	a.	Kà	hel	1 At	ee/	اللاليو.	C#692229-01-01	Ashton Gibson
FR	EGULATED DRINKIN	G WATER OR WATER		OR HUMAN	CONSUMPTION	MUST BE		1		AN	ALYSIS REI	QUESTED	PLEASE	BE SPECIF	(Č).		L. L	Turnaround Time (TA	T) Required
NE:	SUBMITTED	ON THE MAXXAM DR	INKING WATE	R CHAIN O	CUSTODY					6				148	2.89	-	Read	Please provide advance noti	ce for rush projects
Regi	ulation 153 (2011)	c	Other Regulation		Special I	nstructions	Circle			3-201				1.14	s 31		(will be app	plied if Rush TAT is not specified).	
∋ 1	Res/Park Mediu	n/Fine	Sanitary Sawer	Bylaw			ase (kg (5				1			Standard T	TAT = 5-7 Working days for most tests.	14
+2 +3	Agri/Other	C Reg 558	Storm Sewer B Municipality	law			(ple	s Pkg	ž	d Eig		T	ः •		1		Please not days - cont	te: Standard TAT for certain tests such tact your Project Manager for details.	as BOD and Dioxins/Furans are > 5
-		PWQ0					ered	ganice	& F1-	& Sto	0	L				1	Job Spec	cific Rush TAT (if applies to entire a	submission)
		Other			-		A Filt	Inorg	V HS	nitary	0	d		Í		121- 141-	Date Requi	ired:	Time Required
	Include Criter	a on Certificate of Ana	lysis (Y/N)?	Y			Fiek	tals 8	Cs D)	el Sa	>	L	<u> </u>				for Bottle		(call lab for #)
Si	imple Barcode Label	Sample (Location) Ide	entification	Date Sampled	Time Sampled	Matrix		Me	S.	Pe				1-			H of Contra		mments
	•	8H 18 - 1	S	New 21/1	9 gam	Crw	Y	X	×	ي بيترين	9		5	10 - C			10		1.17
		BH18-2	S		182m		Y	×	×								10		
		BUMBANA	9 A QC 18-2		92m		4					×				×	3		
		BH18-5			llam		Y	×	×								10		
	3	QAQCIB-	1		llam		Y				× .						2		2
		BH18-4		1	120m		Y	×	×								(0)		
_		Trio Blunk		Kus 21/18	/	Gw		18		i.	X						. ``	21-Nov-	-18 15:10
		and Diam	-		1	0											2	Ashton Gibso	
		BH18-	+	NOV 2/11	2pm	GW				I.		\times					5		5
,	-			1					1								_	B8A1/0	0
															*:		12	+ CA2 ENV	V-709
											-							CAL -	.77
_	* RELINQUISHED BY: (Signature/Print)	Date: (YY/	MM/DD)	Time	RECEIVED	BY: (Signature	e/Print)		Date: (YY/	MM/DD)	TI	me	# jars i	ised and		Labo	oratory Use Only	-
ne.	M'Ateer X	MAKS	18/11/2	1 15	507 A	hot Jun	1 pus	men	- 2	018 1	1/21	151	10	not su	Dmitted	Time Sensi	tive Temper	rature (°C) on Recei	ty Seal Yes No.
S OT	THERWISE AGREED TO IN V DOMENT AND ACCEPTANC	RITING, WORK SUBMITTED	D ON THIS CHAIN RE AVAILABLE FO	DF CUSTODY IS DR VIEWING AT	SUBJECT TO MAXX	AM'S STANDARD T TERMS.	ERMS AND CO	NDITIONS.	SIGNING C	F THIS CH	AIN OF CUS	TODY DOC	UMENT IS		SAMPL	ES MUST BE I	CEPT COOL (< 10	0° C) FROM TIME OF SAMPLING	White: Maxxa Yellow: Clie

Maxxam Analytics International Corporation o/a Maxxam Analytics

WSP Canada Inc Client Project #: 181-11306-00 Client ID: BH18-1S

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.
WSP Canada Inc Client Project #: 181-11306-00 Client ID: BH18-2S

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

WSP Canada Inc Client Project #: 181-11306-00 Client ID: QAQC 18-2

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

WSP Canada Inc Client Project #: 181-11306-00 Client ID: QAQC 18-2

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

WSP Canada Inc Client Project #: 181-11306-00 Client ID: BH18-5

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

WSP Canada Inc Client Project #: 181-11306-00 Client ID: BH18-4

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

WSP Canada Inc Client Project #: 181-11306-00 Sampler Initials: KM

Exceedence Summary Table – Reg153/04 T3-GW-C

Result Exceedences

Sample ID	Maxxam ID	Parameter	Criteria	Result	DL	Units					
BH18-4	F2 (C10-C16 Hydrocarbons)	150	170	110	ug/L						
The exceedence summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance											
to applicable regulatory guidelir	to applicable regulatory guidelines.										

Your Project #: 181-11306-00 Site Location: 958 EAST AVE. Your C.O.C. #: 115203

Attention: Michael Wilson

WSP Canada Inc 51 Constellation Court Toronto, ON CANADA M9W 1K4

> Report Date: 2018/12/04 Report #: R5511617 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8V6132 Received: 2018/11/27, 11:05

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Chloride by Automated Colourimetry	1	N/A	2018/11/29	CAM SOP-00463	EPA 325.2 m
Chromium (VI) in Water	1	N/A	2018/12/03	CAM SOP-00436	EPA 7199 m
Free (WAD) Cyanide	1	N/A	2018/11/29	CAM SOP-00457	OMOE E3015 m
Petroleum Hydrocarbons F2-F4 in Water (1)	1	2018/11/30	2018/12/03	CAM SOP-00316	CCME PHC-CWS m
Mercury	1	2018/11/30	2018/11/30	CAM SOP-00453	EPA 7470A m
Dissolved Metals by ICPMS	1	N/A	2018/11/29	CAM SOP-00447	EPA 6020B m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: 181-11306-00 Site Location: 958 EAST AVE. Your C.O.C. #: 115203

Attention: Michael Wilson

WSP Canada Inc 51 Constellation Court Toronto, ON CANADA M9W 1K4

> Report Date: 2018/12/04 Report #: R5511617 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8V6132 Received: 2018/11/27, 11:05

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ashton Gibson, Project Manager Email: AGibson@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 11

WSP Canada Inc Client Project #: 181-11306-00 Site Location: 958 EAST AVE.

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		IJY106		
Sampling Date		2018/11/27 09:30		
COC Number		115203		
	UNITS	BH18-7	RDL	QC Batch
F2-F4 Hydrocarbons				
F2 (C10-C16 Hydrocarbons)	ug/L	<100	100	5865342
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	5865342
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	5865342
Reached Baseline at C50	ug/L	Yes		5865342
Surrogate Recovery (%)				
o-Terphenyl	%	107		5865342
RDL = Reportable Detection L QC Batch = Quality Control Ba	imit atch			

WSP Canada Inc Client Project #: 181-11306-00 Site Location: 958 EAST AVE.

O.REG 153 METALS & INORGANICS PKG (WTR)

Maxxam ID		IJY106		
Sampling Date		2018/11/27		
Sumpling Date		09:30		
COC Number		115203		
	UNITS	BH18-7	RDL	QC Batch
Inorganics				
WAD Cyanide (Free)	ug/L	<1	1	5862447
Dissolved Chloride (Cl-)	mg/L	240	3.0	5861773
Metals		-		
Chromium (VI)	ug/L	<0.50	0.50	5863280
Mercury (Hg)	ug/L	<0.1	0.1	5864605
Dissolved Antimony (Sb)	ug/L	3.5	0.50	5863067
Dissolved Arsenic (As)	ug/L	8.6	1.0	5863067
Dissolved Barium (Ba)	ug/L	76	2.0	5863067
Dissolved Beryllium (Be)	ug/L	<0.50	0.50	5863067
Dissolved Boron (B)	ug/L	1200	10	5863067
Dissolved Cadmium (Cd)	ug/L	<0.10	0.10	5863067
Dissolved Chromium (Cr)	ug/L	<5.0	5.0	5863067
Dissolved Cobalt (Co)	ug/L	2.0	0.50	5863067
Dissolved Copper (Cu)	ug/L	<1.0	1.0	5863067
Dissolved Lead (Pb)	ug/L	<0.50	0.50	5863067
Dissolved Molybdenum (Mo)	ug/L	29	0.50	5863067
Dissolved Nickel (Ni)	ug/L	3.3	1.0	5863067
Dissolved Selenium (Se)	ug/L	2.0	2.0	5863067
Dissolved Silver (Ag)	ug/L	<0.10	0.10	5863067
Dissolved Sodium (Na)	ug/L	190000	100	5863067
Dissolved Thallium (Tl)	ug/L	0.12	0.050	5863067
Dissolved Uranium (U)	ug/L	9.5	0.10	5863067
Dissolved Vanadium (V)	ug/L	1.5	0.50	5863067
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	5863067
RDL = Reportable Detection Li	nit			
QC Batch = Quality Control Bat	ch			

WSP Canada Inc Client Project #: 181-11306-00 Site Location: 958 EAST AVE.

TEST SUMMARY

Maxxam ID:	IJY106
Sample ID:	BH18-7
Matrix:	Water

Collected:	2018/11/27
Shipped:	
Received:	2018/11/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chloride by Automated Colourimetry	KONE	5861773	N/A	2018/11/29	Alina Dobreanu
Chromium (VI) in Water	IC	5863280	N/A	2018/12/03	Lang Le
Free (WAD) Cyanide	SKAL/CN	5862447	N/A	2018/11/29	Louise Harding
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5865342	2018/11/30	2018/12/03	(Kent) Maolin Li
Mercury	CV/AA	5864605	2018/11/30	2018/11/30	Ron Morrison
Dissolved Metals by ICPMS	ICP/MS	5863067	N/A	2018/11/29	Matthew Ritenburg

Maxxam Job #: B8V6132 Report Date: 2018/12/04 WSP Canada Inc Client Project #: 181-11306-00 Site Location: 958 EAST AVE.

GENERAL COMMENTS

Results relate only to the items tested.

Maxxam Job #: B8V6132 Report Date: 2018/12/04

QUALITY ASSURANCE REPORT

WSP Canada Inc Client Project #: 181-11306-00 Site Location: 958 EAST AVE.

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5865342	o-Terphenyl	2018/12/03	124	60 - 130	101	60 - 130	113	%		
5861773	Dissolved Chloride (Cl-)	2018/11/29	NC	80 - 120	101	80 - 120	<1.0	mg/L	0.17	20
5862447	WAD Cyanide (Free)	2018/11/29	95	80 - 120	97	80 - 120	<1	ug/L	NC	20
5863067	Dissolved Antimony (Sb)	2018/11/29	110	80 - 120	100	80 - 120	<0.50	ug/L	NC	20
5863067	Dissolved Arsenic (As)	2018/11/29	106	80 - 120	99	80 - 120	<1.0	ug/L	NC	20
5863067	Dissolved Barium (Ba)	2018/11/29	102	80 - 120	99	80 - 120	<2.0	ug/L	2.7	20
5863067	Dissolved Beryllium (Be)	2018/11/29	104	80 - 120	97	80 - 120	<0.50	ug/L	NC	20
5863067	Dissolved Boron (B)	2018/11/29	99	80 - 120	93	80 - 120	<10	ug/L	0.11	20
5863067	Dissolved Cadmium (Cd)	2018/11/29	103	80 - 120	97	80 - 120	<0.10	ug/L	NC	20
5863067	Dissolved Chromium (Cr)	2018/11/29	100	80 - 120	95	80 - 120	<5.0	ug/L	NC	20
5863067	Dissolved Cobalt (Co)	2018/11/29	100	80 - 120	96	80 - 120	<0.50	ug/L	NC	20
5863067	Dissolved Copper (Cu)	2018/11/29	101	80 - 120	95	80 - 120	<1.0	ug/L	4.3	20
5863067	Dissolved Lead (Pb)	2018/11/29	100	80 - 120	94	80 - 120	<0.50	ug/L	NC	20
5863067	Dissolved Molybdenum (Mo)	2018/11/29	107	80 - 120	99	80 - 120	<0.50	ug/L	18	20
5863067	Dissolved Nickel (Ni)	2018/11/29	99	80 - 120	95	80 - 120	<1.0	ug/L	15	20
5863067	Dissolved Selenium (Se)	2018/11/29	107	80 - 120	103	80 - 120	<2.0	ug/L	NC	20
5863067	Dissolved Silver (Ag)	2018/11/29	102	80 - 120	95	80 - 120	<0.10	ug/L	NC	20
5863067	Dissolved Sodium (Na)	2018/11/29	98	80 - 120	92	80 - 120	<100	ug/L	2.3	20
5863067	Dissolved Thallium (Tl)	2018/11/29	100	80 - 120	94	80 - 120	<0.050	ug/L	NC	20
5863067	Dissolved Uranium (U)	2018/11/29	99	80 - 120	93	80 - 120	<0.10	ug/L	0.95	20
5863067	Dissolved Vanadium (V)	2018/11/29	103	80 - 120	97	80 - 120	<0.50	ug/L	NC	20
5863067	Dissolved Zinc (Zn)	2018/11/29	102	80 - 120	96	80 - 120	<5.0	ug/L	NC	20
5863280	Chromium (VI)	2018/12/03	98	80 - 120	103	80 - 120	<0.50	ug/L	NC	20
5864605	Mercury (Hg)	2018/11/30	93	75 - 125	95	80 - 120	<0.1	ug/L	NC	20
5865342	F2 (C10-C16 Hydrocarbons)	2018/12/03	124	50 - 130	105	60 - 130	<100	ug/L	4.0	30
5865342	F3 (C16-C34 Hydrocarbons)	2018/12/03	NC	50 - 130	109	60 - 130	<200	ug/L	25	30

Maxxam Job #: B8V6132 Report Date: 2018/12/04

QUALITY ASSURANCE REPORT(CONT'D)

WSP Canada Inc Client Project #: 181-11306-00 Site Location: 958 EAST AVE.

			Matrix Spike		SPIKED	BLANK	Method B	Blank	RPD			
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits		
5865342	F4 (C34-C50 Hydrocarbons)	2018/12/03	121	50 - 130	102	60 - 130	<200	ug/L	NC	30		

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

WSP Canada Inc Client Project #: 181-11306-00 Site Location: 958 EAST AVE.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	Invoice Information		Report	Information	(if diffs	ers from	m invoi	ce)				Pro	ject Inform	nation (wh	ere appl	cable)		Turnaround Time (TAT) Required		
mpany Name:	WSP Lanodo Inc	Compan	y Name:				۲ <u>ب</u>	1	l.	-4	Quotation	11:	9- ¹⁴ 0-1	Ser 181			ins he	Regular TAT (5-7 days) Most analyse		
ntact Name:	MIKE WILSON	Contact	Name:						-		P.O. #/ AFE	#:			-74		11.4	PLEASE PROVIDE ADVANCE NOTICE FOR RUS		
dress:	51 Constallation Cours	Address:					n in	201			Project #:		181-	-1130	6-0	20	H	Rush TAT (Surcharges will be ap		
I, BE TAY	and the second state of the										Site Locatio	m: 958 East Aug			5		1 Day 2 Days 3			
me: <u>647</u>	1-730-7053	Phone:				Fax:		- 25	5		Site #:		~		6		10			
alle mich	null. wilson @ wsp. con	Email:	70	VHI _gP+			2		14		Sampled B	ý:	2464	obla	N	dna	14	Date Required:		
	MOE REGULATED DRINKING WATER	OR WATER INTENDED FO	R HUMAN CONS	UMPTION M	UST BE	SUBN	IITTED	ON THE	MAXX	AM DE	INKING WAT	ER CH	AIN OF CU	ISTODY	80	li e		Rush Confirmation #:		
Table 1	Res/Park Med/ Fine	CCME Sanit	gulations arv Sewer Bylaw	Cherry and			-	-	-	1	Analysis	Reque	sted	TT	-	CT.	1	LABORATORY USE ONLY		
Table 2	Ind/Comm Coarse	MISA Storm	Sewer Bylaw			E)			T.									Y /N COOLER TEM		
Table 3	Agri/ Other	PWQO Regio	n			9/10	. 1			L.				ΕŦ.			50	Present intact		
FOR RSC (PLE	ASE CIRCLE) (YN	REG 558 (MIN. 3 DA	TAT REQUIRED)	1	TED	fettls /			ANICS		WS - B							- N[15]		
de Criteria on	Certificate of Analysis: Y / N				TIMBUS	SCLE)		1	INORG	TALS	tetals, F				1		ALYZE			
SAMPL	ES MUST BE KEPT COOL (< 10 °C) FROM TIME (OF SAMPLING UNTIL DELIV	ERY TO MAXXAM	()	INERS 3	RED (CII			TALS &	MS ME	TALS PMS N			lat.			OT AN			
	SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED	MATRIX	CONTA	D FILTER	K/ PHC	s F2 - F4	153 ME	153 ICP	153 ME Cr VI, IC						D-DO N	COLLING MEDIA PRESENT: UT / N		
Dil		(iiii)	(HILWIW)	1	# 08	FIEL	BTE	DHd	REG	REG	REG (Hg.			++	+		HOL	COMMENTS		
BH	18-7	2018/11/27	9:30	GW	7	X		No.	-											
		-						-	-				_							
	And the second second	_					4								1					
_								_				_								
	A second s							_												
								-	-											
_					8		_	_		-		_								
_	2 17											_								
																		27-Nov-18 11:0		
RELIN	V (Signature/Print)	DATE: (YYYY/MM/DD)	TIME: (HH:M	M)	Pa.	RECE	IVED B	Y: (Signa	sture/Pi	rint)	-	DA	TE: (YYYY)	MM/DD)	1	IME: (HH	MM)	Ashton Gibson		
2.84	X Stepher Strall 2	08/11/27	11:05	A	th	7	R	A	10	W:A	w	20	18/4	27	11	105				

COC-1004 (03/17)

.

White: Maxxam - Yellow: Client

WSP Canada Inc Client Project #: 181-11306-00 Project name: 958 EAST AVE. Client ID: BH18-7

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your Project #: 181-11306-00 Site Location: 958-960 EAST AVE Your C.O.C. #: n/a

Attention: Michael Wilson

WSP Canada Inc 51 Constellation Court Toronto, ON CANADA M9W 1K4

> Report Date: 2018/12/12 Report #: R5522977 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8W6343 Received: 2018/12/06, 09:20

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydro. CCME F1 & BTEX in Water	2	N/A	2018/12/10	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1)	2	2018/12/11	2018/12/12	CAM SOP-00316	CCME PHC-CWS m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ashton Gibson, Project Manager

Your Project #: 181-11306-00 Site Location: 958-960 EAST AVE Your C.O.C. #: n/a

Attention: Michael Wilson

WSP Canada Inc 51 Constellation Court Toronto, ON CANADA M9W 1K4

> Report Date: 2018/12/12 Report #: R5522977 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8W6343

Received: 2018/12/06, 09:20 Email: AGibson@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

WSP Canada Inc Client Project #: 181-11306-00 Site Location: 958-960 EAST AVE Sampler Initials: MW

O.REG 153 PETROLEUM HYDROCARBONS (WATER)

Maxxam ID				IMD785		IMD786		
Sampling Date				2018/12/06 08:30		2018/12/06		
COC Number				n/a		n/a		
		UNITS	Criteria	18-4	RDL	TRIP BLANK	RDL	QC Batch
BTEX & F1 Hydr	ocarbons							
Benzene		ug/L	44	<0.20	0.20	<0.20	0.20	5879626
Toluene		ug/L	18000	<0.20	0.20	<0.20	0.20	5879626
Ethylbenzene		ug/L	2300	<0.20	0.20	<0.20	0.20	5879626
o-Xylene		ug/L	-	<0.20	0.20	<0.20	0.20	5879626
p+m-Xylene		ug/L	-	<0.40	0.40	<0.40	0.40	5879626
Total Xylenes		ug/L	4200	<0.40	0.40	<0.40	0.40	5879626
F1 (C6-C10)		ug/L	750	<25	25	<25	25	5879626
F1 (C6-C10) - BT	ug/L	750	<25	<25	25	5879626		
F2-F4 Hydrocar	bons							
F2 (C10-C16 Hyd	drocarbons)	ug/L	150	<110	110	<100	100	5882832
F3 (C16-C34 Hyd	drocarbons)	ug/L	500	<220	220	<200	200	5882832
F4 (C34-C50 Hyd	drocarbons)	ug/L	500	<220	220	<200	200	5882832
Reached Baselir	ne at C50	ug/L	-	Yes		Yes		5882832
Surrogate Reco	very (%)							
1,4-Difluoroben	zene	%	-	103		104		5879626
4-Bromofluorob	enzene	%	-	97		98		5879626
D10-Ethylbenze	ne	%	-	93		95		5879626
D4-1,2-Dichloro	ethane	%	-	97		99		5879626
o-Terphenyl		%	-	113		113		5882832
No Fill	No Exceeda	ince						
Grey	Exceeds 1 c	riteria p	olicy/leve	el				
Black	Exceeds bo	th criter	ia/levels					
RDL = Reportab	le Detection L	imit						
QC Batch = Qua	lity Control Ba	atch						
Criteria: Ontario	Reg. 153/04	(Amend	ed April :	15, 2011)				
Table 3: Full Dep	oth Generic Si	te Cond	ition Star	idards in a No	n-Pota	able Ground V	Vater	Condition
Non- Potable Gr	round Water -	All Type	es of Prop	erty Uses - Co	barse -	Textured Soil		

WSP Canada Inc Client Project #: 181-11306-00 Site Location: 958-960 EAST AVE Sampler Initials: MW

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	IMD785 18-4 Water					Collected: Shipped: Received:	2018/12/06 2018/12/06
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Water	HSGC/MSFD	5879626	N/A	2018/12/10	Anca Gane	a
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	5882832	2018/12/11	2018/12/12	Jeevaraj Je	evaratrnam
Maxxam ID: Sample ID: Matrix:	IMD786 TRIP BLANK Water					Collected: Shipped: Received:	2018/12/06 2018/12/06
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Water	HSGC/MSFD	5879626	N/A	2018/12/10	Anca Gane	a
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	5882832	2018/12/11	2018/12/12	Jeevaraj Je	evaratrnam

WSP Canada Inc Client Project #: 181-11306-00 Site Location: 958-960 EAST AVE Sampler Initials: MW

GENERAL COMMENTS

Custody seal was present and intact

Sample IMD785 [18-4] : F2-F4 Analysis: Due to limited amount of sample available for analyses, a smaller than usual portion of the sample was used. Reporting limits were adjusted accordingly.

Results relate only to the items tested.

Maxxam Job #: B8W6343 Report Date: 2018/12/12

QUALITY ASSURANCE REPORT

WSP Canada Inc Client Project #: 181-11306-00 Site Location: 958-960 EAST AVE Sampler Initials: MW

			Matrix	Spike	SPIKED	BLANK	Method B	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5879626	1,4-Difluorobenzene	2018/12/10	104	70 - 130	103	70 - 130	100	%		
5879626	4-Bromofluorobenzene	2018/12/10	100	70 - 130	98	70 - 130	97	%		
5879626	D10-Ethylbenzene	2018/12/10	96	70 - 130	91	70 - 130	103	%		
5879626	D4-1,2-Dichloroethane	2018/12/10	99	70 - 130	100	70 - 130	102	%		
5882832	o-Terphenyl	2018/12/12	117	60 - 130	116	60 - 130	114	%		
5879626	Benzene	2018/12/10	91	70 - 130	87	70 - 130	<0.20	ug/L	NC	30
5879626	Ethylbenzene	2018/12/10	97	70 - 130	91	70 - 130	<0.20	ug/L	NC	30
5879626	F1 (C6-C10) - BTEX	2018/12/10					<25	ug/L	NC	30
5879626	F1 (C6-C10)	2018/12/10	103	70 - 130	114	70 - 130	<25	ug/L	NC	30
5879626	o-Xylene	2018/12/10	96	70 - 130	93	70 - 130	<0.20	ug/L	NC	30
5879626	p+m-Xylene	2018/12/10	99	70 - 130	94	70 - 130	<0.40	ug/L	NC	30
5879626	Toluene	2018/12/10	97	70 - 130	94	70 - 130	<0.20	ug/L	NC	30
5879626	Total Xylenes	2018/12/10					<0.40	ug/L	NC	30
5882832	F2 (C10-C16 Hydrocarbons)	2018/12/12	NC	50 - 130	107	60 - 130	<100	ug/L	NC	30
5882832	F3 (C16-C34 Hydrocarbons)	2018/12/12	111	50 - 130	112	60 - 130	<200	ug/L	1.7	30
5882832	F4 (C34-C50 Hydrocarbons)	2018/12/12	112	50 - 130	105	60 - 130	<200	ug/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

WSP Canada Inc Client Project #: 181-11306-00 Site Location: 958-960 EAST AVE Sampler Initials: MW

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Phone: 905-817-5700	Fax: 905-817-5779	Toll Free: 800-563-6266
and the second se		

Invoice Information		Report In	formation (if differ	rs from	n invoid	ce)			Project Information (where applicable)							Turnaround Time (TAT) Required					
any Name: SAULE	Company	Name:	WSP	33	14	1.	R			Quotation #:					6	Regular TAT (5-7 days) Most analyses						
ct Name:	Contact !	Name:	Mike	. 14	oils	son	en			P.O. #/ AFE	:#:			g au l	lu n	1-31	PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJ					
55:	Address:		51 (ous	ster	llay	han	· (a	ut	Project #:	1	181-11	306	00			Rush TAT (Surcharges will be applied)					
		Ī	torov	10	,0	N				Site Locati	on:	958.96	0 E	ast.	fre	h.r .	. 1 Day 2 Days 3-4 Days					
r:Fax:	Phone:	416 798.	0+65		Fax: 4	116-	799	8.00	78	Site #:	Ē		i un	ne Station								
fugables. outoris @ wsp	com Email:	michael	1. wils	on	Qu	sp.	100	in		Sampled B	y:	Mu					Date Required:					
MOE REGULATED DRINKING W	NTER OR WATER INTENDED FO	R HUMAN CONSUL	MPTION MI	JST BE	SUBM	ITTED	ON TH	ie Max)		RINKING WAT	ER CH	AIN OF CUSTO	DY	THE		8 #=070_	Rush Confirmation #:					
Regulation 153	Other Rep	gulations					2		-	Analysis	Reque	ested	_		-		LABORATORY USE ONLY					
able 2 Ind/Comm Coarse able 3 Agri/ Other able OR RSC (PLEASE CIRCLE) N	MISA Storm PWQO Regio Other (Specify) REG 558 (MIN. 3 DA)	Y TAT REQUIRED)		MITTED	E) Metals / Hg / CrVI		i i	ORGANICS	S	ils, HWS - B)						žt	Present Intact 7/7/1					
SAMPLES MUST BE VEDT COOL / 410 °C / FROM TH	AF OF SAMPLING UNTIL DELIN			RS SUB	(CIRCL			S & INC	METAL	s S Meta						ANALY						
SAMPLES MOST BE KEPT COOL (< 10 C / PROM TI	DE OF SAMPLING UNTIL DELIV			ITAINE	TERED	CFI	F4	METAL	ICPMS	METAL						D NOT.	COOLING MEDIA PRESENT:					
SAMPLE IDENTIFICATION	DATE SAMPLED (YYYY/MM/DD)	TIME SAMPLED (HH:MM)	MATRIX	r DF CON	HELD FIL	STEX/ PH	HCs F2	/OCs TEG 153	EG 153	teg 153 Hg. Cr V						HOLD- DI	COMMENTS					
18-4	2018/12/06	08130	600	5		×	*									1						
frip Black	×	-	40	5		X	×															
															1							
Ř.																						
																+						
	1010																					
	and the																					
RELINQUISHED BY (Signature/Print)	DATE: (YYYY/MM/DD)	TIME: (HH:MM	1)		RECE	IVED B	Y: (Sign	nature/	Print)		D	ATE: (YYYY/MM	/DD)	TIN	1E: (HH:	N	06-Dec-18 09:20					
tic 16 Mahul Wilson	2018/12/06-	09:20	· Jui	nfa	バー	AN	OLE	NE C	Шĸ	1770	20	18/12/(56	09	20	_ 11 11	Ashton Gibson B8W6343					

WSP Canada Inc Client Project #: 181-11306-00 Project name: 958-960 EAST AVE Client ID: 18-4

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

WSP Canada Inc Client Project #: 181-11306-00 Project name: 958-960 EAST AVE Client ID: TRIP BLANK

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

WSP Canada Inc Client Project #: 181-11306-00 Site Location: 958-960 EAST AVE Sampler Initials: MW

Exceedence Summary Table – Reg153/04 T3-GW-C

Result Exceedences

Sample ID	Maxxam ID	Parameter	Criteria	Result	DL	Units
No Exceedences						
The exceedence summar	y table is for information p	ourposes only and should not	be considered a compreh	ensive listing or	statement of	conformance to
applicable regulatory gui	delines.					

Page 11 of 11 Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Your Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE. Your C.O.C. #: n/a

Attention: Michael Wilson

WSP Canada Inc 51 Constellation Court Toronto, ON CANADA M9W 1K4

> Report Date: 2018/12/19 Report #: R5532329 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8X3170 Received: 2018/12/12, 16:06

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydro. CCME F1 & BTEX in Water	2	N/A	2018/12/18	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1)	2	2018/12/18	2018/12/19	CAM SOP-00316	CCME PHC-CWS m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ashton Gibson, Project Manager

Your Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE. Your C.O.C. #: n/a

Attention: Michael Wilson

WSP Canada Inc 51 Constellation Court Toronto, ON CANADA M9W 1K4

> Report Date: 2018/12/19 Report #: R5532329 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8X3170

Received: 2018/12/12, 16:06 Email: AGibson@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE.

Maxxam ID		INS394	INS395		
Comulius Data		2018/12/12	2018/12/12		
Sampling Date		14:00	14:00		
COC Number		n/a	n/a		
	UNITS	18-4	TRIP BLANK	RDL	QC Batch
BTEX & F1 Hydrocarbons					
Benzene	ug/L	<0.20	<0.20	0.20	5895061
Toluene	ug/L	<0.20	<0.20	0.20	5895061
Ethylbenzene	ug/L	<0.20	<0.20	0.20	5895061
o-Xylene	ug/L	<0.20	<0.20	0.20	5895061
p+m-Xylene	ug/L	<0.40	<0.40	0.40	5895061
Total Xylenes	ug/L	<0.40	<0.40	0.40	5895061
F1 (C6-C10)	ug/L	<25	<25	25	5895061
F1 (C6-C10) - BTEX	ug/L	<25	<25	25	5895061
F2-F4 Hydrocarbons					
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	100	5894592
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	200	5894592
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	200	5894592
Reached Baseline at C50	ug/L	Yes	Yes		5894592
Surrogate Recovery (%)					
1,4-Difluorobenzene	%	103	102		5895061
4-Bromofluorobenzene	%	98	97		5895061
D10-Ethylbenzene	%	96	95		5895061
D4-1,2-Dichloroethane	%	98	97		5895061
o-Terphenyl	%	117	117		5894592
RDL = Reportable Detection L	imit				
QC Batch = Quality Control Ba	atch				

O.REG 153 PETROLEUM HYDROCARBONS (WATER)

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE.

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	INS394 18-4 Water					Collected: Shipped: Received:	2018/12/12 2018/12/12
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Water	HSGC/MSFD	5895061	N/A	2018/12/18	Joe Paino	
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	5894592	2018/12/18	2018/12/19	Zhiyue (Fr	ank) Zhu
Maxxam ID: Sample ID: Matrix:	INS395 TRIP BLANK Water					Collected: Shipped: Received:	2018/12/12 2018/12/12
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Water	HSGC/MSFD	5895061	N/A	2018/12/18	Joe Paino	
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	5894592	2018/12/18	2018/12/19	Zhiyue (Fr	ank) Zhu

Maxxam Job #: B8X3170 Report Date: 2018/12/19 WSP Canada Inc Client Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE.

GENERAL COMMENTS

all 40mL vials for F1BTEX analysis contained visible sediment for sample 18-4.

Results relate only to the items tested.

Maxxam Job #: B8X3170 Report Date: 2018/12/19

QUALITY ASSURANCE REPORT

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE.

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5894592	o-Terphenyl	2018/12/18	121	60 - 130	111	60 - 130	111	%		
5895061	1,4-Difluorobenzene	2018/12/18	102	70 - 130	102	70 - 130	102	%		
5895061	4-Bromofluorobenzene	2018/12/18	100	70 - 130	100	70 - 130	96	%		
5895061	D10-Ethylbenzene	2018/12/18	99	70 - 130	98	70 - 130	96	%		
5895061	D4-1,2-Dichloroethane	2018/12/18	97	70 - 130	98	70 - 130	98	%		
5894592	F2 (C10-C16 Hydrocarbons)	2018/12/19	111	50 - 130	89	60 - 130	<100	ug/L	NC	30
5894592	F3 (C16-C34 Hydrocarbons)	2018/12/19	103	50 - 130	91	60 - 130	<200	ug/L	NC	30
5894592	F4 (C34-C50 Hydrocarbons)	2018/12/19	106	50 - 130	92	60 - 130	<200	ug/L	NC	30
5895061	Benzene	2018/12/18	91	70 - 130	90	70 - 130	<0.20	ug/L	NC	30
5895061	Ethylbenzene	2018/12/18	93	70 - 130	90	70 - 130	<0.20	ug/L	26	30
5895061	F1 (C6-C10) - BTEX	2018/12/18					<25	ug/L	NC	30
5895061	F1 (C6-C10)	2018/12/18	98	70 - 130	114	70 - 130	<25	ug/L	NC	30
5895061	o-Xylene	2018/12/18	92	70 - 130	90	70 - 130	<0.20	ug/L	NC	30
5895061	p+m-Xylene	2018/12/18	91	70 - 130	89	70 - 130	<0.40	ug/L	NC	30
5895061	Toluene	2018/12/18	96	70 - 130	93	70 - 130	<0.20	ug/L	NC	30
5895061	Total Xylenes	2018/12/18					<0.40	ug/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Site Location: 958-960 EAST AVE.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

A 	12-Dec-18 16:06 shton Gibson B8X3170	0		-				When	there	is >1c	F m of	rese	ence e part	of \ iculat	/isib e/sec	le P	artio	culat amou	e/Se int wi	dim II be i	ent record	led in	the f	ield be	elow	M	laxxam M FCD P	Analy 0-01013 age 1 c	ics 8/5 f 1	
VV	K ENV-989	0		_		Bottle Types																								
		-	p	. 1	norgan	ics		Organics									Hydrocarbons							Volatiles				Other		
	Sample ID	All	CrVI	CN	General	Hg	Metals (Diss.)	Organic 1 of 2	Organic 2 of 2	PCB 1 of 2	PCB 2 of 2	Pest/ Herb 1 of 2	Pest/ Herb 2 of 2	SVOC/ ABN 1 of 2	SVOC/ ABN 2 of 2	PAH 1 of 2	PAH 2 of 2	Dioxin /Furan	F1 Vial 1	F1 Vial 2	F1 Viał 3	F1 Vial 4	F2-F4 1 of 2	F2-F4 2 of 2	F4G	VOC Vial 1	VOC Vial 2	VOC Vial 3	VOC Vial 4	
1	18-4																		i.				E		1	TS	TS	TS		
2																														
3																									3				R	1
4																														
5												-					-			21	21								F	
6	*																													
7							T			-																			T	
8																														
9																											Ξ	15		
10																														
C	omments:	Leg	end:	ended P	Particulate										R	acord	ad B	P (ciano)												
		TS	Trace	Settled	l Sedimer	t (just	covers b	ottom o	f contain	er or le	ss)					ccoru	cu by	- (signat	ure/pri	inc)		HDA	/	MARA	EV	U#	0ld	u C		
		S	Sedin	nent gro	eater thar	(>) Tr	ace, but	less than	n (<) 1 cm	1																				

6740 Campobello Road, Mississauga, Ontario L5N 2L8 Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266

1pany Name: WSP		Report Informa	uon (if	anters	non	n Invoi	ce)				Project	t Inforn	nation (where	applica	ble)		Turnarou	nd Time (TAT) Required	
aparty Marrie.		webort information (ir differs from invoice)							100	Project Information (where applicable)							Turnaround Time (TAT) Required			
	.Company Na	y Name: VVOF							Quotation)#: _							Regular TAT	(5-7 days) Most analyse	s	
tact Name:	Contact Nam	Name: Michael Wilson								P.O. #/ AF	E#: _				All	19		PLEASE PROVIDE AD	VANCE NOTICE FOR RUSH F	PROJE
ress: 51 Constellation Court	Address:	s:51 Constellation Court							Project #:	#: 181-11306-00 Ph 220						Rush TAT (S	surcharges will be applie	ed)		
Toronto, ON		Phone: 416-798-0065				to, ON _{Fax:} 416-798-0518					Site Location: <u>958-960</u> East Ave Site #:					ve	18	1 Day 2 Days 3-4 Days		
ne: 416-798-0065 Fax: 416-798-05	18 Phone: 41															1	Date Required:			
il: payables.ontario@wsp.com	Email: M	michael.wilson@wsp.com							Sampled By: MW											
MOE REGULATED DRINKING WATER OR W	ATER INTENDED FOR HUN	AN CONSUMPTIC	DN MU	ST BE S	SUBM	ITTED	ON TH	E MA)	OXAM	DRINKING	WATE	R CHAI	N OF CU	STOD	Y.			Rush Confirmation	#:	- 54
Regulation 153	Other Regulat	er Regulations										Analysis Requested						LABORATORY USE ONLY		
Table 1 Res/Park Med/ Fine Table 2 Ind/Comm Coarse Table 3 Agri/ Other	CCME Sanitary So MISA Storm Sew PWQO Region	Sanitary Sewer Bylaw Storm Sewer Bylaw Region						REF	ER TO I CO	BACK OF								CUSTODY SEAL Y / N	COOLER TEMPERA	TURE
Table	Other (Specify)	A AND LONG		s/He		1		~		8			1.1					Present Intact	Sulter	-
FOR RSC (PLEASE CIRCLE) Y / N	REG 558 (MIN. 3 DAY TA	AT REQUIRED)		Metals				SANIC		- SWH								1 7	194	-
de Criteria on Certificate of Analysis: Y / N		1		SUBMI	Inn			INOR	TALS	etals,							TYZE			_
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME OF	SAMPLING UNTIL DELIVER	RY TO MAXXAM		NERS :				ALS &	AS ME	ALS MS M		1					IT AN			
	DATE SAMPLED TIME	SAMPLED		ONTAL	HUE	2-F4	1	3 MET	3 ICPI	3 MET VI, ICP							ON OC	COOLING MEDIA PRES	ENT: (y) / N	
SAMPLE IDENTIFICATION	(YYYY/MM/DD) (H	H:MM)	HX .	N OF C	ATFX/	PHCsF	/0Cs	REG 15	REG 15	REG 15 Hg, Cr		1.			OLD- L	010-1	1	COMMENTS		
18-4	2012/12/12 10	4:00 GU	S	5/		X			-				-			H				_
Trip Blank.	×	- A G		5	X	X										\square				
						1					-	+				\square	30			
				5 K		+		\vdash			+	+		-	-	+	12			
			-		-	-	+	$\left \right $	+		+	+		_	_	$\left \right $				
				-	1		-	\vdash	-4		-+-	+		_	_	\square	14			
			_		-	-	-	\square	_			_					199			
				14 1.4		_														
	-																N. T.	1		
	5			1					T								2	1	2-Dec-18 16:0	6
																\square	105	Ashton	Ashton Gibson	
RELINQUISHED BY: (Signature/Print) DAT	E: (YYYY/MM/DD) TIM	Y/MM/DD) TIME: (HH:MM)		RECEIVED BY: (Signature/Print)							DATE	BISIZIZ			TIME: (HH:MM)					
hichid-/witchael Wilson 221	8/12/13 0	09:00-			A JULAND USA					u	6				16:06			B8X3170 VMK ENV-989		¢

1

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Project name: 958-960 EAST AVE. Client ID: 18-4

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

WSP Canada Inc Client Project #: 181-11306-00 PH 220 Project name: 958-960 EAST AVE. Client ID: TRIP BLANK

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.