

Preliminary Geotechnical and Pavement Investigation Report

April 27, 2015

Project: 10001223

Leslie Green, M.A.Sc., P.Eng. Manager, Transportation Projects

City of Mississauga – Transportation & Works Dept. Transportation and Infrastructure Planning Division 201 City Centre Drive, Suite 800 Mississauga, ON L5B 2T4

Re: Letter of Reliance –Geotechnical and Pavement Investigation <u>Courtneypark Drive East, Mississauga, Ontario</u>

SPL Consultants Limited (the "Consultant") has prepared this letter to allow the use of and reliance on the following report by the City of Mississauga, its successors and assigns:

"Preliminary Geotechnical and Pavement Investigation for Class EA and Preliminary Design, Courtneypark Drive East, Mississauga, Ontario"; prepared for Stantec and dated January 28, 2015 under SPL Project No. 10001223

It should be noted that use of and reliance on the above-noted report is governed by the terms and conditions as presented in the report. In addition, the City of Mississauga recognizes and agrees to the following:

- 1. The information in the report relates only to the property described in the report and was presented in accordance with and subject to the scope of work of the assessment agreed upon by the Consultant and Stantec.
- 2. The information and conclusions provided in the report apply only to the subject property as it existed at the time of the Consultants site investigations. Should the site use or conditions change, the information and conclusions in the report may no longer apply.
- 3. The Consultant makes no representation regarding the marketability of this property or its suitability for any particular use, and none should be inferred based on the report.
- 4. The report is intended to be used in its entirety and no excerpts may be taken to be representative of the findings of the assessments.

We trust that the foregoing is satisfactory. Should you have any further questions, please contact our office.

Very truly yours,

SPL CONSULTANTS LIMITED

Dave Lewis, P.Eng President

WDL:sk

PRELIMINARY GEOTECHNICAL AND PAVEMENT INVESTIGATION

FOR CLASS EA STUDY AND PRELIMINARY DESIGN

COURTNEYPARK DRIVE EAST, MISSISSAUGA, ONTARIO

Prepared For:

Stantec

SPL Project No.: 10001223

Report Date: April 27, 2015

© 2015 SPL Consultants Limited

SPL CONSULTANTS LIMITED 351 STEELCASE ROAD WEST UNIT 10-12, ON, L3R 4H9 905-475-0065

Table of Contents

1.	INTRODUCTION
2.	FIELD AND LABORATORY WORK
3.	SITE AND SUBSURFACE CONDITIONS
	3.1 SOIL CONDITIONS AND PAVEMENT STRUCTURE
	3.2 GROUNDWATER CONDITIONS
4.	DISCUSSION AND RECOMMENDATIONS
	4.1 PAVEMENT DESIGN
	4.1.1 Existing Pavement Conditions
	4.1.2 Pavement Design
	4.1.3 New Pavement Structure Thickness Design – Widening Section
	4.1.4 Roadway Rehabilitation Options – Existing Lanes
	4.1.5 General Considerations for Pavement Design17
	4.2 STORM SEWERS
	4.2.1 Trenching Excavation
	4.2.2 Bedding
	4.2.3 Backfilling of Trenches
5.	CLOSURE

Drawings	No.
BOREHOLE LOCATION PLAN	1-2
Enclosures	No.
Explanation of Terms Used in the Record of Boreholes Notes on Sample Descriptions	1A 1B

SPL Consultants Limited

BOREHOLE LOGS	2-17
Figures	No.
PARTICLE SIZE DISTRIBUTION REPORT	1-10

Appendix A: PHOTOGRAPHS OF ASPHALT CORES Appendix B: PHOTOGRAPHS OF EXISTING PAVEMENT

1. INTRODUCTION

SPL Consultants Limited (SPL) was retained by Stantec to undertake a preliminary geotechnical and pavement investigation for Class EA study and preliminary design of the potential improvements of Courtneypark Drive East, between Kennedy Road and Dixie Road, in the City of Mississauga, Ontario. The designs of the proposed improvements of the existing interchange of Hwy 410 and Courtneypark Drive East and ramps have been carried out by another consultant and are not part of the scope of the work of the current investigation.

The purpose of the preliminary geotechnical and pavement investigation was to obtain the subsurface conditions at the requested sixteen (16) borehole locations and from the findings in the boreholes provide preliminary geotechnical and pavement engineering recommendations for the proposed Class EA study and the preliminary design for the improvements of Courtneypark Drive East.

This report is provided on the basis of the terms of reference presented in our proposal P13.07.073 dated July 24, 2013 and on the assumption that the design will be in accordance with the applicable codes and standards. If there are any changes in the design features relevant to the geotechnical analyses, or if any questions arise concerning the geotechnical aspects of the codes and standards, this office should be contacted to review the design. It may then be necessary to carry out additional borings and reporting before the recommendations of this office can be relied upon.

This report deals with geotechnical issues only. A Phase I ESA has been carried out and will be reported under a separate cover.

The site investigation and recommendations follow generally accepted practice for geotechnical consultants in Ontario. This report has been prepared for Stantec. Third party use of this report without SPL consent is prohibited. The limitation conditions presented in this report form an integral part of the report and they must be considered in conjunction with this report.

2. FIELD AND LABORATORY WORK

Sixteen (16) boreholes were drilled at the subject site to depths ranging from 1.5 m to 6.7 m below the existing grade. The approximate borehole locations are shown on the Drawings 1 and 2. Boreholes BH1 to BH8 were drilled on the existing pavement of Courtneypark Drive East and three asphalt cores were taken at the selected borehole locations. Boreholes BH101 to BH108 were drilled at the proposed widening areas.

The boreholes were advanced using a truck mounted drill rig supplied by a drilling specialist subcontracted to SPL under the full time supervision of SPL technical personnel. Soil samples were retrieved at regular intervals of depth with a 50 mm O.D. split-barrel sampler driven with a hammer weighing 624 N and dropping 760 mm in accordance with the Standard Penetration Test (SPT) method. Boreholes on the existing pavement (BH1 to BH8) were carried out using an auger sampling technique. Asphalt cores samples were obtained at the selected locations. It should be noted that the Boreholes BH4 to BH8 were carried out on the westbound lanes due to the existence of watermains under the eastbound lanes. The

asphalt cores with a 100 mm nominal diameter, were obtained using a portable water cooled coring machine. The photographs of the asphalt cores are attached in Appendix A. The soil samples were logged in the field and returned to the SPL laboratory for detailed examination by the project engineer and for laboratory testing.

In addition to the visual examination of the samples in the laboratory, all soil samples were tested for moisture contents. Selected soil samples were subjected to grain size analysis testing and Atterberg tests. Test results are presented on Figures 1 to 10 as well as shown on the individual borehole logs. Laboratory testing for most part followed ASTM or CSA Standards or modifications of these standards that have become standard practice.

Water level observations were made during drilling in the open boreholes and at the completion of the drilling operations.

The borehole locations in the field were staked out by SPL. The approximate elevations at the as-drilled borehole locations were inferred from the topographic drawings provided by Stantec and should be considered to be approximate. The approximate borehole locations are plotted on the Drawings 1 and 2 based on the measurement of the site features and should be considered to be approximate.

3. SITE AND SUBSURFACE CONDITIONS

The section of the Courtneypark Drive East within the study area, between Kennedy Road to Dixie Road, is a 2.73 km long, servicing a partial interchange at Highway 410. Courtneypark Drive East is classified as a major arterial road. The existing Courtneypark Drive East within the project limits has a 4-lane cross section, with left-turn and right-turn lanes at some intersections. The section of the Courtneypark Drive East over the Highway 410 has a 5- lane cross section for the overpass structure including 2 through travel lanes in each direction and one exclusive westbound lane, allowing access to Highway 410 southbound on-ramp.

Boreholes BH1 to BH8 were drilled on the existing pavement of Courtneypark Drive East to a depth of 1.5 m below the existing grade and three asphalt cores were taken in Boreholes BH1, BH3 and BH6. Boreholes BH101 to BH108 were drilled at the proposed widening areas to depths ranging from 6.6 m to 6.7 m below the existing grade. The approximate borehole locations are shown on the Drawings 1 and 2. Notes on sample descriptions and explanation of terms used in the record of borehole are presented on Enclosures Nos. 1A and 1B. The subsurface conditions encountered in the boreholes are presented on the individual borehole logs (Enclosure Nos.2 to 17). The following is a summarized account of the subsurface conditions encountered in the boreholes of the major soil strata and the groundwater conditions encountered in the boreholes drilled at the site.

3.1 SOIL CONDITIONS AND PAVEMENT STRUCTURE

3.1.1 Existing Pavement Structure

Boreholes were advanced through the existing pavement to obtain the information of the thickness of the pavement structure of Courtneypark Drive East. The asphalt thickness encountered in the boreholes

ranged from 120 mm to 250 mm, with an average thickness of about 179 mm. The thickness of the asphalt core samples extracted from Borehole BH1, BH3 and BH6 ranged from 120 mm to 170 mm with an average of 147 mm. The thickness of the granular base and subbase ranged from 380 mm to 560 mm. The average granular base thickness was approximately 178 mm. The average granular subbase thickness was approximately 260 mm. It should be noted that the exact boundary of the granular subbase and the subgrade may not be accurate due to the sandy nature of the subgrade materials in some of the boreholes.

The results of four (4) grain size analyses are shown on the borehole logs and on Figures 1 to 4. They are also summarized in the following table:

BH No.	Sample No.	Grain Size Distribution					
BH NO.	Sample NO.	% Gravel	%Sand	%Silt	%Clay		
BH2	AS1	33.2	54.1	12.7			
BH2	AS2	31.4	55.7	12.9			
BH6	AS1	43.5	47.5	9.0			
BH6	AS2	25.2	55.4	19.4			

The results of grain size distribution tests indicate that the granular base/subbase samples do not meet the gradation requirements for OPSS 1010 Granular A or OPSS Granular B Type I due to excessive sand/fines.

Topsoil

Topsoil with a thickness of 100 mm was encountered surficially in Boreholes BH101, BH103, BH105, BH107 and BH108, which are located on the boulevard of the road.

Concrete Sidewalk

Concrete with thicknesses ranging from 150 mm to 170 mm were encountered surficially in Boreholes BH102, BH104 and BH106, which are located on the concrete sidewalks.

Fill

Fill materials were encountered in all boreholes and extended to depths ranging from 0.4 m to 2.1 m below the existing grade. The fill materials generally consisted of cohesive clayey silt to silty clay materials and cohesionless sandy silt to silty sand and sand and gravel materials. The consistency of the cohesive fill was found to be firm as inferred from SPT 'N' values ranging from 6 to 8 blows per 0.3 m penetration. The cohesionless sandy fills were found to be loose to very dense as inferred from SPT 'N' values ranging from 6 per 300 mm penetration to 56 per 200 mm penetration. In-situ water contents measured in the fill samples ranged from 5 % to 28 %.

The result of one (1) grain size analysis is shown on the borehole log and on Figure 5. It is also summarized in the following table:

BH No.	Sample No.		Grain Size Dis	tribution	
BH NO.	Sample No.	% Gravel	%Sand	%Silt	%Clay
BH102	SS2	57.2	18	12.8	12.0

Silty Clay Till to Clayey Silt Till

Silty clay till to clayey silt till deposits were encountered in Boreholes BH101 to BH108 and extended to depths ranging from 5.6 m to 6.7 m below the existing grade. Boreholes BH101 to BH107 were terminated in these deposits. SPT tests carried out within the cohesive till gave 'N' values ranging from 4 blows per 0.3 m penetration to 86 per 0.28 m penetration, indicating a soft to hard consistency. Natural water contents measured in cohesive till samples ranged from 5 % to 23 %.

The results of three (3) grain size analyses are shown on the borehole logs and on Figures 6 to 8. They are also summarized in the following table:

BH No.	Sample No.		Grain Size Dis	tribution	
BH NO.	Sample No.	% Gravel	%Sand	%Silt	%Clay
BH105	SS2	9.4	23.3	40.8	26.5
BH108	SS5	9.4	22.4	36.6	31.6
BH101	SS4	7.5	27.5	38.2	26.8

Silty Clay

Silty clay deposit was encountered in Borehole BH108 and extended to a depth of 6.6 m below the existing grade. Silty clay deposit was found to have a firm consistency with measured SPT 'N' value of 7 blows per 300 mm penetration. The natural water content of the silty sample was about 13 %.

The result of one (1) grain size analysis is shown on the borehole log and on Figure 9. It is also summarized in the following table:

BH No.	Sample No.		Grain Size Dis	tribution	
BH NO.	Sample NO.	% Gravel	%Sand	%Silt	%Clay
BH108	SS7	1.6	12.6	39.3	46.5

Atterberg limits test was carried out on one (1) selected sample. The result of which is presented on Figure 10 as well as shown on the borehole log and is summarized in the following table:

Plasticity Indices						
Atterberg Limits						
BH No.	Sample No.	Liquid Limit (W∟)	Plastic Limit (W _P)	Plasticity Index (PI)		
BH108	SS7	31	16	15		

The test suggested a clay of low to medium plasticity [CL] in the Unified Soil Classification System. Natural water content of the sample was slightly below the plastic limit of the same sample.

3.2 GROUNDWATER CONDITIONS

All the boreholes were open and dry except for Boreholes BH1, BH103 and BH104. Water was encountered at a depth of 3.0 m below the existing grade in Borehole BH103 and at a depth of 1.5 m below the existing grade in Boreholes BH1 and BH104 upon completion of drilling.

It should be noted that the groundwater levels can vary and are subject to seasonal fluctuations in response to weather events.

4. DISCUSSION AND RECOMMENDATIONS

In this section of the report, the soil and groundwater conditions are interpreted as relevant to the preliminary design of the proposed road improvements. Comments relating to construction are intended for the guidance of the design engineer to establish constructability.

The construction methods described in this report must not be considered as being specifications or recommendations to the contractors, or as being the only suitable methods. Prospective contractors should evaluate all of the factual information, obtain additional subsurface information as they might deem necessary and should select their construction methods, sequencing and equipment based on their own experience in similar ground conditions. The readers of this report are also reminded that the conditions are known only at the borehole locations and conditions may vary significantly in-between.

The following preliminary geotechnical recommendations are provided for the preliminary design purposes. A detailed geotechnical investigation should be carried out during the detailed design stage.

4.1 PAVEMENT DESIGN

4.1.1 Existing Pavement Conditions

The pavement conditions of the existing Courtneypark Drive East between Kennedy Road and Dixie Road are generally in fair condition with slight to moderate distresses in the forms of edge cracking, longitudinal and transverse cracking, center line cracking, map cracking, alligator cracking, loss of aggregates, rutting and pavement distortions.

Typical photographs of the pavement conditions are shown in Appendix B.

4.1.2 Pavement Design

It is understood that according to City of Mississauga's Official Plan (OP), Courtneypark Drive East is classified as the only municipal arterial road running east/west in the northern part of the City, which provides connections to Mavis Road, Hurontario Street and Dixie Road. The section of Courtneypark Drive East between Kennedy Road and Tomken Road will be improved and put in operation in 2021 and the section between Tomken Road and Dixie Road will be improved and put in operation in 2031. The design life of the proposed pavement is 20 years.

The updated traffic data of Courtneypark Drive East were provided by Stantec on January 15, 2015. It is understood that the 2021 AADT and 2031 AADT volumes used for the pavement design were estimated from the traffic volume forecasts. Heavy (truck) vehicle percentages were referenced from the 2013 traffic data based on the assumption that the percentage of heavy vehicles in 2021 and 2031 would remain the same as the percentage in 2013. The anticipated traffic growth rates after 2021 and 2031 were referenced from the growth rates of the previous traffic data. Traffic volumes as provided by Stantec are presented in the following tables:

Road	Direction	Section	2021 AADT	% Heavy Vehicles (truck %)	Annual Growth Rate
		West of Kennedy Road	8546	16%	
		Between Kennedy Road-Hwy 410 West Terminal	11239	19%	
		Between Hwy 410 West Terminal- Hwy 410 East Terminal	9421	21%	
		Between Hwy 410 East Terminal-Tomken Road	7947	25%	
e East	EB	Between Tomken Road- Ordan Drive/Shawson Drive	5625	21%	
Courtneypark Drive East		Between Ordan Drive/Shawson Drive-Vipond Drive	5292	16%	1.0%
ура		Between Vipond Drive-Ordan Drive	6418	14%	1.076
rtne		Between Ordan Drive-Dixie Road	8019	17%	
Cou		East of Dixie Road	4267	18%	
		East of Dixie Road	14332	30%	
		Between Dixie Road- Ordan Drive	14315	17%	
	WB	Between Ordan Drive-Vipond Drive	15113	20%	
		Between Vipond Drive-Ordan Drive/Shawson Drive	16886	23%	

2021 AADT Volumes- Full Interchange Scenario

		auga, Ontario			
		Between Ordan Drive/Shawson Drive-Tomken Road	19419	29%	
		Between Token Road- Hwy 410 East Terminal	29134	31%	
		Between Hwy 410 East Terminal-Hwy 410 West Terminal	25177	19%	
		Between Hwy 410 West Terminal- Kennedy Road	21021	14%	
		West of Kennedy Road	16637	13%	
		West of Kennedy Road	25183	-	
		Between Kennedy Road-Hwy 410 West Terminal	32260	-	
		Between Hwy 410 west Terminal- Hwy 410 East Terminal	34599	-	
		Between Hwy 410 East Terminal-Tomken Road	37081	-	
	Two-Way	Between Tomken Road- Ordan Drive/Shawson Drive	25044	-	
		Between Ordan Drive/Shawson Drive-Vipond Drive	22578	-	
		Between Vipond Drive-Ordan Drive	21531	-	
		Between Ordan Drive-Dixie Road	22334	-	
		East of Dixie Road	18599	-	
	NB		13910	12%	
bad	SB	North of Courtneypark Drive	9041	9%	
Kennedy Road	Two-Way		22951	-	0.5%
pan	NB		14377	14%	0.5%
Keı	SB	South of Courtneypark Drive	11003	13%	
	Two-Way		25381	-	
	NB		29346	23%	
Dixie Road	SB	North of Courtneypark Drive	12083	16%	
	Two-Way		41429	-	0 50/
	NB		25297	19%	0.5%
	SB	South of Courtneypark Drive	11772	16%	
	Two-Way		37069	-	

Road	Direction	2031 AADT Volumes- Full Interchange Scenari	2031 AADT	% Heavy Vehicles	Annual Growth
		West of Kennedy Road	9288	16%	
		Between Kennedy Road-HWY 410 West Terminal	12436	19%	
		Between Hwy 410 West Terminal- Hwy 410 East Terminal	10402	21%	
		Between Hwy 410 East Terminal-Tomken Road	8751	25%	
	EB	Between Tomken Road- Ordan Drive/Shawson Drive	6157	21%	
		Between Ordan Drive/Shawson Drive-Vipond Drive	6257	16%	
		Between Vipond Drive-Ordan Drive	7055	14%	
		Between Ordan Drive-Dixie Road	8662	17%	
		East of Dixie Road	4600	18%	
	Bei Bei Dri WB Bei Bei Bei Bei	East of Dixie Road	15440	30%	
L.		Between Dixie Road- Ordan Drive	15706	17%	
Eas		Between Ordan Drive-Vipond Drive	16665	20%	
Courtneypark Drive East		Between Vipond Drive-Ordan Drive/Shawson Drive	18593	23%	
leyparl		Between Ordan Drive/Shawson Drive-Tomken Road	21320	29%	1.0%
urtn		Between Token Road- Hwy 410 East Terminal	31922	31%	
Ŝ		Between Hwy 410 East Terminal-Hwy 410 West Terminal	28042	19%	
		Between Hwy 410 West Terminal- Kennedy Road	23093	14%	
		West of Kennedy Road	18255	13%	
		West of Kennedy Road	27544	-	
		Between Kennedy Road-Hwy 410 West Terminal	35530	-	
		Between Hwy 410 west Terminal- Hwy 410 East Terminal	38445	-	
		Between Hwy 410 East Terminal-Tomken Road	40673	-	
	Two-Way	Between Tomken Road- Ordan Drive/Shawson Drive	27477	-	
		Between Ordan Drive/Shawson Drive-Vipond Drive	24850	-	
		Between Vipond Drive-Ordan Drive	23720	-	
		Between Ordan Drive-Dixie Road	24368	-	

2031 AADT Volumes- Full Interchange Scenario

		East of Dixie Road	20040	-	
	NB		14626	12%	
ad	SB	North of Courtneypark Drive	9509	9%	
Kennedy Road	Two-Way		24135	-	0.5%
penc	NB		15218	14%	0.5%
Ker	SB	South of Courtneypark Drive	11637	13%	
	Two-Way	26855	-		
	NB		30841	23%	
ъ	SB	North of Courtneypark Drive	12695	16%	
Dixie Road	Two-Way		43536	-	0.5%
ixie	NB		26782	19%	0.5%
	SB	South of Courtneypark Drive	12394	16%	
	Two-Way		39176	-	

The following design parameters were selected for the AASHTO design analysis:

DESIGN PARAMETERS FOR WIDENING CONSTRUCTION/RECONSTRUCTION					
Initial Serviceability Index	4.5				
Terminal Serviceability Index	2.5				
Total Loss in Serviceability Index	2.0				
Desired Reliability (%)	90				
Subgrade Resilient Modulus – M _R (MPa)	30				
Standard Deviation	0.47				

4.1.3 New Pavement Structure Thickness Design – Widening Section

The equivalent single axle loads (ESAL) for the design lane of Courtneypark Drive East were calculated using traffic data presented in the above tables. The input parameters for the design lane ESAL calculation were derived from MTO publication MI-183 'Adaptation and Verification of AASHTO Pavement Design

Guide for Ontario Conditions' and 'Procedures for Estimating Traffic Loads for Pavement Design, 1995'. The input parameters used to calculate ESALs in the design lane are summarized in the following table.

Section	AADT (Assumed Year of Operation)	Percentage of Truck Vehicles (Weighted Average for EBL and WBL) %	Avg. Truck Factor	Design Period (Years)	Cumulative ESAL's (million)
From Kennedy Road to Hwy 410 East Terminal	34,598 (2021)	20	1.925	20	37.5
From Hwy 410 East Terminal to Tomken Road	37,081 (2021)	30	1.925	20	60.3
From Tomken Road to Ordan Drive/ Shawson Drive Road	27,477 (2031)	27	1.925	20	40.2
From Ordan Drive/ Shawson Drive to Dixie Road	24,850 (2031)	21	1.925	20	31.3

Pavement structure thickness design for the design lane was determined using the AASHTO design method based on the assumed subgrade (i.e. Mr=30 MPa engineered fill using low frost susceptible soils). Superpave hot mix asphalt and conventional hot mix asphalt are provided for the pavement design. The recommended pavement structure is provided in the following table

SECTION	MATERIAL THICKNESS	SN
	50 mm HL1	
	60 mm HDBC	
 Courtneypark Drive East from Kennedy Road to Hwy 410 East 	60 mm HDBC	
Terminal	70 mm HDBC	174
· criminal	200 mm Granular A	
	500 mm Granular B Type I	
Total	940 mm	

New Pavement Structure Thickness for Widening

SPL Consultants Limited

-			
		50 mm HL1	
~		70 mm HDBC	
2.	Courtneypark Drive East from Hwy 410 East Terminal to	70 mm HDBC	
	Tomken Road	70 mm HDBC	182
		200 mm Granular A	
		500 mm Granular B Type I	
То	tal	960 mm	
		50 mm HL1	
		60 mm HDBC	
3.	Courtneypark Drive East from	60 mm HDBC	
	Tomken Road to Ordan Drive/ Shawson Drive Road	70 mm HDBC	174
		200 mm Granular A	
		500 mm Granular B Type I	
То	tal	940 mm	
		50 mm HL1	
	Courtneypark Drive East from Ordan Drive/ Shawson Drive to Dixie Road	60 mm HDBC	
4.		60 mm HDBC	
		70 mm HDBC	174
		200 mm Granular A	
		500 mm Granular B Type I	
То	tal	940 mm	
		50 mm HL1	
		60 mm HDBC	
5.	Kennedy Road and	60 mm HDBC	
	Courtneypark Drive East Intersection*	70 mm HDBC	174
	intersection	200 mm Granular A	
		500 mm Granular B Type I	
То	tal	940 mm	
		50 mm HL1	
		60 mm HDBC	
6.	Dixie Road and Courtneypark	60 mm HDBC	
	Drive East Intersection	70 mm HDBC	174
		200 mm Granular A	
		500 mm Granular B Type I	
То	tal	940 mm	
			1

*pavement structure slightly modified to match the pavement structure of Courtneypark Drive East.

The Superpave Hot Mix Asphalt can be substituted, i.e. SP12.5 FC2 for the surface course and SP19.0 for the binder course. The use of Limestone material is preferred for Granular materials, i.e. 19 mm CRL for

Granular A and 50 mm CRL or Granular B Type II for Granular B Type I, as per the City of Mississauga Standard.

The minimum Structural Numbers required for the new pavement at widening Selection of Courtneypark Drive East are shown in the following table:

Section	Minimum Structural Number for 20 Yr
Courtneypark Drive East from Kennedy Road to Hwy 410 East Terminal	171
Courtneypark Drive East from Hwy 410 East Terminal to Tomken Road	181
Courtneypark Drive East from Tomken Road to Ordan Drive/ Shawson Drive Road	172
Courtneypark Drive East from Ordan Drive/ Shawson Drive to Dixie Road	167

4.1.4 Roadway Rehabilitation Options – Existing Lanes

Pavement Structure Design Values

Based on the existing pavement structure data, provided in Section 3.1.1 and individual borehole logs (Enclosure Nos. 2 to 9), the chosen design values to represent the existing pavement structure are shown in table below:

Section	Asphalt (mm)	Granular Base (mm)	Granular Subbase (mm)	Total Pavement Structure (mm)	Reference Boreholes
Courtneypark Drive East from Kennedy Road to Hwy 410 East Terminal	175	180	325	680	BH1 and BH2
Courtneypark Drive East from Hwy 410 East Terminal to Tomken Road	200	160	400	760	BH2
Courtneypark Drive East from Tomken Road to Ordan Drive/ Shawson Drive Road	175	170	240	585	BH3, BH4 and BH5
Courtneypark Drive East from Ordan Drive/ Shawson Drive to Dixie Road	210	180	240	630	BH6, BH7 and BH8

Equivalent Single Axle Loads(ESAL's)

The equivalent single axle loads (ESAL) for the design lane of the roads were calculated using traffic data presented in the above tables. The input parameters for the design lane ESAL calculation were derived from MTO publication MI-183 'Adaptation and Verification of AASHTO Pavement Design Guide for Ontario Conditions' and 'Procedures for Estimating Traffic Loads for Pavement Design, 1995'. The input parameters used to calculate ESALs in the design lane are summarized in the following table.

Section	AADT (Assumed Year of Operation)	Percentage of Truck Vehicles (Weighted Average for EBL and WBL) %	Avg. Truck Factor	Design Period (Years)	Cumulative ESAL's (million)
From Kennedy Road to Hwy 410 East Terminal	34,598	20	1.925	14	25.5
nwy 410 Last Terminar	(2021)			20	37.5
From Hwy 410 East Terminal to Tomken	37,081	30	1.925	13	37.8
Road	(2021) 50 1.		20	60.3	
From Tomken Road to Ordan Drive/ Shawson	27,477	27	1.925	13	25.2
Drive Road	(2031)			20	40.2
From Ordan Drive/	24,850			15	22.9
Shawson Drive to Dixie Road	(2031)	21	1.925	16	24.5
				20	31.3

Input Parameters for ESAL Calculations for Rehabilitation of Courtneypark Drive East

The minimum Structural Numbers required for the rehabilitation of the existing lanes of Courtneypark Drive East are shown in the following table for different deign lives and options:

Section	Minimum Structural Number					
	13 Yr	14 Yr	15 Yr	16 Yr	20 Yr	
From Kennedy Road to Hwy 410 East Terminal		162	-	-	171	
From Hwy 410 East Terminal to Tomken Road	171	-	-	-	181	
From Tomken Road to Ordan Drive/Shawson Drive Rd	162	-	-	-	172	
From Ordan Drive/ Shawson Drive to Dixie Road		-	160	162	167	

Three rehabilitation options were selected for resurfacing the existing pavement. The rehabilitation strategies not only take minimum traffic delay, cost and/or disruption of traffic into consideration, but also consider the road conditions, subgrade type and traffic. However, the 20 years design life will not be achieved in some of rehabilitation options presented below.

Option 1: Rehabilitation by 300 mm Pulverization and Pave (20 Year Design Life)

This option is generally to mill the existing pavement surface, pulverize the existing asphalt and underlying granular base to a depth of 300 mm, then place the new Granular A and pave. This option will result in 240 mm to 285 mm grade raise within the project limits for a 20-year design life.

Pavement structure thickness design for the design lane was determined using the AASHTO design method based on the assumed subgrade (i.e. Mr=30 MPa engineered fill using low frost susceptible soils), ESALs and minimum required Structural Number (shown above). The Superpave Hot Mix Asphalt can be substituted, i.e. SP12.5 FC2 for the surface course and SP19.0 for the binder course. The recommended rehabilitation strategy is provided in the following table:

	SECTION		METHOD	GRADE RAISE (mm)	SN (mm)
		Mill 55 mm on avera	ge, from existing surface		
1.	Courtneypark Drive East from	Pulverize existing asphalt and underlying granular base to a depth of 300 mm			
	Kennedy Road	Place 50 mm new Gr	ranular A	245	171
	to Hwy 410 East	Pave 250 mm Hot	50 mm HL1 Surface Course		
	Terminal	Mix Asphalt	200 mm (60+70+70) HDBC Binder Course		
		Mill 60 mm on avera	ge, from existing surface		
2.	Courtneypark Drive East from	Pulverize existing asphalt and underlying granular base to a depth of 300 mm			
	Hwy 410 East	Place 50 mm new Gr	ranular A	250	181
	Terminal to	Pave 260 mm Hot	50 mm HL1 Surface Course		
	Tomken Road	Mix Asphalt	210 mm (70+70+70) HDBC Binder Course		
		Mill 25 mm on avera	ge, from existing surface		
3.	Courtneypark Drive East from	Pulverize existing as base to a depth of 3	phalt and underlying granular 00 mm		
	Tomken Road to Ordan Drive/	Place 50 mm new Gr	ranular A	285	172
	Shawson Drive	Pave 260 mm Hot	50 mm HL1 Surface Course		
	Road	Mix Asphalt	210 mm (70+70+70) HDBC Binder Course		

Pavement Design for Rehabilitation of Courtneypark Dr. East by Pulverization (Option 1)

SPL Consultants Limited

		Mill 60 mm on avera	ge, from existing surface		
4. Courtneypark Drive East from	Pulverize existing as base to a depth of 30	phalt and underlying granular 00 mm			
	Ordan Drive/	Place 50 mm new Gr	ranular A	240	169
	Shawson Drive	Dave 250 mm Het	50 mm HL1 Surface Course		
	to Dixie Road	Pave 250 mm Hot Mix Asphalt	200 mm (60+70+70) HDBC Binder Course		

Note:

1- These rehabilitation Options will not be applicable at structure.

2- Grade raise at intersections have to be evaluated by Stantec and if grade raise being applied, transition detail based on preferred option will be provided.

Option 2: Rehabilitation by Mill and Pave (13 to 15 Year Design Life)

This option is generally to mill the existing pavement surface (80 to 140 mm) and pave (250 to 270 mm) hot mix asphalt. This option will result in 120 mm to 190 mm grade raise with a design life of 13 to 15 years for four different sections.

Pavement structure thickness design for the design lane was determined using the AASHTO design method based on the assumed subgrade (i.e. Mr=30 MPa engineered fill using low frost susceptible soils), ESALs and minimum required Structural Number (shown above). The Superpave Hot Mix Asphalt can be substituted, i.e. SP12.5 FC2 for the surface course and SP19.0 for the binder course. The recommended rehabilitation strategy is provided in the following table:

	Pavement Design for Renabilitation of Courtneypark Dr. East by Will and Pave (Option 2)						
	SECTION	Μ	IETHOD	GRADE RAISE (mm)	SN (mm)	DESIGN LIFE (Yr)	
1.	 Courtneypark Drive East from Kennedy Road to Hwy 410 East Terminal 	Mill 100 mm on ave surface	rage, from existing				
		Pave 250 mm Hot	50 mm HL1 Surface Course	150	164	14	
		Mix Asphalt	200 mm (60+70+70) HDBC Binder Course				
2.	Courtneypark Drive	Mill 140 mm on average, from existing surface					
	East from Hwy 410 East Terminal to	Pave 270 mm Hot	50 mm HL1 Surface Course	130	172	13	
	Tomken Road	Mix Asphalt	220 mm (70+75+75) HDBC Binder Course				
		Mill 80 mm on avera	age, from existing surface				
3.	Courtneypark Drive East from Tomken Road to Ordan Drive/ Shawson Drive Road	Pave 270 mm Hot	50 mm HL1 Surface Course	190	169	13	
		Mix Asphalt	220 mm (70+75+75) HDBC Binder Course				

Pavement Design for Rehabilitation of Courtneypark Dr. East by Mill and Pave (Option 2)

4.	Courtneypark Drive	Mill 130 mm on aver surface	age, from existing			
	East from Ordan Drive/ Shawson	Pave 250 mm Hot	50 mm HL1 Surface Course	120	160	15
	Drive to Dixie Road	Mix Asphalt	200 mm (60+70+70) HDBC Binder Course			

Note:

1- These rehabilitation Options will not be applicable at structure.

2- Grade raise at intersections have to be evaluated by Stantec and if grade raise being applied, transition detail based on preferred option will be provided.

Option 3: Rehabilitation by Cold In-Place Recycling (Partial Depth) using Expanded Asphalt 100 mm and Pave (13 to 16 Year Design Life)

This option is generally to perform Cold In-Place Recycling with Expanded Asphalt (CIREAM) 100 mm and pave (160 to 180 mm) hot mix asphalt. This option will result in 160 mm to 180 mm grade raise with a design life of 13 to 16 years within the project limits.

Pavement structure thickness design for the design lane was determined using the AASHTO design method based on the assumed subgrade (i.e. Mr=30 MPa engineered fill using low frost susceptible soils), ESALs and minimum required Structural Number (shown above). The Superpave Hot Mix Asphalt can be substituted, i.e. SP12.5 FC2 for the surface course and SP19.0 for the binder course. The recommended rehabilitation strategy is provided in the following table:

_					p	
	SECTION		METHOD	GRADE RAISE (mm)	SN (mm)	DESIGN LIFE (Yr)
1	Courtneypark Drive East from Kennedy	Perform Cold In-P (CIREAM) to depth	lace Recycling with Expanded Asphalt n of 100 mm	160	160	14
	Road to Hwy 410	Pave 160 mm	50 mm HL1 Surface Course	160	162	14
	East Terminal	Hot Mix Asphalt	110 mm (50+60) HDBC Binder Course]		
2.	Courtneypark Drive East from Hwy 410	Perform Cold In-Pl (CIREAM) to depth	lace Recycling with Expanded Asphalt n of 100 mm	100		12
	East Terminal to	Pave 160 mm	50 mm HL1 Surface Course	160	171	13
	Tomken Road	Hot Mix Asphalt	110 mm (50+60) HDBC Binder Course			
3.	Courtneypark Drive East from Tomken	Perform Cold In-P (CIREAM) to depth	lace Recycling with Expanded Asphalt n of 100 mm	100	4.62	12
	Road to Ordan Drive/	Pave 180 mm	50 mm HL1 Surface Course	180	163	13
	Shawson Drive Road	Hot Mix Asphalt	110mm (60+70) HDBC Binder Course			
4.	Courtneypark Drive East from Ordan	Perform Cold In-P (CIREAM) to depth	lace Recycling with Expanded Asphalt n of 100 mm	160	4.62	10
	Drive/ Shawson Drive	Pave 160 mm	50 mm HL1 Surface Course	160	163	16
	to Dixie Road	Hot Mix Asphalt	110mm (50+60) HDBC Binder Course			

Pavement Design for Rehabilitation of Courtneypark Dr. East by CIREAM and Pave (Option 3)

SPL Consultants Limited

Note:

1- Grade raise at intersections have to be evaluated by Stantec and if grade raise being applied, transition detail based on preferred Option will be provided.

As no borehole was planned and drilled at the intersection of Kennedy Road and Courtneypark Drive East and the intersection of Dixie Road and Courtneypark Drive East during this investigation, the existing pavement structures at the two intersections are unknown at this time, the rehabilitation options did not include the two intersections.

4.1.5 General Considerations for Pavement Design

Prior to placing the granular subbase material, the exposed soil subgrade should be proofrolled using a heavily loaded truck in conjunction with an inspection by qualified geotechnical personnel. Remedial work (i.e. further subexcavation and replacement) should be carried out on any disturbed, softened or poorly performing zones, as directed by a qualified geotechnical personnel.

It is understood that majority of the existing granular base/subbase materials do not meet the OPSS Granular A and B Type I gradation specification, with excessive contents of sand/fines. Therefore, the existing granular base/subbase materials could not be reused as subbase/base materials of the new pavement structures; however, it can be reused as subgrade materials to replace soft, wet or otherwise disturbed areas identified during proof-rolling.

If deemed practical during construction, the existing asphalt may be pulverized and reused as subbase material, provided it can be processed to meet the OPSS Granular B Type I gradation specification. It should be noted the process of pulverizing asphalt typically generates fines and as such the pulverized materials should only be utilized in the lower lift of the subbase. The existing asphalt could also be salvaged and utilized as Recycled Asphalt Pavement (RAP) in the production of the binder course of the new hot mix asphalt.

The pavement and road base design shall conform to Mississauga City Standard 2220.000. Where Granular B Type II is used, the Granular A should be sourced from a crushing quarried bedrock. The granular subbase and base materials should be uniformly compacted to 100 % of their Standard Proctor Maximum Dry Densities (SPMDD). The asphalt materials should be compacted as per OPSS310, Table 10.

The asphalt cement used in the Superpave mixes or alternative HL1 and HDBC mixes selected for this project should be PG 64-28, performance graded asphalt cement.

The long term performance of the pavement structure is highly dependent upon the subgrade support conditions. Stringent construction control procedures should be maintained to ensure uniform subgrade moisture and density conditions are achieved. In addition, the need for adequate drainage cannot be over-emphasized. The finished pavement surface and underlying subgrade should be free of depressions and should be sloped to provide effective surface drainage.

Subdrains should be installed to intercept excess subsurface moisture and prevent subgrade softening. The sub-drains system should consist of 100 mm or 150 mm diameter geotextile wrapped perforated pipe, placed inside a 300 mm by 300 mm trench and surrounded on all sides by 20 mm clear stone (minimum 50 mm at the bottom side), wrapped in filter cloth (Terrafix 270R or approved alternative), overlap to be at least 150 mm. The pipes should be placed such that the top of the filter cloth is at subgrade level and connected to catchbasins or some other permanently frost free outlet to provide positive drainage. The subdrains shall conform to Mississauga City Standard 2220.040.

The most severe loading conditions on pavement areas and the subgrade may occur during construction. Consequently, special provisions such as restricted access lanes, half-loads during paving, etc., may be required, especially if construction is carried out during unfavorable weather.

It is recommended that the geotechnical engineers be retained to review the final pavement structure designs and drainage plans prior to construction to confirm that they are consistent with the recommendations of this report.

Where new pavement abuts existing pavement (e.g. at the construction limits), proper longitudinal lap joints should be constructed to key the new asphalt into the existing pavement. The existing asphalt edges should be provided with a proper sawcut edge prior to keying in the new asphalt. It should be ensured that any undermined or broken edges resulting from the construction activities are removed by saw cut.

The above pavement designs should provide serviceable pavements for the anticipated traffic levels over a normal design period of 20 years, provided that timely maintenance is carried out (i.e. crack sealing). The existing pavement conditions are generally in fair conditions, however, the pavement conditions would keep deteriorating and the pavement conditions may change greatly before 2021 and 2031. The pavement designs presented in this report should be further evaluated during the detailed design stage.

4.2 STORM SEWERS

It is understood that storm sewers are proposed within the project limits. It should be noted that the alignment and invert elevations of the storm sewers are not known at this time. The following preliminary geotechnical recommendations are provided for the preliminary design purposes. A detailed geotechnical investigation should be carried out during the detailed design stage.

4.2.1 Trenching Excavation

It is understood that the proposed invert depths of the storm sewers are anticipated to be less than 3 m below the existing ground surface. Based on the results of this investigation, the storm sewer installations will be subexcavated through the existing fill and glacial tills. Some difficulty may be encountered in excavating the tills at some locations. In addition, these tills contain cobbles and boulders, as previously noted. Groundwater during excavation within the predominant glacial tills at the site can be handled, as required, by pumping from properly constructed and filtered sumps located within the excavations. However, more groundwater seepage should be expected locally from the existing fill materials. Depending upon the actual thickness and extent of the existing fills and the finalized design pipe invert

depths, some forms of positive (pro-active) groundwater control or depressurization, if required, will be utilized to maintain the stability of the base and side slopes of the trench excavations.

All excavations must be carried out in accordance with the most recent Occupational Health and Safety Act (OHSA). In accordance with OHSA, the existing fill materials can be classified as Type 3 Soil; the stiff to hard native clayey soils can be classified as Type 2 Soil; the firm clayey soils and existing fill materials can be classified as Type 4 Soil below groundwater tables.

For the installations off the existing pavement, the trench excavations may consist of conventional temporary open cuts, with side slopes not steeper than 1 horizontal to 1 vertical. However, depending upon the construction procedures adopted by the contractor, actual groundwater seepage conditions, the success of the contractor's groundwater control methods and weather conditions at the time of construction, some flattening and/or blanketing of the slopes may be required. Care should be taken to direct surface runoff away from the open excavations and all excavations should be carried out in accordance with the Occupational Health and Safety Act and Regulations for Construction Projects.

Should the installations be carried out on the existing pavement, the extent of the excavations will have to be minimized to allow for traffic to continue using a reduced portion of existing roadway. A temporary supporting system, such as trench box should be required. Where permissible under the OHSA and where its use is considered to be a safe alternative for shoring and bracing, contractors may elect to utilize trench boxes for temporary trench wall support for trenches less than 6 m deep in Type 2 and 3 Soils. While the use of trench boxes is an effective and economical trench-support method, its use can cause increased loss of ground relative to properly braced shoring, especially when working close to granular base courses below existing pavements or along existing utility trenches backfilled with granular materials. Trench boxes also reduce the contractor's ability to compact backfill materials placed between the trench wall and the outer trench box shell, thereby increasing the likelihood of post-construction settlements along the trench walls. When trench boxes are used along existing roadways, settlements frequently occur along the trench wall, which may manifest months after completion of backfilling. In such cases, following the backfilling of the trench, road reconstruction should include a provision for saw-cutting the asphalt at least 1 m back from the trench walls, recompacting the upper trench backfill, and then repaying. Where trench depths greater than 6 m or in Type 4 soil of any trench depth, Engineered Support Systems are required under the OHSA.

4.2.2 Bedding

The bedding for underground utilities should be compatible with the type and class of pipe, the surrounding subsoil and anticipated loading conditions and should be designed in accordance with City of Mississauga standards. Where granular bedding is deemed to be acceptable, it should consist of at least 150 mm of OPSS Granular A or 19 mm crusher run limestone material. The thickness of the bedding may, however, have to be increased depending on the pipe diameter or in accordance with local standards or if wet or weak subgrade conditions are encountered.

To avoid the loss of soil fines from the subgrade, clear stone bedding material should not be used in any case for pipe bedding or to stabilize the bases.

Class B sewer trench bedding is to be used as per Mississauga City Standard 2112.080. Sewer bedding and cover material shall conform to Mississauga City Standard 2112.090 and 2112.100. If water is present in the trench excavation, 19 mm clear stone or 6 mm washed crushed gravel is to be used for bedding in accordance with Mississauga City Standard 2112.110 and 2112.140.

Where wet or soft trench subgrade conditions are encountered, further on-site geotechnical assessment may be required to determine or re-examine the appropriate bedding in order to stabilize the subgrade for sewer construction (i.e. increase in bedding thickness, stone immersion techniques, leak proofing or wrapping of sewer pipe joints, Class A bedding, etc.).

4.2.3 Backfilling of Trenches

Based on visual and tactile examination and the measured nature water contents of the soil samples, the on-site majority of the excavated inorganic soil deposits will generally near their estimated optimum water contents for compaction. The excavated materials at suitable water contents may be reused as trench backfill provided they are free of significant amounts of topsoil, organics or other deleterious material, and are placed and compacted as outlined below. It should also be noted that due to the predominantly fine-grained, clayey/silty nature of the majority of the native soils, some difficulty would be expected in achieving adequate compaction during wet weather.

The backfill should be placed in maximum 300 mm thick layers at or near (±2 %) their optimum moisture content and each layer should be compacted to at least 95 % SPMDD. Unsuitable materials such as organic soils, boulders, cobbles, frozen soils, etc. should not be used for backfilling.

It should be noted that if the soils for trench backfilling were placed and compacted at wet of their optimum water content, we would expect pumping and rolling conditions which would require mitigating measures in order to construct roads and utilities. This might include significant extra thickness of granular base, base reinforcement using geogrids or importing of better quality common fill.

Trench backfilling shall comply with Mississauga City's Engineering Policy Statement in the Development Requirements manual (Section 4.02.06). Where the excavated inorganic native subsoil is used for trench backfilling, the backfilling should be placed in maximum 300 mm think layers and compacted to a minimum of 95% SPMDD within 2% of optimum moisture content. The top 1000 mm of subgrade is to be compacted to a minimum of 98% SPMDD within 2% to 3% direr than optimum moisture content.

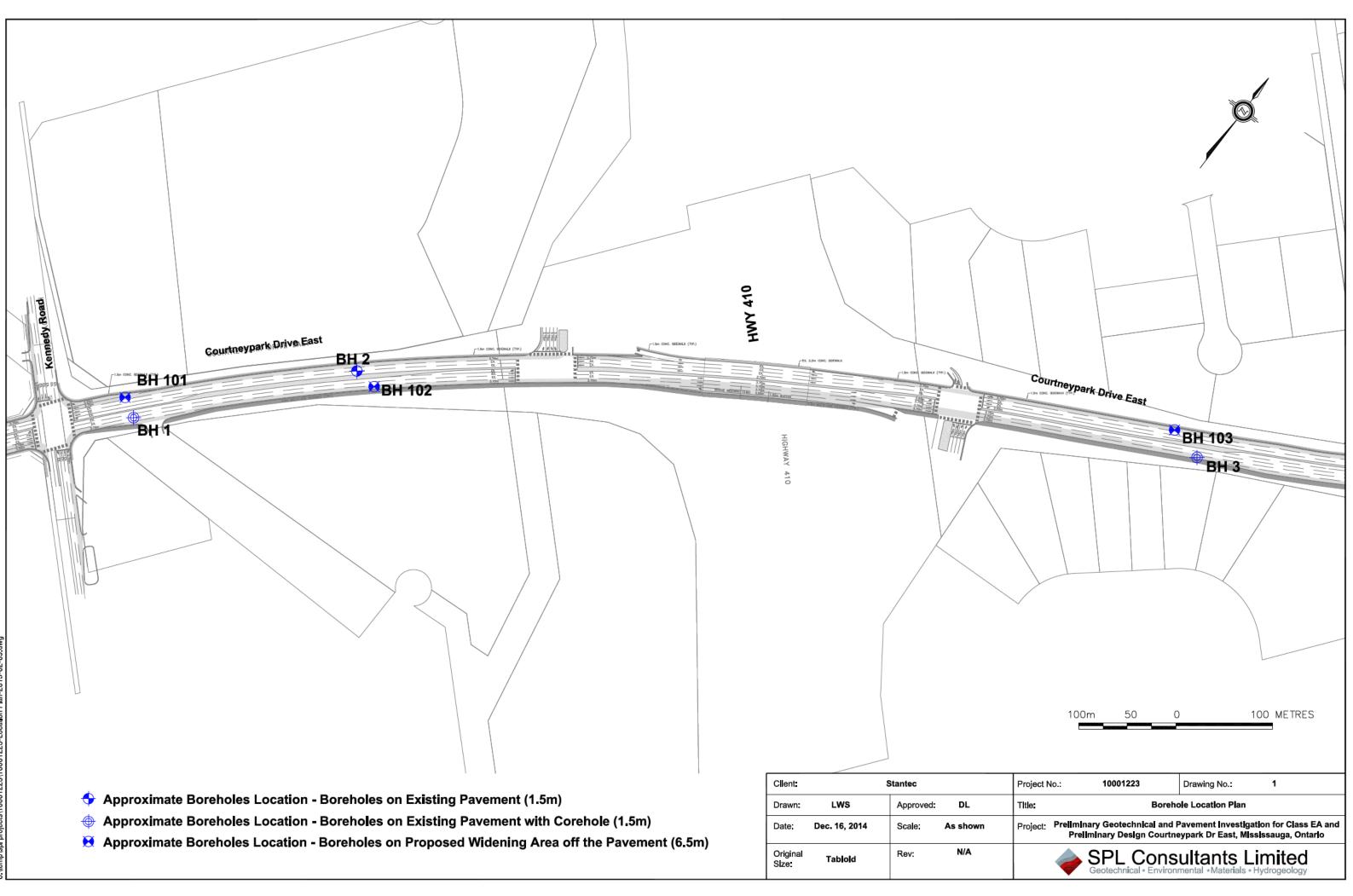
Normal post-construction settlement of the compacted trench backfill should be anticipated, with the majority of such settlement taking place within about 6 months following the completion of trench backfilling operations. This settlement may be compensated for, where necessary, by placing additional granular material prior to asphalt paving. Alternatively, if the asphalt binder course is placed shortly following the completion of trench backfilling operations in these areas, any settlement that may be reflected by subsidence of the surface of the binder asphalt should be compensated for by placing an additional thickness of binder asphalt or by padding.

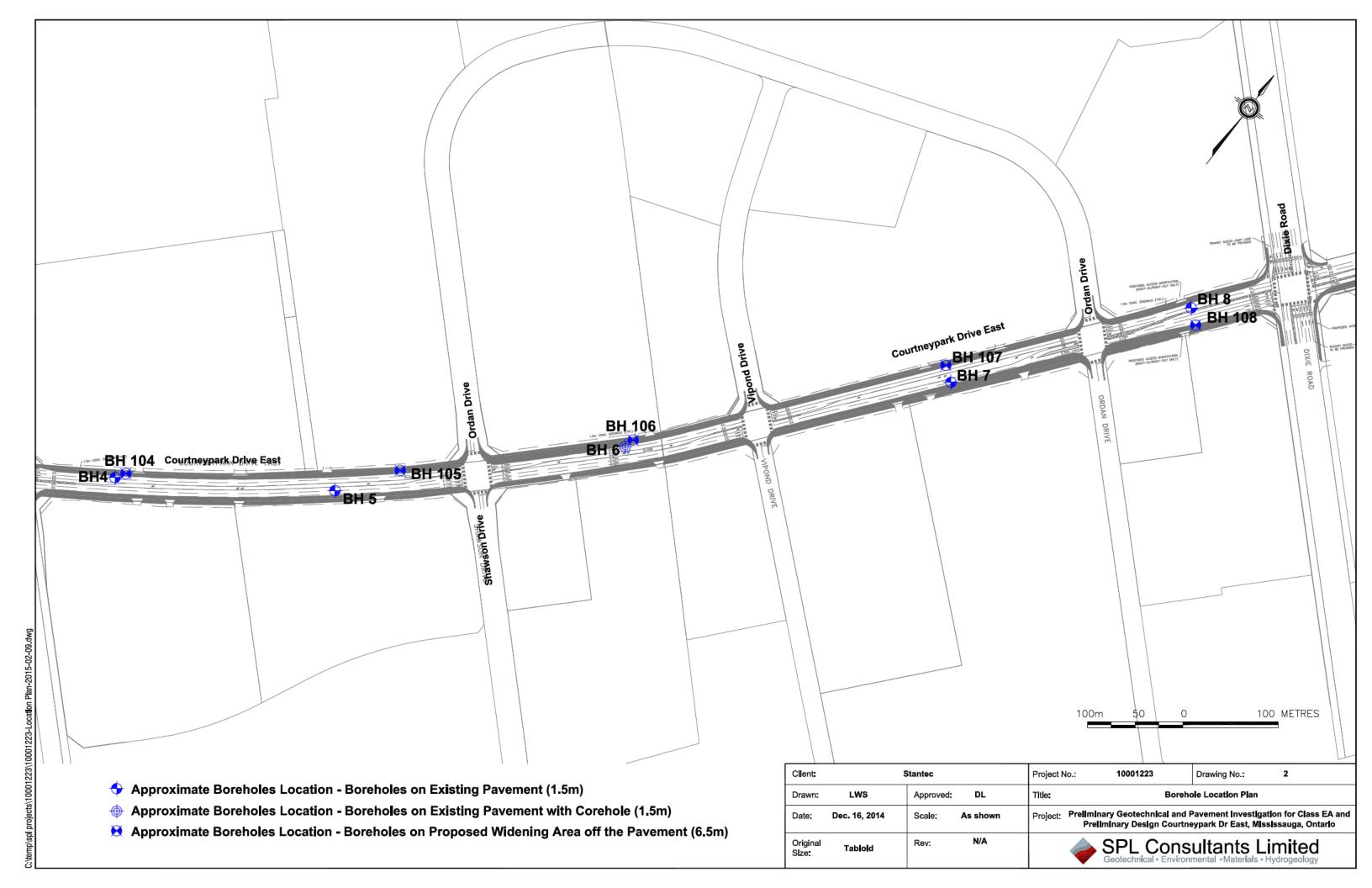
5. CLOSURE

We trust that the information contained in this report is satisfactory. Should you have any questions, please do not hesitate to contact this office.

Yours truly,

SPL CONSULTANTS LIMITED


Tianjiao (Sarah) Li, M.Sc, B. Eng


Siamak Gholamin, B. Sc. Pavement Design Assistant

Ramon Miranda, BA.Sc., P. Eng Principal Pavement & Geotechnical Engineer

DRAWINGS

ENCLOSURES

Enclosure 1-A: Notes on Sample Descriptions

- All sample descriptions included in this report generally follow the Unified Soil Classification. Laboratory grain size analyses provided by SPL also follow the same system. Different classification systems may be used by others, such as the system by the International Society for Soil Mechanics and Foundation Engineering (ISSMFE). Please note that, with the exception of those samples where a grain size analysis and/or Atterberg Limits testing have been made, all samples are classified visually. Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems.
- 2. Fill: Where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc., none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional preliminary geotechnical site investigation.
- 3. Till: The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

Enclosure 1-B: Explanation of Terms Used in the Record of Borehole

Sample Type

- AS Auger sample
- BS Block sample
- CS Chunk sample
- DO Drive open
- DS Dimension type sample
- FS Foil sample
- NR No recovery
- RC Rock core
- SC Soil core
- SS Spoon sample
- SH Shelby tube sample
- ST Slotted tube
- TO Thin-walled, open
- TP Thin-walled, piston
- WS Wash sample

Penetration Resistance

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in) required to drive a 50 mm (2 in) drive open sampler for a distance of 300 mm (12 in).

WH - Samples sinks under "weight of hammer"

Dynamic Cone Penetration Resistance, N_d:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in) to drive uncased a 50 mm (2 in) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in).

Textural Classification of Soils (ASTM D2487-10)

Classification	Particle Size
Boulders	> 300 mm
Cobbles	75 mm - 300 mm
Gravel	4.75 mm - 75 mm
Sand	0.075 mm - 4.75 mm
Silt	0.002 mm - 0.075 mm
Clay	<0.002 mm(*)
(*) Canadian Foundation Engineering	Manual (4 th Edition)

Coarse Grain Soil Description (50% greater than 0.075 mm)

Terminology	Proportion
Trace	0-10%
Some	10-20%
Adjective (e.g. silty or sandy)	20-35%
And (e.g. sand and gravel)	> 35%

Soil Description

a) Cohesive Soils(*)

Consistency	Undrained Shear Strength (kPa)	SPT "N" Value
Very soft	<12	0-2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very stiff	100-200	15-30
Hard	>200	>30

(*) Hierarchy of Shear Strength prediction

- 1. Lab triaxial test
- 2. Field vane shear test
- 3. Lab. vane shear test
- 4. SPT "N" value
- 5. Pocket penetrometer

b) Cohesionless Soils

Density Index (Relative Density)	SPT "N" Value
Very loose	<4
Loose	4-10
Compact	10-30
Dense	30-50
Very dense	>50

Soil Tests

w	Water	content

- w_p Plastic limit
- wı Liquid limit
- C Consolidation (oedometer) test
- CID Consolidated isotropically drained triaxial test
- CIU consolidated isotropically undrained triaxial test with porewater pressure measurement
- D_R Relative density (specific gravity, Gs)
- DS Direct shear test
- ENV Environmental/ chemical analysis
- M Sieve analysis for particle size
- MH Combined sieve and hydrometer (H) analysis
- MPC Modified proctor compaction test
- SPC Standard proctor compaction test
- OC Organic content test
- U Unconsolidated Undrained Triaxial Test
- V Field vane (LV-laboratory vane test)
- γ Unit weight

\	SPL Consultants Lim Geotechnical Environmental Materials Hydro		d		LC	DG O	F BO	REH	IOLE	BH	1									1 OF 1
PROJ	ECT Preliminary Geotechnical nvestig	ation	for C	lass E	A			DRIL	LING	ATA										
CL EN	IT Stantec							Metho	od Soi	ld Ster	m Aug	er								
1	ECT LOCAT ON Courtneypark Dr E M	Aissis	saug	a ON					eter 1								FNC			223
DATU								Date	Dec/1	12/201	4					EN	ICL NO	0 2		
BHLO	SO L PROF LE		s	AMPL	FS			DYNA	MCCO		NE RA	ON								
						£			ANCE			0 10	00	PLASTI LIMIT	C NATI	JRAL TURE	LIQUID LIMIT	ä	NATURAL UNIT WT (Mg/m ³)	REMARKS AND
(m) ELEV		A PLO			S E	GROUND WA COND ONS	NO		AR STI		TH (kF	Pa)		Wp		v	WL	POCKET PEN. (Cu) (kPa)	AL UN	GRANSZE DSRBUON
DEP H	DESCR PT ON	RA A	NUMBER	щ	BLOWS 0.3 m		ELEVA		NCONF		+	FIELD V/ & Sensiti LAB V/	ANE vity	wa	ERCC	N EN	(%)	8 <u>0</u>	NATUR A	(%)
193 0		S S	NUN	YPE	z	GR COI	ELE						00				0			GR SA S CL
1 <u>92</u> 9 02	ASPHALT (150mm) GRANULAR BASE (200mm)	\times	1A	AS										0						
	GRANULAR SUBBASE (250mm)	\boxtimes	1B	AS																
<u>192 4</u> 0 6	FILL: clayey silt trace gravel some	\bowtie																		
	sand brown moist	\otimes	2	AS			192								0					
		\otimes	2	AS											0					
1915	END OF BOREHOLE	\bowtie																		
15	Notes																			
	1) Water was at a depth of 1 5 m below existing ground surface (bgs)																			
	upon completion of drilling 2) Borehole was open upon																			
	completion of drilling																			

SPL SOL LOG 10001223-COUR NEYPARK DR E-20150213 - W HELEVA ON GPJ SPL GD 2/13/15

\Rightarrow	SPL Consultants Lim Geotechnical Environmental Materials Hydro		d gy		LC	DG O	F BO	REH	OLE	BH	2										1 OF	F 1
PROJ	ECT Preliminary Geotechnical nvestiga	ation	for C	lass E	A			DRIL	LING	DATA												
CL EN	IT Stantec							Metho	od Soi	ld Ster	m Aug	er										
	ECT LOCAT ON Courtneypark Dr E N	lissis	saug	a ON						15 mm							EF NO			223		
	M CAT ON See Borehole Location Plan							Date	Dec/1	15/201	4					EN	ICL NO	03				
BHLC	SO L PROF LE		s	AMPL	ES			DYNA RES S		NE PEN PLO	NE RA	ON								-		_
(m)						ш						0 10	00	PLASTI LIMIT	C MOIS CON	TURE	LIQUID	N.	NIT WT	RE	mark And	
ELEV	DESCR PT ON	A PLO	ĸ		BLOWS 0.3 m	GROUND WA COND ONS	NO	SHE/	R STI	RENG	TH (kF	Pa)		W _P		v D	WL	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (Mg/m ³)	GR/ DS	ANSZ RBU	
DEP H	DESCRIPTION	RA A	NUMBER	YPE			ELEVA	0 UI • QI	JCONF	NED R AX AL	. ×	Pa) FIELD V/ & Sensiti LAB V/	vity	WA	ER CO	ON EN	(%)	80	ULTAN		(%)	
193 0	ASPHALT (200mm)	S	٦	7	.	ធួប្ត	Ц	2	0 4	0 6	0 8	0 10	00	1	02	0 3	80			GR S	AS	CL
19 <mark>2 8</mark> 0 2	GRANULAR BASE (160mm)	\times	1	AS										0						33 5	4 (13)
	GRANULAR SUBBASE (400mm)	\bigotimes	2	AS										o						31 5	6 (13)
1 <u>92 2</u> 0 8	FILL: clayey silt some gravel some	\bigotimes																				, i
	sand containing cobbles grey moist	\bigotimes	3	AS			192								0	 						
101 5		\bigotimes	Ĭ																			
191 5 1 5	END OF BOREHOLE	XX																				\neg
	Notes Borehole was open and dry upon completion of drilling 																					
	completion of aniling																					
					I			L		L	L						<u> </u>	L				

-	SPL Consultants Lim Geotechnical Environmental Materials Hydro		d		L	DG O	F BO	REH	IOLE	BH	3									1 OF 1
PROJ	ECT Preliminary Geotechnical nvestig	ation	for C	lass E	A			DRIL	LING	DATA										
	NT Stantec							Metho	od Soi	ld Ste	m Aug	er								
PROJ	ECT LOCAT ON Courtneypark Dr E M	lissis	saug	ja ON				Diam	eter 1	15 mm	ı					RE	F NC	0 10	00012	223
DATU	JM							Date	Dec/1	12/201	4					EN	ICL N	04		
BHLC	OCAT ON See Borehole Location Plan							DIALA				-								
	SO L PROF LE		S	AMPL	ES	~		RES S	M C CO ANCE	PLO		ON		PLASTI	C NATI	URAL			F	REMARKS
(m)		0				N ER	_	2	20 4	0 6	8 0	0 10	00	PLASTI LIMIT WP	CON	TENT		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (Mg/m ³)	AND GRA N S ZE
ELEV DEP H	DESCR PT ON	A PLO	с.		BLOWS 0.3 m	GROUND WA COND ONS	NO		AR STI NCONF		TH (kF	Pa) FIELD V & Sensiti	ANE.	•••P				CCKET Cu) (KI	(Mg/n	DS RBU ON
		R	NUMBER	YPE			EVA	• Q	UCKF	R AX AL	. ×	LAB VA	NE			ON EN	(,,,)	80	NAT	(%)
181 5	_ ASPHALT (120mm)	S			z	ចីប័	EL	2	20 4	0 6	8 0	0 10	00		0 2	20 3	0			GR SA S CL
180 0 0 1	GRANULAR BASE (130mm)	\otimes	1	AS										0						
181 0	GRANULAR SUBBASE (250mm)	\bigotimes	2	AS			181							0						
0 5	FILL: silty sand some gravel grey moist	\bigotimes																		
		\bigotimes	3	AS																
		\bigotimes	Ĭ	~~																
180 0		\bigotimes					400													
15	END OF BOREHOLE Notes						100													
	 Borehole was open and dry upon completion of drilling 																			
	completion of drilling																			
/15																				
2/13/15																				
8																				
SPL																				
G																				
NO																				
×																				
EL																				
Z Z																				
13 -																				
1502																				
E-20																				
R																				
ARK																				
EY!																				
L N																				
õ																				
1223																				
1000																				
8																				
OLL																				
SPL SOLLOG 10001223-COUR NEYPARK DR E-20150213 - W HELEVA ON GPJ SPL GD																				
0		1	L	L					1	I	I						I	I		

<u>GRAPH</u> <u>NO ES</u> + ³ × ³ Numbers re er to Sensitivity

PROJECT Preliminary Geotechnical nvestigation for Class EA DRILLING	
DRILLING	S DATA
CL ENT Stantec Method S	coild Stem Auger
PROJECT LOCAT ON Courtneypark Dr E Mississauga ON Diameter	
DATUM Date Dec	C/15/2014 ENCL NO 5
BH LOCAT ON See Borehole Location Plan SO L PROF LE SAMPLES DYNAM C C RES S AM	
(m) Image: Second state	40 60 80 100 TRENGTH (kPa) VF NED + FIELD VANE VF NED + Sensitivity WA FR CON EN (%) WA FR CON EN (%)
	NF NED → FIELD VANE RAXAL × LAB VANE WA ER CON EN (%)
	40 60 80 100 10 20 30 GR SA S C
178 8 ASPHALT (210mm) 1 AS	o
0 2 GRANULAR BASE (190mm) 178 4 2	0
0 6 FILL: clayey silt trace gravel some	
sand grey moist	• • • • • • • • • • • • • • • • • • •
3 AS 170	
177 5 X 15 END OF BOREHOLE	
Notes	
1) Borehole was open and dry upon completion of drilling	
vo	
213/15	
SPL G	
Solution and the second se	
»	
2513	
50156	
ğ	
SPL SOLLOG 10001223-COUR NEYPARK DR E-20150213-W HELEVA ON GPJ SPL GD	
s	

4	-	SPL Consultants Lim Geotechnical Environmental Materials Hydro		d		L	OG O	F BO	REF	IOLE	BH	5									1 OF 1
Γ	PROJ	ECT Preliminary Geotechnical nvestiga	ation	for C	lass E	A			DRIL	LING	ATA										
		NT Stantec							Metho	od Soi	ld Ste	m Aug	er								
	PROJ	ECT LOCAT ON Courtneypark Dr E N	lissis	saug	a ON				Diam	eter 1	15 mn	ı					R	EF NO	0 10	00012	223
	DATU	M							Date	Dec/1	12/201	4					EN	NCL N	06		
┝	BHLC	OCAT ON See Borehole Location Plan								MCCO			ON						-		
		SO L PROF LE		S	ampl	.ES	£		RES S	M C CO ANCE	PLO	\geq			PLAST	IC NAT MOIS CON		LIQUID LIMIT	_	¥	REMARKS
	(m)		0			<u></u>	A R	7		1	1		1	00	LIMIT W _P	CON	TENT W		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (Mg/m ³)	AND GRA N S ZE
ī	elev Ep h	DESCR PT ON	A PLO	ER		BLOWS 0.3 m	NO N	NO A		AR STI NCONF		тн (кі +	FIELD V. & Sensiti	ANE	È		o		(CU)	TURAL (Mg/	DSRBUON (%)
			s RA	NUMBER	YPE	L.	GROUND WA COND ONS	ELEVA		UCK F 20 4		. ×	LAB VA	ANE 00			ON EN 20 3	(%) 30	-	¥	
	178 0 177 8	ASPHALT (220mm)	0)				00			ľ i	ľ	Ĩ	<u> </u>			<u> </u>		1			GR SA S CL
ŀ	02	GRANULAR BASE (180mm) GRANULAR SUBBASE (280mm)	\otimes	1	AS										0						
	177 3	GRANULAR SUBBASE (280mm)	\bigotimes	2	AS										0						
F	07	FILL: sandy silt trace to some	Ň				1														
		gravel trace clay brown moist	\otimes	3	AS			177								0			{		
			\otimes	Ĩ																	
┝	176 5 1 5	END OF BOREHOLE	Ň																	\vdash	
		Notes 1) Borehole was open and dry upon																			
		completion of drilling																			
15																					
2/13/15																					
SPL (
ELC.																					
No																					
Ā																					
Ē																					
>																					
213 -																					
01502																			1		
E-2(
X DR																					
PAR																					
NEY																					
DUR																					
Ц С С С																			1		
0122																			1		
SPL SOLLOG 10001223-COUR NEYPARK DR E-20150213 - W HELEVA ON GPJ SPL GD																					
Pog																					
SOL																					
ч S																					

<u>GRAPH</u> <u>NO ES</u> + ³ × ³ Numbers re er to Sensitivity

○ ^{8=3%} Strain at Failure

-	SPL Consultants Lim Geotechnical Environmental Materials Hydro		d		LC	DG O	F BO	REH	OLE	BH	6									1	OF 1
PROJ	ECT Preliminary Geotechnical nvestig	ation	for C	lass E	A			DRIL	LING	ATA											
CL EN	IT Stantec							Metho	od Soi	ld Ster	n Aug	er									
	ECT LOCAT ON Courtneypark Dr E M	Aissis	saug	a ON					eter 1								F NC		00012	23	
DATU								Date	Dec/1	2/201	4					EN	ICL N	07			
BHLU	CAT ON See Borehole Location Plan SO L PROF LE		s	AMPL	ES			DYNA	ANCE		IE RA	ON									
()			-			б		2	0 4	0 6	0 8	0 10	00	PLASTI LIMIT	C NATU MOIS	JRAL TURE TENT	LIQUID LIMIT	Ľ.	ITWT		ARKS ND
(m) ELEV	DECOD DE ON	A PLO	~		BLOWS 0.3m	GROUND WA COND ONS	NO	SHEA	R STI	RENG	TH (kF	Pa) FIELD V & Sensiti		W _P	(WL	POCKET PEN. (Cu) (kPa)	RAL UN		NSZE BUON
DEP H	DESCR PT ON	RA A	NUMBER	YPE			ELEVA	oUI ●QI	NCONF JCK F	NED R AX AL	+ ×	& Sensiti	vity NE	WA	ER CO	N EN	(%)	80 S	NATUR 1)		%)
177 0		S	ΝN	ΥŁ	z	GR CO	ELE			06			00	1	02	0 3	0			GR SA	S CL
1 <u>788</u> 02	ASPHALT (170mm) GRANULAR BASE (180mm)	\times	1	AS										0						43 48	<mark>(9)</mark>
176 4	GRANULAR SUBBASE (250mm)	\otimes	2	AS										o						25 55	(20)
06	FILL: silty clay brown moist	\bigotimes																			
		\boxtimes	3	AS			176									0					
		\bigotimes																			
175 5 1 5	END OF BOREHOLE	\sim																	\square		
	Notes 1) Borehole was open and dry upon completion of drilling																				
	completion of drilling																				
		1																L			

-	SPL Consultants Lim Geotechnical Environmental Materials Hydro	ite	d gy		LC	DG O	F BO	REH	IOLE	BH	7									1 OF 1
PROJ	ECT Preliminary Geotechnical nvestig	ation	for C	lass E	A			DRIL	LING	DATA										
	T Stantec								od Soi		-	er								
PROJE	ECT LOCAT ON Courtneypark Dr E M	lissis	saug	ja ON					eter 1								EF NO		00012	223
	VI CAT ON See Borehole Location Plan							Date	Dec/	12/201	4					EN	ICL N	08		
DITEO	SO L PROF LE		S	AMPL	ES			DYNA RES S	M C CO ANCE	NE PEN	RA	ON			NATI	IDAI				REMARKS
(m)						Ч Ш				0 6		0 10	00	PLASTI LIMIT			LIQUID	a) BEN.		AND
ELEV	DESCR PT ON	A PLO	с.		BLOWS 0 3 m	GROUND WA COND ONS	NO	SHE	AR STI NCONF	RENG	TH (kF	Pa) FIELD V/	NE	W _P		v >	WL	CKET Cu) (kP	NATURAL UNIT WT (Mg/m ³)	GRANSZE DSRBUON
DEP H		RA	NUMBER	YPE	"N"		ELEVA	• 0	UCK	R AX AL	×	& Sensiti	vity NE		ERCO		(%)	8€		
1750 1748	ASPHALT (220mm)	S			¥	ΟŪ		2	20 4	06	0 8	0 10	00	1	02	0 3	30			GR SA S CL
02	GRANULAR BASE (180mm)	\otimes	1	AS										0						
1 <u>74 4</u> 0 6	GRANULAR SUBBASE (200mm) FILL: clayey silt brown moist	\otimes	2	AS										0						
00	FILL. Clayey sin brown moist	\otimes																		
		\bigotimes	3	AS			174								c					
173 5		\bigotimes																		
15	END OF BOREHOLE Notes																			
	1) Borehole was open and dry upon completion of drilling																			

-	SPL Consultants Lim Geotechnical Environmental Materials Hydro		d		L	DG O	F BO	REH	OLE	BH	B									1 OF 1
PROJ	ECT Preliminary Geotechnical nvestig	ation	for C	lass E	A			DRIL	LING	ATA										
1	IT Stantec									ld Ster	-	er								
	ECT LOCAT ON Courtneypark Dr E M	Aissis	saug	ja ON						15 mm							FNO			223
DATU	MICAT ON See Borehole Location Plan							Date	Dec/	12/201	4					EN	ICL NO	09		
DITEC	SO L PROF LE		5	SAMPL	ES			DYNA RES S	M C CO ANCE	NE PEN PLO	NE RA	ON			NAT	1041				REMARKS
(m)						ш							00	PLASTI LIMIT	C MOIS CON	JRAL TURE TENT	LIQUID	ż,	NITWT	AND
ELEV	DESCR PT ON	A PLO	ĸ		BLOWS 0 3 m	GROUND WA COND ONS	S			RENG	TH (kF	Pa)		Wp		v >	LIQUID LIMIT WL (%)	CKET F 20) (KP	NATURAL UNIT WT (Mg/m ³)	GRANSZE DSRBUON
DEP H	DEGORTTON	RA A	NUMBER	YPE			ELEVA	0 UI • QI	JCONF	NED R AX AL	+ ×	Pa) FIELD V/ & Sensiti LAB V/	vity		ER CO			8 <u>9</u>	NAU UTAN	(%)
174 0	ASPHALT (250mm)	S	ñ	~	z	5 9	Щ	2	0 4	0 6	08	0 10	0	1	02	0 3	0			GR SA S CL
00 1738 03	GRANULAR BASE (200mm)	XX	1	AS										0						
173 3	GRANULAR SUBBASE (250mm)	\otimes	2	AS										o						
07	FILL: silty sand trace to some gravel brown moist	\bigotimes																		
	graver brown moist	\otimes	3	AS			173								0					
172 5		\bigotimes																		
15	END OF BOREHOLE Notes																			
	 Borehole was open and dry upon completion of drilling 																			
	completion of draining																			

PRUET Puelinary Coolechold mestgation for Class EA CLENT Stante DRILLM DIAT Method Sold Stan Auger Damater 115 mm REF NO 10001223 DATUM Damater 115 mm REF NO 1000123 DATUM Sol PROF Le Sold ENCL NO 10 SOL PROF LE SAMPLES Image Provide Sold Sold Sold Sold Sold Sold Sold Sold
PROJECT LOCATION Courtineypark Dr E Mississauga ON DATUM Diameter 115 mm REF NO 10001223 BH LOCATION See Borehole Location Plan Sol PROF LE SAMPLES Interference ENCLAND ENCLAND ENCLAND Interference
DATUM BH.COAT ON See Borehole Location Plan Date Dec/15/2014 ENCL NO 10 SO L PROF LE SAMPLES SAMPLES Image: Sample
BHLCCAT ON See Borehole Location Plan SOL PROF LE SAMPLES Image: Solution of the second seco
SOL PROFILE SAMPLES (m) DESCR PT ON 2 g
SOL PROPIDE SAMPLES End
1930 0 2 > 2 3 3 20 40 60 80 100 10 20 30 GR SA S 1920 TLL: sand and gravel trace criganic trace to some silt brown moist loose 1 SS 6 1 SS 6 1921 TLL: dayey silt trace gravel trace sand trace wood pieces topsoil 1916 1 SS 6 1921 TLL: dayey silt trace gravel trace sand trace wood pieces topsoil 1916 1 SS 2 SS 3 SS 32 1916 Inclusion grave moist stiff to hard 3 SS 32 191 192 191 192 0 1 7 28 38 106 Max stiff to hard SS 27 180 191
1930 0 2 > 2 3 3 20 40 60 80 100 10 20 30 GR SA S 1920 TLL: sand and gravel trace criganic trace to some silt brown moist loose 1 SS 6 1 SS 6 1921 TLL: dayey silt trace gravel trace sand trace wood pieces topsoil 1916 1 SS 6 1921 TLL: dayey silt trace gravel trace sand trace wood pieces topsoil 1916 1 SS 2 SS 3 SS 32 1916 Inclusion grave moist stiff to hard 3 SS 32 191 192 191 192 0 1 7 28 38 106 Max stiff to hard SS 27 180 191
1930 0 2 > 2 3 3 20 40 60 80 100 10 20 30 GR SA S 1920 TLL: sand and gravel trace criganic trace to some silt brown moist loose 1 SS 6 1 SS 6 1921 TLL: dayey silt trace gravel trace sand trace wood pieces topsoil 1916 1 SS 6 1921 TLL: dayey silt trace gravel trace sand trace wood pieces topsoil 1916 1 SS 2 SS 3 SS 32 1916 Inclusion grave moist stiff to hard 3 SS 32 191 192 191 192 0 1 7 28 38 106 Max stiff to hard SS 27 180 191
1966 TOPSOIL (100m) 1 SS 1091 FILL: daryer sit trace gravel trace inclusion gray moist loose 1091 SS 11 SS 11 SS 121 Carbon Same Strate gravel trace gravera grave gravel trace gravel trace gravel tr
01 FILL sand and gravel trace model trace model to some silt brown moist loose 1 SS 6 1921 1 22 SS 1 192 0 0 1916 1 1000 22 SS 1 192 0 0 1916 1010 1000 1000 1000 1000 1000 0 0 14 SILTY CLAY TILL TO CLAYER 23 SS 32 0
organic trace of some sit brown methods in brown methods inclusion inclu
0 9 FILL: clayery silt frace gravel frace 28 SS 8 1916 SILT 7LL: trace gravel some stand some frace day pockets brown to grey moist stiff to hard 3 SS 32 14 SILT 7LL: trace gravel some stand some frace day pockets brown to grey moist stiff to hard 3 SS 32 1916 SILT 7LL: trace gravel some stand some frace day pockets brown to grey moist stiff to hard 3 SS 32 1917 5 SS 27 191 0 0 191 191 5 SS 27 191 0 0 191 192 0 0 0 0 191 0 0 191 193 5 SS 27 190 0 0 0 191 194 190 0 0 0 0 0 189 189 0 0 0 0 189 189 189 187 0 0 0 0 0 0 187 187 187 0 0 0 0 0 0 0 0
0 9 FILL: clayery silt frace gravel frace 28 SS 8 1916 SILT 7LL: trace gravel some stand some frace day pockets brown to grey moist stiff to hard 3 SS 32 14 SILT 7LL: trace gravel some stand some frace day pockets brown to grey moist stiff to hard 3 SS 32 1916 SILT 7LL: trace gravel some stand some frace day pockets brown to grey moist stiff to hard 3 SS 32 1917 5 SS 27 191 0 0 191 191 5 SS 27 191 0 0 191 192 0 0 0 0 191 0 0 191 193 5 SS 27 190 0 0 0 191 194 190 0 0 0 0 0 189 189 0 0 0 0 189 189 189 187 0 0 0 0 0 0 187 187 187 0 0 0 0 0 0 0 0
sand trace wood pieces topsoil 20 33 0 1916 inclusion grey moist loose 3 SS 32 14 SLLTY CLAY TILL TO CLAYEY stand to sandy trace sand seams trace day pockets frown to grey moist stiff to hard 3 SS 32 1916 inclusion inclusion inclusion inclusion inclusion 14 SLLTY CLAY TILL TO CLAYEY stand to sandy trace sand seams trace day pockets frown to grey moist stiff to hard 3 SS 32 191 191 0 0 0 0 182 5 SS 27 190 0 0 180 66 SS 21 180 0 0 188 0 0 0 0 0 0 188 187 0 0 0 0 0 186 4 END OF BOREHOLE 0 0 0 0 0
14 SILTY CLAY TILL TO CLAYEY SILT TIL: trace gravel some small bandy traces and seams trace day pockets brown to grey moist stiff to hard 3 SS 32 4 SS 26 191 0 0 1 17 28 38 4 SS 26 191 0 0 1 191 0 0 1 17 28 38 66 SS 27 190 0 0 0 1 191 0 0 1 7 28 38 189 190 190 0 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 1
sand to sandy trace sand seams moist stiff to hard 3 SS 32 4 SS 26 4 SS 26 5 SS 27 6 SS 21 7 SS 15 7 SS 15
trace day pockets brown to grey moist stiff to hard 4 SS 26 4 SS 26 191 0
1864 68 SS 21 188 188 0
1864 66 SS 21 190 0 0 0 188 0 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 189 0 0 0
1864 66 SS 21 190 0 0 0 188 0 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 188 0 0 0 0 0 189 0 0 0
1864 5 SS 27 6 SS 189 0 0 189 0 0 0 0 189 189 0 0 0 189 189 0 0 0 189 189 0 0 0 189 189 0 0 0 189 189 0 0 0 189 188 0 0 0 188 188 0 0 0 0 188 0 0 0 0 0 0 188 0 0 0 0 0 0 188 0 0 0 0 0 0 187 0 0 0 0 0 0 0
1864 5 SS 27 6 SS 189 0 0 189 0 0 0 0 189 189 0 0 0 189 189 0 0 0 189 189 0 0 0 189 189 0 0 0 189 189 0 0 0 189 188 0 0 0 188 188 0 0 0 0 188 0 0 0 0 0 0 188 0 0 0 0 0 0 188 0 0 0 0 0 0 187 0 0 0 0 0 0 0
1864 6A SS 189 0 0 0 187 188 0 0 0 0 1864 7 SS 15 0 0 0
6A SS 0 0 0 0 6B SS 21 188 0 0 0 1864 7 SS 15 0 0 0 0
6A SS 0 0 0 0 6B SS 21 188 0 0 0 1864 7 SS 15 0 0 0 0
6A SS 0 0 0 0 6B SS 21 188 0 0 0 1864 7 SS 15 0 0 0 0
1864 66 SS 21 188 0 0 0 0 1864 7 SS 15 0 0 0 0 0
1864 66 SS 21 188 0 0 0 0 1864 7 SS 15 0 0 0 0 0
1864 66 SS 21 188 0 0 0 0 1864 7 SS 15 0 0 0 0 0
1864 188 0 0 0 0 1864 7 SS 15 0 0 0
1864 7 SS 15
1864 66 END OF BOREHOLE 0
1864 66 END OF BOREHOLE 0
1864 66 END OF BOREHOLE 0
1864 66 END OF BOREHOLE 0
Nata a second
Nata a second
Nata a second
completion of drilling
<u>GROUNDWA ER ELEVA ONS</u> <u>NO ES</u> <u>GRAPH</u> + ³ × ³ Numbers re er to Sensitivity O ^{£=3%} Strain at Failure

NO ES

-	SPL Consultants Lim Geotechnical Environmental Materials Hydro		d		LO	g of	BOF	EH	OLE	BH1	02									1 OF	1
PROJ	ECT Preliminary Geotechnical nvestiga	ation	for C	lass E	A			DRIL	LING	DATA											
CL EN	IT Stantec							Meth	od Soi	ld Ste	m Aug	er									
PROJ	ECT LOCAT ON Courtneypark Dr E N	Aissis	saug	ja ON				Diam	eter 1	15 mm	ı					RE	EF NO) 10	00012	223	
DATU	M							Date	Dec/	12/201	4					EN	ICL N	0 1	1		
BHLC	OCAT ON See Borehole Location Plan					<u> </u>		DYNA	мссо	NE PEI	NE RA	ON									_
	SO L PROF LE	-	s	SAMPL	.ES	£		RES S	ANCE	PLO	\geq			PLAST		URAL	LIQUID		M	REMARKS	3
(m)		2			ଷ୍ଟ	NS E	z		1				00	LIMIT W _P	CON	TENT	LIMIT WL	POCKET PEN. (Cu) (kPa)	-UNIT	AND GRA N S ZI	E
ELEV DEP H	DESCR PT ON	A PLO	Ц		BLOWS 0.3 m	Í ON	NO A	οU	AR STI	NED	+	7a) FIELD V & Sensiti	ANE			0		OCKE	TURA (Mg	DSRBU ((%)	NC
		s RA	NUMBER	YPE	.v.	GROUND WA COND ONS	ELEVA		UCK P 20 4		. ×	LAB VA	ANE 00			ON EN 20 3	(%) 30	"	M		~
193 2 19 9 9	CONCRETE (150mm)	P 6				00							<u> </u>		<u> </u>	Ĩ	Ĩ			GR SA S	UL
02	FILL: gravel some sand trace to some silt some clay brown moist to	\otimes	1A	AS			193							0							
	wet loose	\boxtimes	1B	AS										0							
		\otimes		~~~																	
		\otimes				1														57 40 40	10
		\otimes	2	SS	8		192								0					57 18 13	12
191 7 1 5	SILTY CLAY TILL TO CLAYEY	X]															
	SILT TILL: trace gravel some sand		-			1															
	to sandy containing cobbles brown to grey moist to wet stiff to very stiff		3	SS	15											0					
		H2	-				191														
		1																			
			4	SS	30										0						
			-																		
							190														
			5	SS	32										0						
						-															
							189														
		X																			
			6	SS	13											0					
			Ľ				100														
							188														
			<u> </u>				187											1			
186 5		1St	7	SS	86/11"	1								0							
67	END OF BOREHOLE																				┥
	Notes 1) Borehole was open and dry upon																				
	completion of drilling																				
GROUN	IDWA ER ELEVA ONS					<u>GRAPH</u> NO ES	+ 3	× ³	Number	s re er	0	s =3%	Strain	at Failu	e						

SPL SOL LOG 10001223-COUR NEYPARK DR E-20150427 - W HELEVA ON GPJ SPL GD 4/27/15

Shallow/Single nstallation \underline{V} \underline{V} Deep/Dual nstallation \underline{V} \underline{V}

-	SPL Consultants Lim Geotechnical Environmental Materials Hydro	ite	d		LO	g of	BOF	REHO	DLE	BH1	03									1 OF 1
PROJ	ECT Preliminary Geotechnical nvestiga	ation	for C	Class E	A			DRIL	LING I	DATA										
CL EN	IT Stantec							Meth	od So	ild Ster	m Aug	er								
	ECT LOCAT ON Courtneypark Dr E M	lissis	saug	ga ON	l					15 mm							EF NC			223
DATU								Date	Dec/	15/201	4					EN	NCL N	0 1:	2	
BHLC	SO L PROF LE			SAMPL	FS			DYNA	MCCC	NE PEN	NE RA	ON								
			_			眂			S ANCE			0 10	00	PLAST	IC NAT	URAL	LIQUID LIMIT	ż	NATURAL UNIT WT (Mg/m ³)	REMARKS AND
(m)		ЫО			Şε	GROUND WA COND ONS	No		1	RENG	TH (kF	Pa)		Wp	1	TENT W	w	(kPa)	ML UNI	GRANSZE
ELEV DEP H	DESCR PT ON	RA AI	NUMBER	ш	BLOWS 0.3 m			ου	NCONF		÷	FIELD V/ & Sensiti	vity	WA	ERCO	-	(%)	DO DO	ATUR. (M	DSRBUON (%)
182 0		S R	NUN	YPE	z	GRC	ELEVA					LAB VA	00				30		z	GR SA S CL
180 9	TOPSOIL (100mm)	$\overset{h}{\times}$																		
	FILL: sand and gravel trace to some silt brown moist loose	\bigotimes	1	SS	10									0						
181 3		\bigotimes																		
07	FILL: silty sand some gravel containing cobbles and boulders	\boxtimes																		
	grey moist compact	\bigotimes	2	SS	56/8"		181							- ·				1		
		\bigotimes				1														
		\bigotimes																		
		\bigotimes	3	SS	12									0						
1799 21	SILTY CLAY TILL TO CLAYEY	X					180													
21	SILT TILL: trace gravel some sand					-														
	to sandy containing cobbles brown to grey moist very stiff to hard		4	SS	21										0					
							179													
			5	SS	37										0					
							178											1		
			6	SS	40										0					
			-				177											-		
							176											-		
			7	SS	60									0						
175 4		X	'	00	00									Ŭ						
66	END OF BOREHOLE Notes																			
	 Borehole was open upon completion of drilling 																			
	 2) Water encountered at a depth of 0 5 m during drilling 																			
	3) Water was at 3 0 m below ground																			
	surface upon completion of drilling																			
GROUN	IDWA ER ELEVA ONS					<u>GRAPH</u> NO ES	+3	׳	Number to Sens	rs re er itivitv	0	s =3%	Strain a	at Failur	е					

SPL SOL LOG 10001223-COUR NEYPARK DR E-20150427 - W HELEVA ON GPJ SPL GD 4/27/15

NO ES

	Geotechnical Environmental Materials Hydro	geolo	ogy		LO	G OF	BOF	REH	OLE	BH1	04									1 OF 1
PRO	ECT Preliminary Geotechnical nvestiga	ation	for C	Class E	A			DRI	LING I	DATA										
CL EI	NT Stantec							Meth	od So	ild Ste	m Aug	er								
PRO	IECT LOCAT ON Courtneypark Dr E N	lissis	ssaug	ga ON	I			Dian	neter 1	15 mn	ı					R	EF NC	0 10	00012	223
DATU								Date	Dec/	15/201	4					E	NCL N	0 1	3	
BHL	OCAT ON See Borehole Location Plan							DYN	MCCO			ON						-		
	SO L PROF LE		5	SAMPL	.ES	£		RES	AM C CO S ANCE	PLO	\geq			PLAST LIMIT			LIQUID		¥	REMARKS
(m)		0			(0)	₹ S	_				1	1	00	LIMIT Wp		ITENT		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (Mg/m ³)	AND GRA N S ZE
ELEV DEP H	DESCR PT ON	A PLO	с		BLOWS 0.3 m	₽ õ	NO	SHE	AR ST		TH (kl	Pa) FIELD V	ANE			0	_	OCKE CU)	URAL (Mg/r	DS RBU ON
		R	NUMBER	YPE		GROUND WA COND ONS	ELEVA		OUCK I	R AX AL	. ×	LAB V	ANE			ON EN		Υ.	NAT	(%)
179 2 17 9 0	CONCRETE (150mm)	0 A A	ž	r -	z	ច័ប័	ш		20 4	ιο e	8 0	30 1	00	1	10 :	20 :	30			GR SA S CL
0 2 178 8	FILL sandy silt trace gravel brown	\bigotimes					179	<u> </u>								-		{		
04	moist SILTY CLAY TILL TO CLAYEY	Ŕ	1	SS	9											0				
	SILT TILL: trace gravel some sand																			
	to sandy containing cobbles brown to grey moist stiff to hard		1			-														
		H.	2	SS	22		178								0					
		1	—			-														
		12																		
			3	SS	25										0					
		K		- 55	25															
		18					177											1		
				SS	20										0					
		15	4	55	29										0					
		H.	1																	
		1	—			-	176	<u> </u>										{		
			5	SS	45										o					
			1			-														
		Æ																		
		1					175													
		12																		
5				~~~	22															
4/27/15		12	6	SS	22										ľ					
		12]	174											1		
L GI																				
d S L																				
GP																				
δ		12					173											-		
EV		12	7	SS	32]									0					
1725		KX.	<u> </u>		52	ļ			<u> </u>						[
SPL SOLLOG 10001223-COUR NEYPARK DR E-20150427 - W HELEVA ON GPJ SPL GD 9 12 4 57	END OF BOREHOLE Notes																			
421	 Water encountered at a depth of 0 3 m during drilling 																			
:015(Borehole was open upon completion of drilling 																			
ш Ц	3) Water was at 1 5 m below ground																			
XDX	surface upon completion of drilling																			
PAR																				
NEY																				
NUC																				
2 C																				
0122																				
100																				
00																				
20L																				
5 F																				
<i>n</i>				I	1	GRAPH	. 3		Number	s re er		s=20/			1	1	1	1		
GROU	NDWA ER ELEVA ONS					NO ES	+°	׳	to Sensi		С	ε= 3%	Strain	at Failu	re					

Shallow/Single nstallation $\underline{\nabla}$ $\underline{\nabla}$ Deep/Dual nstallation $\underline{\Psi}$ $\underline{\Psi}$

SPL Consultants Limited

-	SPL Consultants Lim Geotechnical Environmental Materials Hydro		d		LO	g of	BOF	REHO	OLE	BH1	05									1	OF 1
PRO	JECT Preliminary Geotechnical nvestiga	ation	for C	lass E	A			DRIL	LING	DATA											
	NT Stantec							Metho	od Soi	ld Ste	m Aug	er									
PRO	JECT LOCAT ON Courtneypark Dr E N	lissis	saug	ja ON				Diam	eter 1	15 mn	n					R	EF NC) 10	00012	223	
DATU	JM							Date	Dec/	12/201	4					E		0 1	4		
BHLO	OCAT ON See Borehole Location Plan																				
	SO L PROF LE		s	SAMPL	ES			DYNA RES S	M C CO ANCE	NE PEI PLO		ON			~ NAT	URAL			Т	REM	ARKS
(m)						Ш Ш							00	LIMIT	C NAT MOIS	TURE	LIQUID	Ä.	NATURAL UNIT WT (Mg/m ³)	A	ND
ELEV	DECOD DE ON	A PLO	~		BLOWS 0 3 m	GROUND WA COND ONS	S	SHE/	AR ST	RENG	TH (k	Pa) FIELD V & Sensiti		W _P		w 0	WL	POCKET PEN. (Cu) (kPa)	Vg/m ³		NSZE BUON
DEP H	DESCR PT ON	RA A	NUMBER	ų			AN N		NCONF UCK F		+	& Sensiti		WA	ERCO	ON EN	(%)	80 S	ULTAN D		%)
178 0		S S	NUN	YPE	z	S O	ELEVA						00				30		~	GR SA	S CL
1709	TOPSOIL (150mm)	\sim																			
0 2 177 5	some silt brown moist	$\overline{\mathbb{X}}$	1A	AS											0						
0 5	SILTY CLAY TILL TO CLAYEY	12	1B	AS		1									0						
	SILT TILL: some gravel sandy brownto grey soft to dense	1																			
			2	SS	4		177								•			{		9 23	41 27
		X				-															
			3	SS	4									0							
			1	33	4		470							Ŭ							
		E.				1	176											1			
		6																			
		12	4	SS	10										0						
		R.	1				175											-			
		K.	_			1															
			5	SS	21									0							
		R																			
		1					174											1			
		12																			
			1																		
		12	6	SS	16										0						
127/15		12	ľ	33	16		173														
4/2/						1															
g		R.																			
SPL (12																			
5		K.																			
NG			1				172											1			
HELEVA ON GPJ SPL GD 9 111 9 0		12	7	SS	38									Ι.							
습 급 171 4			ſ.	33	30										Ĭ						
	END OF BOREHOLE																				
- N	Notes Borehole was open and dry upon 																				
0427	completion of drilling																				
0150																					
<u>н</u>																					
K DR																					
PAR																					
NEY																					
R																					
ပို																					
1223																					
000																					
SPL SOLLOG 10001223-COUR NEYPARK DR E-20150427 - W																					
L L C																					
sc																					
т <mark>у</mark>																					
						GRAPH	. 3	3	Number	s re er		s=3%		at Failur							

NO ES to Sensitivity

Strain at Failure

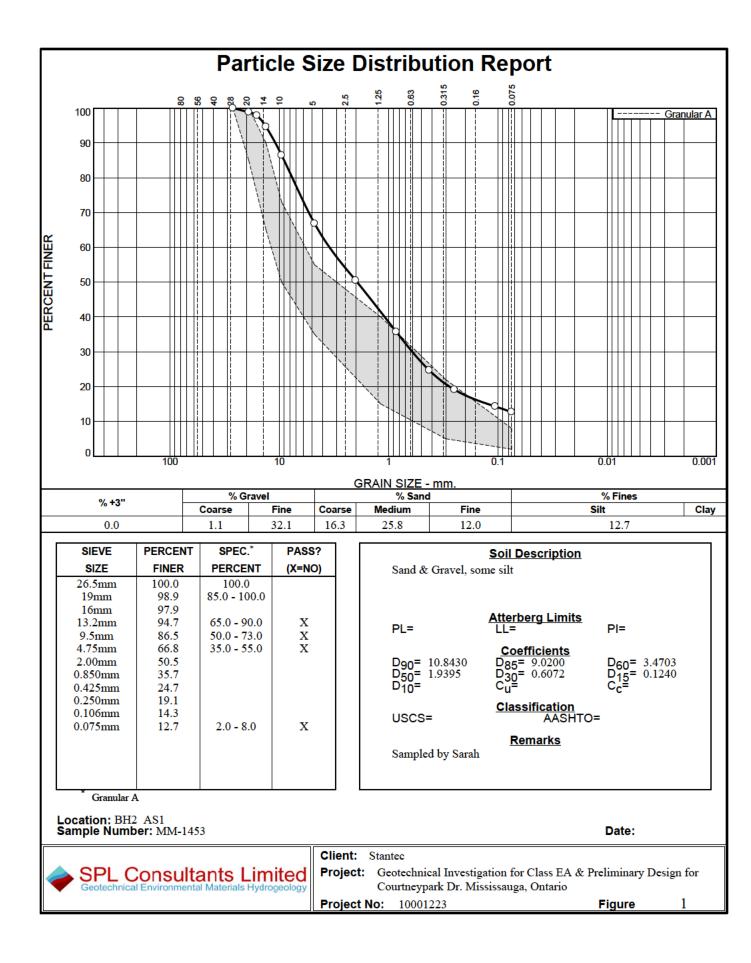
-	SPL Consultants Lim Geotechnical Environmental Materials Hydro		d gy		LO	G OF	BOF	REHO	OLE	BH1	06									1 OF 1
PROJ	ECT Preliminary Geotechnical nvestiga	ation	for C	lass E	A			DRIL	LING	DATA										
CL EN	IT Stantec							Meth	od Soi	id Ster	m Aug	er								
PROJ	ECT LOCAT ON Courtneypark Dr E M	lissis	ssaug	ja ON	I			Diam	eter 1	15 mm	ı					RE	EF NC	0 10	00012	223
DATU	M							Date	Dec/	12/201	4					EN	ICL N	0 1	5	
BHLC	OCAT ON See Borehole Location Plan								MCCO			ON								
	SO L PROF LE		S	SAMPL	ES	£		RESS	M C CO ANCE	PLO				PLAST					Ł	REMARKS
(m)		0			S	A E	-		1	1	1	1	00	LIMIT Wp	CON	TENT		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (Mg/m ³)	AND GRA N S ZE
ELEV DEP H	DESCR PT ON	A PLO	£		BLOWS 0.3m	N N	NO	SHE/	AR ST		TH (ki +	Pa) FIELD V	ANE			0		OCKE (Cu) (i	URAL (Mg/r	DS RBU ON
		RA	NUMBER	YPE	^m	GROUND WA COND ONS	ELEVA	• Q	UCK	R AX AL	. ×	LAB VA	ŃE			ON EN		ď	IAN	(%)
177 2 179 0	CONCRETE (170mm)	S P C P C	z	-	F	00	ш	· ·	20 4	0 6	8 0	80 10	00	1	0 2	20 3	30 	-		GR SA S CL
02	FILL:silty clay topsoil	\boxtimes				1	177											1		
	inclusion brown moist to wet firm	\otimes	1	SS	6										0					
		\bigotimes	_																	
		\otimes	2A	SS	6	1									0					
175 8		\otimes	2B	SS			176	<u> </u>	-							<u> </u>	•	\mathbf{I}		
1/58	SILTY CLAY TILL TO CLAYEY	X				1												1		
	SILT TILL: trace gravel some sand to sandy containing cobbles	K	\vdash			-												1		
	interbeded with silty clay brown moist very stiff to dense		3	SS	18										0					
		H.	┢			-	175	<u> </u>										-		
			⊢			-														
		H	4	SS	24										0					
						1														
			1			-	174											4		
			5	SS	35										0					
			1			-														
		段																		
		R.					173													
		151																		
		12	6	SS	15										0					
							172													
			1																	
		12	1																	
		H	1																	
			1				171													
						-	171											1		
170 5			7	SS	7										0					
	END OF BOREHOLE Notes																			
	 Borehole was open and dry upon completion of drilling 		1															1		
	completion of drining																			
			1															1		
			1															1		
			1															1		
			1															1		
			1															1		
			1															1		
		1																		
00010	IDWA ER ELEVA ONS					GRAPH	3	× ³	Number	s re er	0	ε=3%	Strain	at Failur	-					

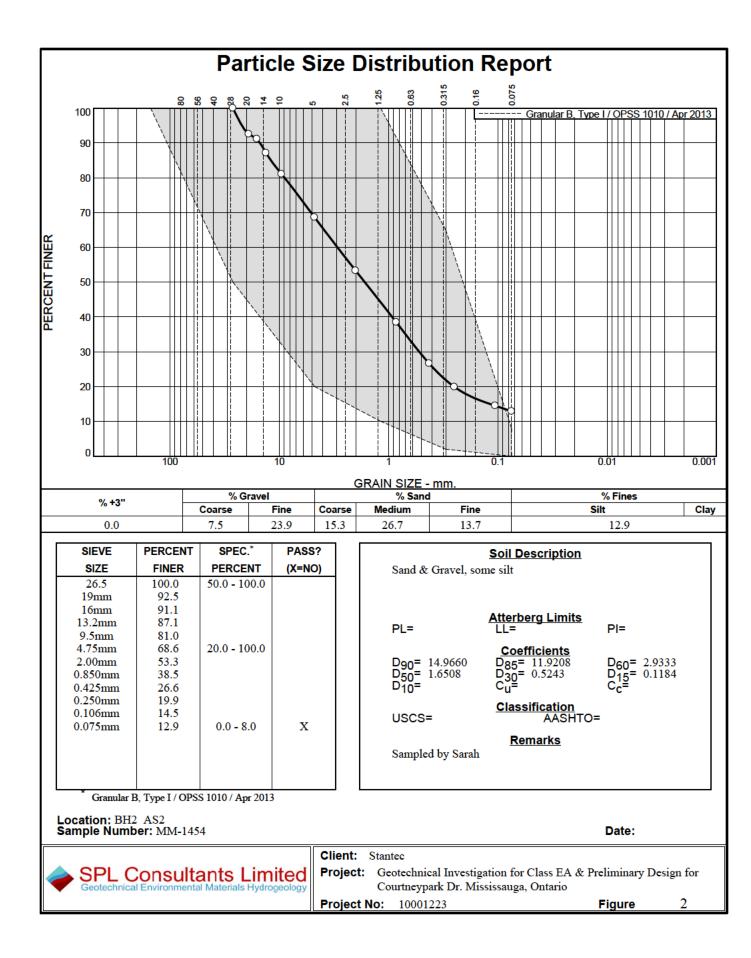
NO ES /ity

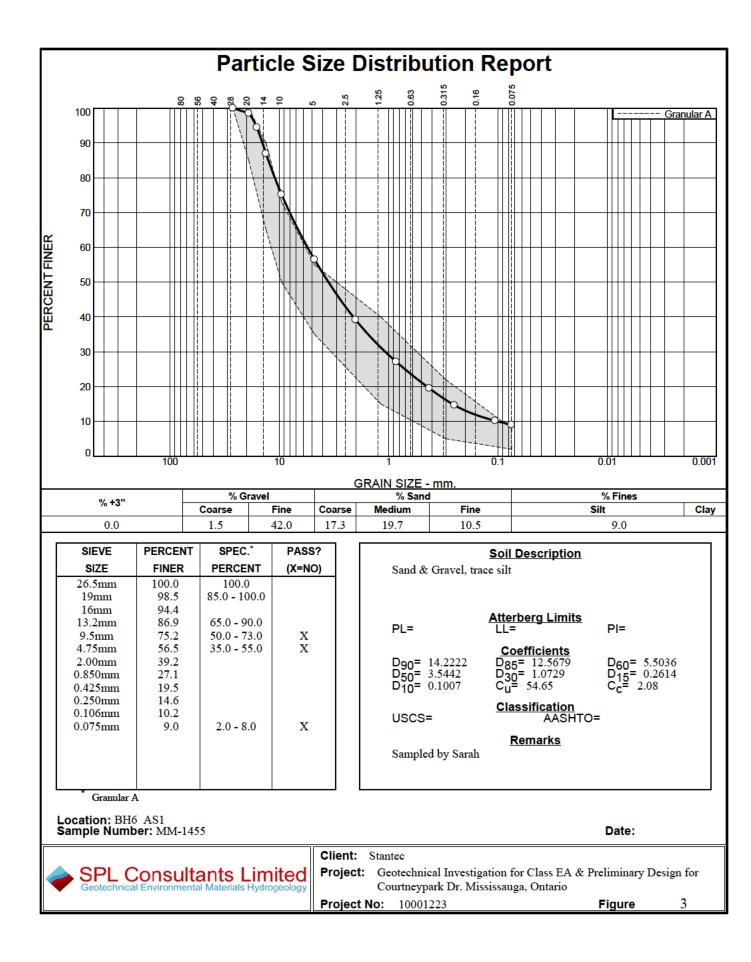
\Rightarrow	SPL Consultants Lim Geotechnical Environmental Materials Hydro	ite geolo	d gy		LO	g of	BOF	REHO	OLE	BH1	07									1 OF 1
PROJ	ECT Preliminary Geotechnical nvestiga	ation	for C	Class E	A			DRIL	LING	DATA										
CL EN	IT Stantec							Meth	od Soi	ld Ster	m Aug	er								
	ECT LOCAT ON Courtneypark Dr E N	lissis	saug	ga ON				Diam	eter 1	15 mm	ı					RE	FNC) 10	00012	23
DATU								Date	Dec/	12/201	4					EN	ICL NO	0 16	6	
BHLC	CAT ON See Borehole Location Plan SO L PROF LE			SAMPL	FS			DYNA	мссо	NE PEN	NE RA	ON								
	SO L PROP LE				.23	£			ANCE		\geq	0 10	00	PLASTI LIMIT	C NATI	JRAL TURE	LIQUID	POCKET PEN. (Cu) (kPa)	TWT	REMARKS AND
(m)		A PLO			SΝε	GROUND WA COND ONS	No		20 4 AR ST	1	TH (kF	Pa)	1	Wp		TENT V	WL	(KPa)	al UNI'	GRANSZE
ELEV DEP H	DESCR PT ON	A AF	NUMBER	ш	0 3 m			ου	NCONF	NED	+	FIELD V/ & Sensiti	vity	WA		DN EN	(%)	POC (CU)	ATUR (M)	DSRBUON (%)
175 2		S RA	NUN	YPE	z	GRC	ELEVA		UCK P 20 4			LAB VA	00				0		z	GR SA S CL
17 9 0 0 1	TOPSOIL (100mm) FILL: sandy silt trace roots brown moist loose to compact	\bigotimes	1	SS	8		175									0				
	moist loose to compact	\bigotimes																		
174 1		\bigotimes	2	SS	22										0					
11	SILTY CLAY TILL TO CLAYEY SILT TILL: trace gravel some sand to sandy interbeded with silty clay						174													
	to sandy interbeded with silty clay brown to grey moist stiff to dense		3	SS	21										o					
							173													
			4	SS	36										o					
			5	SS	19		172								0					
							171													
			6	SS	19										0					
							170													
			7	SS	45		169								0					
168 6		X	'	55	15										Ŭ					
66	END OF BOREHOLE Notes 1) Borehole was open and dry upon																			
	completion of drilling																			
					I	GRAPH	 3	3	Number	s re er		s =3%		at Failur						

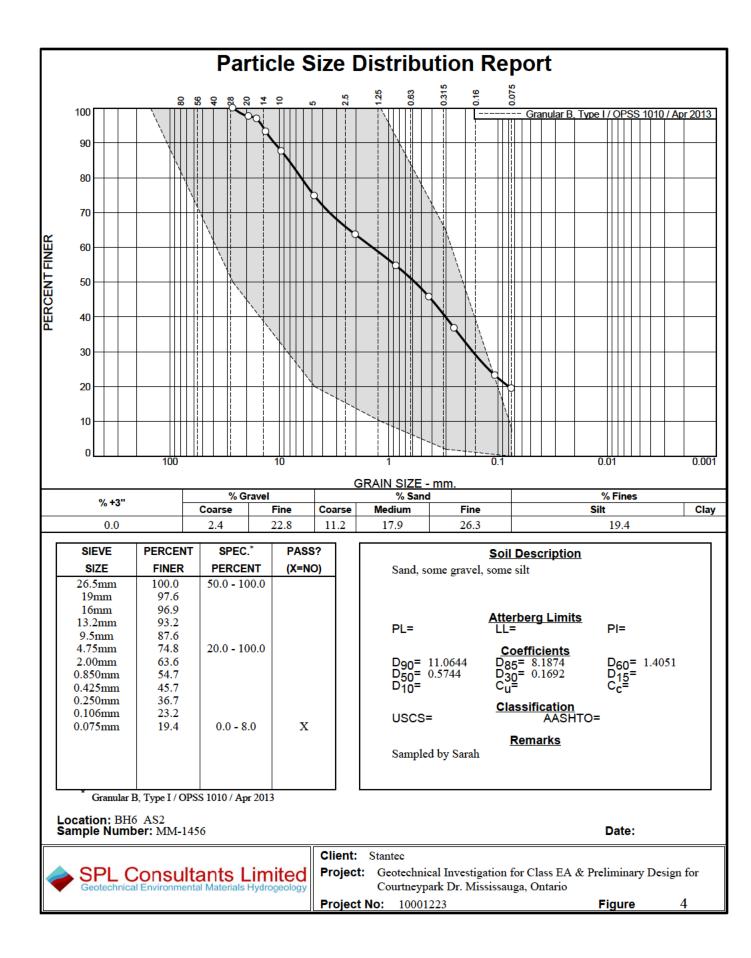
Shallow/Single nstallation V Deep/Dual nstallation V

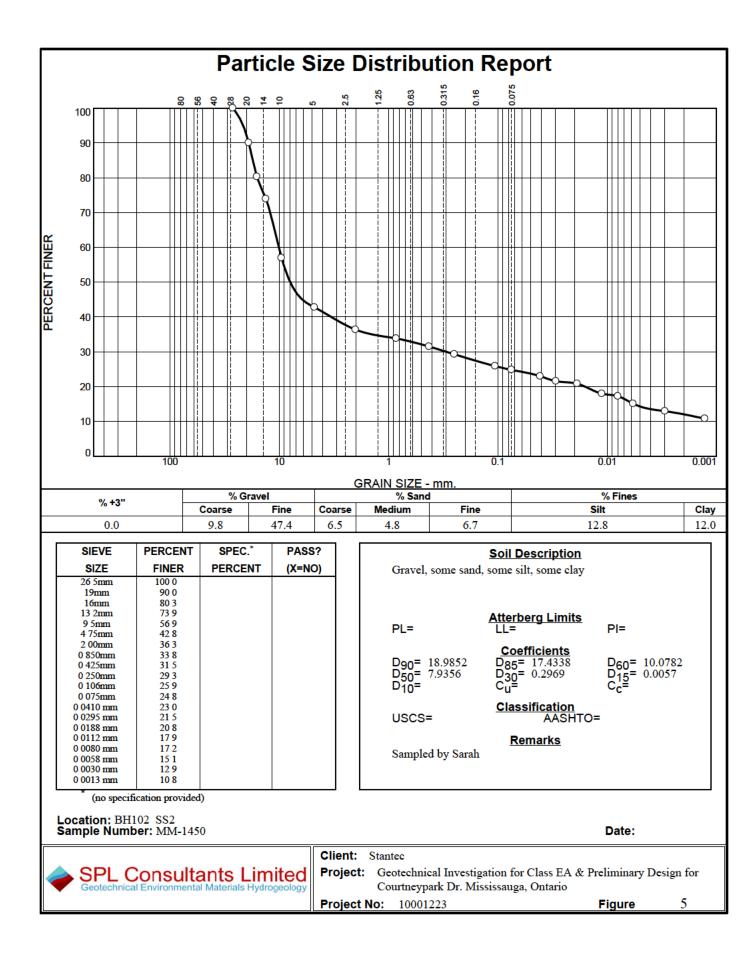
NO ES to Sensitivity

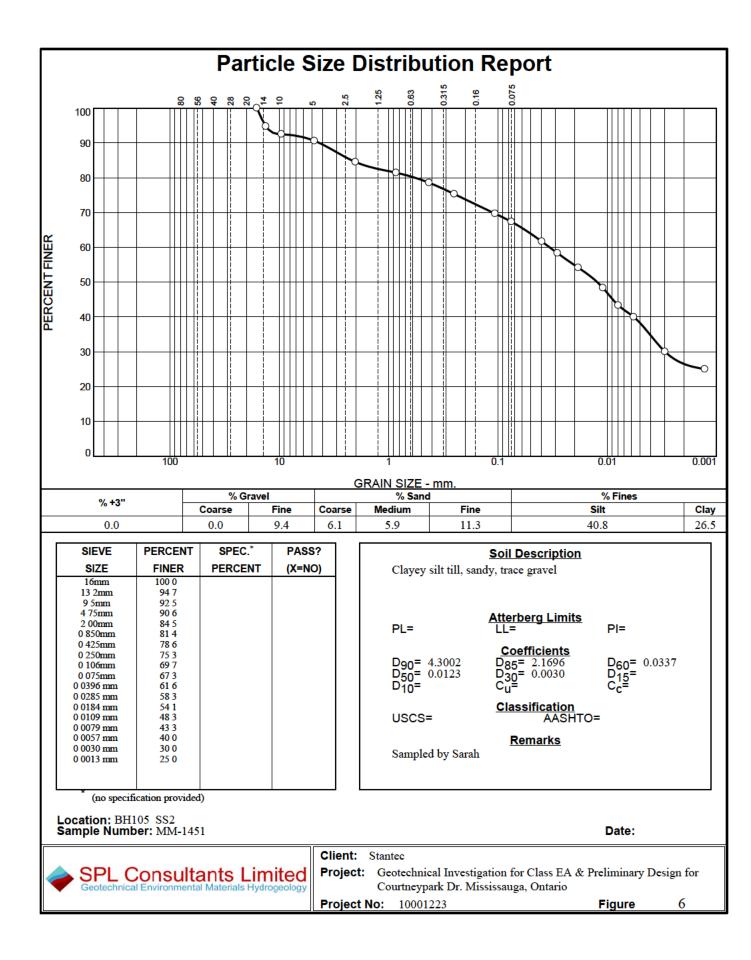

Strain at Failure

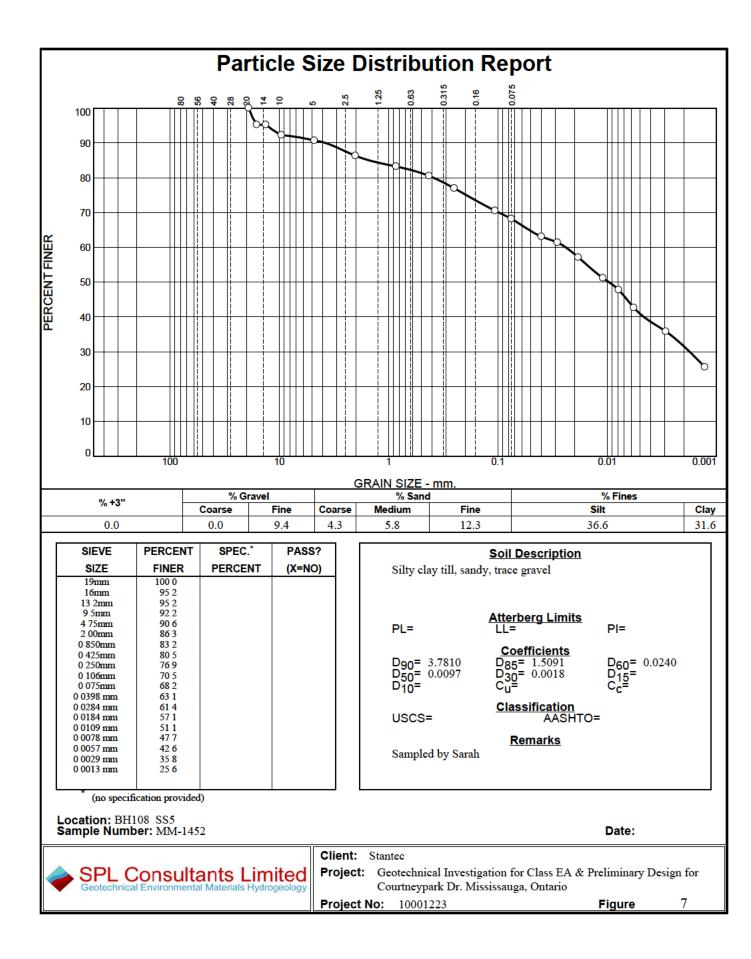

-	SPL Consultants Lim Geotechnical Environmental Materials Hydro		gy gy		LO	g of	BOF	REH	OLE	BH1	08										1 OF 1
PROJ	ECT Preliminary Geotechnical nvestiga	ation	for C	Class E	A			DRIL	LING [DATA											
	NT Stantec								od Soi		-	er									
	ECT LOCAT ON Courtneypark Dr E M	lissis	ssaug	ja ON	I				eter 1								EF NC			223	
DATU	M DCAT ON See Borehole Location Plan							Date	Dec/	12/201	4					E	NCL N	0 1	7		
BHL	SO L PROF LE		s	SAMPL	ES			DYN/	M C CO S ANCE		NE RA	ON									
						£							00	PLAST	IC NAT MOIS CON		LIQUID LIMIT	ä	TWT	RE	MARKS AND
(m) ELEV		PLO			S	GROUND WA COND ONS	No	SHE	AR STI	RENG	TH (kl	Pa)		Wp		w	w	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (Mg/m ³)	GRA	NSZE RBU ON
DEP H	DESCR PT ON	RA APLO	NUMBER	Ψ	BLOWS 0.3 m		×.		NCONF		+	FIELD V/ & Sensiti LAB V/	ANE vity	WA	ERCO	ON EN	(%)	80 SQ	ATUR A	001	(%)
174 2		S	NUN	YPE	z	GR	ELEVA						00	1	0 2	20 3	30		~		AS CL
1799	TOPSOIL (100mm) FILL: sandy silt trace roots brown	${\otimes}$			_		174														
	moist loose	\bigotimes	1	SS	7										0						
173 4		\bigotimes																			
0 8	SILTY CLAY TILL TO CLAYEY SILT TILL: trace gravel some sand	Ň	2	SS	11											0					
	to sandy brown to grey moist stiff to very stiff		<u> </u>				173														
	very sun																				
			3	SS	20										0						
			Ľ																		
							172														
			4	SS	30	1									0						
		6	_																		
		1£				1	171														
		R	5	SS	15										0					92	2 37 32
		12				1															
		12					170														
C1.17#		15	6	SS	10										0						
Ŧ		H.				1	169											-			
168 6																					
56	SILTY CLAY: trace gravel some																				
5	sand grey moist firm	H2																			
5		H2				1	168														
168 6 5 6 167 6 167 6		H	7	SS	7										0					2 1	3 39 46
	END OF BOREHOLE	1.1																			
\$	Notes 1) Borehole was open and dry upon																				
7400	completion of drilling																				
107-																					
5																					
K																					
Š																					
5																					
GROUN	IDWA ER ELEVA ONS					<u>GRAPH</u> NO ES	+ 3	× ³	Number to Sensi	s re er	C	s=3%	Strain	at Failur	e						

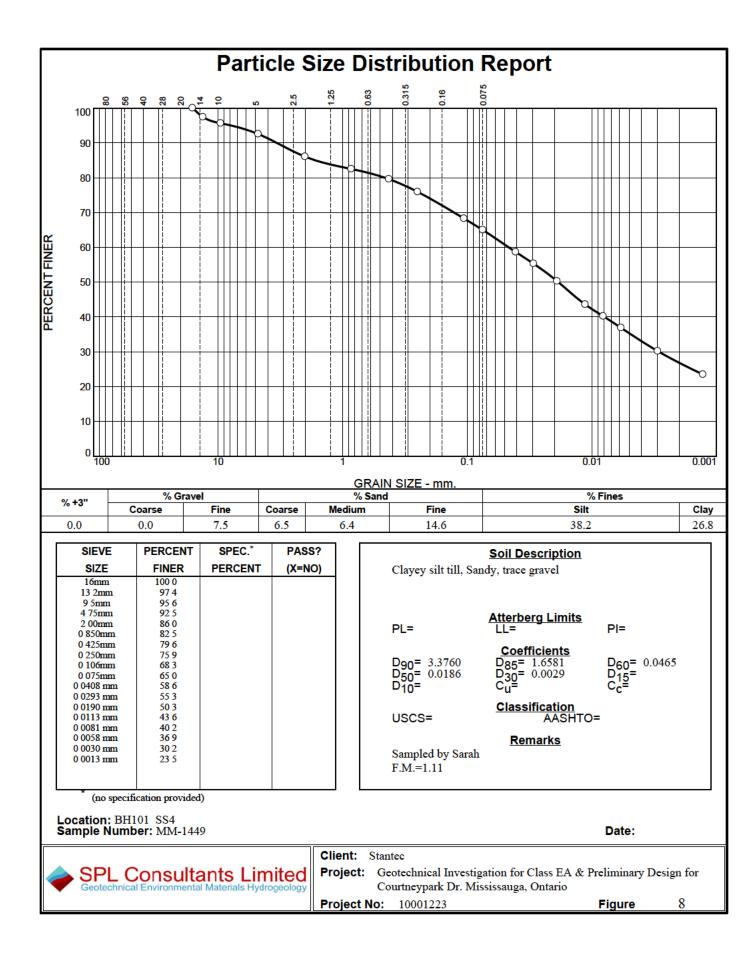

NO ES

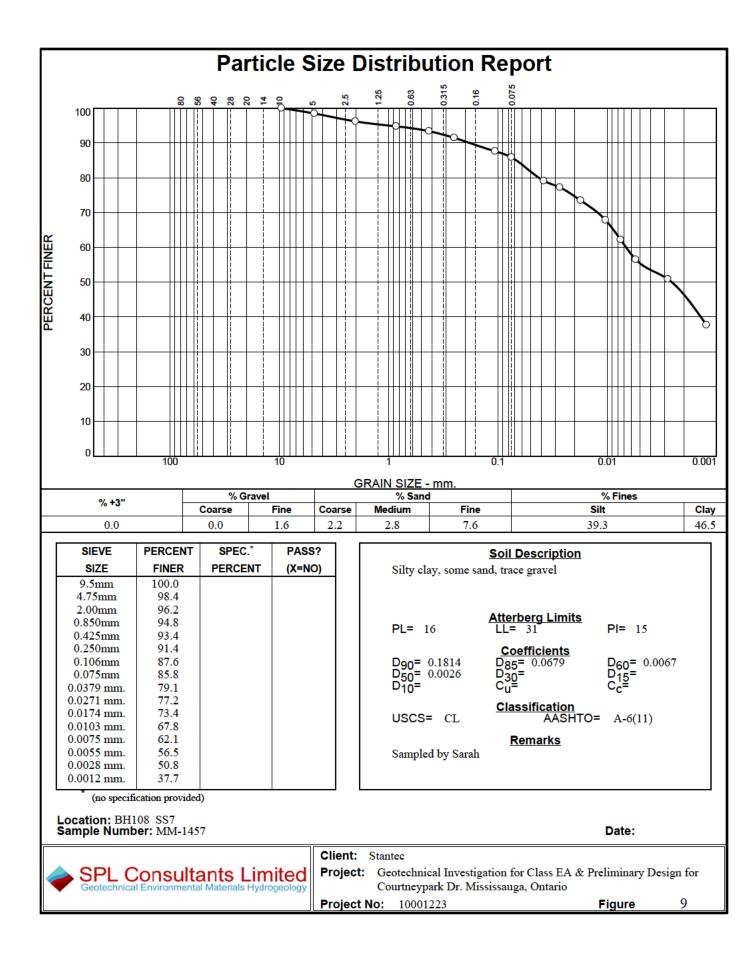


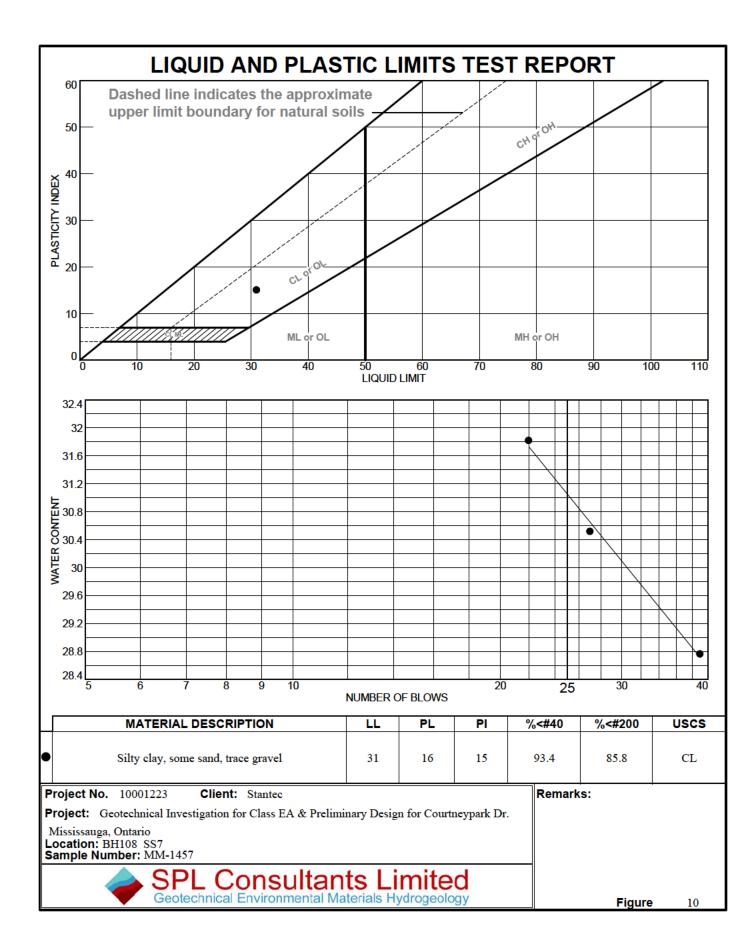

FIGURES











APPENDIX A

PHOTOGRAPHS OF ASPHALT CORES

(Photographs 1-3)

Photo 1, BH1

Photo 2, BH3

SPL Consultants Limited

APPENDIX B

PHOTOGRAPHS OF EXISTING PAVEMENT

(Photographs were taken on November 19, 2014)

Site Photographs COURTNEYPARK DRIVE EAST, MISSISSAUGA, ONTARIO

PAGE 1

Courtneypark Drive East – Looking east.

4

- Good to fair condition with slight edge cracking and transverse cracking.

Courtneypark
 Drive East –
 Looking west.

- Fair condition. Moderate to slight transverse and longitudinal cracking.

Photo Date: <u>November 19,</u> 2014

SPL Consultants Ltd

Project: <u>10001223</u>

COURTNEYPARK DRIVE EAST, MISSISSAUGA, ONTARIO

PAGE 2

Courtneypark Drive
 East – Looking east.

- Fair Condition with slight to moderate transverse cracking and map crack.

Courtneypark Drive East – Looking north.

> - Fair condition with slight to moderate transverse and longitudinal cracking and slight loss of aggregates.

Photo Date: <u>November 19,</u> 2014

SPL Consultants Ltd

Project: 10001223

COURTNEYPARK DRIVE EAST, MISSISSAUGA, ONTARIO

Courtneypark Drive
 East – Looking
 south.


- Fair condition with slight to moderate loss aggregate, longitudinal cracking and transverse cracking.

 Courtneypark Drive East – Looking east.

> - Fair condition with moderate to severe edge cracking, loss aggregate and alligator crack.

COURTNEYPARK DRIVE EAST, MISSISSAUGA, ONTARIO

Courtneypark Drive
 East – Looking west.

- Fair condition with moderate edge cracking and pavement distortion.

Courtneypark
 Drive East –
 Looking west.

- Fair condition with moderate longitudinal cracking, slight loss aggregate, moderate edge crack and alligator crack.

Photo Date: <u>November 19,</u> 2014

SPL Consultants Ltd

Project: <u>10001223</u>

COURTNEYPARK DRIVE EAST, MISSISSAUGA, ONTARIO

 ✓ Courtneypark Drive East – Looking west.

> - Poor condition with severe rutting, moderate edge cracking and pavement distortion.

Courtneypark
 Drive East –
 Looking west.

- Poor condition with transverse cracking, slight loss aggregate, moderate to severe edge crack and rutting.

Photo Date: <u>November 19,</u> 2014

SPL Consultants Ltd

Project: 10001223