

The Odan/Detech Group Inc. P: (905) 632-3811 F: (905) 632-3363 5230, SOUTH SERVICE ROAD, UNIT 107 BURLINGTON, ONTARIO, L7L 5K2 www.odandetech.com

PROPOSED RESIDENTIAL TOWNHOUSE DEVELOPMENT 2532 ARGYLE ROAD CITY OF MISSISSAUGA

PROJECT No. : 18201

FUNCTIONAL SERVICING & STORMWATER MANAGEMENT REPORT

Prepared For:

Plazacorp Investments Ltd.

Prepared By:

The Odan/Detech Group Inc.

- Original: October 19th, 2018
- Revised: May 22nd, 2019
- Revised: August 14th, 2019

TABLE OF CONTENTS

DESCRIPTION

1.0	INTRODUCTION
2.0	SCOPE OF WORK
3.0	SANITARY SEWERS
4.0	WATER DISTRIBUTION
5.0	STORM WATER MANAGEMENT & DRAINAGE PROPOSAL
i)	Background Information & Existing Infrastructure15
ii)	Design Criteria
iii)	Proposed Drainage & Allowable Discharge Flow Rate18
iv) Easem	Post Development Flow Analysis – Draining to 3600mm x 2400mm Mary Fix Creek Culvert in ent
v)	Post Development Flow Analysis – Draining to Argyle Rd. 525mm Storm Sewer
vi)	Downstream Storm Sewer Analysis
vii)	Water Balance27
viii)	Water Quality
6.0	CONCLUSIONS
7.0	REFERENCES

LIST OF FIGURES

Figure 1 - Excerpt from Argyle Road storm drainage plan showing area in site with allocation	16
Figure 2 - Post-Development Visual OTTHYMO Model (10-Year Storm Flows)	23

LIST OF TABLES

TABLE 1 – Pre-Development Sanitary Flow	4
TABLE 2 - Post-Development Sanitary Flow	
TABLE 3 – Total Water Demand	
TABLE 4 – Allowable Flow Rate	19
TABLE 5 - Pre-Dev vs. Post-Development Flow Rate to Culvert (A x C analysis)	20
TABLE 6 - Catchment Characteristics for the Post-Developed Site	22
TABLE 7 - Summary of Stormwater Control & Storage Scenarios	23
TABLE 8 - Summary	28

APPENDIX A

Existing Site Site Plan & Statistics Aerial view of Site and surrounding area by architectureunfolded

APPENDIX B

Argyle Road storm sewer design sheet Email Correspondence with City Staff regarding Design Criteria Email Correspondence from Credit Valley Conservation staff regarding Mary Fix Creek Visual OTTHYMO Model Output 2-year storm & 10-year storm

APPENDIX C

Functional Servicing Plan Functional Grading Plan Functional Sections Plan

1.0 INTRODUCTION

The property under study is a 0.661 Ha (1.6 acre) site located at 2532 Argyle Road in the City of Mississauga. The site is bound by the following:

- Argyle Road to the east
- An existing residential highrise development to the north
- A landscaped area within the adjacent highrise development to the west
- Existing detached houses to the south and on the opposite side of Argyle Road

Refer to the Key Plan in Appendix A for the site's layout and adjacent developments.

The site presently comprises three existing detached houses in three separate lots.

It is proposed to demolish the three existing houses. It is proposed to construct a townhouse development comprising a common one-level below-grade parking structure and four blocks of four-storey stacked townhouses with a total of 101 townhouse units. The stacked townhouses comprise a basement level, three above-ground levels and a mezzanine level above. Refer to the architectural Site Plan in Appendix A.

For detailed topography of the existing site conditions, as of January 15, 2017, refer to the topographic survey prepared by R. Avis Surveying Inc.

This report evaluates the serviceability of the site with respect to sanitary waste water, water and storm water management (SWM) and will implement the City of Mississauga's SWM requirements and criteria.

2.0 SCOPE OF WORK

THE ODAN/DETECH GROUP INC. was retained by **Plazacorp Investments Ltd.** to review the Site, collect data, evaluate the Site for the proposed use and present the findings in a Functional Servicing and Storm Water Management Report in support of a Zoning Bylaw Amendment application. The scope of work in brief involves the following:

- a) Collecting existing servicing drawings from the CITY in order to establish availability and feasibility of Site servicing;
- b) Meetings/conversations with CITY Engineers and Design Team.
- c) Evaluation of the data and presentation of the findings in a FSR and Storm Water Management Design Brief in support of the Zoning Bylaw Amendment application.

3.0 SANITARY SEWERS

i) Existing Infrastructure

There is an existing 250mm sanitary sewer flowing southerly beneath Argyle Road adjacent to the site's east frontage. This sewer continues easterly beneath Dunbar Road and then discharges into a 675mm sanitary sewer – which is assumed to be the trunk sewer – at the intersection of Dunbar Road and Rugby Road.

ii) Proposed Sanitary Servicing

The proposed townhouse development will be serviced for sanitary flows by a proposed 150mm sanitary service connection to the 250mm sanitary sewer beneath Argyle Road.

Sanitary flow calculations are based on the following criteria provided in the Region of Peel's manual: *Public Works Design, Specifications & Procedures Manual – Linear Infrastructure – Sanitary Sewer Design Criteria (Rev. July 2009).*

- flow rate = 302.8 L/person/day per capita
- Infiltration to be 0.0002m^{3/}sec/ha
- for residential areas, population of 3.5 persons per unit is to be used (row dwellings)
- The Harmon formula will be used for the peaking factor

The pre-development sanitary flows are as follows. Refer to the detailed calculation on the following pages.

TABLE 1 – Pre-Development Sanitary Flow									
Component	Population (P)	Peak Sanitary Flow (l/s)	Inflow & Infiltration (I/s)	Total Flow (I/s)					
Ex 3 x DTH	33	0.12	0.50	0.13	0.64				

The post-development sanitary flows are as follows. Refer to the detailed calculation on the following pages.

A unit population of 3.5 persons/unit has been adopted in the Post-Development flow calculation, rather than the Region standard of 175 persons/Ha for townhouses, because the Region standard would result in a population of approximately 1.0 person/unit for the proposed development. This is not realistic, therefore a unit population of 3.5 persons/unit has been used as this was used in other similar developments in Mississauga.

TABLE 2 – Post-Development Sanitary Flow									
Component	Population (P)	Average Flow (l/s)	Peak Sanitary Flow (l/s)	Inflow & Infiltration (I/s)	Total Flow (I/s)				
PROP TH's	354	1.24	5.01	0.13	5.15				

The peak sanitary flow from the proposed development is **5.15 L/s**, as shown above.

RESIDENTIAL SANITARY FLOW CALCULATIONS

Sanitary flow calculations as per Region of Peel Public Works Design Criteria Manual - Sanitary Sewer PROJECT: 2532 Argyle Road Residential Townhouse Development SCENARIO: PRE-DEVELOPMENT

0.661

COMMERCIAL SITE AREA (ha) =

RESIDENTIAL SITE AREA (ha) = 0.661

TOTAL SITE AREA (ha) =

LAND USE	NUMBER OF UNITS	SITE AREA, (ha)	GROSS FLOOR AREA, m2	TOTAL POPULATION	TOTAL DAILY FLOW (LITERS)	AVERAGE DAILY FLOW I/sec	PEAKING FACTOR, M	TOTAL FLOW FROM LAND USE, I/sec
Single family (>10m frontage), using 50 person/hectare		0.66		33	10008	0.12	4.35	0.50
Single family (<10m frontage), using 70 persons/hectare				0	0	0.00	4.50	0.00
Semi-Detached, using 70 persons/hectare				0	0	0.00	4.50	0.00
Row Dwellings, using 175 persons/hectare				0	0	0.00	4.50	0.00
Apartments, using 475 persons/hectare				0	0	0.00	4.50	0.00
RESIDENTIAL Townhomes, using 3.5 persons/unit				0	0	0.00	4.50	0.00
TOTAL RESIDENTIAL								0.50
COMMERCIAL, Using 50 persons/ha				0	0	0.00	4.50	0.00
TOTAL COMMERCIAL								0.00
	0			0				

TOTAL

Q = (MqP/86400) + A * I (L/sec)

Q1= total flow from Residential Land Use (L/sec) Q2= total flow from Commercial Land Use (L/sec) Qinfil = total flow from infiltration (L/sec) Qtot = total flow (Land use + infiltration)

V1= Total Volume from Land Use in liters

where: P is po

V1=

P is population q = 302.8 L/person/day for proposed residential

A = gross site area

i = 0.20 L/sec/ha (infiltration rate)

Peaking Factor M = 1 + [14 / (4 + (P/1000, 1/2))]

10008

Q1=

Q2=

Qinfil

Qtot

0.50

0.00

0.13

RESIDENTIAL SANITARY FLOW CALCULATIONS

Sanitary flow calculations as per Region of Peel Public Works Design Criteria Manual - Sanitary Sewer PROJECT: 2532 Argyle Road Residential Townhouse Development SCENARIO: POST-DEVELOPMENT

COMMERCIAL SITE AREA (ha) =

RESIDENTIAL SITE AREA (ha) = 0.661

TOTAL SITE AREA (ha) =	0.661
------------------------	-------

LAND USE	NUMBER OF UNITS	SITE AREA, (ha)	GROSS FLOOR AREA, m2	TOTAL POPULATION	TOTAL DAILY FLOW (LITERS)	AVERAGE DAILY FLOW I/sec	PEAKING FACTOR, M	TOTAL FLOW FROM LAND USE, I/sec
Single family (>10m frontage), using 50 person/hectare Single family (<10m frontage), using 70 persons/hectare Semi-Detached, using 70 persons/hectare Row Dwellings, using 175				0 0 0	0	0.00 0.00 0.00	4.50 4.50 4.50	0.00 0.00 0.00
persons/hectare Apartments, using 475 persons/hectare RESIDENTIAL Townhomes, using 3.5 persons/unit	101			0 0 354	0 0 107040	0.00	4.50 4.50 4.05	0.00 0.00 5.01
TOTAL RESIDENTIAL								5.01
COMMERCIAL, Using 50 persons/ha				0	0	0.00	4.50	0.00
TOTAL COMMERCIAL	101			0				0.00
TOTAL	101			0 V1=	107040		Q1=	5.01

Q = (MqP/86400) + A * I (L/sec) Q1= total flow from Residential Land Use (L/sec) Q2= total flow from Commercial Land Use (L/sec)

Qinfil = total flow from infiltration (L/sec) Qtot = total flow (Land use + infiltration) where : P is population q = 202.8 L/por

q = 302.8 L/person/day for proposed residential

A = gross site area

i = 0.20 L/sec/ha (infiltration rate)

V1= Total Volume from Land Use in liters

Peaking Factor M = 1 + [14 / (4 + (P/1000, 1/2))]

Q2=

Qinfil

Qtot

0.00

0.13

5.15

4.0 WATER DISTRIBUTION

Design Considerations

There is an existing 300mm ductile iron watermain beneath Argyle Road adjacent to the site's east frontage. There is also an abandoned 150mm watermain beneath Argyle Road. Refer to the Functional Servicing Plan for the layout of the existing bordering watermains. They also appear on the following Fire Separation Distance Plan.

It is proposed to connect to the existing 300mm watermain for domestic water and fire protection. Refer to the Functional Servicing Plan for the proposed domestic water and fire services. The proposed incoming fire service is to be connected to the sprinklers provided in the underground parking garage and a proposed private hydrant within the private laneway. Refer to the Functional Servicing Plan. The proposed townhouses will not be sprinklered. They will be served by hydrants as follows.

The proposed townhouse units will be served for fire protection by the existing hydrant on Dunbar Road adjacent to the site's southeast corner. Townhouse Blocks A and C are more than 90m from the existing hydrant and therefore require a new hydrant within the site. A new hydrant is proposed as shown on the Functional Servicing Plan.

The unit rate and peaking factors of water consumption, minimum pipe size and allowable pressure in line were established from the City Design Manual Standards. The pressures and volumes must be sufficient for peak hour conditions and under fire conditions as established by the Ontario Building Code 2006. The minimal residual pressure under fire conditions is 140 kpa. (or 20.3 psi).

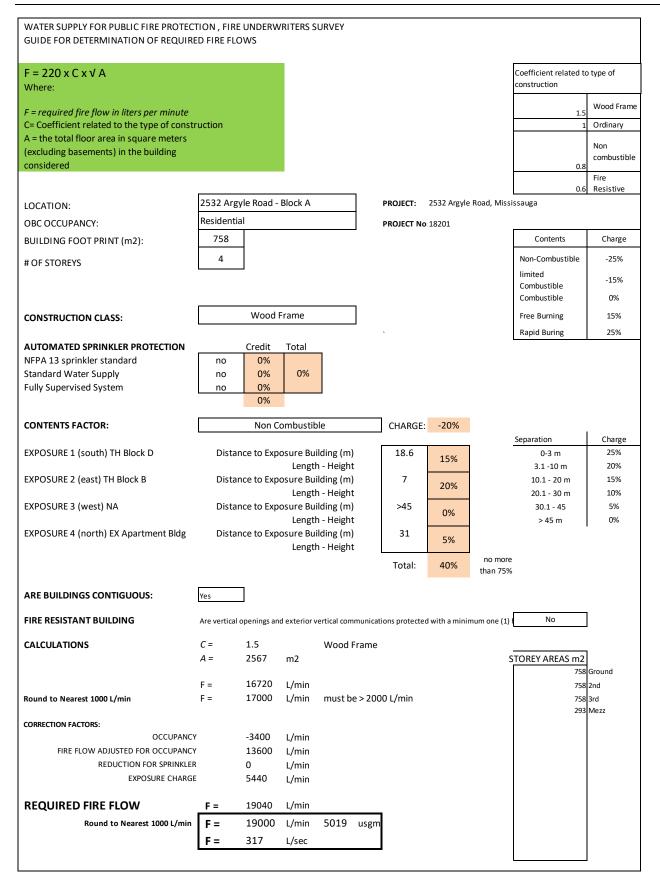
The water demand for the proposed townhouse development is as follows. Domestic flow calculation criteria is given Tables 1 and 2 in the Region of Peel's *Public Works Watermain Design Criteria* manual (2009). The criteria is as follows. Table 2 in the Region manual is adopted as the criteria in this development as it is the more stringent criteria intended for new development.

a)	Average Day domestic demand -	using 409L/cap/day (354 persons – Table 2)	1.7 L/sec
b)	Max day demand -	2.0 x daily demand	3.4 L/sec
c)	Peak hour demand -	3.0 x daily demand	5.1 L/sec
d)	Fire flow as per FUS 1999 manual		367 L/sec

TABLE 3 – Total Water Demand

	L/sec	USGM
Max Day Demand	3.4	54
Fire Flow Demand (TH Block D)	367	5812
Total Water Demand	370	5866


The following assumptions are made in the following Fire Underwriters' Survey fire flow calculation.


- The proposed townhouse blocks (above-grade) are of wood-frame construction
- The Fire Underwriters' Survey calculation considers above-grade floors, not below-grade floors. The above-grade townhouse units are not sprinklered, therefore the FUS calculation is completed accordingly.
- The building's contents (residences) will be non-combustible in nature
- The setbacks from the adjacent buildings are shown on the following Fire Separation Distance Plan
- The townhouse blocks comprise 1 below-grade level (basement) (at least 1.8m or 50% below-grade), which OBC classifies as a basement level. This is separate from the below-grade parking structure. The Fire Underwriters' Survey calculation does not consider basements in floor area (FUS page 17). The following FUS Calculations are therefore based on the four above-grade levels, which comprise three full-size levels with an additional mezzanine level on-top.

Townhouse Block D has the largest fire flow demand and is taken as the development's fire flow demand. Refer to the following FUS calculations.

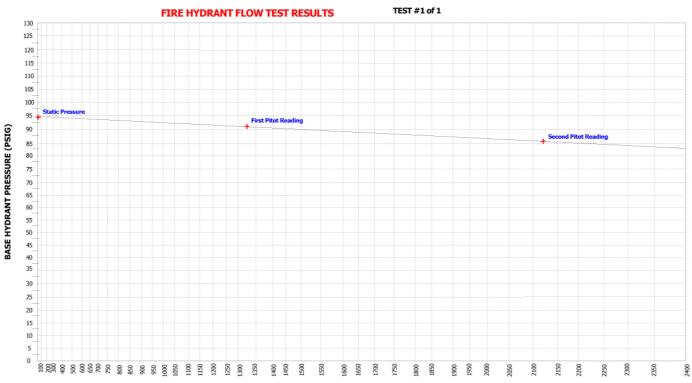
A hydrant flow test was conducted on the watermain beneath Argyle Road to the NFPA 291 standard. The flow test is provided on the following pages. The flow test shows that there is a flow rate of 6400 USGM available at 20psi.

The maximum development water demand is 5866 USGM, whereas there is a flow rate of 6400 USGM available at a residual pressure of 20 psi. The available flow is greater than the required flow, therefore the existing watermain is adequate to service the proposed development and no watermain infrastructure improvements are required to accommodate the proposed development.

WATER SUPPLY FOR PUBLIC FIRE PROTEC GUIDE FOR DETERMINATION OF REQUIR			VRITERS S	URVEY					
F = 220 x C x √ A Where:								Coefficient related to construction	o type of
<i>F</i> = required fire flow in liters per minute								1 5	Wood Frame
C= Coefficient related to the type of const	ruction							1.5	Ordinary
A = the total floor area in square meters									Non
(excluding basements) in the building considered								0.8	combustible
									Fire
	2532 Ar	gyle Road -	Block B		PROJECT:	2532 Argyle	Road, Missi	0.6	Resistive
LOCATION: OBC OCCUPANCY:	Resident		BIOCINE					556686	
	416				PROJECT N	0 :18201		Contents	Charge
BUILDING FOOT PRINT (m2):	410	-						Non-Combustible	-25%
# OF STOREYS	4							limited	-23%
								Combustible	-15%
			_	1				Combustible	0%
CONSTRUCTION CLASS:		Wood	Frame					Free Burning	15%
AUTOMATED SPRINKLER PROTECTION		Credit	Total					Rapid Buring	25%
NFPA 13 sprinkler standard	no	0%	Total						
Standard Water Supply	no	0%	0%						
Fully Supervised System	no	0% 0%							
		0%							
CONTENTS FACTOR:		Non C	Combustik	ole	CHARGE	: -20%		Separation	Charge
EXPOSURE 1 (south) TH Block D	Dista	nce to Exp		- · ·	15.7	15%		0-3 m	25%
EXPOSURE 2 (east) Ex House	Dista	ince to Exp	-	h - Height ilding (m)	38.9			3.1 -10 m 10.1 - 20 m	20% 15%
	Dista			h - Height	50.9	5%		20.1 - 30 m	10%
EXPOSURE 3 (west) TH Block A	Dista	nce to Exp		- · ·	7.3	20%		30.1 - 45	5%
EXPOSURE 4 (north) Ex Apartment Bldg	Dista	ince to Exp	-	h - Height ilding (m)	29.5			> 45 m	0%
EXPOSORE 4 (nor tri) EX Apartment blug	Dista			h - Height	23.5	10%			
			-	-	Total:	50%	no more than 75%		
ARE BUILDINGS CONTIGUOUS:	Yes								
FIRE RESISTANT BUILDING	Are vertica	l openings an	nd exterior v	vertical commu	nications protecte	ed with a mini	mum one (1)	No]
CALCULATIONS	C =	1.5		Wood Frai	ne				
	A =	1454	m2				S	TOREY AREAS m2	
	F =	12583	L/min						Ground 2nd
Round to Nearest 1000 L/min	F =	13000	L/min	must be >	2000 L/min				3rd
								206	Mezz
CORRECTION FACTORS: OCCUPANC	Y	-2600	L/min						
FIRE FLOW ADJUSTED FOR OCCUPANC		10400	L/min						
REDUCTION FOR SPRINKLE		0	L/min						
EXPOSURE CHARG	E	5200	L/min						
REQUIRED FIRE FLOW	F =	15600	L/min						
Round to Nearest 1000 L/min	F=	16000	L/min	4227 us	gm				
	F =	267	L/sec						

PROPOSED TOWNHOUSE DEVELOPMENT – 2532 ARGYLE ROAD FUNCTIONAL SERVICING REPORT

WATER SUPPLY FOR PUBLIC FIRE PROTEC GUIDE FOR DETERMINATION OF REQUIRE			VRITERS S	URVEY						
$F = 220 \times C \times \sqrt{A}$ Where:									Coefficient related t construction	o type of
E = required fire flow in liters per minute									4.5	Wood Frame
F = required fire flow in liters per minute C= Coefficient related to the type of constr	uction								1.5	Ordinary
A = the total floor area in square meters										Non
(excluding basements) in the building considered									0.8	combustible
										Fire
LOCATION:	2532 Arg	/le Road -	Block C		1	PROJECT:	2532 Argyle	Road, Missi	0.6 ssauga	Resistive
OBC OCCUPANCY:	Residentia					PROJECT No			U	
BUILDING FOOT PRINT (m2):	403				J	r noseer ne	18201		Contents	Charge
	4								Non-Combustible	-25%
# OF STOREYS		_							limited	-15%
									Combustible Combustible	-13%
CONSTRUCTION CLASS:		Wood	Frame		1				Free Burning	15%
CONSTRUCTION CLASS:									Rapid Buring	25%
AUTOMATED SPRINKLER PROTECTION		Credit	Total	_						1
NFPA 13 sprinkler standard	no	0% 0%	0%							
Standard Water Supply Fully Supervised System	no no	0%	070							
		0%		_						
CONTENTS FACTOR:		Non C	Combustik	ole		CHARGE:	-20%		Separation	Chargo
EXPOSURE 1 (south) Ex House	Distar	nce to Exp	osure Bu	ilding (m)	ĺ	18	150/		0-3 m	Charge 25%
			-	h - Height			15%		3.1 -10 m	20%
EXPOSURE 2 (east) TH Block D	Distar	nce to Exp		ilding (m) h - Height		3.9	20%		10.1 - 20 m 20.1 - 30 m	15% 10%
EXPOSURE 3 (west) N/A	Distar	nce to Exp	-	-		>45	0%		30.1 - 45	5%
EXPOSURE 4 (porth) TH Plack A	Distor	nce to Exp	-	h - Height		18.6	070		> 45 m	0%
EXPOSURE 4 (north) TH Block A	Distai			h - Height		18.0	15%			
					-	Total:	50%	no more than 75%		
	r	-						than 75%		
ARE BUILDINGS CONTIGUOUS:	Yes									
FIRE RESISTANT BUILDING	Are vertical	openings an	nd exterior v	vertical com	municati	ons protecte	d with a minir	mum one (1)	No	
CALCULATIONS	C =	1.5		Wood F	rame					T
	A =	1405	m2					5	TOREY AREAS m2	Ground
	F =	12369	L/min							2nd
Round to Nearest 1000 L/min	F =	12000	L/min	must be	e > 200	0 L/min				3rd
CORRECTION FACTORS:									196	Mezz
OCCUPANCY		-2400	L/min							
FIRE FLOW ADJUSTED FOR OCCUPANCY REDUCTION FOR SPRINKLER		9600 0	L/min							
EXPOSURE CHARGE		0 4800	L/min L/min							
	_	1								
REQUIRED FIRE FLOW	F=	14400	L/min	2600						
Round to Nearest 1000 L/min	F =	14000	L/min	3698	usgm					
	F =	233	L/sec							
										-


PROPOSED TOWNHOUSE DEVELOPMENT – 2532 ARGYLE ROAD FUNCTIONAL SERVICING REPORT

WATER SUPPLY FOR PUBLIC FIRE PROTEC GUIDE FOR DETERMINATION OF REQUIR			VRITERS S	URVEY						
F = 220 x C x √ A Where:									Coefficient related t construction	o type of
										Wood Frame
F = required fire flow in liters per minute C= Coefficient related to the type of const	ruction								1.5	Ordinary
A = the total floor area in square meters										Non
(excluding basements) in the building considered										combustible
									0.8	Fire
	2522 Arc	yle Road -	Plack D			PROJECT:	2532 Argyle	Road Missi	0.6	Resistive
LOCATION:	Resident		DIOCK D					roau, wiissi	issauga	
OBC OCCUPANCY:	752					PROJECT No	18201		Contents	Chargo
BUILDING FOOT PRINT (m2):										Charge
# OF STOREYS	4								Non-Combustible limited	-25%
									Combustible	-15%
									Combustible	0%
CONSTRUCTION CLASS:		Wood	Frame						Free Burning	15%
		Cuadit	Tatal			•			Rapid Buring	25%
AUTOMATED SPRINKLER PROTECTION NFPA 13 sprinkler standard	no	Credit 0%	Total							
Standard Water Supply	no	0%	0%							
Fully Supervised System	no	0%								
		0%								
CONTENTS FACTOR:		Non C	Combustik	ole		CHARGE	-20%			1
EXPOSURE 1 (south) Ex House	Dicta	nce to Exp	ocure Bu	ilding (m)	ĺ	10]	Separation 0-3 m	Charge 25%
EXPOSORE 1 (South) Exhlouse	Dista			h - Height		10	20%		3.1 -10 m	20%
EXPOSURE 2 (east) Ex House	Dista	nce to Exp	osure Bu	ilding (m)		31.9	5%		10.1 - 20 m	15%
EVPOSURE 2 (west) TH Block C	Dista	nce to Exp	-	h - Height		3.9			20.1 - 30 m 30.1 - 45	10% 5%
EXPOSURE 3 (west) TH Block C	Dista	nce to Exp		h - Height		5.9	20%		> 45 m	0%
EXPOSURE 4 (north) TH Block B	Dista	nce to Exp				15.7	15%			•
			Lengt	h - Height	l			no more		
						Total:	60%	than 75%		
ARE BUILDINGS CONTIGUOUS:	Yes									
									[1
FIRE RESISTANT BUILDING	Are vertica	openings an	nd exterior v	vertical comr	nunicati	ons protecte	d with a minir	num one (1)	No	
CALCULATIONS	C =	1.5		Wood F	rame					٦
	A =	2627	m2					5	TOREY AREAS m2	Ground
	F =	16914	L/min							2nd
Round to Nearest 1000 L/min	F =	17000	L/min	must be	> 200	0 L/min				3rd
CORRECTION FACTORS:									371	Mezz
OCCUPANCY	(-3400	L/min							
FIRE FLOW ADJUSTED FOR OCCUPANCY	(13600	L/min							
REDUCTION FOR SPRINKLEF		0 8160	L/min							
EXPOSURE CHARGE		8160	L/min							
REQUIRED FIRE FLOW	F =	21760	L/min							
Round to Nearest 1000 L/min	F =	22000	L/min	5812	usgm					
	F =	367	L/sec							
										J

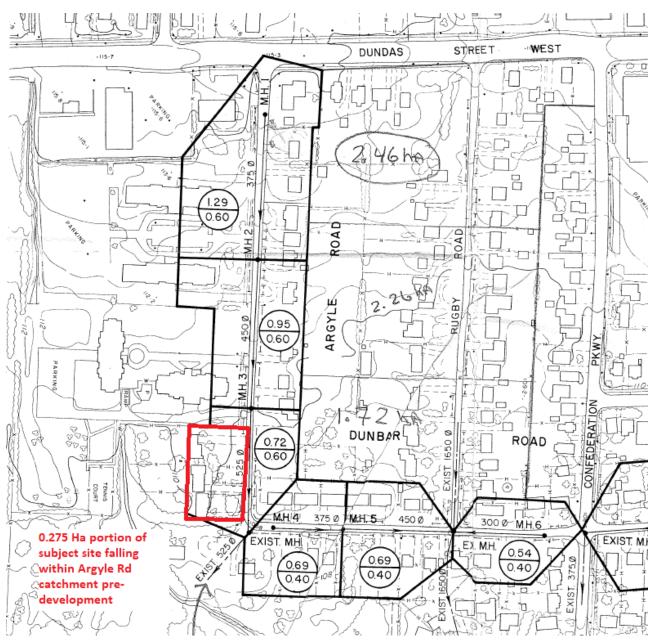
Telephone: **905.229.3176** Toll Free: **800.734.5732** email: **jww@bellnet.ca** Website: **www.jacksonwaterworks.ca**

TEST HYDRANT FLOW (USGPM)

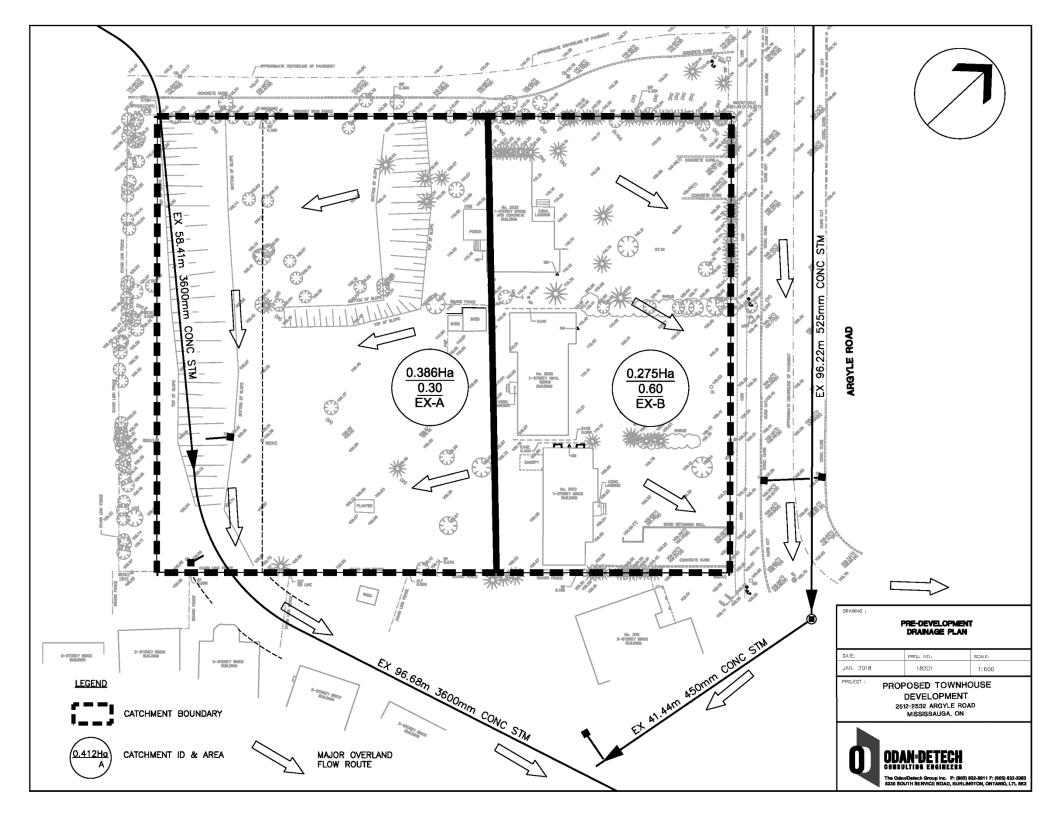
No. of Ports Open	Port Dia. (in)	Pitot Reading (psig)	Pitot Reading (psig) Pitot Conversion (usgpm) Conversion Factor = 0			
1	2.50	62	1321	91		
2	2.50	40/40	2122	86		
3	2.50					
4	2.50					
	THEORETICAL FLO	W @ 20psi	6400			

Test Date	25 April 2019					
Test Time	10:00am					
Pipe Diameter (in)	8					
Static Pressure (psig)	95					
Secondary Valve Position	Fully Open					

	Site Information										
Site Name or Developer Name	Plazacorp Engineer/Architect: Odan Detech										
Site Address/Municipality	2512-2532 Argyle Road, Mississauga Test Hydrant Make & Model: Mueller B50B-24										
Location of Test Hydrant(s)	In Front of 2542 & 2556 Argyle Road										
Location of Base Hydrant	In Front of 203 Dunbar Road										
Comments	Testing has been completed in accordance with NFPA-291 guidelines wherever and whenever possible and practical. Conversion factors for pitot tube readings may have been used depending on hose nozzle internal design and installation profile. Refer to attached cover letter for additional information.										
Verified By	all Mark Schmidt										


7104 Canborough Road, Dunnville, ON N1A 2W1

5.0 STORM WATER MANAGEMENT & DRAINAGE PROPOSAL


i) Background Information & Existing Infrastructure

Presently the following existing separated storm sewers are adjacent to the subject site. Refer to the Functional Servicing Plan and the Pre-Development Drainage Plan on the following page for the existing storm sewers adjacent to the subject site and the existing site drainage patterns.

- 1. There is an existing 2400mm x 3600mm at 2.0% box culvert conveying Mary Fix Creek in an approximately 17m wide easement in the west side of the subject site. This culvert commences at an inlet north of the site and south of Dundas Street. This culvert continues southeast of the subject site, discharging into a ditch farther downstream.
 - 1.1. There are two existing catchbasins (EX CB1 and EX CB2) draining into this culvert within the subject site, within the easement. Refer to the Functional Servicing Plan for the existing CB structures.
 - 1.2. A 0.386 Ha portion of the subject site presently (pre-development) drains by overland sheet flow into EX CB1 and EX CB2. This is Catchment Area EX-A in the Pre-Development Drainage Plan (below).
 - 1.3. Credit Valley Conservation (CVC) is undertaking a hydrologic/hydraulic flood analysis of this culvert and has confirmed that it is flowing within capacity in the design storms presently and that there is no spill or overland flow through the subject site easement. Refer to the email correspondence in Appendix B wherein CVC staff state that no spill will occur through the subject site in the easement arising from Mary Fix Creek.
- 2. There is an existing 525mm storm sewer flowing southerly beneath Argyle Road, which discharges into the foregoing culvert downstream of the subject site.
 - 2.1. This sewer was designed for the 10-year storm with a C-value of 0.60, based on sewer design sheets and catchment plans provided by the City of Mississauga.
 - 2.2. A 0.275 Ha portion of the site was allocated to drain into this sewer based on the excerpt from the sewer's drainage plan, shown in Figure 1, below.
 - 2.3. The downstream leg of this sewer was constructed at 450mm diameter. This pipe segment is within a catwalk south of the site as shown on the Functional Servicing Plan. The slab-on-grade garage of a house on the southeast side of the catwalk was constructed with very little setback from the pipe, as shown on the Functional Servicing Plan, meaning it is infeasible to replace this pipe without undermining the garage structure.
- 3. Design criteria for storm drainage design based on the foregoing conveyances are discussed below.

Figure 1 - Excerpt from Argyle Road storm drainage plan showing area in site with allocation

ii) Design Criteria

The City of Mississauga's *Development Requirements Manual (Effective September 2016)* provides criteria for stormwater management design. Table 2.01.03.03c therein states that developments in the Mary Fix Creek watershed should control 10-year post-development to 2-year pre-development storms. Note 1 on that table states that storm sewer capacity constraints may govern. Note 2 on that table states that pre-development C-value should be no greater than 0.50.

City staff have stated that 5mm rainfall event retention is required and that a best-effort to implement LID should be provided.

City staff have stated that stormwater quality control shall be provided by way of development charges, therefore no quality control measures are specified.

Stormwater management design criteria was discussed with City staff in the meeting on January 25, 2019, culminating in the enclosed correspondence (Appendix B) providing design criteria.

Design storm data for the City of Mississauga 2 year, 10 year and 100 year storms are shown below.

$$i_2 = \frac{610}{(t_c + 4.6)^{0.78}}$$
, $i_{10} = \frac{1010}{(t_c + 4.6)^{0.78}}$, $i_{100} = \frac{1450}{(t_c + 4.9)^{0.78}}$

where: i = intensity (mm/hr)t = time of concentration (15min)

iii) Proposed Drainage & Allowable Discharge Flow Rate

The proposed development will drain storm flows to two outlets, and the pre-development or allowable discharge to each is established below based on the relevant criteria for each outlet.

- 1. Existing 3600mm x 2400mm culvert in easement.
 - a. The western area of the development (western/rear drive aisle area; area of easement) will drain into this culvert by overland flow into the two existing catchbasins (EX CB1 and EX CB2). The site is designed such that post-development runoff via these inlets is no more than existing, in accordance with the email correspondence in Appendix B. There will be no new storm sewer connection to the culvert in easement; the flows will be maintained by grading design contributing flows to the two existing inlets as discussed below.
- 2. Existing 525mm Argyle Road storm sewer.
 - a. There is allocation in the Argyle Road storm sewer for a portion of the subject site as evidenced in Figure 1. The site will drain into this sewer based on the existing allocation, the sewer's capacity and the criteria for quantity control prescribed by the City of Mississauga and described above. This sewer is shallow, and a conventional gravity orifice with storm tank will not work for this development, therefore a storm tank with sump pump providing controlling flow is proposed to provide stormwater quantity control. This is described in Section v) below.

The site's allowable discharge rate into the two foregoing outlets is as follows in Table 4. The design criteria for the discharge to the 525mm Argyle Road storm sewer is as follows.

- 1. The 2-year pre-development flow with C=0.50, in accordance with the foregoing City criteria (as per Table 4), as well as:
- 2. Receiving storm sewer capacity maintaining the pre-development flow conditions in the receiving 525mm storm sewer beneath Argyle Road (as per the below discussion and sewer design sheets)

TABLE 4 – Allowable Flow Rate											
Receiving Outlet	Run-off Coefficient	Rainfall Intensity (mm/hr)	Area (ha)	Site Allowable Discharge (L/s)							
Argyle Road 525mm storm sewer	0.50	59.9 mm/hr (2-Y Storm)	0.661 Ha	55 (2-Y Pre-Dev Storm) – less uncontrolled 10Y flow to Culvert (26 L/s – Table 5) = 29 L/s							
3600mm x 2400mm	59.9 mm/hr n x 2400mm (2-Y Storm) 0.386 Ha	0.386 Ha	19 L/s (2-Y)								
Mary Fix Creek Culvert	0.30*	99.2 mm/hr (10-Y Storm)	(Catchment EX-A)*	32 L/s (10-Y)							

*Refer to the Pre-Development Catchment Plan on the previous section for Catchment EX-A, the portion of the site which drained into the Mary Fix Creek Culvert pre-development.

iv) Post Development Flow Analysis – Draining to 3600mm x 2400mm Mary Fix Creek Culvert in Easement

A portion of the proposed development will drain runoff into the 3600mm x 2400mm culvert beneath the west side of the site, as in pre-development.

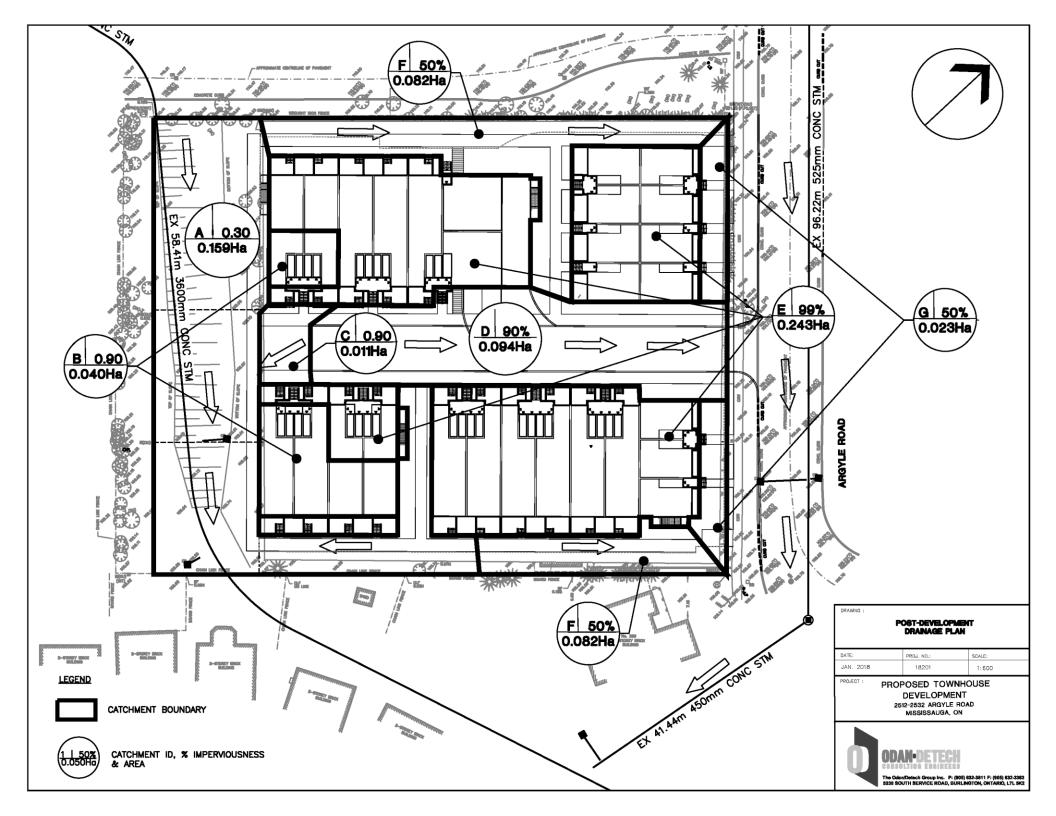
The site is proposed to be graded such that the flow rate of runoff draining to the culvert is no more than existing, based on the following $C \times A$ analysis. That is, runoff in all storms contributing flows to the culvert post-development shall be no more than pre-development based on the post-development tributary area and runoff coefficient (C).

The pre-development C x A is:

$$CA_{Pre-Dev} = 0.30 * 0.386Ha = 0.116$$

Post-development, Catchment Areas A, B and C are proposed to drain to the culvert as shown on the Post-Development Drainage Plan and Functional Grading Plan.

The post-development C x A is as follows. Refer to the Post-Development Drainage Plan on the following page for the post-development C-values and catchment areas (A).


$$CA_{Post-Dev} = C_A * A_A + C_B * A_B + C_C * A_C$$

 $CA_{Post-Dev} = 0.3 * 0.159Ha + 0.9 * 0.040Ha + 0.9 * 0.011Ha = 0.094$

The impact on the existing culvert is no more than pre-development based on the above CxA analysis, therefore it follows that the site drainage design addresses the City's criteria with respect to the area draining to the culvert.

In addition to the CxA analysis, it is shown as follows in Table 5 that the flows draining to the culvert post-development are no more than pre-development. It follows that the proposed drainage design with respect to the culvert complies with City criteria.

TABLE 5 – Pre-Dev vs. Post-Development Flow Rate to Culvert (A x C analysis)											
Scenario	Rainfall Intensity (mm/hr)	A x C	Flow Rate (L/s) (Q=2.78CiA)								
	59.9 mm/hr (2-Y Storm)	0.094	16 L/s (2-Y)								
Post-Development	99.2 mm/hr (10-Y Storm)	(Catchment A, B, C)	26 L/s (10-Y)								
	59.9 mm/hr (2-Y Storm)	_ 0.30 x 0.386 Ha = 0.116 _	19 L/s (2-Y)								
Pre-Development	99.2 mm/hr (10-Y Storm)	(Catchment EX-A)	32 L/s (10-Y)								

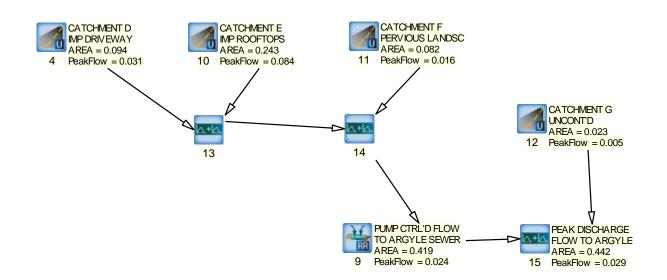
v) Post Development Flow Analysis – Draining to Argyle Rd. 525mm Storm Sewer

The proposed development will control the post development flows to the allowable flow rate calculated above – Table 4. On-site stormwater storage will be required.

The 525mm Argyle Rd sewer is too shallow to drain to via a gravity orifice and while storing the water upstream of the orifice in a tank on-site. Refer to Section D-D on the Sections Plan – the outgoing sewer connection is at approximately the basement unit's FFE, therefore the tank would not work at that elevation because the pipes would be passing through the not-common-element basement condo units.

It is therefore proposed to provide the tank as a concrete tank beneath the P1 elevation, which will be pumped into the storm control manhole at a flow rate no greater than the allowable flow rate. Refer to Sections D-D and E-E on the Sections Plan. This will allow the mechanical storm drains to pass through the common-element P1 below-grade garage before draining to the storm tank.

Refer to the Post-Development Catchment Plan on the prior page for the post-development catchment areas.


Visual OTTHYMO 2.3.2. will be used to model and determine the detention volume required. For drainage areas with significant imperviousness the calculation of effective rainfall in Visual OTTHYMO is accomplished using the "Standhyd" method. This method is used in urban watersheds to simulate runoff by combining two parallel standard unit hydrographs resulting from the effective rainfall intensity over the pervious and impervious surfaces. For pervious surfaces, losses are calculated using the SCS modified CN method.

The following parameters were used in Visual OTTHYMO to characterize the post development catchment areas.

TABLE 6 - Catchment Characteristics for the Post-Developed Site												
Area (ha)	Hydrograph Method	% impervious	imperviousness directly connected %	Loss Method for Pervious Area	CN for Pervious Area	Initial Abstraction for Pervious (mm)	Time to peak (T_p)					
0.094	StandHyd	90	90	SCS	80	1	-					
0.243	StandHyd	99	99	SCS	80	1	-					
0.082	StandHyd	50	50	SCS	80	1	-					
0.023	StandHyd	50	50	SCS	80	1	-					
	Area (ha) 0.094 0.243 0.082	Area (ha)deboy Storp PA0.094StandHyd0.243StandHyd0.082StandHyd	Area (ha)under pouse under pouse under pouse under pouse under pouse under pousestand under pouse under pouse0.094StandHyd900.243StandHyd990.082StandHyd50	Area (ha)4 ub usn sn usn sn usn sn usn usn usn usn 	Area (ha)uuuuuu0.094StandHyd9090SCS0.243StandHyd9999SCS0.082StandHyd5050SCS	Area (ha)u u b h Hsn u u u h h h hsn u u h 	Area (ha)Hotograph HotographSource StandHydSource StandHydSource Source StandHydSource 					

The Visual OTTHYMO Model showing flows in 10-year storms is as follows. Refer to the Visual OTTHYMO output in Appendix B for further details.

The discharge criteria is thus satisfied as follows.

Discharge Outlet	Storm	Allowable Release Rate to Argyle (L/s) (Table 4)	Proposed Flow Rate to Argyle (L/s)	Stormwater Storage Volume						
Pumped flow to Storm Connection	10-Year		24	77 m ³						
Overland Flow from Catchment G	10-Year	29	5	-						
Total Peak Flow to 525mm Storm Sewer	10-Year	_	29	-						

TABLE 7 - Summary of Stormwater Control & Storage Scenarios

Stormwater falling on Catchment Areas D, E, and F will be controlled by the sump pump to 24 L/s and subsequently 77m³ of storage will be required in a 10-year storm. Refer to the Visual OTTHYMO Output in Appendix B.

Catchment G will flow uncontrolled onto Argyle Road by overland flow, however the peak flow rate remains no more than the allowable (29 L/s) in the 10-year storm. A stormwater storage tank will be provided accordingly as shown on the Functional Servicing Plan.

vi) Downstream Storm Sewer Analysis

The receiving storm sewer beneath Argyle Road is 525mm in diameter, and flows downstream for one segment before discharging into the foregoing 3600mm x 2400mm Mary Fix Creek Culvert south of the subject site. The downstream segment in this local sewer is 450mm, whereas the upstream pipe into which the site will discharge is 525mm.

Refer to the storm sewer design sheets on the following pages showing the pre-development and post-development impact on the receiving storm sewer in 10-year storms. The storm sewer was originally designed to convey the 10-year storm based on the storm sewer design sheet, provided here in Appendix B.

By the foregoing controlled release rate criteria, whereby the site's impact on the 525mm Argyle Road sewer is controlled to 29 L/s, the proposed development causes *a reduction in impact* on the receiving Argyle Road storm sewers relative to pre-development conditions.

As shown in the following storm sewer design sheets, pre-development, the critical 450mm segment is flowing at 120% of capacity pre-development, whereas by the proposed SWM control it is flowing at 116% of capacity post-development.

It is not feasible to retrofit the existing deficient 450mm storm sewer because doing so would undermine the foundations of the slab-on-grade garage of the existing house directly to the east of the pipe. Refer to the Functional Servicing Plan.

Thus, by the proposed stormwater management controls, the proposed development is in compliance with the release rate criteria to Argyle Road and provides a reduction in impact on the Argyle Road storm sewer.

PROPOSED TOWNHOUSE DEVELOPMENT – 2532 ARGYLE ROAD FUNCTIONAL SERVICING REPORT

																ï		í
PRE-DEVE	LOPMENT STOP	RM SEWER L	DESIGN SHE	ET - Existir	ng Argyle Ro	ad Storm Se	wer								-			
Site location:	Argyle Road, Mississa	uga														ODAN •D	FTFCH	
Ref# PN 1820	01														U.	CONSULTING	ENGINEERS	
													1		Pipe	1		
	Locati		-	Segment Tributary Area	Accumulative Tributary Area	Time of Concentration	10-year Rainfall Intensity	Segment Catchment Area C-Value	Segment A x C	Accumulative A x C	Accumulative 10-Year Storm Flow	Length	Size	Slope	Shape	Full Flow Capacity	Full Flow Velocity	% Full
Segment Storm	LUCAL	US	DS	(Ha)	(Ha)	(minutes)	(mm/hr)	Alea C-value	(Ha)	(Ha)	(L/s)	Lengui	D	Siope	Shape	Qcap	Velocity	76 F UII
Trib ID	Street Name	Node	Node									(m)	(mm)	(%)		(L/s)	(m/s)	Q(d)/Qcap
	External Downstream	n Storm Sewers																
-	Argyle Rd	MH1	MH2	1.29	1.29	15.000	99	0.60	0.77	0.77	213	116.00	375	1.60	circle	221.78	2.01	96.21%
-	Argyle Rd	MH2	MH3	0.95	2.24	15.963	96	0.60	0.57	1.34	357	118.00	450	1.60	circle	360.63	2.27	98.97%
	Argyle Rd	MH3	EXMH	0.72	2.96	16.830	92	0.60	0.43	1.78	457	96.00	525	1.60	circle	543.99	2.51	83.95%
	Argyle Rd	EXMH	Culvert	-	-	17.467	90	0.60	0.00	1.78	446	41.40	450	1.69	circle	370.64	2.33	120.43%
Flow Calcula	tion Criteria																	
Q=2.78CiA																		
Mississauga 1	0-Year Storm IDF dat	ta:																
110 = 1010.00 /	$(4.60 + t)^{0.78}$																	
n = 0.013																		
11 - 0.013																		
Note: Tributar	y Area and C-value a	s given in City c	of Mississauga	Drawing: Argyl	e Rd Dunbar	Rd. Storm Drail	nage Areas, N	May 1991										

PROPOSED TOWNHOUSE DEVELOPMENT – 2532 ARGYLE ROAD FUNCTIONAL SERVICING REPORT

Site location:	Argyle Road, Mississau	iga														ODAN •D	FTFCH	
Ref# PN 18201															U	CONSULTING		
															Pipe			
				Segment	Accumulative		10-year	Segment			Accumulative				Pipe			
				Tributary	Tributary	Time of	Rainfall			Accumulative						Full Flow	Full Flow	
Segment Storm	Locatio	n US	DS	Area (Ha)	Area (Ha)	Concentration (minutes)	Intensity (mm/hr)	Area C-Value	A x C (Ha)	A x C (Ha)	Storm Flow (L/s)	Length L	Size D	Slope S	Shape	Capacity Qcap	Velocity	% Full
Trib ID	Street Name	Node	Node	(118)	(r1a)	(minutes)	(000/00)		(ria)	(112)	(L/S)	(m)	(mm)	(%)		(L/s)	v (m/s)	Q(d)/Qca
	External Downstream Argyle Rd	MH1	MH2	1.29	1.29	15.000	99	0.60	0.77	0.77	213	116.00	375	1.60	circle	221.78	2.01	96.21%
	Argyle Rd	MH2	MH3	0.95	2.24	15.963	96	0.60	0.57	1.34	357	118.00	450	1.60	circle	360.63	2.27	98.97%
Subject Site Trib*	Argyle Rd	MH3	EXMH	0.44							29							
Argyle Rd Trib				0.42	2.66	16.830	92	0.60	0.25	1.60	439	96.00	525	1.60	circle	543.99	2.51	80.77%
	Argyle Rd	EXMH	Culvert	-	-	17.467	90	0.60	0.00	1.60	430	41.40	450	1.69	circle	370.64	2.33	116.05%
Flow Calculati	on Criteria																	
Q=2.78CiA																		
*Note: Subject s	ite 10-year storm flov	w rate is controll	ed as per SWM	1 Report to 23 L	./s													
Mississauga 10	-Year Storm IDF data	a:																
10 = 1010.00 / ($(4.60 + t)^{0.78}$																	
n = 0.013																		

vii) Water Balance

City staff have stated that the criteria for this site is to retain 5mm rainfall events on the site. This will be accomplished by retention of small (5mm) rainfall events on-site in a retention cistern, and reuse for irrigation of landscaped surfaces.

The required cistern volume is determined as follows to be 19.9m³. The cistern will be located adjacent to the 10-year storm tank as shown on the Servicing Plan. Runoff from 5mm storms will drain by mechanical storm drains into the cistern. In the days following such storm events, a sump pump located in the cistern will draw water out of the cistern and pump it into the irrigation system, dispersing it onto the site's planting.

In storm events larger than 5mm, wherein the cistern is filled, the cistern will spill into the larger adjacent 10-year storm tank via a weir and therefore drain by the stormwater controls to the Argyle Road storm sewer. Refer to the Functional Servicing Plan for the cistern's functional location.

	Retention Criteria (mm)	Area (m ²)	Volume (m ³)
5mm Volume over Impervious Surfaces	5	400+110+950+2510 = 3970	19.9
Required Cistern (Retention) Volume			19.9

A cistern of 20m³ volume will accordingly be provided. Refer to the Functional Servicing Plan for the cistern's location and configuration.

Stormwater stored in the cistern will be reused on-site by irrigating the landscaped surfaces.

viii) Water Quality

City staff have stated that stormwater quality may be addressed by development charges.

6.0 CONCLUSIONS

From the foregoing investigation, the site is serviceable utilizing existing sanitary, storm and watermain infrastructure within and adjacent to the site. Storm water management can be accommodated with on-site storage as described in this report.

The following table summarizes the SWM and Servicing components of the proposed development.

TABLE 8	- Summary
---------	-----------

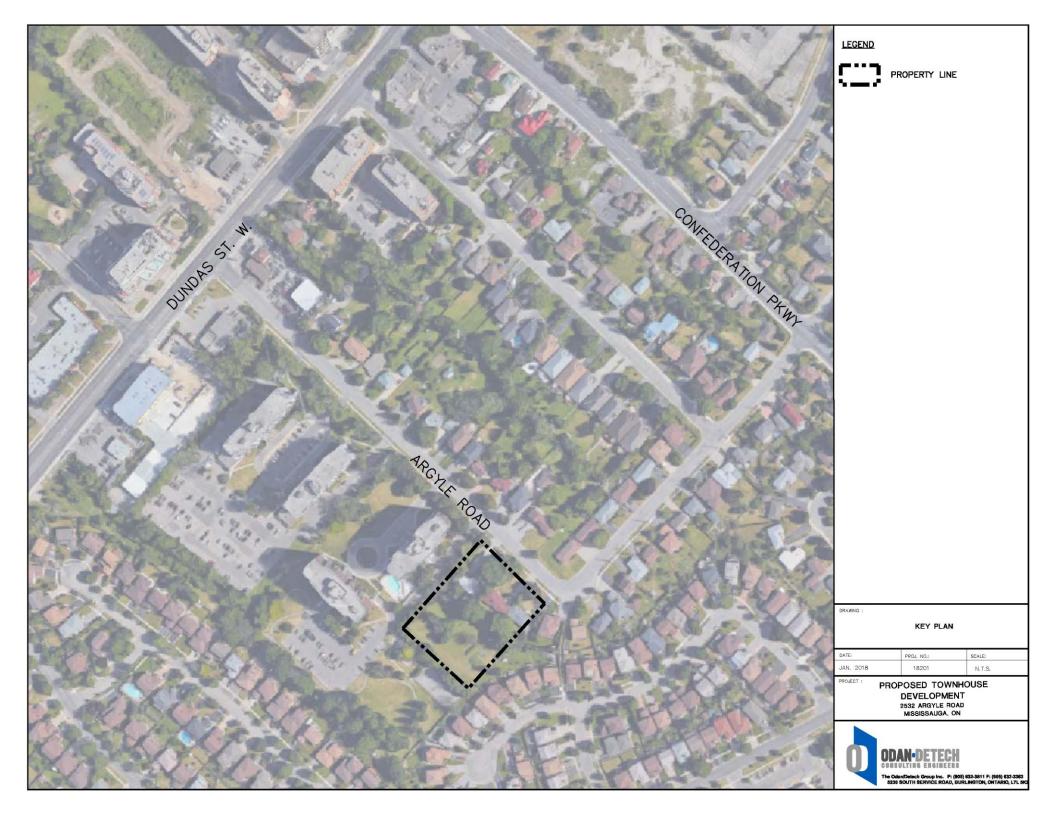
	Proposed Development
Peak Sanitary Discharge (L/s)	5.15
Proposed Sanitary Service	150mm @ 2.0%
Receiving Sanitary Sewer	250mm sanitary sewer – Argyle Road
Development Water Demand (Fire + Domestic)	5866 USGM
Available Flow Rate	6400 USGM
Proposed Fire Service	150mm
Proposed Domestic Service	Branch 100mm
Allowable (10-Y) release rate from site to Argyle Rd 525mm Storm Sewer	29 L/s
Proposed (10-Y) Discharge to Argyle Rd 525mm Storm Sewer	29 L/s
Stormwater Quality	Not applicable
Quantity Control	Storm Sump Pump sized @ 24 L/s

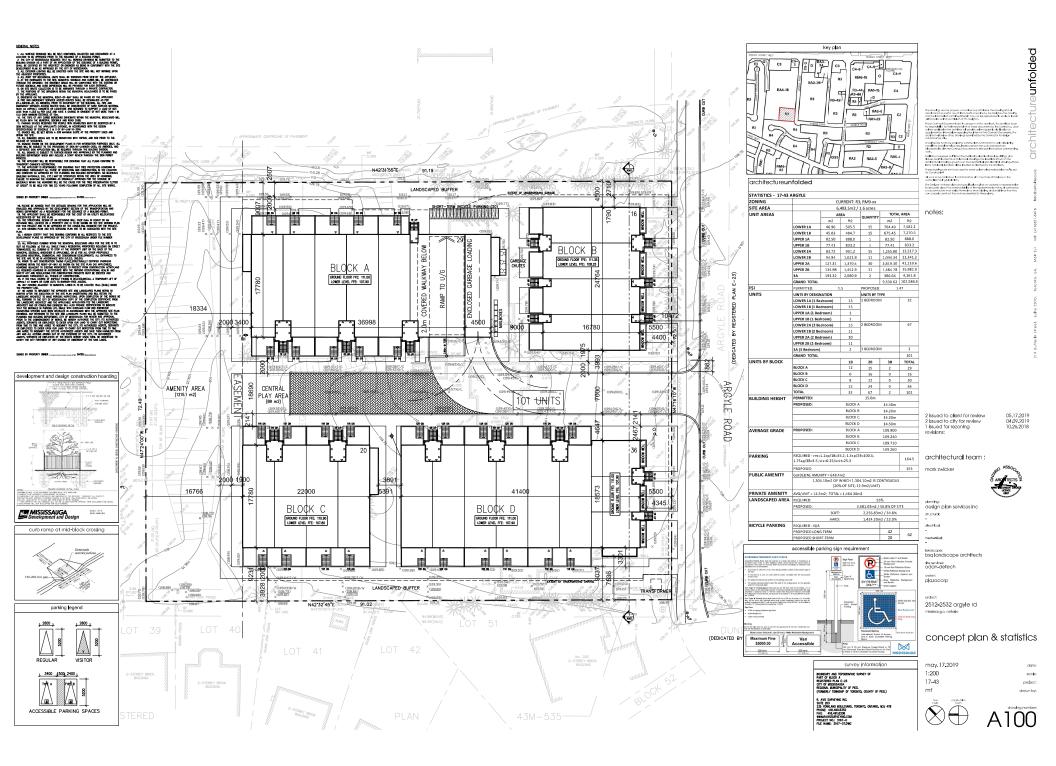
7.0REFERENCES

- 1. Region of Peel "Public Works Design Criteria Manual Sanitary Sewer", 2009.
- 2. Region of Peel "Public Works Design Criteria Manual Watermain", 2009.
- 3. Storm water Management Planning and Design Manual, Ontario Ministry of the Environment, March 2003.
- 4. New Jersey Storm Water Best Management Practices Manual, April 2004.
- 5. Visual OTTHYMO v2.0 Reference Manual, July 2002

Respectfully Submitted; The Odan Detech Group Inc.

Daniel Bancroft, P.Eng.


APPENDIX A


Existing Site

Aerial view of Site and surrounding area

Site Plan & Statistics

by architectureunfolded

APPENDIX B

Argyle Road Storm Sewer design sheet Email Correspondence with City Staff regarding Design Criteria Email Correspondence from Credit Valley Conservation staff regarding Mary Fix Creek Visual OTTHYMO Model Output (2-Year & 10-Year storms)

PROPOSED TOWNHOUSE DEVELOPMENT – 2532 ARGYLE ROAD FUNCTIONAL SERVICING REPORT

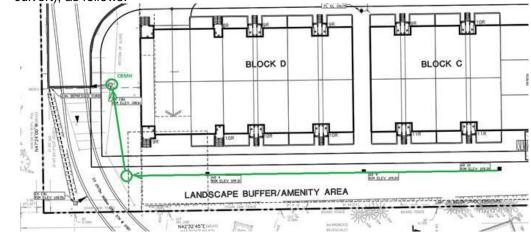
SUBDIVISION <u>ARGYLE RO É DUNBAR</u> AO Consultant Major drainage area							CITY STORM FOR CIRCU	SHEET NO OF DATE <u>APR 1979</u> PROJECT NO OG - 1224 DESIGNED BY														
LOCATION OF SECTION	FROM UPSTREAM	TO DOWNSTREAM	ADJACENT CONTRIBUTARY AREA	RUNOFF COEFFICIENT		ACCUMULATIVE AREA DRAINED BY SECTION	ACCUMULATIVE AREA TIMES RUNOFF COFFICIENT FOR SECTION	FI OW TIME TO SECTION (FROM EXTHEME UPSTREAM INLET)	INITIAL TIME OF CONCENTRATION AT EXTREME UPSTREAM INLET	TIME OF CONCENTRATION AT UPSTEAM END OF SECTION	INTENSITY OF RAINFALL	OUANTITY OF FLOW TO BE ACCOMMODATED IN SECTION.	TYPE OF PIPE	MANNINGS ROUGINESS COEFFICIENT	SI.OPE	DIAMETER	LENGTH OF SECTION	VELOCITY OF FLOW WITH PIPE FLUWING FULL	CAPACITY OF PIPE FLOWING FULL	PIPE INVERT AT UPSTREAM M.H.	PIPE INVERT AT DOWNSTREAM MH	TIME OF FLOW
	МН≠	MH#	Δ.	CA	AAXCA	Δ = 2 Δ 4	AxC= ELAXCA	101		1c=1c/1c1		0=1AC 360		n	S	D	L	l v	0	1		1=-745
REVIE RO			(ha)			(ha)	0 7 7	(min) —	(min)	min	mm/hr	m3/sec			%	mm	m	1	17 3/SEC			min
KONE KO	+	2	1.29	0.60	2.77	1.29	0.77		15	15	99	.2.13	CONIC.	.013	1.60	375	116	2.03	.231	112.05	110.19	0.0
11	r	3	0.95	0.60	0.57	2:24	1.34	0.95	15	15.95	96	.357	μ	ų	1.60	450	118	2.29	. 376	110.11	108.22	0.8
Ц .	3	EXIST	0.72	0.60	0.43	2.96	1.77	0.86	15,95	16.81	92	.452	¥)	0	1.60	52.5	96	2.54	.568	103,14	106.60	0.6
UNSAR RO		5	0.69	0.40	010	0.6%	0.28		15	15	99	.077	CONIC.	012	0.5	075	GC	1.1/2	120	101-82	106.55	10
UN DAIR INC			0.67	0.40	0.00	0.64	0.46			0	-79	.011	CONC.	1013	0.9	1510	60	1.12	1.12.0)	2	106.55	10.0
u	5	Exist	0.69	0.40	0.28	1.38	0.56	0.81	15	15.81	96	.149	ц	IL.	0.5	450	90	1.28	.210	106.47	106.02	1.1
n	6	EXIST	0,54	0.4-0	2.22	0.54	0.22	-	15	15	cyc	.061	CONCI	.013	0.5	300	75	0.98	.071	106.76	106.38	1.2
h	17	EVIST	115	210	0.46	1.15	0.46		15	15	901	.127	CONC.	012	0.5	275	110	1.13	179	107.36	106.81	1.6
		-		0																	1.50.01	
		1																		1		F

-

Email Correspondence with City Staff regarding Design Criteria

From: Ghazwan Yousif [mailto:Ghazwan.Yousif@mississauga.ca] Sent: Thursday, January 31, 2019 9:16 AM To: daniel@odandetech.com Subject: RE: 2532 Argyle - stormwater management

Good morning Daniel, We do agree with what you said, for fire department the person who replace Greg Phelps is Gerry Daley (extension 5912).


Regards, Ghazwan

From: Daniel Bancroft - Odan Detech Group [mailto:daniel@odandetech.com]
Sent: Friday, January 25, 2019 11:55 AM
To: Ghazwan Yousif
Cc: jkrpan@odandetech.com; 'Yoav Bohbot'; 'Jonathan Marmer'; 'Steven Heller'
Subject: 2532 Argyle - stormwater management

Hi Ghazwan,

Thanks for the meeting this morning. Here are the points we discussed – let me know any comments/revisions. Appreciate it if you could cc Karina.

- 1) Storm drainage outlet to Mary Fix Creek Culvert
 - Given that CVC has confirmed the culvert is flowing <100% capacity, City is accepting draining subject site (via grading & existing CB's) to the Culvert such that Q(post) <= Q(pre).
 - b. If the subject site landscape trib area to the culvert needs to be piped into the Culvert such that Q(post)<=Q(pre), City would accept something like converting the existing culvert CB to a MHCB to connect to the culvert (rather than a new connection to the culvert), as follows:</p>

2) Storm drainage outlet to Argyle Rd 525mm storm sewer

c.

a. Given infeasibility of replacing the downstream 450mm storm pipe in easement because of proximity to existing house etc., City will accept connection to the Argyle 525mm sewer provided:

i. We provide a statement that the proposed flow will not cause any additional risk to adjacent properties ii. We mitigate existing surcharge condition in post-dev

10-Y storm to reduce existing 120% surcharge to say 110% as feasible by overcontrolling site storm discharge etc.

 Culvert easement – You mentioned City easement for culvert is such that no structures are permitted – which may include curbs, asphalt etc. – are permitted within the easement. To be addressed by site owner, architect etc.

Regards, Daniel

Daniel Bancroft, P.Eng. The Odan/Detech Group Inc.

P: (905) 632-3811 ext.133 | **F**: (905) 632-3363 5230, SOUTH SERVICE ROAD, UNIT 107 | BURLINGTON, ONTARIO | L7L 5K2 www.odandetech.com | daniel@odandetech.com

NOTICE OF CONFIDENTIALITY: This message and all files transmitted with it may contain information that is considered confidential and which may be prohibited from disclosure under applicable law or contractual agreement. It is intended solely for the use of the individual or entity to whom it is addressed. If you are not the named recipient, disclosing, copying, distributing or making use of the information contained in or attached to this message is strictly prohibited. If you have received this email transmission in error, please notify the sender immediately by replying to this email and then delete it from your system. The attached file(s) are for reference purposes only. It is the responsibility of the parties receiving this information to verify its accuracy. The Odan/Detech Group Inc. is not responsible for modified or reproduced versions of the data being transferred. These files are to be treated as unstamped and unsealed. To receive officially stamped and/or sealed files, contact The Odan/Detech Group Inc. to arrange for the receipt of hard copies.

Email Correspondence from Credit Valley Conservation staff regarding Mary Fix Creek

From: Marinas, Maricris [mailto:Maricris.Marinas@cvc.ca]
Sent: Tuesday, January 22, 2019 3:14 PM
To: daniel@odandetech.com
Cc: 'Yoav Bohbot' <Ybohbot@plazacorp.com>; 'Steven Heller' <sheller@plazacorp.com>; jkrpan@odandetech.com; Haq, Rizwan <Rizwan.Haq@cvc.ca>
Subject: RE: 2532 Argyle Rd - CVC Zoning Comments

Hi Daniel,

Please see CVC's response in grey below.

Please note that all CVC comments/notes (1 to 10) have been updated to reflect the discussions below and submitted to the City. As such, there are no outstanding CVC comments/notes.

I trust that this is sufficient for your purposes. If you have any questions, please feel free to contact me.

Regards, Maricris

Maricris Marinas, M.Sc. Planner, Planning and Development Services | Credit Valley Conservation

From: Daniel Bancroft - Odan Detech Group [mailto:daniel@odandetech.com]
Sent: January 21, 2019 3:07 PM
To: Marinas, Maricris
Cc: 'Yoav Bohbot'; 'Steven Heller'; jkrpan@odandetech.com; Haq, Rizwan
Subject: RE: 2532 Argyle Rd - CVC Zoning Comments

Hi Maricris,

Thanks for your comments – we concur with your below revisions to my original email of Jan. 18.

As per our phone conversation this morning, regarding comments 7, 9 and 10 from your draft ZBA comments:

- 1) Comment 7 Water balance We understand as the property is not regulated CVC defers review of the 5mm stormwater balance/reuse requirement to the City such that the review is not duplicated
- Comments 9 & 10 Stormwater Quality & ESC Plan These were advisory comments and CVC will not comment on these items given that no CVC permit is required. have been acknowledged by the applicant. As such, no further action (regarding these notes) is required for ZBA approval.

Kindly confirm the above.

Thanks, Daniel

The Odan/Detech Group Inc.

P: (905) 632-3811 ext.133 | **F**: (905) 632-3363 5230, SOUTH SERVICE ROAD, UNIT 107 | BURLINGTON, ONTARIO | L7L 5K2 www.odandetech.com | daniel@odandetech.com

NOTICE OF CONFIDENTIALITY: This message and all files transmitted with it may contain information that is considered confidential and which may be prohibited from disclosure under applicable law or contractual agreement. It is intended solely for the use of the individual or entity to whom it is addressed. If you are not the named recipient, disclosing, copying, distributing or making use of the information contained in or attached to this message is strictly prohibited. If you have received this email transmission in error, please notify the sender immediately by replying to this email and then delete it from your system. The attached file(s) are for reference purposes only. It is the responsibility of the parties receiving this information to verify its accuracy. The Odan/Detech Group Inc. is not responsible for modified or reproduced versions of the data being transferred. These files are to be treated as unstamped and unsealed. To receive officially stamped and/or sealed files, contact The Odan/Detech Group Inc. to arrange for the receipt of hard copies.

From: Marinas, Maricris [mailto:Marinas@cvc.ca]
Sent: Friday, January 18, 2019 1:08 PM
To: daniel@odandetech.com
Cc: 'Yoav Bohbot' < Ybohbot@plazacorp.com
>; 'Steven Heller' < sheller@plazacorp.com
>; jkrpan@odandetech.com;
Haq, Rizwan < Rizwan.Haq@cvc.ca
Subject: RE: 2532 Argyle Rd - CVC Zoning Comments</pre>

Hi Daniel,

Please see CVC's responses in blue below.

If you have any questions, please feel free to contact me.

Regards, Maricris

Maricris Marinas, M.Sc. Planner, Planning and Development Services | Credit Valley Conservation

From: Daniel Bancroft - Odan Detech Group [mailto:daniel@odandetech.com]
Sent: January 18, 2019 8:04 AM
To: Marinas, Maricris; Haq, Rizwan
Cc: 'Yoav Bohbot'; 'Steven Heller'; jkrpan@odandetech.com
Subject: 2532 Argyle Rd - CVC Zoning Comments

Hi Maricris and Rizwan,

Thanks for the phone call this Tuesday. Appreciate it if you'd review and confirm our understanding as follows;

- Presently CVC has undertaken hydraulic and hydrology analysis of Mary Fix Creek including considering the existing pond north of Dundas and the subject culvert which passes through the subject site in easement. This has been confirmed with the CVC Director of Watershed Management who developed the by CVC's most current hydraulic/hydrologic models.
- 2) The updated hydraulic/hydrologic model shows that the existing storm pond north of Dundas provides attenuation for the critical 100-year storm such that the culvert which commences south of Dundas and passes through the subject site conveys the attenuated 100-year storm within the culvert's capacity. – Correct as long as the culvert is maintained as it has the capacity to convey the attenuated 100-year storm flows.
- 3) CVC has confirmed that MNRF will permit the reliance on the pond north of Dundas as providing attenuation of the critical 100-year storm and CVC will rely on this in developing flood/spill regulation area arising from the attenuation of 100-year storm by the pond. As previously confirmed, the hydraulic and hydrology modeling for Mary Fix Creek developed by CVC will use the attenuation (100-year storm) provided by the SWM pond located north of Dundas St. Please note that although the Regional storm will not be attenuated in the pond, based on the recent hydraulic analysis, the pipe has the capacity to convey both the attenuated 100-year storm and un-attenuated Regional storm flows (i.e. Regulated flows). As such, the site will not be subject to Mary Fix Creek.
- Given the foregoing, comments 1, 2, 3, 4, 5, 6 and 8 in the attached (draft) version of the CVC ZBA comments no longer apply. Correct.

- 5) CVC requires suggests a statement in the FSR (to be approved through the ZBA process) stating that the City is responsible for maintaining the inlet to the subject Mary Fix Creek culvert such that it is not obstructed. Thus, consideration is not required for the culvert inlet being 50% obstructed and a spill thus occurring. Correct, the above as well as any other recommendations (if necessary) made as part of the floodplain study.
- 6) Comments 7, 9, 10 in the attached draft CVC ZBA comments continue to apply and will be addressed in the course of ZBA approvals. Clarification, Comment 10 is a note to be acknowledged the ESC component is to be addressed at the detailed design stage (Site Plan) not as part of ZBA approvals.
 - a. Comment 9: Stormwater quality: We understand that CVC recommends but does not require provision of stormwater quality controls for the subject site provided all other required permits from the City and MECP as necessary are obtained without stormwater quality control. Correct.
- 7) Given the above, the site will not be subject to flood/spill regulation, therefore is not within a CVC regulated area (no CVC permit is required) for development within a regulated area, and there will be no further commenting pertaining to flood regulation in development approvals of the subject properties.

Thanks, Daniel

Daniel Bancroft, P.Eng. The Odan/Detech Group Inc.

P: (905) 632-3811 ext.133 | **F**: (905) 632-3363 5230, SOUTH SERVICE ROAD, UNIT 107 | BURLINGTON, ONTARIO | L7L 5K2 www.odandetech.com | daniel@odandetech.com

NOTICE OF CONFIDENTIALITY: This message and all files transmitted with it may contain information that is considered confidential and which may be prohibited from disclosure under applicable law or contractual agreement. It is intended solely for the use of the individual or entity to whom it is addressed. If you are not the named recipient, disclosing, copying, distributing or making use of the information contained in or attached to this message is strictly prohibited. If you have received this email transmission in error, please notify the sender immediately by replying to this email and then delete it from your system. The attached file(s) are for reference purposes only. It is the responsibility of the parties receiving this information to verify its accuracy. The Odan/Detech Group Inc. is not responsible for modified or reproduced versions of the data being transferred. These files are to be treated as unstamped and unsealed. To receive officially stamped and/or sealed files, contact The Odan/Detech Group Inc. to arrange for the receipt of hard copies.

The information contained in this Credit Valley Conservation electronic message is directed in confidence solely to the person(s) named above and may not be otherwise distributed, copied or disclosed including attachments. The message may contain information that is privileged, confidential and exempt from disclosure under the Municipal Freedom of Information and Protection and Privacy Act and by the Personal Information Protection Electronic Documents Act. The use of such personal information except in compliance with the Acts, is strictly prohibited. If you have received this message in error, please notify the sender immediately advising of the error and delete the message without making a copy. Thank you.

The information contained in this Credit Valley Conservation electronic message is directed in confidence solely to the person(s) named above and may not be otherwise distributed, copied or disclosed including attachments. The message may contain information that is privileged, confidential and exempt from disclosure under the Municipal Freedom of Information and Protection and Privacy Act and by the Personal Information Protection Electronic Documents Act. The use of such personal information except in compliance with the Acts, is strictly prohibited. If you have received this message in error, please notify the sender immediately advising of the error and delete the message without making a copy. Thank you.

Visual OTTHYMO Output (2-year & 10-year storm) V Ι SSSSS U U V А L SS U U A A V V I T. v v SS U U AAAAA L SS U U A A L I SS V V Т I SSSSS UUUUU A A LLLLL VV 000 TTTTT TTTTT H Н Ү Y M М 000 0 0 0 0 Т т 000 Т Developed and Distributed by Clarifica Inc. Copyright 1996, 2007 Clarifica Inc. All rights reserved. ***** DETAILED OUTPUT ***** Input filename: C:\Program Files (x86)\Visual OTTHYMO 2.3.3\voin.dat Output filename: P:\2018\18201\Visual OTTHYMO\Rev3\18201 site swm\post dev.out Summary filename: P:\2018\18201\Visual OTTHYMO\Rev3\18201 site swm\post dev.sum DATE: 8/9/2019 TIME: 4:16:58 PM USER · COMMENTS: _____ _____ _____ ***** ** SIMULATION NUMBER: 1 ** ***** _____ | CHICAGO STORM | IDF curve parameters: A= 610.000 B= 4.600 C= .780 | Ptotal= 33.44 mm | _____ used in: INTENSITY = A / (t + B)^C Duration of storm = 4.00 hrs Storm time step = 10.00 min Time to peak ratio = .33TTME RAIN | TIME RAIN | TIME RAIN | TIME RAIN
 RAIN
 TIME
 RAIN
 TIME
 RAIN
 TIME

 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs

 2.24
 1.17
 16.92
 2.17
 5.18
 3.17

 2.56
 1.33
 75.36
 2.33
 4.43
 3.33

 3.00
 1.50
 22.14
 2.50
 3.88
 3.50

 3.67
 1.67
 11.74
 2.67
 3.46
 3.67

 4.80
 1.83
 8.14
 2.83
 3.14
 3.83

 7.21
 2.00
 6.30
 3.00
 2.87
 4.00
 hrs mm/hr 2.65 .17 .33 2.47 2.31 .50 .67 2.17 2.05 .83 1.00 1.95 _____ _____ | CALIB 1 Area (ha) = .02 | STANDHYD (0012) | |ID= 1 DT= 5.0 min | Total Imp(%) = 50.00 Dir. Conn.(%) = 50.00 ------IMPERVIOUS PERVIOUS (i) Surface Area Dep. Storage (ha) = .01 (mm) = 1.00 .01 1.00 1.00 12.40 Average Slope (%)= 2.00 Mannings n Length (m) = 40.00 = .013 .250 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr

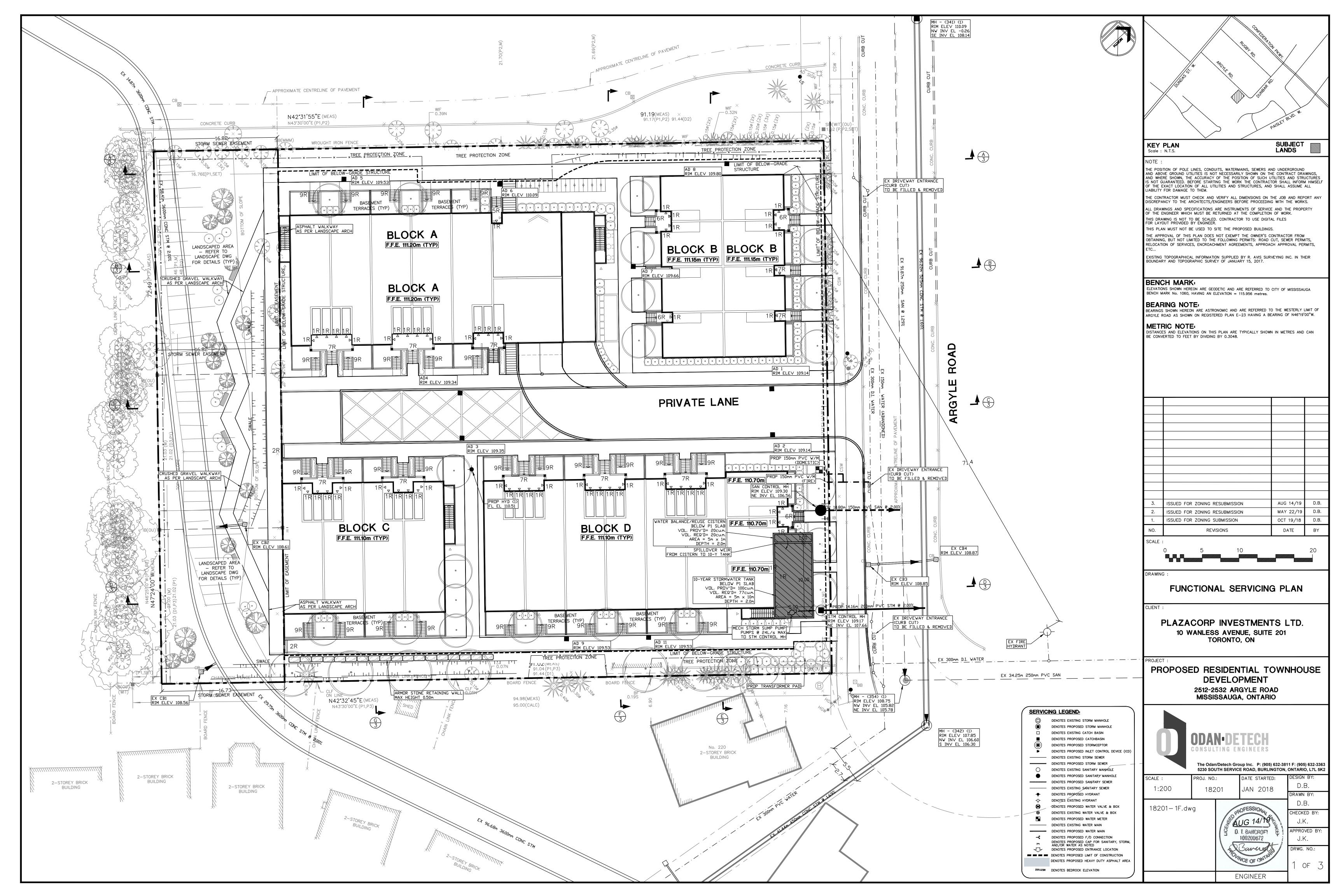
.08	3 2 2 4	1 1 0 0 2 1 C	02 1 2 003	5.18 3.08 2	65
	0 0.01	1 1.083 10.	.92 2.005		
.16	7 2.24	1.167 16.	.92 2.167	5.18 3.17 2	.65
.25	0 2.56	1.250 75.	.36 2.250	4.43 3.25 2	.47
.33	3 2.56	1.333 75.	.36 2.333	4.43 3.33 2	.47
.41	7 3.00	1.417 22.	.14 2.417	5.18 3.08 2 5.18 3.17 2 4.43 3.25 2 4.43 3.33 2 3.88 3.42 2 3.88 3.50 2 3.46 3.58 2 3.46 3.67 2 3.14 3.75 2 3.14 3.83 2	.31
.50	0 3.00	1.500 22.	.14 2.500	3.88 3.50 2	.31
.58	3 3.67	1.583 11.	74 2.583	3.46 3.58 2	.17
.66	7 3.67	1.667 11.	74 2.667	3.46 3.67 2	.17
.75	0 4.80	11.750 8.	14 2.750	3.14 3.75 2	.0.5
83	3 4 80	1 1 833 8	14 2 833	3 14 3 83 2	05
.03	7 7 21	1 1 917 6	30 2.000	2 97 1 3 92 1	.05
.91	0 7 21	1 2 000 6	20 2.917	3.14 3.83 2 2.87 3.92 1 2.87 4.00 1	. 95
1.00	0 7.21	1 2.000 0.	.30 3.000	2.0/ 4.00 1	. 95
May Eff Inton (mm / h m) =	75 26	17 50		
Max.EII.IIICeII.((min)	/3.30	15.00		
OVEr	(min)	5.00	13.00		
Storage Coeff.	(min) =	.82 (11)	14.99 (11)		
Unit Hyd. Tpeak	(min)=	5.00	15.00		
Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	(cms) =	.34	.08		
				TOTALS	
PEAK FLOW	(cms) =	.00	.00	.003 (iii)	
TIME TO PEAK	(hrs) =	1.33	1.50	1.33	
RUNOFF VOLUME	(mm) =	32.44	10.97	21.53	
TOTAL RAINFALL	(mm) =	33.44	33.44	33.44	
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI	ENT =	.97	.33	.64	
** WARNING: STORA	GE COEFF.	IS SMALLER TH	HAN TIME STEP!		
		ED FOR PERVIC			
CN* =	80.0 Ia	a = Dep. Stora	age (Above)		
(ii) TIME STEP	(DT) SHOU	JLD BE SMALLEF	R OR EQUAL		
		DEFFICIENT.			
(iii) PEAK FLOW			FLOW IF ANY.		
CALIB					
STANDHYD (0011)	Area	(ha) = .08	3		
D= 1 DT= 5.0 min					
	Total 1	'mp(%) = 50.00) Dir Conn	(%) = 50.00	
		imp(%)= 50.00) Dir. Conn.	(%) = 50.00	
				(%) = 50.00	
		IMPERVIOUS	PERVIOUS (i)	(%) = 50.00	
		IMPERVIOUS	PERVIOUS (i) .04	(%)= 50.00	
		IMPERVIOUS	PERVIOUS (i) .04	(%)= 50.00	
Surface Area Dep. Storage Average Slope	(ha) = (mm) = (%) =	IMPERVIOUS .04 1.00 1.00	PERVIOUS (i) .04	(%) = 50.00	
Surface Area Dep. Storage Average Slope Length	(ha) = (mm) = (%) = (m) =	IMPERVIOUS .04 1.00 1.00 23.40	PERVIOUS (i) .04 1.00 2.00 40.00	(%) = 50.00	
Surface Area Dep. Storage Average Slope Length	(ha) = (mm) = (%) = (m) =	IMPERVIOUS .04 1.00 1.00 23.40	PERVIOUS (i) .04 1.00 2.00 40.00	(%) = 50.00	
Surface Area Dep. Storage Average Slope Length Mannings n	(ha) = (mm) = (%) = (m) = =	IMPERVIOUS .04 1.00 1.00 23.40 .013	PERVIOUS (i) .04 1.00 2.00 40.00 .250		
Surface Area Dep. Storage Average Slope Length Mannings n	(ha) = (mm) = (%) = (m) = =	IMPERVIOUS .04 1.00 1.00 23.40 .013	PERVIOUS (i) .04 1.00 2.00 40.00 .250		
Surface Area Dep. Storage Average Slope Length Mannings n	(ha) = (mm) = (%) = (m) = =	IMPERVIOUS .04 1.00 1.00 23.40 .013	PERVIOUS (i) .04 1.00 2.00 40.00 .250		
Surface Area Dep. Storage Average Slope Length Mannings n	(ha) = (mm) = (%) = (m) = =	IMPERVIOUS .04 1.00 1.00 23.40 .013	PERVIOUS (i) .04 1.00 2.00 40.00 .250		
Surface Area Dep. Storage Average Slope Length Mannings n	(ha) = (mm) = (%) = (m) = =	IMPERVIOUS .04 1.00 1.00 23.40 .013	PERVIOUS (i) .04 1.00 2.00 40.00 .250		
Surface Area Dep. Storage Average Slope Length Mannings n	(ha) = (mm) = (%) = (m) = =	IMPERVIOUS .04 1.00 1.00 23.40 .013	PERVIOUS (i) .04 1.00 2.00 40.00 .250		
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	<pre>(ha) = (mm) = (%) = (%) = (m) = = mm/hr) = (min) (min) = (min) = (cms) =</pre>	IMPERVIOUS .04 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 .07		
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	<pre>(ha) = (mm) = (%) = (%) = (m) = = mm/hr) = (min) (min) = (min) = (cms) =</pre>	IMPERVIOUS .04 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 .07		
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	<pre>(ha) = (mm) = (%) = (%) = (m) = = mm/hr) = (min) (min) = (min) = (cms) =</pre>	IMPERVIOUS .04 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 .07		
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	<pre>(ha) = (mm) = (%) = (%) = (m) = = mm/hr) = (min) (min) = (min) = (cms) =</pre>	IMPERVIOUS .04 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 .07		
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME	<pre>(ha) = (mm) = (%) = (m) = = mm/hr) = (min) (min) = (mn) = (cms) = (cms) = (hrs) = (mn) =</pre>	IMPERVIOUS .04 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 .07 .00 1.58 10.97	*TOTALS* .009 (iii) 1.33 21.58	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL	<pre>(ha) = (mm) = (mm) = (%) = (m) = = mm/hr) = (min) = (min) = (cms) = (cms) = (hrs) = (mm) = (mm) = (mm) = </pre>	IMPERVIOUS .04 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 .07 .00 1.58 10.97 33.44	*TOTALS* .009 (iii) 1.33 21.58 33.44	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. Tpeak PEAK FLOW TIME TO PEAK RUNOFF VOLUME	<pre>(ha) = (mm) = (mm) = (%) = (m) = = mm/hr) = (min) = (min) = (cms) = (cms) = (hrs) = (mm) = (mm) = (mm) = </pre>	IMPERVIOUS .04 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 .07 .00 1.58 10.97	*TOTALS* .009 (iii) 1.33 21.58	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI	<pre>(ha) = (mm) = (%) = (m) = = mm/hr) = (min) (min) = (cms) = (cms) = (hrs) = (mm) = (mm) = ENT =</pre>	IMPERVIOUS .04 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44 33.44 .97	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 .07 .00 1.58 10.97 33.44 .33	*TOTALS* .009 (iii) 1.33 21.58 33.44 .65	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI	<pre>(ha) = (mm) = (%) = (m) = = mm/hr) = (min) (min) = (cms) = (cms) = (hrs) = (mm) = (mm) = ENT =</pre>	IMPERVIOUS .04 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44 33.44 .97	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 .07 .00 1.58 10.97 33.44 .33	*TOTALS* .009 (iii) 1.33 21.58 33.44 .65	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI	<pre>(ha) = (mm) = (%) = (m) = = mm/hr) = (min) (min) = (cms) = (cms) = (hrs) = (mm) = (mm) = ENT = GE COEFF.</pre>	IMPERVIOUS .04 1.00 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44 33.44 .97 IS SMALLER TH	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 .07 .00 1.58 10.97 33.44 .33 HAN TIME STEP!	*TOTALS* .009 (iii) 1.33 21.58 33.44 .65	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI **** WARNING: STORA (i) CN PROCED	<pre>(ha) = (mm) = (%) = (m) = = mm/hr) = (min) (min) = (cms) = (cms) = (hrs) = (mm) = (mm) = ENT = GE COEFF. URE SELECT</pre>	IMPERVIOUS .04 1.00 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44 33.44 .97 IS SMALLER THE	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 1.58 10.97 33.44 .33 HAN TIME STEP! DUS LOSSES:	*TOTALS* .009 (iii) 1.33 21.58 33.44 .65	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI **** WARNING: STORA (i) CN PROCED CN* =	<pre>(ha) = (mm) = (mm) = (%) = (m) = = mm/hr) = (min) = (min) = (cms) = (hrs) = (hrs) = (mm) = (mm) = ENT = GE COEFF. URE SELECT 80.0 Ia</pre>	IMPERVIOUS .04 1.00 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44 33.44 .97 IS SMALLER TH YED FOR PERVICE = Dep. Stora	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 1.58 10.97 33.44 .33 HAN TIME STEP! DUS LOSSES: age (Above)	*TOTALS* .009 (iii) 1.33 21.58 33.44 .65	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI **** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEP	<pre>(ha) = (mm) = (%) = (m) = (%) = (min) (min) = (min) = (ms) = (ms) = (ms) = (ms) = (mm) = (mm) = (mm) = ENT = GE COEFF. URE SELECT URE SELECT URE SELECT URE SELECT</pre>	IMPERVIOUS .04 1.00 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44 33.44 .97 IS SMALLER TH YED FOR PERVICE a = Dep. Store SLD BE SMALLEF	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 1.58 10.97 33.44 .33 HAN TIME STEP! DUS LOSSES: age (Above)	*TOTALS* .009 (iii) 1.33 21.58 33.44 .65	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI **** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEP	<pre>(ha) = (mm) = (%) = (m) = (%) = (min) (min) = (min) = (ms) = (ms) = (ms) = (ms) = (mm) = (mm) = (mm) = ENT = GE COEFF. URE SELECT URE SELECT URE SELECT URE SELECT</pre>	IMPERVIOUS .04 1.00 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44 33.44 .97 IS SMALLER TH YED FOR PERVICE = Dep. Stora	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 1.58 10.97 33.44 .33 HAN TIME STEP! DUS LOSSES: age (Above)	*TOTALS* .009 (iii) 1.33 21.58 33.44 .65	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. Tpeak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI *** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEP	<pre>(ha) = (mm) = (%) = (m) = (min) (min) = (mn) = (mn) = (cms) = (hrs) = (mm) = (mm) = ENT = GE COEFF. URE SELECT 80.0</pre>	IMPERVIOUS .04 1.00 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44 33.44 .97 IS SMALLER TH PED FOR PERVIC a Dep. Stora LD BE SMALLEF DEFFICIENT.	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 .07 .00 1.58 10.97 33.44 .33 HAN TIME STEP! DUS LOSSES: age (Above) & OR EQUAL	*TOTALS* .009 (iii) 1.33 21.58 33.44 .65	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI *** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEP THAN THE	<pre>(ha) = (mm) = (%) = (m) = (min) (min) = (mn) = (mn) = (cms) = (hrs) = (mm) = (mm) = ENT = GE COEFF. URE SELECT 80.0</pre>	IMPERVIOUS .04 1.00 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44 33.44 .97 IS SMALLER TH PED FOR PERVIC a Dep. Stora LD BE SMALLEF DEFFICIENT.	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 .07 .00 1.58 10.97 33.44 .33 HAN TIME STEP! DUS LOSSES: age (Above) & OR EQUAL	*TOTALS* .009 (iii) 1.33 21.58 33.44 .65	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI **** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEP THAN THE (iii) PEAK FLOW	<pre>(ha) = (nm) = (mm) = (%) = (m) = = mm/hr) = (min) = (cms) = (cms) = (hrs) = (hrs) = (nm) = (mm) = ENT = GE COEFF. URE SELECT 80.0 Ia (DT) SHOU STORAGE CC DES NOT</pre>	IMPERVIOUS .04 1.00 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44 .97 IS SMALLER TH CED FOR PERVICE = Dep. Stora LD BE SMALLEF DEFFICIENT. INCLUDE BASEF	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 .07 .00 1.58 10.97 33.44 .33 HAN TIME STEP! DUS LOSSES: age (Above) & OR EQUAL FLOW IF ANY.	*TOTALS* .009 (iii) 1.33 21.58 33.44 .65	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI **** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEP THAN THE (iii) PEAK FLOW	<pre>(ha) = (mm) = (mm) = (%) = (m) = = mm/hr) = (min) = (min) = (cms) = (hrs) = (hrs) = (hrs) = (mm) = (mm) = ENT = ENT = ENT = GE COEFF. URE SELECT 80.0 Ia (DT) SHOUS STORAGE CC DOES NOT</pre>	IMPERVIOUS .04 1.00 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44 .97 IS SMALLER TH CED FOR PERVICE = Dep. Stora LD BE SMALLEF DEFFICIENT. INCLUDE BASEF	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 .07 .00 1.58 10.97 33.44 .33 HAN TIME STEP! DUS LOSSES: age (Above) & OR EQUAL FLOW IF ANY.	*TOTALS* .009 (iii) 1.33 21.58 33.44 .65	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI *** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEP THAN THE (iii) PEAK FLOW	<pre>(ha) = (mm) = (mm) = (%) = (m) = = mm/hr) = (min) = (min) = (cms) = (hrs) = (mm) = (mm) = ENT = GE COEFF. URE SELECT 80.0 Ia (DT) SHOU STORAGE CO DOES NOT</pre>	IMPERVIOUS .04 1.00 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44 33.44 .97 IS SMALLER THE TED FOR PERVICE a Dep. Storad SEFFICIENT. INCLUDE BASEF	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 1.58 10.97 33.44 .33 HAN TIME STEP! DUS LOSSES: age (Above) & OR EQUAL FLOW IF ANY.	*TOTALS* .009 (iii) 1.33 21.58 33.44 .65	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI *** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEP THAN THE (iii) PEAK FLOW CALIB	<pre>(ha) = (mm) = (mm) = (%) = (m) = = mm/hr) = (min) = (min) = (cms) = (hrs) = (mm) = (mm) = ENT = GE COEFF. URE SELECT 80.0 Ia (DT) SHOU STORAGE CO DOES NOT</pre>	IMPERVIOUS .04 1.00 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44 33.44 .97 IS SMALLER THE TED FOR PERVICE a Dep. Storad SEFFICIENT. INCLUDE BASEF	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 1.58 10.97 33.44 .33 HAN TIME STEP! DUS LOSSES: age (Above) & OR EQUAL FLOW IF ANY.	*TOTALS* .009 (iii) 1.33 21.58 33.44 .65	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI *** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEP THAN THE (iii) PEAK FLOW CALLE STANDHYD (0010)	<pre>(ha) = (mm) = (%) = (mm) = = mm/hr) = (min) = (cms) = (cms) = (cms) = (mrs) = (mm) = (mm) = ENT = GE COEFF. URE SELECT 80.0 Ia COT) SHOC STORAGE CC ' DOES NOT</pre>	IMPERVIOUS .04 1.00 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44 33.44 .97 IS SMALLER TH SED FOR PERVICE TED FOR PERVICE DEFFICIENT. INCLUDE BASEF 	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 1.58 10.97 .00 1.58 10.97 33.44 .33 HAN TIME STEP! DUS LOSSES: age (Above) & OR EQUAL FLOW IF ANY.	*TOTALS* .009 (iii) 1.33 21.58 33.44 .65	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI *** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEP THAN THE (iii) PEAK FLOW CALIB STANDHYD (0010) D = 1 DT= 5.0 min	<pre>(ha) = (mm) = (%) = (m) = (min) (min) = (min) = (mn) = (cms) = (cms) = (cms) = (mm) = (mm) = (mm) = ENT = GE COEFF. URE SELECT URE SELECT URE SELECT URE SELECT URE SELECT URE SELECT Area Total I</pre>	IMPERVIOUS .04 1.00 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44 33.44 .97 IS SMALLER TH SED FOR PERVICE TED FOR PERVICE DEFFICIENT. INCLUDE BASEF 	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 1.58 10.97 .00 1.58 10.97 33.44 .33 HAN TIME STEP! DUS LOSSES: age (Above) & OR EQUAL FLOW IF ANY.	*TOTALS* .009 (iii) 1.33 21.58 33.44 .65	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI *** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEP THAN THE (iii) PEAK FLOW CALIB STANDHYD (0010)	<pre>(ha) = (mm) = (%) = (m) = (min) (min) = (min) = (mn) = (ms) = (ms) = (mm) = (mm) = (mm) = ENT = GE COEFF. URE SELECT B0.0 Ia GE COEFF. URE SELECT STORAGE CC DOES NOT Area Total I</pre>	IMPERVIOUS .04 1.00 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44 33.44 .97 IS SMALLER TH CED FOR PERVICE LD BE SMALLER TH DEFFICIENT. INCLUDE BASEF 	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 .07 .00 1.58 10.97 33.44 .33 HAN TIME STEP! DUS LOSSES: age (Above) & OR EQUAL FLOW IF ANY.	*TOTALS* .009 (iii) 1.33 21.58 33.44 .65	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI *** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEP THAN THE (iii) PEAK FLOW CALIB STANDHYD (0010) D = 1 DT = 5.0 min	<pre>(ha) = (mm) = (%) = (mm) =</pre>	IMPERVIOUS .04 1.00 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44 33.44 .97 IS SMALLER TH TED FOR PERVICE TED FOR PERVICE TINCLUDE BASEF 	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 1.58 10.97 33.44 .33 HAN TIME STEP! DUS LOSSES: age (Above) & OR EQUAL FLOW IF ANY.	*TOTALS* .009 (iii) 1.33 21.58 33.44 .65	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI **** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEP THAN THE (iii) PEAK FLOW CALIB STANDHYD (0010) D = 1 DT= 5.0 min	<pre>(ha) = (mm) = (mm) = (%) = (mm/hr) = (min) = (cms) = (cms) = (lnrs) = (lnrs) = (mm) = (mm) = ENT = GE COEFF. URE SELECT 80.0 Ia (DT) SHOU STORAGE CC 'DOES NOT Area Total I (ha) =</pre>	IMPERVIOUS .04 1.00 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44 33.44 .97 IS SMALLER TH TED FOR PERVICE TED FOR PERVICE DEFFICIENT. INCLUDE BASEF 	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 1.58 10.97 33.44 .33 HAN TIME STEP! DUS LOSSES: age (Above) COR EQUAL FLOW IF ANY.	*TOTALS* .009 (iii) 1.33 21.58 33.44 .65	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI **** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEP THAN THE (iii) PEAK FLOW CALIB STANDHYD (0010) D = 1 DT= 5.0 min	<pre>(ha) = (mm) = (mm) = (%) = (mm/hr) = (min) = (cms) = (cms) = (lnrs) = (lnrs) = (mm) = (mm) = ENT = GE COEFF. URE SELECT 80.0 Ia (DT) SHOU STORAGE CC 'DOES NOT Area Total I (ha) =</pre>	IMPERVIOUS .04 1.00 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44 33.44 .97 IS SMALLER TH TED FOR PERVICE TED FOR PERVICE DEFFICIENT. INCLUDE BASEF 	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 1.58 10.97 33.44 .33 HAN TIME STEP! DUS LOSSES: age (Above) COR EQUAL FLOW IF ANY.	*TOTALS* .009 (iii) 1.33 21.58 33.44 .65	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI **** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEP THAN THE (iii) PEAK FLOW CALIB STANDHYD (0010) D = 1 DT= 5.0 min	<pre>(ha) = (mm) = (mm) = (%) = (mm/hr) = (min) = (cms) = (cms) = (lnrs) = (lnrs) = (mm) = (mm) = ENT = GE COEFF. URE SELECT 80.0 Ia (DT) SHOU STORAGE CC 'DOES NOT Area Total I (ha) =</pre>	IMPERVIOUS .04 1.00 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44 33.44 .97 IS SMALLER TH TED FOR PERVICE TED FOR PERVICE DEFFICIENT. INCLUDE BASEF 	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 1.58 10.97 33.44 .33 HAN TIME STEP! DUS LOSSES: age (Above) COR EQUAL FLOW IF ANY.	*TOTALS* .009 (iii) 1.33 21.58 33.44 .65	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI **** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEP THAN THE (iii) PEAK FLOW CALIB STANDHYD (0010) D = 1 DT= 5.0 min	<pre>(ha) = (mm) = (mm) = (%) = (mm/hr) = (min) = (cms) = (cms) = (lnrs) = (lnrs) = (mm) = (mm) = ENT = GE COEFF. URE SELECT 80.0 Ia (DT) SHOU STORAGE CC 'DOES NOT Area Total I (ha) =</pre>	IMPERVIOUS .04 1.00 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44 33.44 .97 IS SMALLER TH TED FOR PERVICE TED FOR PERVICE DEFFICIENT. INCLUDE BASEF 	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 1.58 10.97 33.44 .33 HAN TIME STEP! DUS LOSSES: age (Above) COR EQUAL FLOW IF ANY.	*TOTALS* .009 (iii) 1.33 21.58 33.44 .65	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI **** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEP THAN THE (iii) PEAK FLOW CALIB STANDHYD (0010) D = 1 DT= 5.0 min	<pre>(ha) = (mm) = (mm) = (%) = (mm/hr) = (min) = (cms) = (cms) = (lnrs) = (lnrs) = (mm) = (mm) = ENT = GE COEFF. URE SELECT 80.0 Ia (DT) SHOU STORAGE CC 'DOES NOT Area Total I (ha) =</pre>	IMPERVIOUS .04 1.00 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44 33.44 .97 IS SMALLER TH TED FOR PERVICE TED FOR PERVICE DEFFICIENT. INCLUDE BASEF 	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 1.58 10.97 33.44 .33 HAN TIME STEP! DUS LOSSES: age (Above) COR EQUAL FLOW IF ANY.	*TOTALS* .009 (iii) 1.33 21.58 33.44 .65	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI **** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEP THAN THE (iii) PEAK FLOW CALIB STANDHYD (0010) D= 1 DT= 5.0 min	<pre>(ha) = (mm) = (mm) = (%) = (mm/hr) = (min) = (cms) = (cms) = (lnrs) = (lnrs) = (mm) = (mm) = ENT = GE COEFF. URE SELECT 80.0 Ia (DT) SHOU STORAGE CC 'DOES NOT Area Total I (ha) =</pre>	IMPERVIOUS .04 1.00 1.00 23.40 .013 75.36 5.00 1.20 (ii) 5.00 .33 .01 1.33 32.44 33.44 .97 IS SMALLER TH TED FOR PERVICE TED FOR PERVICE DEFFICIENT. INCLUDE BASEF 	PERVIOUS (i) .04 1.00 2.00 40.00 .250 17.50 20.00 15.37 (ii) 20.00 1.58 10.97 33.44 .33 HAN TIME STEP! DUS LOSSES: age (Above) COR EQUAL FLOW IF ANY.	*TOTALS* .009 (iii) 1.33 21.58 33.44 .65	

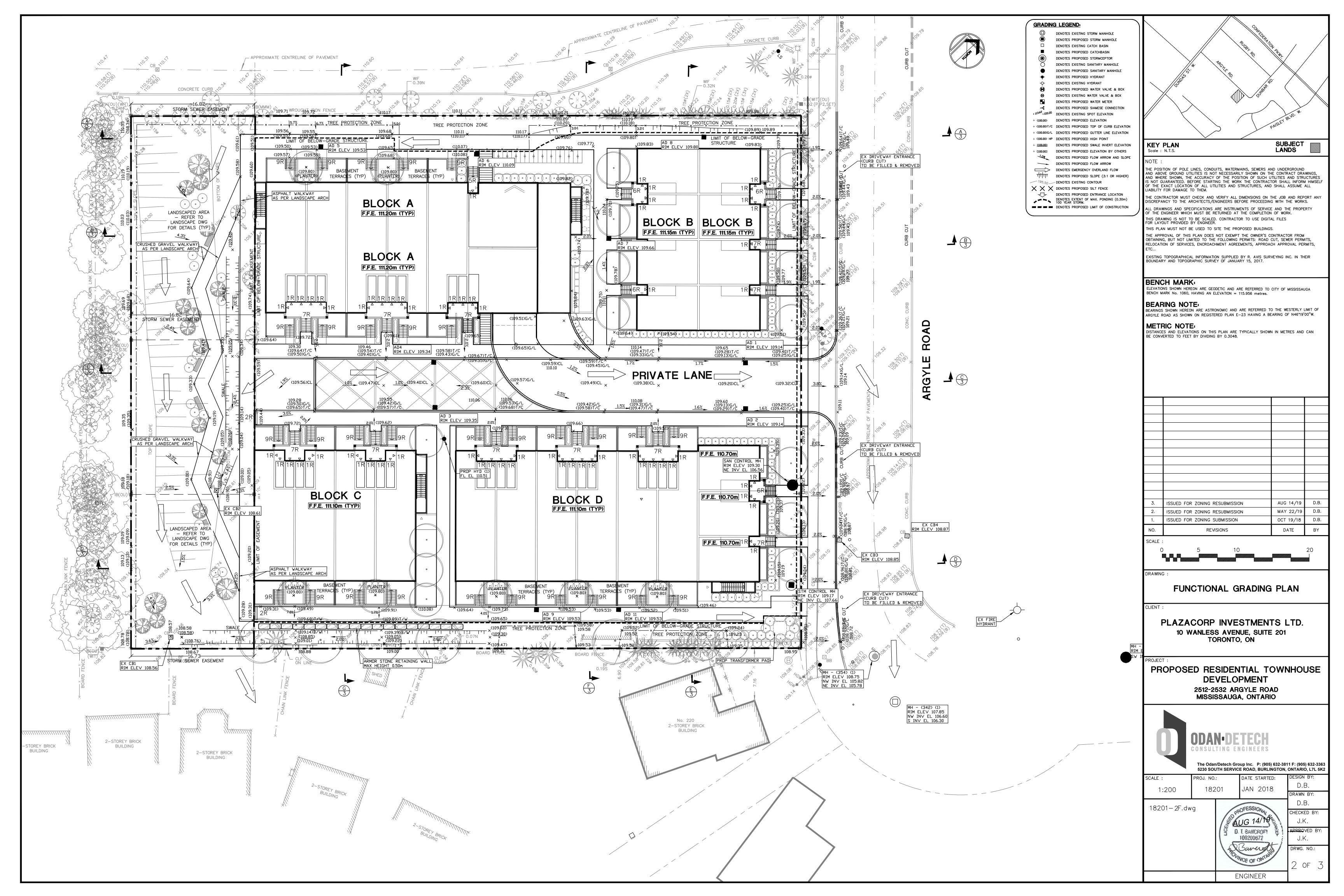
T UNCTIONAL SERVICING					
over (min)	5.	00	5.00		
Storage Coeff. (min)=	1.	66 (ii)	2.91 (ii)	
over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	5.	00	5.00		
Unit Hyd. peak (cms)=		32	.28		
				*	TOTALS*
PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = BUNOFF COEFFICIENT		05	.00		.050 (iii)
TIME TO PEAK (hrs)=	1.	33	1.33		1.33
RUNOFF VOLUME (mm) =	32.	44	10.97		32.22 33.44
TOTAL RAINFALL (mm) =	33.	44	33.44		33.44
RUNOFF COEFFICIENT =		97	.33		.96
***** WARNING: STORAGE COEF	F. IS SMA	LLER THA	N TIME SI	'EP!	
(') ON PROCEDURE OF		DEDUTO			
(i) CN PROCEDURE SEL					
CN* = 80.0 (ii) TIME STEP (DT) S				:)	
THAN THE STORAGE			OK LQUAL		
(iii) PEAK FLOW DOES N			OW TE ANY	,	
(III) TEAK FLOW DOES N	OI INCLUD	D DAGDII	IOW II ANI	•	
CALIB					
STANDHYD (0004) Area	(ha) =	.09			
ID= 1 DT= 5.0 min Tota	1 Imp(%)=	90.00	Dir. Co	onn.(%)=	90.00
	- • •				
	IMPERV	IOUS	PERVIOUS	(i)	
Surface Area (ha)=		08	.01		
Dep. Storage (mm)=	1.	00	1.00		
Average Slope (%)=	1.	00	2.00		
Length (m) =	25.	00	40.00		
Surface Area(ha) =Dep. Storage(mm) =Average Slope(%) =Length(m) =Mannings n=	.0	13	.250		
Max.Eff.Inten.(mm/hr)= over (min)	75.	36	27.12		
over (min)	5.	00	5.00		
Storage Coeff. (min)=	1.	25 (ii)	4.53 (ii)	
Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	5.	00	5.00		
Unit Hyd. peak (cms)=	•	33	.23		
		0.0	0.0	*	TOTALS*
PEAK FLOW (cms)=	•	02	.00		.018 (iii) 1.33
TIME TO PEAK (hrs)=	1.	33	1.33		1.33
RUNOFF VOLUME (mm) =	32.	44	10.97		30.28
PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT =	33.	44	33.44		33.44
RUNOFF COEFFICIENI -	•	91			.91
***** WARNING: STORAGE COEF	F TS SMA	LLER THA	N TIME ST	'EPI	
miniting: promise coef	1. 10 0111				
(i) CN PROCEDURE SEL	ECTED FOR	PERVIOU	IS LOSSES:		
CN* = 80.0					
(ii) TIME STEP (DT) S	HOULD BE	SMALLER	OR EQUAL		
THAN THE STORAGE	COEFFICI	ENT.			
(iii) PEAK FLOW DOES N	OT INCLUD	E BASEFI	OW IF ANY		
ADD HYD (0013)	7007	000007	mpn	D	
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.	
	(ha)	(Cms)	(hrs) 1.33	(mm)	
ID1 = 1 (0010):	.24	.050	1.33	32.22	
+ ID2= 2 (0004):			1.33		
			1.33		
ID = 3 (0013):	.34	.009	1.33	31.00	
NOTE: PEAK FLOWS DO N	OT TNCTIT	E BACUUT	OWS TE AN	IY	
NOTE. FEAK FLOWS DU N	OT TINCTOD	L DAGEL	OWD IT AN	· - •	
ADD HYD (0014)					
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.	
	(ha)	(cms)	(hrs)	(mm)	
ID1= 1 (0011):	.08	.009	TPEAK (hrs) 1.33	21.58	
+ ID2= 2 (0013):	.34	.069	1.33	31.68	
ID = 3 (0014):	.42	.078	1.33	29.70	
NOTE: PEAK FLOWS DO N	OT INCLUD	E BASEFI	JOWS IF AN	IY.	

TONCHONAL SERVIC		
RESERVOIR (0009) IN= 2> OUT= 1		
	OUTFLOW STORAGE OUTFLOW STORAGE	
	(cms) (ha.m.) (cms) (ha.m.)	
	(cms) (ha.m.) (cms) (ha.m.) .0000 .0000 .0241 .0100 .0240 .0001 .0000 .0000	
	.0240 .0001 .0000 .0000	
	AREA QPEAK TPEAK R.V.	
	AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm)	
INFLOW : ID= 2 (0014) .419 .078 1.33 29.70 0009) .419 .024 1.50 29.71	
OUTFLOW: ID= 1 (.419 .024 1.50 29.71	
	AK FLOW REDUCTION [Qout/Qin](%)= 30.92	
ידיד	ME SHIFT OF PEAK FLOW (min) = 10.00	
MAX	XIMUM STORAGE USED (ha.m.) = .0033	
ADD HYD (0015)		
1 + 2 = 3	AREA QPEAK TPEAK R.V.	
TD1- 1 (001)	(ha) (cms) (hrs) (mm)	
+ TD2 = 2 (000)	(ha) (cms) (hrs) (mm) 2): .02 .003 1.33 21.53 3): .42 .024 1.50 29.71	
===============		
ID = 3 (001)	5): .44 .027 1.33 29.28	
NOTE · DEAK FIOM	S DO NOT INCLUDE BASEFLOWS IF ANY.	
NOID. FEAR FLOW	, 55 NOT INCLUDE DROBFLOWO IF ANT.	

** SIMULATION NUMBE		
	IDF curve parameters: A=1010.000	
Ptotal= 55.37 mm	B= 4.600 C= .780	
	used in: INTENSITY = A / (t + B)^C	
	Duration of storm = 4.00 hrs	
	Storm time step = 10.00 min	
	Time to peak ratio = .33	
TIME	RAIN TIME RAIN TIME RAIN TIME RA	IN
hrs	mm/hr hrs mm/hr hrs mm/hr hrs mm/	hr
.17	3.71 1.17 28.02 2.17 8.58 3.17 4.	39
. 33	3.71 1.17 28.02 2.17 8.58 3.17 4. 4.23 1.33 124.77 2.33 7.33 3.33 4. 4.97 1.50 36.65 2.50 6.42 3.50 3.	08
.50	4.97 1.50 50.05 2.50 0.42 5.50 5.6.07 1.67 19.43 2.67 5.74 3.67 3.	60
.83	6.07 1.67 19.43 2.67 5.74 3.67 3. 7.95 1.83 13.47 2.83 5.19 3.83 3. 11.94 2.00 10.43 3.00 4.75 4.00 3.	40
1.00	11.94 2.00 10.43 3.00 4.75 4.00 3.	22
CALIB		
STANDHYD (0012)	Area (ha)= .02 Total Imp(%)= 50.00 Dir. Conn.(%)= 50.00	
	10tai imp(%)- 50.00 Dir. Conn.(%)- 50.00	
	IMPERVIOUS PERVIOUS (i)	
Surface Area		
Dep. Storage	(mm) = 1.00 1.00	
Average Slope Length	(%) = 1.00 2.00 (m) = 12.40 40.00	
Mannings n	= .013 .250	
-		
NOTE: RAINF	ALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.	
	TRANSFORMED HYETOGRAPH	
TIME		
	mm/hr hrs mm/hr hrs mm/hr hrs mm/	
.083		
.333	4.23 1.333 124.77 2.333 7.33 3.33 4.	
.417	4.97 1.417 36.65 2.417 6.42 3.42 3.	
.500		82
.583	0.07 1.383 19.43 2.583 5.74 3.58 3.	60

.66					
	7 6.07	1 1.667 19	43 2,667	5.74 3.67	3.60
7 -	0 7 05	1 1 750 10	17 2 750	5.74 3.67 5.19 3.75 5.19 3.83 4.75 3.92 4.75 4.00	3 40
./	0 7.95	1./JU 13.	4/ 2./50	5.19 5.75	3.40
.83	3 7.95	1.833 13.	47 2.833	5.19 3.83	3.40
.91	7 11.94	1.917 10.	43 2.917	4.75 3.92	3.22
1 0.0	0 11 94	1 2 000 10	43 1 3 000	4 75 1 4 00	3 22
	(1)	104 55	50 44		
Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	um/nr)=	124.//	5∠.44		
over	(min)	5.00	10.00		
Storage Coeff	(min) =	.67 (ii)	9.81 (ii)		
mait mail mail	(mir) -	.07 (11)	10 00		
unit Hyd. Tpeak	. (min)=	5.UU	T0.00		
Unit Hyd. peak	(cms) =	.34	.11		
				TOTALS	
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL	(cmc) =	0.0	0.0	0.05 (333)	
FEAR FLOW	(CIIIS) =	.00	.00	.005 (iii)	
TIME TO PEAK	(hrs)=	1.33	1.42	1.33	
RUNOFF VOLUME	(mm) =	54.37	25.08	39.52	
TOTAL RAINFALL	(mm) =	55 37	55 37	55 37	
TOTHE INTRIBE	(11111)	00.07	00.07	33.37	
RUNOFF COEFFICI	E-IN T =	.98	.43	. / ⊥	
***** WARNING: STORA	GE COEFF.	IS SMALLER TH	AN TIME STEP!		
(1) ON DROOP	UDE CELECT		TIC TOCODO.		
		ED FOR PERVIO			
CN* =	80.0 Ia	= Dep. Stora	ge (Above)		
(ii) TIME STEP					
			OIC DQUIID		
		EFFICIENT.			
(iii) PEAK FLOW	DOES NOT	INCLUDE BASEF	LOW IF ANY.		
CALIB					
STANDHYD (0011)	Area	(ha) = .08			
ID= 1 DT= 5.0 min	Total I	mp(%)= 50.00	Dir. Conn.	(%)= 50.00	
		IMPERVIOUS	PERVIOUS (i)		
C	(k-)		(1)		
Suriace Area	(na) =	.04	.04		
Dep. Storage	(mm) =	1.00	1.00		
Average Slope	(%) =	1 00	2 00		
Average Stope	(•) -	1.00	2.00		
Length	(m) =	23.40	40.00		
Surface Area Dep. Storage Average Slope Length Mannings n	=	.013	.250		
Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	mm/hr) =	124 77	52 //		
Max.Ell.liten.(nun(/111) =	124.//	JZ.44		
over	(min)	5.00	15.00		
Storage Coeff	(min) =	.98 (ii)	10.12 (ii)		
Init III	(min) -	5 00 (11)	15 00		
оптс нуа. треак	(III_II) =	J.UU	TJ.00		
Unit Hyd. peak	(cms) =	.34	.10		
				TOTALS	
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI	(cme) -	0.1	0.0	016 (111)	
TEAN FLOW	(6)	.01		.016 (iii) 1.33	
TIME TO PEAK	(hrs) =	1.33	1.50	1.33	
RUNOFF VOLUME	(mm) =	54.37	25.08	39.65	
TOTAL PAINFALL	(mm) =	55 37	55 37	55 37	
TOTAL NAINTALL	(11111) -	55.57	33.37	55.57	
	F1N.T. =	.98	.45	. 72	
RUNOFF COEFFICI					
RUNOFF COEFFICI		IS SMALLER TH	AN TIME STEP!		
***** WARNING: STORA	GE COEFF.				
	GE COEFF.				
***** WARNING: STORA		ED FOR DEDUTO	19 1.09959.		
***** WARNING: STORA (i) CN PROCEE	URE SELECI	ED FOR PERVIO			
***** WARNING: STORA (i) CN PROCEE CN* =	URE SELECI 80.0 Ia	= Dep. Stora	ge (Above)		
***** WARNING: STORA (i) CN PROCEE CN* = (ii) TIME STEF	OURE SELECT 80.0 Ia (DT) SHOU	L = Dep. Storad	ge (Above)		
***** WARNING: STORA (i) CN PROCEE CN* = (ii) TIME STEF	OURE SELECT 80.0 Ia (DT) SHOU	= Dep. Stora	ge (Above)		
***** WARNING: STORA (i) CN PROCEE CN* = (ii) TIME STEF THAN THE	DURE SELECT 80.0 Ia (DT) SHOU STORAGE CC	a = Dep. Storad NLD BE SMALLER DEFFICIENT.	ge (Above) OR EQUAL		
***** WARNING: STORA (i) CN PROCEE CN* = (ii) TIME STEF	DURE SELECT 80.0 Ia (DT) SHOU STORAGE CC	a = Dep. Storad NLD BE SMALLER DEFFICIENT.	ge (Above) OR EQUAL		
***** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW	DURE SELECT 80.0 Ia (DT) SHOU STORAGE CC DOES NOT	a = Dep. Storad ULD BE SMALLER DEFFICIENT. INCLUDE BASEF	ge (Above) OR EQUAL LOW IF ANY.		
***** WARNING: STORA (i) CN PROCEL CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW	URE SELECT 80.0 Ia 9 (DT) SHOU STORAGE CC 1 DOES NOT	a = Dep. Storad ULD BE SMALLER DEFFICIENT. INCLUDE BASEF	ge (Above) OR EQUAL LOW IF ANY.		
***** WARNING: STORA (i) CN PROCEL CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW	URE SELECT 80.0 Ia (DT) SHOU STORAGE CC DOES NOT	a = Dep. Storad ULD BE SMALLER DEFFICIENT. INCLUDE BASEF	ge (Above) OR EQUAL LOW IF ANY.		
<pre>***** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW</pre>	URE SELECT 80.0 Ia (DT) SHOU STORAGE CC DOES NOT	L = Dep. Storad LD BE SMALLER EFFICIENT. INCLUDE BASEF:	ge (Above) OR EQUAL LOW IF ANY.		
<pre>***** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW</pre>	URE SELECT 80.0 Ia (DT) SHOU STORAGE CC DOES NOT	L = Dep. Storad LD BE SMALLER EFFICIENT. INCLUDE BASEF:	ge (Above) OR EQUAL LOW IF ANY.		
<pre>***** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW </pre>	Area	<pre>h = Dep. Storad LD BE SMALLER DEFFICIENT. INCLUDE BASEF (ha) = .24</pre>	ge (Above) OR EQUAL LOW IF ANY.		
***** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW 	URE SELECT 80.0 Ia • (DT) SHOU STORAGE CC I DOES NOT 	<pre>h = Dep. Storad LD BE SMALLER DEFFICIENT. INCLUDE BASEF (ha) = .24</pre>	ge (Above) OR EQUAL LOW IF ANY.		
<pre>***** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW </pre>	URE SELECT 80.0 Ia (DT) SHOU STORAGE CC DOES NOT Area Total I	<pre>h = Dep. Storad LD BE SMALLER DEFFICIENT. INCLUDE BASEF (ha) = .24 mp(%) = 99.00</pre>	ge (Above) OR EQUAL LOW IF ANY. Dir. Conn.	(%)= 99.00	
***** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW 	URE SELECT 80.0 Ia (DT) SHOU STORAGE CC DOES NOT Area Total I	<pre>h = Dep. Storad LD BE SMALLER DEFFICIENT. INCLUDE BASEF (ha) = .24 mp(%) = 99.00 IMPERVIOUS</pre>	ge (Above) OR EQUAL LOW IF ANY. Dir. Conn. PERVIOUS (i)	(%)= 99.00	
***** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW 	URE SELECT 80.0 Ia (DT) SHOU STORAGE CC DOES NOT Area Total I	<pre>h = Dep. Storad LD BE SMALLER DEFFICIENT. INCLUDE BASEF (ha) = .24 mp(%) = 99.00 IMPERVIOUS</pre>	ge (Above) OR EQUAL LOW IF ANY. Dir. Conn.	(%)= 99.00	
***** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW 	URE SELECT 80.0 Ia (DT) SHOU STORAGE CC DOES NOT Area Total I	<pre>h = Dep. Storad LD BE SMALLER DEFFICIENT. INCLUDE BASEF (ha) = .24 mp(%) = 99.00 IMPERVIOUS</pre>	ge (Above) OR EQUAL LOW IF ANY. Dir. Conn. PERVIOUS (i) .00	(%)= 99.00	
<pre>***** WARNING: STORA (i) CN PROCEL CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW</pre>	UURE SELECT 80.0 Ia (DT) SHOU STORAGE CC DOES NOT Area Total I (ha) = (mm) =	<pre>h = Dep. Storad LD BE SMALLER DEFFICIENT. INCLUDE BASEF (ha) = .24 imp(%) = 99.00 IMPERVIOUS .24 1.00</pre>	ge (Above) OR EQUAL LOW IF ANY. Dir. Conn. PERVIOUS (i) .00 1.00	(%)= 99.00	
<pre>***** WARNING: STORA (i) CN PROCEL CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW</pre>	UURE SELECT 80.0 Ia (DT) SHOU STORAGE CC DOES NOT Area Total I (ha) = (mm) =	<pre>h = Dep. Storad LD BE SMALLER DEFFICIENT. INCLUDE BASEF (ha) = .24 imp(%) = 99.00 IMPERVIOUS .24 1.00</pre>	ge (Above) OR EQUAL LOW IF ANY. Dir. Conn. PERVIOUS (i) .00 1.00	(%)= 99.00	
<pre>***** WARNING: STORA (i) CN PROCEL CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW</pre>	UURE SELECT 80.0 Ia (DT) SHOU STORAGE CC DOES NOT Area Total I (ha) = (mm) =	<pre>h = Dep. Storad LD BE SMALLER DEFFICIENT. INCLUDE BASEF (ha) = .24 imp(%) = 99.00 IMPERVIOUS .24 1.00</pre>	ge (Above) OR EQUAL LOW IF ANY. Dir. Conn. PERVIOUS (i) .00 1.00	(%)= 99.00	
<pre>***** WARNING: STORA (i) CN PROCEL CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW</pre>	UURE SELECT 80.0 Ia (DT) SHOU STORAGE CC DOES NOT Area Total I (ha) = (mm) =	<pre>h = Dep. Storad LD BE SMALLER DEFFICIENT. INCLUDE BASEF (ha) = .24 imp(%) = 99.00 IMPERVIOUS .24 1.00</pre>	ge (Above) OR EQUAL LOW IF ANY. Dir. Conn. PERVIOUS (i) .00 1.00	(%)= 99.00	
***** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW 	UURE SELECT 80.0 Ia (DT) SHOU STORAGE CC DOES NOT Area Total I (ha) = (mm) =	<pre>h = Dep. Storad LD BE SMALLER DEFFICIENT. INCLUDE BASEF (ha) = .24 imp(%) = 99.00 IMPERVIOUS .24 1.00</pre>	ge (Above) OR EQUAL LOW IF ANY. Dir. Conn. PERVIOUS (i) .00 1.00	(%)= 99.00	
<pre>***** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW</pre>	URE SELECT (DT) SHOU STORAGE CC DOES NOT Area Total I (ha) = (mm) = (%) = (m) = (%) = (m) =	<pre>a = Dep. Storad LD BE SMALLER DEFFICIENT. INCLUDE BASEF: (ha) = .24 mp(%) = 99.00 IMPERVIOUS .24 1.00 1.00 40.20 .013</pre>	ge (Above) OR EQUAL LOW IF ANY. Dir. Conn. PERVIOUS (i) .00 1.00 2.00 40.00 .250	(%)= 99.00	
<pre>***** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW CALIB STANDHYD (0010) ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n</pre>	UURE SELECT 80.0 Ia (DT) SHOU STORAGE CC DOES NOT Area Total I (ha) = (mm) = (%) = (m) = (m) = mm/br) =	<pre>h = Dep. Storad LD BE SMALLER DEFFICIENT. INCLUDE BASEF (ha) = .24 mp(%) = 99.00 IMPERVIOUS .24 1.00 1.00 40.20 .013 124 77</pre>	<pre>ge (Above) OR EQUAL LOW IF ANY. </pre>	(%) = 99.00	
<pre>***** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW CALIB STANDHYD (0010) ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n</pre>	UURE SELECT 80.0 Ia (DT) SHOU STORAGE CC DOES NOT Area Total I (ha) = (mm) = (%) = (m) = (m) = mm/br) =	<pre>h = Dep. Storad LD BE SMALLER DEFFICIENT. INCLUDE BASEF (ha) = .24 mp(%) = 99.00 IMPERVIOUS .24 1.00 1.00 40.20 .013 124 77</pre>	<pre>ge (Above) OR EQUAL LOW IF ANY. </pre>	(%) = 99.00	
<pre>***** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW CALIB STANDHYD (0010) ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n</pre>	UURE SELECT 80.0 Ia (DT) SHOU STORAGE CC DOES NOT Area Total I (ha) = (mm) = (%) = (m) = (m) = mm/br) =	<pre>h = Dep. Storad LD BE SMALLER DEFFICIENT. INCLUDE BASEF (ha) = .24 mp(%) = 99.00 IMPERVIOUS .24 1.00 1.00 40.20 .013 124 77</pre>	<pre>ge (Above) OR EQUAL LOW IF ANY. </pre>	(%) = 99.00	
<pre>***** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW CALIB STANDHYD (0010) ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n</pre>	UURE SELECT 80.0 Ia (DT) SHOU STORAGE CC DOES NOT Area Total I (ha) = (mm) = (%) = (m) = (m) = mm/br) =	<pre>h = Dep. Storad LD BE SMALLER DEFFICIENT. INCLUDE BASEF (ha) = .24 mp(%) = 99.00 IMPERVIOUS .24 1.00 1.00 40.20 .013 124 77</pre>	<pre>ge (Above) OR EQUAL LOW IF ANY. </pre>	(%) = 99.00	
<pre>***** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW CALIB STANDHYD (0010) ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n</pre>	UURE SELECT 80.0 Ia (DT) SHOU STORAGE CC DOES NOT Area Total I (ha) = (mm) = (%) = (m) = (m) = mm/br) =	<pre>h = Dep. Storad LD BE SMALLER DEFFICIENT. INCLUDE BASEF (ha) = .24 mp(%) = 99.00 IMPERVIOUS .24 1.00 1.00 40.20 .013 124 77</pre>	<pre>ge (Above) OR EQUAL LOW IF ANY. </pre>	(%) = 99.00	
<pre>***** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW CALIB STANDHYD (0010) ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n</pre>	UURE SELECT 80.0 Ia (DT) SHOU STORAGE CC DOES NOT Area Total I (ha) = (mm) = (%) = (m) = (m) = mm/br) =	<pre>h = Dep. Storad LD BE SMALLER DEFFICIENT. INCLUDE BASEF (ha) = .24 mp(%) = 99.00 IMPERVIOUS .24 1.00 1.00 40.20 .013 124 77</pre>	<pre>ge (Above) OR EQUAL LOW IF ANY. </pre>	(%) = 99.00	
<pre>***** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW CALIB STANDHYD (0010) ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n</pre>	UURE SELECT 80.0 Ia (DT) SHOU STORAGE CC DOES NOT Area Total I (ha) = (mm) = (%) = (m) = (m) = mm/br) =	<pre>h = Dep. Storad LD BE SMALLER DEFFICIENT. INCLUDE BASEF (ha) = .24 mp(%) = 99.00 IMPERVIOUS .24 1.00 1.00 40.20 .013 124 77</pre>	<pre>ge (Above) OR EQUAL LOW IF ANY. </pre>	(%) = 99.00	
<pre>***** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW CALIB STANDHYD (0010) ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak</pre>	<pre>URE SELECT 80.0 Ia 0 (DT) SHOU STORAGE CC 1 DOES NOT Area Total I (ha) = (mm) = (%) = (m) = = mm/hr) = : (min) (min) = (cms) =</pre>	<pre>a = Dep. Storad LD BE SMALLER DEFFICIENT. INCLUDE BASEF (ha) = .24 mp(%) = 99.00 IMPERVIOUS .24 1.00 1.00 40.20 .013 124.77 5.00 1.35 (ii) 5.00 .33</pre>	<pre>ge (Above) OR EQUAL LOW IF ANY. </pre>	(%)= 99.00 *TOTALS*	
<pre>***** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW CALIB STANDHYD (0010) ID= 1 DT= 5.0 min CALIB Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW</pre>	<pre>URE SELECT 80.0 Ia 9 (DT) SHOU STORAGE CC 1 DOES NOT Area Total I (ha)= (mm)= (%)= (m)= = mm/hr)= : (min) (min)= : (min)= (cms)= (cms)=</pre>	<pre>a = Dep. Storad LD BE SMALLER DEFFICIENT. INCLUDE BASEF. (ha) = .24 mp(%) = 99.00 IMPERVIOUS .24 1.00 1.00 40.20 .013 124.77 5.00 1.35 (ii) 5.00 .33 .08</pre>	<pre>ge (Above) OR EQUAL LOW IF ANY. Dir. Conn. PERVIOUS (i) .00 1.00 2.00 40.00 .250 1311.04 5.00 2.38 (ii) 5.00 .30 .00</pre>	(%)= 99.00 *TOTALS* .084 (iii)	
<pre>***** WARNING: STORA (i) CN PROCED CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW CALIB STANDHYD (0010) ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak</pre>	<pre>URE SELECT 80.0 Ia 9 (DT) SHOU STORAGE CC 1 DOES NOT Area Total I (ha)= (mm)= (%)= (m)= = mm/hr)= : (min) (min)= : (min)= (cms)= (cms)=</pre>	<pre>a = Dep. Storad LD BE SMALLER DEFFICIENT. INCLUDE BASEF. (ha) = .24 mp(%) = 99.00 IMPERVIOUS .24 1.00 1.00 40.20 .013 124.77 5.00 1.35 (ii) 5.00 .33 .08</pre>	<pre>ge (Above) OR EQUAL LOW IF ANY. Dir. Conn. PERVIOUS (i) .00 1.00 2.00 40.00 .250 1311.04 5.00 2.38 (ii) 5.00 .30 .00</pre>	(%)= 99.00 *TOTALS*	


RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIEN	(mm) =	54.37	25.08	54.07
MONOII VOLOILL	(51.07	EE 07	
TUTAL RAINFALL	(mm) =	55.57	55.37	55.37
RUNOFF COEFFICIEN	Г =	.98	.45	.98
***** WARNING: STORAGE	COPPE TO	CMATTED DUAN	THE CHEDI	
WARNING: SIORAGE	COLFF. 15	SMALLER INAN	TIME SIEP:	
(i) CN PROCEDURE	E SELECTED	FOR PERVIOUS	LOSSES:	
		Dep. Storage		
(ii) TIME STEP (1	DT) SHOULD	BE SMALLER O	R EQUAL	
THAN THE STO	ORAGE COEFF	ICIENT.		
(iii) PEAK FLOW DO			W TE ANY	
(III) IBAR IBON D	5115 NOI 1NC	OLIDGAG EGOD.	wir Awi.	
CALIB				
STANDHYD (0004)	Area (h	.09 .09		
ID= 1 DT= 5.0 min	Total Imp(%) = 90.00	Dir Conn (%)=	90 00
115 1 51 0.0 min	roour rmp (0, 00.00	511. 00mm. (0)	30.00
	IMP	ERVIOUS P	ERVIOUS (i)	
Surface Area	(ha) =	0.8	0.1	
Don Storago	(mm) =	1 00	1 00	
Dep. Storage Average Slope	(1000) -	1.00	1.00	
Average Slope	(%)=	1.00	2.00	
Length Mannings n	(m) =	25.00	40.00	
Mannings n	· · _	013	250	
mannings n	-	.010	.200	
Max.Eff.Inten.(mm.	/hr)= 1	24.77	65.55	
over /	nin) –	5 00	5 00	
Max.Eff.Inten.(mm, over (I Storage Coeff. (I		1 00 ////	2.00	
Storage Coeff. (m	nın)=	⊥.02 (ii)	3.70 (ii)	
Unit Hyd. Tpeak (r	min)=	5.00	5.00	
Unit Hyd. peak (d	, , , ,	24		
onite nya. peak (51115) -	. 34	.25	
			,	TOTALS*
PEAK FLOW (0	cms) =	.03	.00	.031 (iii)
TTME TO DEAK ()	arc) -	1 33	1 33	1 22
TIME TO FEAK (I	115/-	1.33	1.33	1.33
PEAK FLOW ((TIME TO PEAK (1 RUNOFF VOLUME TOTAL RAINFALL	(mm) =	54.37	25.08	51.43
TOTAL RAINFALL RUNOFF COEFFICIEN	(mm) =	55.37	55.37	55.37
PUNCEE COFFETCIEN	Р —	9.8	45	93
KUNOFF COEFFICIEN.		. 90	.45	. 95
***** WARNING: STORAGE	COEFF. IS	SMALLER THAN	TIME STEP!	
(')				
(i) CN PROCEDURI				
CN* = 80	.0 Ia =	Dep. Storage	(Above)	
(ii) TIME CTED (1		DE SPALLER U		
(ii) TIME STEP (1			IC DQUAD	
(ii) TIME STEP (I THAN THE STO			N LQOAL	
THAN THE STO	ORAGE COEFF	ICIENT.		
	ORAGE COEFF	ICIENT.		
THAN THE STO	ORAGE COEFF	ICIENT.		
THAN THE STO	ORAGE COEFF	ICIENT.		
THAN THE STO	ORAGE COEFF	ICIENT.		
THAN THE STO (iii) PEAK FLOW DO	ORAGE COEFF	ICIENT.		
THAN THE STO (iii) PEAK FLOW DO	ORAGE COEFF	ICIENT.		
THAN THE ST((iii) PEAK FLOW DO	DRAGE COEFF DES NOT INC	ICIENT. LUDE BASEFLO	W IF ANY.	
THAN THE ST((iii) PEAK FLOW DO	DRAGE COEFF DES NOT INC	ICIENT. LUDE BASEFLO	W IF ANY.	
THAN THE ST((iii) PEAK FLOW DO	DRAGE COEFF DES NOT INC	ICIENT. LUDE BASEFLO	W IF ANY.	
THAN THE ST((iii) PEAK FLOW DO	DRAGE COEFF DES NOT INC	ICIENT. LUDE BASEFLO	W IF ANY.	
THAN THE ST((iii) PEAK FLOW DO	DRAGE COEFF DES NOT INC	ICIENT. LUDE BASEFLO	W IF ANY.	
THAN THE ST((iii) PEAK FLOW DO	DRAGE COEFF DES NOT INC	ICIENT. LUDE BASEFLO	W IF ANY.	
THAN THE STO (iii) PEAK FLOW DO ADD HYD (0013) 1 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004)	DRAGE COEFF DES NOT INC AREA (ha)): .24): .09	ICIENT. LUDE BASEFLO 	W IF ANY.	
THAN THE STO (iii) PEAK FLOW DO 	DRAGE COEFF DES NOT INC AREA (ha)): .24): .09	ICIENT. LUDE BASEFLO 	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43	
THAN THE STO (iii) PEAK FLOW DO 	DRAGE COEFF DES NOT INC AREA (ha)): .24): .09	ICIENT. LUDE BASEFLO 	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43	
THAN THE STO (iii) PEAK FLOW DO ADD HYD (0013) 1 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) ID = 3 (0013)	DRAGE COEFF DES NOT INC AREA (ha)): .24): .09 	ICIENT. LUDE BASEFLO OPEAK (cms) .084 .031 .114	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33	
THAN THE STO (iii) PEAK FLOW DO ADD HYD (0013) 1 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) ID = 3 (0013)	DRAGE COEFF DES NOT INC AREA (ha)): .24): .09 	ICIENT. LUDE BASEFLO OPEAK (cms) .084 .031 .114	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33	
THAN THE STO (iii) PEAK FLOW DO 	DRAGE COEFF DES NOT INC AREA (ha)): .24): .09 	ICIENT. LUDE BASEFLO OPEAK (cms) .084 .031 .114	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33	
THAN THE STO (iii) PEAK FLOW DO ADD HYD (0013) 1 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) ID = 3 (0013)	DRAGE COEFF DES NOT INC AREA (ha)): .24): .09 	ICIENT. LUDE BASEFLO OPEAK (cms) .084 .031 .114	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33	
THAN THE STO (iii) PEAK FLOW DO ADD HYD (0013) 1 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) ID = 3 (0013)	DRAGE COEFF DES NOT INC AREA (ha)): .24): .09 	ICIENT. LUDE BASEFLO OPEAK (cms) .084 .031 .114	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33	
THAN THE STO (iii) PEAK FLOW DO ADD HYD (0013) 1 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) ID = 3 (0013)	DRAGE COEFF DES NOT INC AREA (ha)): .24): .09 	ICIENT. LUDE BASEFLO OPEAK (cms) .084 .031 .114	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33	
THAN THE STO (iii) PEAK FLOW DO ADD HYD (0013) 1 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) ID = 3 (0013)	DRAGE COEFF DES NOT INC AREA (ha)): .24): .09 	ICIENT. LUDE BASEFLO OPEAK (cms) .084 .031 .114	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33	
THAN THE ST (iii) PEAK FLOW DO (iii) PEAK FLOW DO (0013) 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) ID = 3 (0013) NOTE: PEAK FLOWS	DRAGE COEFF DES NOT INC AREA (ha)): .24): .09 	ICIENT. LUDE BASEFLO OPEAK (cms) .084 .031 .114	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33	
THAN THE STO (iii) PEAK FLOW DO ADD HYD (0013) 1 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) ID = 3 (0013) NOTE: PEAK FLOWS	DRAGE COEFF DES NOT INC AREA (ha)): .24): .09	CICIENT. LUDE BASEFLO QPEAK (cms) .084 .031 .114 LUDE BASEFLO	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33 WS IF ANY.	
THAN THE ST (iii) PEAK FLOW DO (iii) PEAK FLOW DO (0013) 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) ID = 3 (0013) NOTE: PEAK FLOWS	DRAGE COEFF DES NOT INC AREA (ha)): .24): .09	CICIENT. LUDE BASEFLO QPEAK (cms) .084 .031 .114 LUDE BASEFLO	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33 WS IF ANY.	
THAN THE STO (iii) PEAK FLOW DO ADD HYD (0013) 1 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) ID = 3 (0013) NOTE: PEAK FLOWS	DRAGE COEFF DES NOT INC AREA (ha)): .24): .09	CICIENT. LUDE BASEFLO QPEAK (cms) .084 .031 .114 LUDE BASEFLO	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33 WS IF ANY.	
THAN THE STO (iii) PEAK FLOW DO (iii) PEAK FLOW DO (0013) 1 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) ==================================	DRAGE COEFF DES NOT INC AREA (ha)): .24): .09	CICIENT. LUDE BASEFLO QPEAK (cms) .084 .031 .114 LUDE BASEFLO	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33 WS IF ANY.	
THAN THE STO (iii) PEAK FLOW DO ADD HYD (0013) 1 1 + 2 = 3 TD1= 1 (0010) + ID2= 2 (0004) ID = 3 (0013) NOTE: PEAK FLOWS	AREA (ha)): .24): .34 DO NOT INC 	ICIENT. LUDE BASEFLO 	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33 WS IF ANY. TPEAK R.V. (hrs) (mm) 1.33 39.65	
THAN THE STO (iii) PEAK FLOW DO (iii) PEAK FLOW DO (0013) 1 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) ==================================	AREA (ha)): .24): .34 DO NOT INC 	ICIENT. LUDE BASEFLO 	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33	
THAN THE STO (iii) PEAK FLOW DO ADD HYD (0013) 1 1 + 2 = 3 TD1= 1 (0010) + ID2= 2 (0004) ID = 3 (0013) NOTE: PEAK FLOWS	AREA (ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha)	<pre>'ICIENT. LUDE BASEFLO </pre>	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33 WS IF ANY. TPEAK R.V. (hrs) (mm) 1.33 39.65	
THAN THE STO (iii) PEAK FLOW DO ADD HYD (0013) 1 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) ID = 3 (0013) NOTE: PEAK FLOWS 	AREA (ha)): .34 DO NOT INC 	COPEAK (cms) .084 .031 .114 CLUDE BASEFLO 	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33 WS IF ANY. TPEAK R.V. (hrs) (mm) 1.33 39.65 1.33 53.33	
THAN THE STO (iii) PEAK FLOW DO ADD HYD (0013) 1 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) ID = 3 (0013) NOTE: PEAK FLOWS 	AREA (ha)): .34 DO NOT INC 	COPEAK (cms) .084 .031 .114 CLUDE BASEFLO 	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33 WS IF ANY. TPEAK R.V. (hrs) (mm) 1.33 39.65 1.33 53.33	
THAN THE STO (iii) PEAK FLOW DO (iii) PEAK FLOW DO (0013) 1 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) =========== ID = 3 (0013) NOTE: PEAK FLOWS ID = 3 (0014) 1 1 + 2 = 3 ID1= 1 (0011) + ID2= 2 (0013) ======== ID = 3 (0014)	AREA (ha)): .24): .34 DO NOT INC 	CICIENT. LUDE BASEFLO 	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33 WS IF ANY. TPEAK R.V. (hrs) (mm) 1.33 39.65 1.33 53.33 1.33 50.65	
THAN THE STO (iii) PEAK FLOW DO ADD HYD (0013) 1 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) ID = 3 (0013) NOTE: PEAK FLOWS 	AREA (ha)): .24): .34 DO NOT INC 	CICIENT. LUDE BASEFLO 	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33 WS IF ANY. TPEAK R.V. (hrs) (mm) 1.33 39.65 1.33 53.33 1.33 50.65	
THAN THE STO (iii) PEAK FLOW DO (iii) PEAK FLOW DO (0013) 1 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) =========== ID = 3 (0013) NOTE: PEAK FLOWS ID = 3 (0014) 1 1 + 2 = 3 ID1= 1 (0011) + ID2= 2 (0013) ======== ID = 3 (0014)	AREA (ha)): .24): .34 DO NOT INC 	CICIENT. LUDE BASEFLO 	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33 WS IF ANY. TPEAK R.V. (hrs) (mm) 1.33 39.65 1.33 53.33 1.33 50.65	
THAN THE STO (iii) PEAK FLOW DO ADD HYD (0013) 1 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) ID = 3 (0013) NOTE: PEAK FLOWS ID = 1 (0011) + ID2= 2 (0013) ID1= 1 (0011) + ID2= 2 (0013) ID1= 1 (0011) + ID2= 2 (0013) ID1= 1 (0014) NOTE: PEAK FLOWS	AREA (ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha)	CICIENT. LUDE BASEFLO 	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33 WS IF ANY. TPEAK R.V. (hrs) (mm) 1.33 39.65 1.33 53.33 1.33 50.65	
THAN THE STO (iii) PEAK FLOW DO (iii) PEAK FLOW DO (0013) 1 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) =========== ID = 3 (0013) NOTE: PEAK FLOWS ID = 3 (0014) 1 1 + 2 = 3 ID1= 1 (0011) + ID2= 2 (0013) ======== ID = 3 (0014)	AREA (ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha)	CICIENT. LUDE BASEFLO 	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33 WS IF ANY. TPEAK R.V. (hrs) (mm) 1.33 39.65 1.33 53.33 1.33 50.65	
THAN THE STO (iii) PEAK FLOW DO ADD HYD (0013) 1 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) ============ ID = 3 (0013) NOTE: PEAK FLOWS ID1= 1 (0011) + ID2= 2 (0014) ID1= 1 (0011) + ID2= 2 (0014) ID1= 3 (0014) NOTE: PEAK FLOWS ====================================	AREA (ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha)	CICIENT. LUDE BASEFLO 	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33 WS IF ANY. TPEAK R.V. (hrs) (mm) 1.33 39.65 1.33 53.33 1.33 50.65	
THAN THE STO (iii) PEAK FLOW DO ADD HYD (0013) 1 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) ID = 3 (0013) NOTE: PEAK FLOWS ID = 1 (0011) + ID2= 2 (0013) ID1= 1 (0011) + ID2= 2 (0013) ID1= 1 (0011) + ID2= 2 (0013) ID1= 1 (0014) NOTE: PEAK FLOWS	AREA (ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha)	CICIENT. LUDE BASEFLO 	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33 WS IF ANY. TPEAK R.V. (hrs) (mm) 1.33 39.65 1.33 53.33 1.33 50.65	
THAN THE STO (iii) PEAK FLOW DO ADD HYD (0013) 1 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) ID = 3 (0013) NOTE: PEAK FLOWS ID = 3 (0014) 1 1 + 2 = 3 ID1= 1 (0011) + ID2= 2 (0013) ID1= 1 (0011) + ID2= 2 (0013) ID = 3 (0014) NOTE: PEAK FLOWS ID = 3 (0014)	AREA (ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha)	CICIENT. LUDE BASEFLO 	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33 WS IF ANY. TPEAK R.V. (hrs) (mm) 1.33 39.65 1.33 53.33 1.33 50.65	
THAN THE STO (iii) PEAK FLOW DO ADD HYD (0013) 1 1 + 2 = 3 TD1= 1 (0010) + ID2= 2 (0004) ==================================	AREA (ha)): .34 DO NOT INC 	ICIENT. LUDE BASEFLO	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33 WS IF ANY. TPEAK R.V. (hrs) (mm) 1.33 39.65 1.33 53.33 1.33 50.65 WS IF ANY.	
THAN THE STO (iii) PEAK FLOW DO ADD HYD (0013) 1 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) ID = 3 (0013) NOTE: PEAK FLOWS ID = 3 (0014) 1 1 + 2 = 3 ID1= 1 (0011) + ID2= 2 (0013) NOTE: PEAK FLOWS ID = 3 (0014) 1 + 2 = 3 ID = 3 (0014) 1 + 2 = 3 ID = 3 (0014) 1 + 2 = 3 ID = 3 (0014) 1 + 2 = 3 ID = 3 (0014) NOTE: PEAK FLOWS RESERVOIR (0009) IN= 2> OUT= 1 DT= 5.0 min	DRAGE COEFF DES NOT INC AREA (ha)): .24): .09): .34 DO NOT INC 	CICIENT. LUDE BASEFLO 	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33 WS IF ANY. TPEAK R.V. (hrs) (mm) 1.33 39.65 1.33 53.33 1.33 50.65 WS IF ANY. OUTFLOW	storage
THAN THE STO (iii) PEAK FLOW DO ADD HYD (0013) 1 1 + 2 = 3 TD1= 1 (0010) + ID2= 2 (0004) ==================================	DRAGE COEFF DES NOT INC AREA (ha)): .24): .09): .34 DO NOT INC 	CICIENT. LUDE BASEFLO 	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33 WS IF ANY. TPEAK R.V. (hrs) (mm) 1.33 39.65 1.33 53.33 1.33 50.65 WS IF ANY. OUTFLOW	STORAGE (ha.m.)
THAN THE STO (iii) PEAK FLOW DO ADD HYD (0013) 1 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) ID = 3 (0013) NOTE: PEAK FLOWS ID = 3 (0014) 1 1 + 2 = 3 ID1= 1 (0011) + ID2= 2 (0013) NOTE: PEAK FLOWS ID = 3 (0014) 1 + 2 = 3 ID = 3 (0014) 1 + 2 = 3 ID = 3 (0014) 1 + 2 = 3 ID = 3 (0014) 1 + 2 = 3 ID = 3 (0014) NOTE: PEAK FLOWS RESERVOIR (0009) IN= 2> OUT= 1 DT= 5.0 min	DRAGE COEFF DES NOT INC AREA (ha)): .24): .09): .34 DO NOT INC 	ICIENT. LUDE BASEFLO 	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33 WS IF ANY. TPEAK R.V. (hrs) (mm) 1.33 39.65 1.33 53.33 1.33 50.65 WS IF ANY. OUTFLOW	STORAGE (ha.m.)
THAN THE STO (iii) PEAK FLOW DO ADD HYD (0013) 1 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) ID = 3 (0013) NOTE: PEAK FLOWS ID = 3 (0014) 1 1 + 2 = 3 ID1= 1 (0011) + ID2= 2 (0013) NOTE: PEAK FLOWS ID = 3 (0014) 1 + 2 = 3 ID = 3 (0014) 1 + 2 = 3 ID = 3 (0014) 1 + 2 = 3 ID = 3 (0014) 1 + 2 = 3 ID = 3 (0014) NOTE: PEAK FLOWS RESERVOIR (0009) IN= 2> OUT= 1 DT= 5.0 min	AREA (ha)): .24): .24): .34 DO NOT INC 	<pre>TCIENT. LUDE BASEFLO </pre>	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33 WS IF ANY. TPEAK R.V. (hrs) (mm) 1.33 39.65 1.33 53.33 1.33 50.65 WS IF ANY. OUTFLOW (cms) .0241	STORAGE (ha.m.) .0100
THAN THE STO (iii) PEAK FLOW DO ADD HYD (0013) 1 1 + 2 = 3 ID1= 1 (0010) + ID2= 2 (0004) ID = 3 (0013) NOTE: PEAK FLOWS ID = 3 (0014) 1 1 + 2 = 3 ID1= 1 (0011) + ID2= 2 (0013) NOTE: PEAK FLOWS ID = 3 (0014) 1 + 2 = 3 ID = 3 (0014) 1 + 2 = 3 ID = 3 (0014) 1 + 2 = 3 ID = 3 (0014) 1 + 2 = 3 ID = 3 (0014) NOTE: PEAK FLOWS RESERVOIR (0009) IN= 2> OUT= 1 DT= 5.0 min	DRAGE COEFF DES NOT INC AREA (ha)): .24): .09): .34 DO NOT INC 	<pre>'ICIENT. LUDE BASEFLO </pre>	W IF ANY. TPEAK R.V. (hrs) (mm) 1.33 54.07 1.33 51.43 1.33 53.33 WS IF ANY. TPEAK R.V. (hrs) (mm) 1.33 39.65 1.33 53.33 1.33 50.65 WS IF ANY. OUTFLOW (cms) .0241	STORAGE (ha.m.)


	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
INFLOW : ID= 2 (0014)	.419	.131	1.33	50.65
OUTFLOW: ID= 1 (0009)	.419	.024	1.58	50.89
TIME SHII	LOW REDUCTION FT OF PEAK FLOW STORAGE USED	(min)= 15.00	
ADD HYD (0015)				
1 + 2 = 3	AREA QPEAK	TPEAK	R.V.	
	(ha) (cms)			
ID1= 1 (0012):	.02 .005	1.33	39.52	
+ ID2= 2 (0009):				
ID = 3 (0015):				
NOTE: PEAK FLOWS DO NO	OT INCLUDE BASE	FLOWS IF A	NY.	
INISH				

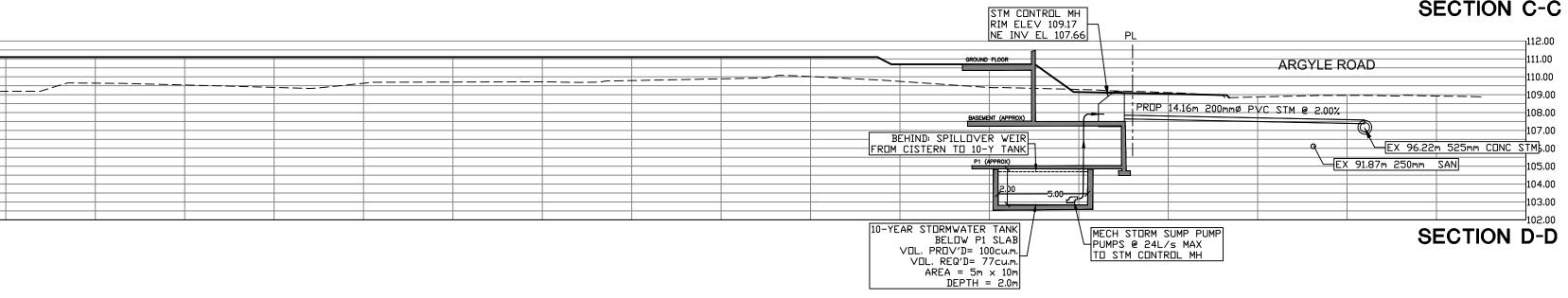
FINISH ______

APPENDIX C

Functional Servicing Plan Functional Grading Plan Functional Sections Plan

112.00 ₁		112.00
111.00	PL ARGYLE ROAD	.11.00
110.00		10.00
109.00		109.00
108.00		108.00
107.00		107.00
106.00		106.00
105.00		105.00

113.00	PL							113.00
112.00	148.76m - SWALE -	GROUND FLOOR				PL	ARGYLE ROAD	112.00
111.00	149.34m	GROOND FLOOR		 		149.02		111.00
110.00					+		-148.75m	110.00
109.00		+						109.00
108.00		BASEMENT (APPRO						108.00
107.00								107.00
106.00		P1 (APPROX)						106.00
105.00								105.00


112.00 ₀	PL			PL112.00
111.00	EASEMENT /-136.53m SWALE			ARGYLE ROAD 111.00
110.00	136.94m / / /			
109.00		SUBJECT S PRIVATE L/		
108.00				108.00
107.00-[X 58.41m 3600mm CDNC STM			107.00
106.00			Image:	EX 96.22m 525mm CDNC STM 106.00
105.00				EX 91.87m 250mm SAN105.00

112.00	A	-	
111.00			
110.00	125.57m-		_
109.00			
108.00		EX 29.75m 3600mm CUNC STM	=
107.00			+
106.00			\mp
105.00			+
104.00			
103.00			
102.00			

112.00	PL	SUBJECT SITE	GROUND FLOOR	112.00
111.00 110.00		PRIVATE LANE	109.54m	111.00 110.00
109.00 108.00		PROP_GRADE	BASEMENT (APPROX)	109.00
107.00	Image: second		P1 (APPROX)	107.00 106.00
105.00	Image: second	MECH STORM SUMP PUMP PUMPS TO IRRIGATION		105.00
103.00	Image: second	SYSTEM WATER BALANCE/REUSE CISTERN BELDW P1 SLAB		103.00
		VDL. PRDV'D= 20cu.m. VDL. REQ'D= 20cu.m. AREA = 5m × 1m DEPTH = 2.0m	10-YEAR STORMWATER TANK BELOW P1 SLAB VOL. PROV'D= 100cu.m. VOL. REQ'D= 77cu.m. AREA = 5m x 10m DEPTH = 2.0m	SECTION E-E

113.00		113.00
112.00	PL / 93.90m PL	112.00
111.00	PRIVATE LANE 93.95m	111.00
110.00		110.00
109.00		109.00
108.00L		108.00

113.00				113.00
112.00	PL	SUBJECT SITE	PL	112.00
111.00		PRIVATE LANE	82.91m	111.00
110.00			EX_GRADE 82.35m	110.00
109.00		<u></u>	 	109.00
108.00			ARMOR STONE RET WALL	108.00
107.00				107.00

SECTION A-A

SECTION B-B

SECTION C-C

SECTION F-F

SECTION G-G

				°9.		
			PLG	CONIEDERATIO	n_ /	/
		TRC.	34 BO.	£ ₹₿.	AT IN .	
	Dun S.		K PO.	OURSPACE	, X	
	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ $	χ.		OUNBA		\mathbb{X}
	\langle		\langle	T	PAISLEY BLVD.	N.
		\searrow				
Scale :	PLAN N.T.S.				SUBJEC LANDS	T
AND ABC AND WHE IS NOT G	TION OF POLE LI VE GROUND UTIL RE SHOWN, THE UARANTEED. BEF XACT LOCATION	ITIES IS NOT NE ACCURACY OF ORE STARTING 1	CESSARILY S THE POSITION THE WORK T	HOWN ON TH OF SUCH L HE CONTRAC	IE CONTRACT ITILITIES AND S FOR SHALL INF	DRAWINGS, STRUCTURES FORM HIMSEL
LIABILITY	FOR DAMAGE TO TRACTOR MUST (NCY TO THE AR) THEM. CHECK AND VERI	FY ALL DIME	NSIONS ON .	THE JOB AND	REPORT AN
OF THE I	MINGS AND SPEC ENGINEER WHICH WING IS NOT TO DUT PROVIDED B	MUST BE RETUR BE SCALED. CO	NED AT THE	COMPLETION	OF WORK.	OPERTY
THE APP OBTAININ	N MUST NOT BE ROVAL OF THIS G, BUT NOT LIMI	PLAN DOES NOT TED TO THE FOL	EXEMPT TH	E OWNER'S C MITS: ROAD	ONTRACTOR FF CUT, SEWER P	ERMITS,
ETC EXISTING	ON OF SERVICES	INFORMATION S	UPPLIED BY	R. AVIS SUR		
				,//		
ELEVATIO	NS SHOWN HERE NARK No. 1060, H	ON ARE GEODETIC	C AND ARE F TION = 115.9	EFERRED TO 956 metres.	CITY OF MISSIS	SAUGA
BEARINGS	RING NOT S SHOWN HEREON ROAD AS SHOWN	I ARE ASTRONOM	IC AND ARE	REFERRED T	D THE WESTER	LY LIMIT OF
METI	RIC NOTE					
	ES AND ELEVATIO ERTED TO FEET			CALLY SHOW	N IN METRES /	AND CAN
						
						_
						_
						_
						_
3.		ZONING RESU			AUG 14/1	19 D.B
2.		ZONING RESU			MAY 22/	
1.	ISSUED FOR	ZONING SUBM	ISSION		OCT 19/1	18 D.B
NO.		REVISION	IS		DATE	BY
SCALE	:					
	<u> </u>					
DRAWIN					_	
	FL	INCTIO	NAL S	SECTI	ONS	
CLIENT	:					
	-					~
	PLAZA(10 W	CORP IN ANLESS /				J.
			ONTO, (•	. 201	
	ाः OPOSE	ם חבפו		 141 ד4	J/V/VIL14	
гĦ	UF UJE					JUJE
		2512-253			AD	
		MISSISS	AUGA,	ONTARI	0	
		DDAN	DFT	FCH		
		ONSULTIN				
		The Odan/Det	ech Group		632-3814 E.	(905) 633 33
<u></u>		The Odan/Det 5230 SOUTH	SERVICE R	OAD, BURLI	NGTON, ONT	ARIO, L7L 5
SCALE		PROJ. NO.:		TE STARTE	0.	iign by: D.B.
	200	18201		AN 2018	DRA	WN BY:
182	01—3F.dwg	9	AUC	ESSION		D.B.
		/	3 110	G 14/10		J.K.
			D.T.E	ANCROFT	14 E I	ROVED BY
		(100	200672	f 1	J.K.
			POVINIO	OF ONTAR	DR\	WG. NO.:
			INCE	OFON	3	OF _
				INEER	1	L L