

CONSULTING ENGINEERS & PROJECT MANAGERS

FUNCTIONAL SERVICING and STORMWATER MANAGEMENT REPORT

IN SUPPORT OF

SITE PLAN DEVELOPMENT

CITY PARK HOMES (MAIN STREET) INC.

WYNDHAM STREET & MAIN STREET

CITY OF MISSISSAUGA

REGIONAL MUNICIPALITY OF PEEL

Revised: October 28, 2019

C.E. FILE: 017-018

TABLE OF CONTENTS

PAGE NO.

A.0. – INTRODUCTION	4
B.0. – EXISTING TOPOGRAPHICAL CHARACTERISTICS	4
C.0. – SANITARY SERVICING DESIGN	5
D.0. – STORMWATER QUALTY AND EROSION CONTROL MEASURES	7
D.1. – PROPOSED QUALITY CONTROL MEASURES	7
D.2. – EROSION CONTROLS	9
E.0. – STORMWATER QUANTITY CONTROL	9
F.0. – WATER BALANCE	12
G.0. – WATER SUPPLY AND DISTRIBUTION	13
H.0 – CONCLUSIONS AND RECOMMENDATIONS	14

APPENDIX 'A'	- Key Map
APPENDIX 'B'	- CVC Watersheds & Sub-Watersheds Map
APPENDIX 'C'	- Sanitary Sewer Design Chart
APPENDIX 'D'	- Oil-Grit Separator Sizing Calc for CDS PMSU 2015_4
APPENDIX 'E'	 Stormwater Quantity Control Analysis Cultec Storage System Sizing Calculation Sheet Vortex Valve Head-Discharge Curve Sheet Main Street Downstream Existing Storm Design Chart Analysis 10-yr Storm Pre-development 10-yr Storm Post-development Main Street Downstream Existing Storm Design HGL Analysis 10-yr Storm Pre-development 10-yr Storm Pre-development Main Street Downstream Existing Storm Design HGL Analysis 10-yr Storm Pre-development Main St. and Wyndham St. City Plan and Profile Sheets for Reference Water Balance Calculation Sheet Infiltration Trench Calculations (Cultec) Rainwater Barrel / Cistern Sizing Calculation Sheet City of Toronto Water Balance Initial Abstraction Chart for Reference Geotechnical Report Sections on Groundwater Elevations and In-Situ Percolation Rate for Reference
APPENDIX 'F'	 Conceptual Servicing Plan, Dwg #17-018-02 Conceptual Grading Plan, Dwg #17-018-03 Pre-Storm Drainage Plan, Dwg #17-018-04 Post-Storm Drainage Plan, Dwg #17-018-05 Sanitary Drainage Plan, Dwg #17-018-06

A.0. – INTRODUCTION

The property is located at the north western quadrant of the Main Street and Wyndham Street intersection, City of Mississauga. The municipal address of the subject site is 36, 38, 40, 44, 46 Main Street and is approximately 0.8108 ha in total area. It is located within a residential area of the old Streetsville and Credit River watershed. Refer to Appendix 'A' for the Key Map of the proposed site, and Appendix 'B' for the CVC Watersheds & Sub-watersheds Map.

City Park Homes proposes to develop a total of five Blocks (three common elements and two freeholds) of Townhouses on approximately 0.5365 ha of the subject lands. The valley of the Credit River runs along the rear of the property and the valley lands consisting of natural feature and 10 m buffer area will remain undisturbed. The size of the natural feature and 10 m buffer area is 2857.0 sq.m or 0.7060 ac.

In support of the proposed development, we provide this report to identify the methodology of the municipal servicing. More specifically, the report will substantiate the ability to provide municipal sanitary, water servicing, and provide a conceptual resolution for storm water management.

B.0. – EXISTING TOPOGRAPHICAL CHARACTERISTICS

The subject land is partially treed and contains one existing house and gravel driveways that will be removed as part of the development. Based on the existing topography, the overland drainage pattern is directed to 3 different outlets; Main Street, Wyndham Street and the rear valleylands. Refer to 'Pre-Development Storm Tributary Plan" on Dwg# 17-018-04 Appendix 'F'. There are four existing DICB's within the Main Street boulevard area that provide drainage for the overland flows that drain easterly. The existing grading of the site is comprised of gently to moderate slopes, with an average of 1.0% gradient and the highest elevation of approximately 152.78 m at the northeast corner and lowest elevation of approximately 149.41 m at the northwest corner.

C.0. – SANITARY SERVICING DESIGN

The proposed condominium development is comprised of 3 townhouse blocks containing a total of 19 units. In addition there are 2 freehold townhouse blocks consisting of 7 units that will have direct connection to the existing 250 mm Dia. Sanitary sewer on Wyndham Street. Note that the undisturbed and 10 m buffer area of 0.2812 ha is excluded from the sanitary drainage calculation for infiltration. The size of common element townhouses and freehold townhouses used for the sanitary sewer design are 0.378 ha and 0.146 ha respectively. Based on Region of Peel's "Sanitary Sewer Design Criteria Manual – Section " criteria, the peak sanitary flow from the proposed development is calculated as follows:

COMMON ELEMENT TOWNHOUSES

Residential population estimation (Based on 50 persons per hectare)

= 175 persons/hectare x 0.378 ha = 67 persons

Average daily flow (Based on 302.8 litres / capita / day)

= 67 persons x 302.8 / (24x60x60) = 0.2348 litres / second

Peaking Factor (Based on the Harmon formula)

K = 1 + 14/(4 + P $^{\frac{1}{2}}$), where P is population in thousands

 $K = 1 + 14/(4 + (67/1000)^{\frac{1}{2}}) = 4.29$

Since the peaking factor is limited to the range of 2 to 4, the peaking factor is adjusted to 4.00

Use K = 4

<u>Maximum Sanitary Flow (Based on Avg. daily flow times the Peaking factor)</u> Max. Sanitary Flow = 0.2348 litres / second x 4.00 = 0.939 litres / second <u>Infiltration Calculation (Based on Wet Weather Condition)</u> Area (0.2 litres / second / gross hectare) = $0.2 \times 0.378 = 0.07$ litres / second Manhole (0.28 litres / second / manhole) = $0.28 \times 6 = 1.68$ litres / second Sewer (0.028 litres / second / meter) = $0.028 \times 69.55 = 1.95$ litres / second Total = 0.07 + 1.68 + 1.95 = 3.70 litres / second <u>Total Design Sanitary Flow</u> (Based on Max. Sanitary flow + Infiltration) Total Design Sanitary Flow = 0.94 + 3.70 = 4.64 litres / second

FREEHOLD TOWNHOUSES

Residential population estimation (Based on 50 persons per hectare)

= 175 persons/hectare x 0.146 ha = 26 persons

Average daily flow (Based on 302.8 litres / capita / day)

= 26 persons x 302.8 / (24 x 60 x 60) = 0.0911 litres / second

Peaking Factor (Based on the Harmon Formula)

K = 1 + 14/(4 + P $^{\frac{1}{2}}$), where P is population in thousands

 $K = 1 + \frac{14}{4} + \frac{26}{1000}^{\frac{1}{2}} = 4.36$

Since the peaking factor is limited to the range of 2 to 4, the peaking factor is adjusted to 4.00 Use K = 4

Maximum Sanitary flow (Based on Avg. daily flow times the Peaking Factor)

Max. Sanitary flow = 0.0911 litres / second x 4.00 = 0.364 litres / second

Infiltration Calculation (Based on Wet Weather Condition)

Area (0.2 litres / second / gross hectare) = $0.2 \times 0.146 = 0.03$ litres / second Manhole (0.28 litres / second / manhole) = $0.28 \times 0 = 0.00$ litres / second Sewer (0.028 litres / second / meter) = $0.028 \times 0.00 = 0.00$ litres / second Total = 0.03 litres / second

<u>Total Design Sanitary Flow</u> (Based on Max. Sanitary Flow + Infiltration) Total Design Sanitary Flow = 0.36 + 0.03 = 0.39 litres / second

As shown on 'Conceptual Servicing Plan" on Dwg# 17-018-02 Appendix 'F', conveyance for sanitary sewage from the proposed development will be addressed via outlet to the existing sewers on Wyndham Street and Main Street. The sanitary sewage from the freehold units will be discharged to the existing sanitary sewer 250 mm diameter on Wyndham St. The existing 300 mm diameter sanitary sewer located on Main Street will provide an outlet for common element units. The proposed internal sanitary system consists of approximately 70 meters of 200 mm diameter mainline sanitary sewer at minimum 1.00% gradient with lateral service connections for all 19 common element units. Based on the lot grading design, the sewer depth of the proposed site is sufficient to ensure gravity flow for all proposed house sanitary connections. Refer to 'Conceptual Servicing Plan' on Dwg# 17-018-02 Appendix 'F' for details of the proposed connection.

D.0. – STORMWATER QUALTY AND EROSION CONTROL MEASURES

D.1. – PROPOSED QUALITY CONTROL MEASURES

To address quality of stormwater run-off for the development site, quality controls must be implemented for the post-development storm discharge to the existing municipal storm sewer.

In accordance with Credit Valley Conservation (CVC) requirements, storm quality control must meet the M.OE. Enhanced Protection Level for long-term 80% annual S.S. (suspended solids) removal.

<u>Oil / Grit Separator (OGS)</u>

The total drainage area that will be treated by the proposed Oil / Grit separators is the **controlled** drainage area of 0.3271 ha. This drainage area is split based on the road high-point of the private roadway and is tributary to the two (2) Oil / Grit separators located near both ends of the roadway. The balance of the subject lands (0.4997 ha) which includes the natural feature and 10 m buffer area along the Credit River valley lands; will drain uncontrolled from the Site. Given that these **uncontrolled** areas are predominately comprised of soft landscaping they are considered clean and free of pollutants, and therefore do not require quality control treatment.

The two OGS units are proposed upstream of each Cultec storage / infiltration system for longevity and sediment protection. As noted on the Site Servicing Plan, two "CDS Model PMSU20_15_4m" Stormwater Treatment Units have been sized with a TSS removal efficiencies of 90.3% and 88.5% for CDS(1) and CDS(2) respectively. The CDS units have been sized according to the tributary site drainage area for level 1 (Enhanced Protection) quality control (min. 80% TSS removal), as required by the Credit Valley Conservation (CVC). The sizing calculation and cross-sectional details from the manufacturer for the selected CDS units can be found attached in Appendix 'D'.

It should also be noted that implementation of infiltration galleries (below Cultec chamber) contribute to the annual TSS removal for the Development providing a "treatment train" effect when combined with the Oil / Grit separator manholes.

D.2. – EROSION CONTROLS

Prior to the Building Construction Program, the installation of a siltation control fence will be in place surrounding the disturbed area of the site with allowance for construction access. This will control the quality of runoff and localize the areas of intense erosion and sedimentation. Regular maintenance and all necessary repairs shall be performed, including the safe disposal of all sediment material. Maintenance, which in most cases will require the removal of sediment and the installation of a new device, shall be conducted when the level of performance of the implemented control device is reduced to less than 50% of its initial capacity based on the Engineer's observation.

E.0. – STORMWATER QUANTITY CONTROL

City of Mississauga stormwater management criteria requires that post-development flows up to the 100-year storm event must be limited to a 2-year storm pre-development flow level for direct connection to municipal storm sewers.

Under pre-development conditions, the overall site drainage splits into three patterns. The majority of the proposed site, approximately 45% or 0.3739 ha naturally drains northerly to adjacent Credit River. The balance of the Site drains towards the municipal roads and ultimately collected by the existing DICB's located along the Main St. boulevard and/or by the existing double catchbasins along Wyndham Street. Approximately 0.1571 ha drains to the Main St. storm sewer while 0.2959 ha drains to the Wyndham St. storm sewer. The three drainage outlets as described above have been referenced in this report as follows:

Main Street: Outlet A1, Wyndham Street: Outlet A2 Credit River valley: Outlet A3 The proposed <u>controlled</u> outlet for the Condominium development is the existing 450 mm storm sewer on Main St. therefore; the site discharge must be limited to the 2-year predevelopment flow rate to the Main St. sewer, during the 100-year storm event.

Outlet A1, Main St. Storm Sewer

The 2-year pre-development flow rate to the Main St. storm sewer is calculated to be **11.72 litres per second** based on a drainage area of 0.1571 ha and runoff coefficient of 0.45. Please find within Appendix 'E' the Stormwater Management Quantity Analysis (using the Modified Rational Method) with the applicable calculations. Refer to these calculations for details of onsite storage and control design for the proposed storm drainage system. The proposed storm sewer layout is indicated on the 'Servicing Plan DWG 17-018-02' in Appendix 'F'.

As noted, the maximum Site discharge to the existing storm sewer located on the Main St., must be limited to **11.72 lps** and further reduced to **9.32 lps** to account for uncontrolled drainage from front landscaped areas of the proposed fronting townhouse units. Under post-development conditions; the maximum storage required during the 100-year storm event is **114.59 cubic metres.**

To meet the required storage volume requirement, two separate Cultec underground storage systems (model 150XLHD & 330XLHD) are proposed at opposite ends of the private roadway. Based on a maximum top of water level (TWL) of 151.62 m during the 100-year storm event, the storage provided by the two Cultec units and storm sewer pipes totals **115.19 cubic metres**; thereby meeting the volume. A Contech Vortex Valve, Model FC12 (with 102mm outlet) is proposed on the upstream side of the Storm Control Manhole to limit Site discharge to **9.32 lps.** The Vortex Valve proposed restricts discharge based on a design head of 1.448 m;

10

representative TWL elevation of 151.62 metres. The maximum TWL is just below the proposed road low-point grade of 151.82 m (west of Main St.) ensuring sufficient "free-board" is provided from emergency spill elevation.

Outlet A2, Wyndham St. and Outlet A3, Credit River valley

Reference Section D of the Stormwater Management Quantity Analysis in Appendix 'E' for confirmation that uncontrolled overland flow directed to Wyndham St. and the Credit River valley (at the rear) is substantially less than the 2-year pre-development flow rates under postdevelopment conditions. It should also be noted that the Freehold units drain to Wyndham Street and Main Street to be separate from the Condominium development as per City criteria. The results as summarized as follows:

OUTLET A2: WYNDHAM STREET (UNCONTROLLED AREA)

MAXIMUM SITE DISCHARGE = 11.36 LPS < 17.75 LPS (2yr Pre-dev.) (2-YR POST-DEVELOPMENT FLOW)

OUTLET A3: CREDIT RIVER (UNCONTROLLED AREA)

MAXIMUM SITE DISCHARGE = 15.50 LPS < 15.55 LPS (2yr Pre-dev.) (2-YR POST-DEVELOPMENT FLOW)

Downstream Analysis (Main St. storm sewer)

Condeland Engineering Ltd. has contacted the City of Mississauga and Region of Peel to secure sewer atlas, design charts and plan & profile drawings. The downstream storm sewer analysis indicates that under the pre-development conditions the existing storm pipes are surcharging from Ex. MH02 (located just upstream of the proposed development) to the Credit River outfall under the 10-yr storm condition. By over-controlling the site discharge, the proposed development's storm system will improve the existing capacity issue by reducing the

percentage utilization by approximately seven (7) percent between Ex MH02 and Ex. MH03 when compared to existing , therefore a significant improvement. Refer to Design Chart analysis in Appendix 'E' of existing Main St. storm sewer system under pre-development and post-development conditions. In addition a hydraulic grade line (HGL) calculation was prepared and confirmed the HGL ranges from 1.14 m to 1.50 m below roadway under pre-development and improves to 1.41 m to 2.16 m under post-development conditions.

F.0. – WATER BALANCE

In accordance with CVC requirements, the minimum water balance for the subject development is to retain 5mm daily rainfall volumes. Rainwater Barrels or Cisterns are proposed to collect drainage from the house roof-top surfaces for Condominium lots 1 to 19 and Freehold lots 1 to 7, given available rear-yard space and due to shallow bed-rock levels. The run-off from the roof is relatively clean, thus it does not require pre-treatment. In addition, a large infiltration gallery is proposed immediately below the southern Cultec facility and receives all storm drainage directed to the storm system south of the proposed roadway high-point (lots 1,2,18 and 19). A proposed Oil /Grit separator manhole is provided to intercept and pre-treat stormwater before entering the infiltration gallery at the bottom of the northerly Cultec facility. Infiltration can be a highly effective water retention technique however, it is dependent that the in-situ soils have adequate percolation rates; the minimum recommended Ministry of Environment (MOE) level is 15 mm/hour. Field percolation rate testing of the native soils are shown on "Terraprobe Geotechnical & Slope Stability – February 13, 2015, Section 5.12, pp 30 ". Refer to Appendix 'E' for the Rainwater Barrel / Cistern sizing design and infiltration bed sizing calculations.

Water Balance Target / Measurement

To confirm that the Water Balance target for retention of runoff from a small design rainfall event (typically 5 mm) is achieved, the City of Toronto Water Balance Initial Abstraction Chart is used. As described above, the Infiltration Facilities have been sized to provide minimum 5mm daily rainfall retention. For our analysis illustrated in Appendix 'E', the total volume to be retained on site based on a daily rainfall of 5mm is **41.34 cu.m.** Based on the characteristics of various surface areas (initial abstraction), roof drainage capture (via rain barrels) and subsurface infiltration trench below the Cultec system pit capacity, a total daily retained volume of **45.72 cu.m.** is achieved for these lots. Therefore, **110.6 % (45.72 / 41.34)** of the average daily rainfall, which corresponds to **5.5 mm**, will be retained on-site. The minimum on-site water retention target of **5 mm will be achieved under post-development conditions.** Refer to Appendix 'F' for the detailed Water Balance calculation / spreadsheet.

G.0. – WATER SUPPLY AND DISTRIBUTION

The water supply capacity must be confirmed to ensure the proposed site plan development can be adequately serviced. Water servicing for the subject development will be provided by a proposed 150mm diameter watermain located within the proposed development road area, which will be connected / looped to the existing 150mm diameter watermain on Wyndham Street and existing 400mm diameter watermain on Main Street.

In addition, two private fire hydrants are proposed; fire hydrant spacing meets the requirements for coverage as per the Region's design criteria. The proposed watermain layout is presented on the 'Conceptual Servicing Plan' on Dwg# 17-018-02 Appendix 'F'

H.0 – CONCLUSIONS AND RECOMMENDATIONS

In summary, the existing municipal services are such that they can support the subject development. On a basis of our investigation and examination, we provided the conclusion:

- Adequate storm drainage and storm water management facilities for both quantitative and qualitative can be provided within the subject development area to neutralize the impact of urbanized runoff.
- The proposed sanitary sewer can sufficiently convey flows to the downstream sanitary sewer system for the subject development. Preliminary analysis of the existing system indicates it has a conveyance capacity.
- Water servicing for the subject development will be provided by a proposed 150mm diameter watermain located within the proposed development road area, which will be connected / looped to the existing 150mm diameter watermain on Wyndham Street and existing 400mm diameter watermain on Main Street.

In summary, the existing municipal services are such that they can support the subject development.

Respectfully Submitted:

CONDELAND ENGINEERING LIMITED Consulting Engineers & Project Managers

Dennis Mayo

Dennis Mayo Design Engineer

Mike Hall, P.Eng. Senior Designer

APPENDIX 'A'

Кеу Мар

APPENDIX 'B'

CVC Watersheds & Sub-watersheds Map

COPYRIGHT 2009 Credit Valley Conservation Created June 2009 THIS IS NOT A PLAN OF SURVEY

Major road

Railroad

Lakes and Ponds

Rivers and Streams

APPENDIX 'C'

Sanitary Sewer Design Chart

PROPOSED SANITARY SEWER DESIGN CHART

LOCATION				POPL	LATION					F	LOW							SEWER D	ESIGN				
(1)	(2)		(3)		(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
		~				-		RESID			r	1	-	INDUSTRIA									
STREET	FROM MH #	UPPER END INVERT (m	TO MH #	LOWER END INVERT (m)	AREA (ha)	P.P.U.	POPULATION	ACCUMULATED POPULATION	PEAKING FACTOR	PEAK DESIGN FLOW (US)	SECTION AREA (ha)	ACCUMULATED RESIDENTIAL AREA (ha)	TOTAL ACCUMULATEC AREA (ha)	INFILTRATION (U/S)	TOTAL ACCUMULATED INFILTRATION (LS)	TOTAL FLOW = (9) + (14) (L/s)	PIPE LENGTH (m)	PIPE DIAMETER (mm)	SLOPE (%)	FULL FLOW CAPACITY (L/s)	(m/s) VELOCITY FULL FLOW	PERCENTAGE UTILIZATION (%)	COMMENTS
CITY PARK MAIN STREET, CITY OF MISSI	SSAUGA																						
					1																		
FREEHOLD TOWNHOUSE BLOCK																							
Wyndham Street	EX. MH 1797829	150.77	EX. MH 1797828	150.39	8.1228	50.0	406	406	4.00	5.692	8.123	8.123	8.123	3.935	3.935	9.627	72.52	250	0.51%	44.3	0.86	21.7%	
Wyndham Street					0.146	175.0	26	26	4.00	0.364	0.146	0.146	0.146	0.029	0.029	0.393							
NEW SERVICE CONNECTIONS				* ADDING	0.393 L/S TO	THE EXIST	NG SANIT	ARY SEWE	R RESULT	S IN ONLY	0.9% INCR	EASE IN PIF	E UTILIZA	TION PERC	ENTAGE								
Wyndham Street	EX. MH 1797828	150.36	EX. MH 6539483	150	0.2192	50.0	11	443	4.00	6.210	0.219	8.488	8.488	2.382	6.347	12.557	73.52	250	0.50%	43.8	0.86	28.7%	
			(EX.SAN MH 107)																				
Private Road	MH1A	150.60	MH2A	150 40	0 203	175.0	36	36	4 00	0 505	0 203	0 203	0 203	0.878	0.878	1 383	10.02	200	1.00%	34.2	1.04	4.0%	
Private Road	MH2A	150.00	MH3A	150.40	0.203	175.0	7	43	4.00	0.003	0.038	0.203	0.203	0.512	1 391	1 993	8.02	200	3.24%	61.5	1.04	3.2%	
Private Road	MH3A	150.08	MH4A	149.71	0.044	175.0	8	51	4.00	0.715	0.044	0.285	0.285	0.491	1.882	2.597	7.23	200	5.12%	77.3	2.36	3.4%	
Private Road	MH4A	149.68	MH5A	149.20	0.093	175.0	16	67	4.00	0.939	0.093	0.378	0.378	0.822	2.704	3.643	18.69	200	2.57%	54.8	1.67	6.6%	
Private Road	MH5A	149.17	MH6A	148.92	0	175.0	0	67	4.00	0.939	0.000	0.378	0.378	0.999	3.703	4.642	15.69	200	1.59%	43.1	1.32	10.8%	
Main Street	EX.SANMH107	149.87	MH06A	148.87			0	443	4.00	6.210	0.000	8.488	8.488	0.000	1.698	7.908	69.35	300	1.38%	118.4	1.61	6.7%	
Main Street	MH06A	148.82	EX.SANMH109	148.54			68	511	3.97	7.109	0.386	8.874	8.874	0.999	3.705	10.814	20.65	300	1.38%	118.4	1.61	9.1%	
Main Street	EX.SANMH109	148.52	EX.SANMH110	148.28			0	511	3.97	7.109	0.000	8.874	8.874	0.999	3.705	10.814	4.10	300	5.90%	244.8	3.32	4.4%	
Main Street	EX.SANMH110	147.50					0	511	3.97	7.109	0.000	8.874	8.874	0.999	3.705	10.814	28.70	300	9.30%	307.4	4.17	3.5%	
								000.56		() () () () () () () () () ()					041.00 51		D M						
REGION OF PEEL DESIGN CRITERIA:								PROJECT	CITY PAR	K MAIN STF	REET CONL	DOMINIUM			CALCS BY	:	D.L.M.						
Single Detached = 50 persons / ha		WEI WEATHER INFLITATION CONTRACT NO. 17-018 CHECKED BY: M.E.H. P.ENG.																					
Dom. Sewage Flows = 302.8 L/cap/day			(area) 0.200 L/s/ba	(mannole)) (sewer))		LUCATION: MAIN STREET AND WYNDHAM STREET INTERSECTION CTTY OF MISSISSAUGA MISSISSAUGA ONTADIO DATE: 10/28/10 CANITADY CEMED DECICN															
POPULATION EQUIVALENTS:			0.200 L/S/IIa	5.200 L/3/11d	0.020 L/3/11	A		1	MOOIOGA						DAIL.	15/20/13			CONSULT	ANT: COND	ELAND FN	GINEERING	LIMITED
Single family (greater than 10 m lots) =			50.0 persons/hectares	6				Industrials	=		70.0 perso	ns/hectares							- SHOULD				
Single family (less than 10 m lots) =			70.0 persons/hectares	6				Commerci	als=		50.0 perso	ns/hectares											
Semi-detached =			70.0 persons/hectares	3				Institutiona	als=		50.0 perso	ns/hectares											
Row dwellings/Townhouses =			175.0 persons/hectare	es				Parks and	Recreation	al=	50.0 perso	ns/hectares											

APPENDIX 'D'

Oil-Grit Separator Sizing Calculation – CDS PMSU 2015

CWNTECH ENGINEERED SOLUTIONS

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION BASED ON THE RATIONAL RAINFALL METHOD BASED ON A FINE PARTICLE SIZE DISTRIBUTION

Project Name:	36-46 Main St	Engineer: Condeland Engineering Ltd	
Location:	Mississauga, ON	Contact: Dennis Mayo	
OGS #:	CDS 1	Report Date: 16-Oct-19	
Area	0.1144 ha	Rainfall Station # 204	
Weighted C	0.80	Particle Size Distribution FINE	
CDS Model	2015-4	CDS Treatment Capacity 20	l/s

<u>Rainfall</u> Intensity ¹ (mm/hr)	Percent Rainfall Volume ¹	<u>Cumulative</u> <u>Rainfall</u> <u>Volume</u>	<u>Total</u> <u>Flowrate</u> <u>(I/s)</u>	<u>Treated</u> Flowrate (I/s)	<u>Operating</u> <u>Rate (%)</u>	Removal Efficiency <u>(%)</u>	Incremental Removal (%)		
1.0	11.0%	20.4%	0.3	0.3	1.3	98.5	10.8		
1.5	10.1%	30.5%	0.4	0.4	1.9	98.3	9.9		
2.0	9.6%	40.1%	0.5	0.5	2.6	98.1	9.4		
2.5	7.9%	48.0%	0.6	0.6	3.2	97.9	7.8		
3.0	6.4%	54.4%	0.8	0.8	3.9	97.8	6.2		
3.5	4.4%	58.8%	0.9	0.9	4.5	97.6	4.3		
4.0	4.2%	63.0%	1.0	1.0	5.1	97.4	4.1		
4.5	3.7%	66.7%	1.1	1.1	5.8	97.2	3.6		
5.0	3.3%	70.0%	1.3	1.3	6.4	97.0	3.2		
6.0	5.6%	75.6%	1.5	1.5	7.7	96.6	5.4		
7.0	4.0%	79.6%	1.8	1.8	9.0	96.3	3.9		
8.0	3.5%	83.1%	2.0	2.0	10.3	95.9	3.3		
9.0	2.2%	85.3%	2.3	2.3	11.6	95.5	2.1		
10.0	1.7%	87.0%	2.5	2.5	12.8	95.2	1.6		
15.0	6.3%	93.3%	3.8	3.8	19.3	93.3	5.9		
20.0	2.3%	95.6%	5.1	5.1	25.7	91.5	2.1		
25.0	1.8%	97.3%	6.4	6.4	32.1	89.7	1.6		
30.0	0.8%	98.2%	7.6	7.6	38.5	87.8	0.7		
35.0	0.9%	99.0%	8.9	8.9	44.9	86.0	0.7		
40.0	0.3%	99.3%	10.2	10.2	51.3	84.1	0.2		
45.0	0.5%	99.8%	11.4	11.4	57.8	82.3	0.4		
50.0	0.2%	100.0%	12.7	12.7	64.2	80.5	0.1		
		-	-				96.8		
				Rem	noval Efficiency	$/ \text{Adjustment}^2 =$	6.5%		
	Predicted Net Annual Load Removal Efficiency = 90.3%								
Predicted Annual Rainfall Treated = 98.2%									
1 - Based on 44	1 - Based on 44 years of hourly rainfall data from Canadian Station 6158733, Toronto ON (Airport)								
2 - Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes.									

C NTECH ENGINEERED SOLUTIONS

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION BASED ON THE RATIONAL RAINFALL METHOD BASED ON A FINE PARTICLE SIZE DISTRIBUTION

Project Name:	36-46 Main St		Engineer:	Condeland Eng	ineering Ltd	
Location:	Mississauga, C	ON	Contact:	Dennis Mayo		
OGS #:	CDS 2		Report Date:	16-Oct-19		
Area	0.2128	ha	Rainfall Station	on #	204	
Weighted C	0.80		Particle Size	Distribution	FINE	
CDS Model	2015-4		CDS Treatme	nt Capacity	20	l/s

<u>Rainfall</u> Intensity ¹ (mm/hr)	Percent Rainfall Volume ¹	<u>Cumulative</u> <u>Rainfall</u> <u>Volume</u>	<u>Total</u> <u>Flowrate</u> <u>(I/s)</u>	<u>Treated</u> Flowrate (I/s)	<u>Operating</u> <u>Rate (%)</u>	<u>Removal</u> <u>Efficiency</u> <u>(%)</u>	Incremental Removal (%)			
1.0	11.0%	20.4%	0.5	0.5	2.4	98.2	10.8			
1.5	10.1%	30.5%	0.7	0.7	3.6	97.8	9.9			
2.0	9.6%	40.1%	0.9	0.9	4.8	97.5	9.4			
2.5	7.9%	48.0%	1.2	1.2	6.0	97.1	7.7			
3.0	6.4%	54.4%	1.4	1.4	7.2	96.8	6.2			
3.5	4.4%	58.8%	1.7	1.7	8.4	96.5	4.2			
4.0	4.2%	63.0%	1.9	1.9	9.5	96.1	4.1			
4.5	3.7%	66.7%	2.1	2.1	10.7	95.8	3.6			
5.0	3.3%	70.0%	2.4	2.4	11.9	95.4	3.2			
6.0	5.6%	75.6%	2.8	2.8	14.3	94.8	5.3			
7.0	4.0%	79.6%	3.3	3.3	16.7	94.1	3.8			
8.0	3.5%	83.1%	3.8	3.8	19.1	93.4	3.3			
9.0	2.2%	85.3%	4.3	4.3	21.5	92.7	2.0			
10.0	1.7%	87.0%	4.7	4.7	23.9	92.0	1.5			
15.0	6.3%	93.3%	7.1	7.1	35.8	88.6	5.6			
20.0	2.3%	95.6%	9.5	9.5	47.7	85.2	1.9			
25.0	1.8%	97.3%	11.8	11.8	59.7	81.7	1.5			
30.0	0.8%	98.2%	14.2	14.2	71.6	78.3	0.7			
35.0	0.9%	99.0%	16.6	16.6	83.6	74.9	0.6			
40.0	0.3%	99.3%	18.9	18.9	95.5	71.5	0.2			
45.0	0.5%	99.8%	21.3	19.8	100.0	65.3	0.3			
50.0	0.2%	100.0%	23.7	19.8	100.0	58.8	0.1			
							95.0			
	Removal Efficiency Adjustment ² = 6.5%									
	Predicted Net Annual Load Removal Efficiency = 88.5%									
Predicted Annual Rainfall Treated = 98.2%										
 Based on 44 years of hourly rainfall data from Canadian Station 6158733, Toronto ON (Airport) Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes. 										

APPENDIX 'E'

Stormwater Quantity Control Analysis Cultec Storage System Sizing Calculation Sheets Vortex Valve Head-Discharge Curve Sheet Main Street Downstream Existing Storm Design Chart Analysis - 10-yr Storm Pre-development - 10-yr Storm Post-development Main Street Downstream Existing Storm Design HGL Analysis - 10-yr Storm Pre-development - 10-yr Storm Post-development Main St. and Wyndham St. City Plan and Profile Sheets for Reference Water Balance Calculation Sheet Infiltration Trench Calculations (Cultec) Rainwater Barrel / Cistern Sizing Calculation Sheet City of Toronto Water Balance Initial Abstraction Chart for Reference Geotechnical Report Sections on Groundwater Elevations and In-Situ Percolation Rate for Reference

CONDELAND ENGINEERING LIMITED TECHNICAL DIVSION SITE PLAN STORM WATER MANAGEME	NT					
PROJECT NUMBER:	17-018					
PROJECT LOCATION:	CITY PARK HOMES (36-46 Main St.) CITY OF MISSISSAUGA					
CLIENT:	CITY PARK HOMES INC.	Date: October 28, 2019				
*********	*********					

A. SITE CRITERIA

TOTAL DEVELOP	ABLE SITE AREA:	8268.63	SQ.M.			
			EXISTING	CONDITIONS		
Tributary to:		Site Area	External Area	Total Area	Runoff Coefficier	nt
		<u>8113.63 SQ.M.</u>	<u>155.00 SQ.M.</u>	<u>8268.63 SQ.M.</u>	<u>0.33</u>	
MAIN ST. (A1)						
ABANDONED HOUS	SE FOUNDATIONS &	1570.75 SQ.M.	0.00 SQ.M.	1570.75 SQ.M.	0.45	
	EXISTING CONDITIONS CO	MPOSITE RUNOFF COEFF.		RUNOFF COEFFICIEN	т	
	GRAVEL DRIVEWAY AREA.		479 34 SO M	0.90		
	SOFT LANDSCAPED / GRAS	SSED AREA [.]	1091 41 SQ M	0.25		
			1570.75 SQ.M.	0.20		
	COMPOSITE RUNOFF COE	FF.=	0.4484			
	A 2)					
EXISTING SINGLE I		2804 17 SO M	155.00 SO M	2050 17 SO M	0.36	
EXISTING SINGLE	DETACHED HOUSE	2004.17 302.101.	135.00 50.101.	2909.17 00.101.	0.50	
	EXISTING CONDITIONS CO	MPOSITE RUNOFF COEFF.		RUNOFF COEFFICIEN	Т	
	HARD SURFACE / DRIVEW	AY AREA	503.04 SQ.M.	0.90		
	SOFT LANDSCAPED / GRAS	SSED AREA:	2456.13 SQ.M.	0.25		
			2959.17 SQ.M.			
	COMPOSITE RUNOFF COE	FF.=	0.3605			
	(3)	2720 71 SO M	0.00 SO M	2729 71 SO M	0.25	(autownal away is portion of yook yourd of adjacent
SUFTAREA		3730.71 SQ.WI.	0.00 5Q.WI.	3736.71 SQ.WI.	0.25	(external area is portion of rear yard of adjacent
	EXISTING CONDITIONS CO	MPOSITE RUNOFF COEFF.		RUNOFF COEFFICIEN	т	residential lot. #195 Wynanan St.)
	ROOF / HARD SURFACE		0.00 SQ.M.	0.90		
	SOFT LANDSCAPED / GRAS	SSED AREA:	3738.71 SQ.M.	0.25		
			3738.71 SQ.M.			

0.250	00
-------	----

	PROPOSED CONDITIONS							
	Controlled Area	Uncontrolled Area	Total Area	Runoff Coefficient				
MAIN ST EX. 450mm STM SEWER (A1)	3271.23 SQ.M.	<u>347.14 SQ.M.</u>	<u>3618.37 SQ.M.</u>	0.75				
BUILDING AREA:	1520.81 SQ.M.	38.13 SQ.M.	1558.94 SQ.M.	0.90				
PAVEMENT & CONCRETE AREA:	1219.31 SQ.M.	18.37 SQ.M.	1237.68 SQ.M.	0.90				
SOFT LANDSCAPE	531.11 SQ.M.	290.64 SQ.M.	821.75 SQ.M.	0.25				
WYNDHAM ST UNCONTROLLED (A2)	<u>0.00 SQ.M.</u>	<u>1039.62 SQ.M.</u>	<u>1039.62 SQ.M.</u>	0.66				
BUILDING / DRIVEWAY / WALKWAY AREA:	0.00 SQ.M.	650.33 SQ.M.	650.33 SQ.M.	0.90				
SOFT LANDSCAPE	0.00 SQ.M.	389.29 SQ.M.	389.29 SQ.M.	0.25				
CREDIT RIVER - UNCONTROLLED (A3)	<u>0.00 SQ.M.</u>	<u>3610.64 SQ.M.</u>	<u>3610.64 SQ.M.</u>	0.26				
BUILDING AREA:	0.00 SQ.M.	44.74 SQ.M.	44.74 SQ.M.	0.90				
SOFT LANDSCAPE	0.00 SQ.M.	712.45 SQ.M.	712.45 SQ.M.	0.25				
UNDISTURBED & 10m BUFFER AREA:	0.00 SQ.M.	2853.45 SQ.M.	2853.45 SQ.M.	0.25 *UNDISTURBED				

TOTAL: 8268.63 SQ.M.

В.	SITE CONTROL REQUIREMENTS								
	(NO ROOF TOP CONTROLS HAVE BEEN IMPLEMENTED, THEREFORE BUILDING AND PAV	/EMENT AREAS WILL BE COMBINED BELOW:)							
	MAX ALLLOWABLE SITE DISCHARGE (BASED ON 2YRS, 15min.TC, 0.45 runoff coeff.) = (A1: 2-YR PRE-DEVELOPMENT FLOW TO MAIN ST.)	(1570.75x 0.45) x (2.778*(610*(15+4.6)^(-0.78))/10000) 11.72 LPS							
	MAX ALLLOWABLE SITE DISCHARGE (BASED ON 2YRS, 15min.TC, 0.36 runoff coeff.) = (A2: 2-YR PRE-DEVELOPMENT FLOW TO WYNDHAM ST.)	(2959.17x 0.36) x (2.778*(610*(15+4.6)^(-0.78))/10000) 17.75 LPS							
	MAX ALLLOWABLE SITE DISCHARGE (BASED ON 2YRS, 15min.TC, 0.25 runoff coeff.) = (A3: 2-YR PRE-DEVELOPMENT FLOW TO CREDIT RIVER)	(3738.71x 0.25) x (2.778*(610*(15+4.6)^(-0.78))/10000) 15.55 LPS							
	TOTAL SITE DISCHARGE (BASED ON 2YRS.) =	TOTAL: 45.02 LPS							

C. A1: OUTLET TO MAIN ST. STORM SEWER

C.1 CONTROLLED AND UNCONTROLLED RUNOFF AREA

	CONTROLLED AREA	UN-CONTROLLED AREA	100 yr-Runoff Coefficient
BUILDING AREA:	1520.81 SQ.M.	38.13 SQ.M.	0.90
PAVE/CONC. AREA:	1219.31 SQ.M.	18.37 SQ.M.	0.90
SOFT LANDSCAPE	531.11 SQ.M.	290.64 SQ.M.	0.31
TOTAL AREA=	3271.23 SQ.M.	347.14 SQ.M.	

C.2 EQUIVALENT RUNOFF COEFFICIENT FOR P&B&L AREAS

R(100YR)=	0.8046	R(100YR)=	0.4081
CONTROLLED		UNCONTROLLED	

C.3 STORAGE REQUIREMENTS FOR P&B&L AREAS

100-YR STORM CONTROL RAN (CONTROLLED) =	0.7312
RAN (UNCONTROLLED) =	0.0394

(overland to Main St.)

Quncontrolled = 2.36 LPS

The maximum Controlled discharge is the maximum allowable Site discharge less the Uncontrolled discharge =	11.72	- 2.36
Qctrl-discharge =	9.36 LPS	

HOWEVER FOR VORTEX VALVE ORIFICE (SECT C.5.) WITH HEAD 1.45 M MAXIMUM CONTROLLED DISCHARGE IS =

Qctrl-discharge = 9.32 LPS

TIME	INTENSITY	Qcontrolled	Qtotal	Qctrl-discharge	change in flow	storage volume
(min)	mm/hr	lps	lps	lps	lps	cu.m.
15.00	140.69	102.87	102.87	9.32	93.55	84.19
20.00	118.12	86.37	86.37	9.32	77.05	92.46
25.00	102.41	74.88	74.88	9.32	65.56	98.34
30.00	90.77	66.37	66.37	9.32	57.05	102.69
35.00	81.77	59.79	59.79	9.32	50.47	105.99
40.00	74.58	54.53	54.53	9.32	45.21	108.50
45.00	68.68	50.22	50.22	9.32	40.90	110.43
50.00	63.75	46.62	46.62	9.32	37.29	111.88
55.00	59.56	43.55	43.55	9.32	34.23	112.96
60.00	55.95	40.91	40.91	9.32	31.59	113.72
65.00	52.81	38.61	38.61	9.32	29.29	114.23
70.00	50.03	36.59	36.59	9.32	27.26	114.50
75.00	47.58	34.79	34.79	9.32	25.46	114.59
80.00	45.38	33.18	33.18	9.32	23.86	114.51
85.00	43.39	31.73	31.73	9.32	22.41	114.28
90.00	41.60	30.42	30.42	9.32	21.10	113.92

therefore total storage required= during the the 100 yr storm 114.59 CU.M.

Storm Sewer Pipe	Volume	TOTAL UNDER GRO	DUND STORAGE	@ MAX. TOP	OF WATER LE	VEL (T.W.L.) =	151.62 M	
LENGTH (M)		<u>DIA (M)</u>	<u>Elliptical Pipe</u> (Waterway Area M	<u>VOI</u> 1 ²)	<u>-UME (CU.M)</u>			
Cultec#1 150XLHD	(Bed Area = 3.43m x 19	9.58m)		,	25.14	CU.M.		
2.09	circular pipe	0.375			0.23	CU.M.		
21.36	circular pipe	0.450			3.40	CU.M.		
13.50	circular pipe	0.600			3.82	CU.M.		
11.42	circular pipe	0.900			7.27	CU.M.		
4.91	circular pipe	1.200			5.56	CU.M.		
7.23	circular pipe	0.600			2.05	CU.M.		
Cultec#2 330XLDHD)	(Bed Area = 4.88m x 22	2.40m)			67.71	CU.M.		
		TOTAL STORAGE F	PROVIDED =		115.19	CU.M.	> 114.59	(VERIFIED)
ORIFICE DESIGN								
	I	MAX. PIPE OUTFLOW=			9.322	LPS		
		UNCONT. OUTFLOW =			2.36	LPS	(Overland flow to Main S	Street)
	TOTAL SITE MAX. OUT	-LOW (Overcontrolled)=			11.68	LPS	<= 2yr pre-develop	= 11.72 LPS
MAX. STORAGE L	EVEL							
			MAX. T.W.L.= PIPE INVERT =	= 151.62 m = 150.17 m			STORAGE REQ. =	114.59 CU.M.
			HEAD =	= 1.45 m			STORAGE PROV.	= 115.19 CU.M.

C.4

STORAGE PROVIDED

D. A2 & A3: UNCONTROLLED OVERLAND FLOW OUTLETS TO WYNDHAM STREET AND CREDIT RIVER

A2: WYNDHAM STREET (UNCONTROLLED AREA)

MAXIMUM SITE DISCHARGE (BASED ON 2YRS, 15min.TC, 0.66 runoff coeff.) = (2-YR POST-DEVELOPMENT FLOW TO WYNDHAM ST.)

A3: CREDIT RIVER (UNCONTROLLED AREA)

MAXIMUM SITE DISCHARGE (BASED ON 2YRS, 15min.TC, 0.26 runoff coeff.) = (2-YR POST-DEVELOPMENT FLOW TO CREDIT RIVER)

(1039.62x 0.66) x (2.778*(610*(15+4.6)^(-0.78))/10000) **11.36 LPS < 17.75 LPS** PRE-2 YR

(3610.64x 0.26) x (2.778*(610*(15+4.6)^(-0.78))/10000) **15.50 LPS** < **15.55 LPS** PRE-2 YR

prepared by, CONDELAND ENGINEERING LIMITED

Dennis Mayo Intermediate Designer Mike Hall, P.Eng.

				- 1-800-4-0	CULTEC		
	Stormwater and	Septic Solutio	ons	Manufae ISO 900	ctured at		
CULTEC				certified	facilities		
Prepared For:	Project Information:	E	Engineer:		Calculatio	ons Perform	ed By:
Name CHAMBER #1	City Park (Main St.)	N	Name D.M.			_	
Company Name	36-46 Main St.	C	Condeland Engineering	g Ltd.		_	
Street Address	Mississauga	3	350 Creditstone Rd. U	nit 200			
City	State ON	Zip	City Vaughan		City	Vaughan	
State Zip		S	State ON	CA	State	ON	Zip
Phone	Date: October	28, 2019 F	Phone 905-695-20	96	Phone		
Fax		F	Fax		Fax		
Email		E	Email				
Input Given Parameters		1	ſ		Cł	namber Spe	cifications
Unit of Measure	Metric			Height		470.0	mm
Select Model	Recharger 150XLHD			Width		838.00	mm
				Length		3.35	meters
Stone Porosity	40.0%			Installed Len	ath	3.12	meters
Number of Header Systems	1 Header			Bare Chamber V	olume	0.77	cu. meters
Stone Depth Above Chamber	152 mm		A BUILDER	Installed Chamber	Volume	1.23	cu. meters
Stone Depth Below Chamber	0 mm		Les .				
				Image for visual referen	ce only.May n	ot reflect select	ed model.
Workable Bed Depth	1.50 meters			Bed Depth	l .	0.90	meters
Max. Bed Width	4.00 meters			Bed Width		3.43	meters
Storage Volume Required	25.00 cu. meters		\longrightarrow	Storage Volume F	rovided	25.14	cu. meters
Materials List							
Recharger 150XLHD Stormwater Syste	em by CULTEC, Inc.			FC 04	•		
Approx. Unit Count - not for construction			CULTEC No. 410	FU-24	470.22	pieces	
Actual Number of Chambers Required	io pieces				2 42	sq. meters	
	3 pieces		CULTEC NO. 20L1		3.43 27 72		
End Chambers	12 pieces		Volume of I	Excavation	21.13	cu. meters	
	o pieces		voluitie of t		00.00	cu. meters	

Bed Detail

Number of Rows Wide	3	pieces
Number of Chambers Long	6	pieces
Chamber Row Width	2.82	meters
Chamber Row Length	18.97	meters
Bed Width	3.43	meters
Bed Length	19.58	meters
Bed Area Required	67.15	sa. meters

Bed detail for reference only. Not project specific. Not to scale. Use CULTEC StormGenie to output project specific detail.

Project Name:

October 28, 2019

Cross Section Detail

Recharger 150XLHD Pavement 76 mm 95% Compacted Fill 203 mm Stone Above 152 mm Chamber Height 469.9 mm Stone Below 0 mm Effective Depth 622.0 mm Bed Depth 901.7 mm

Conceptual graphic only. Not job specific.

Α	Depth of Stone Base	0.0	mm	Breakdown of	Storage I	Provided by
в	Chamber Height	470.0	mm	Recharger 150XLHD	Stormwa	ater Systen
С	Depth of Stone Above Units	152.0	mm	Chambers	14.02	cu. meters
D	Depth of 95% Compacted Fill	203.0	mm	Feed Connectors	0.03	cu. meters
E	Max. Depth of Cover Allowed Above Crown of Chamber	4.3	meters	Stone	11.09	cu. meters
F	Chamber Width	838.0	mm	Total Storage Provided	25.14	cu. meters
G	Center to Center Spacing	0.99	meters			

				- 1-800-4-0	ULTEC		
CULTEC	Stormwater a	nd Septic Soluti	ions	Manufac ISO 900 certified	ctured at 1:2000 facilities		
Prepared For:	Project Information	on:	Engineer:		Calculatio	ons Perform	ed By:
Name CHAMBER #2	City Park (Main St	.)	Name D.M.				
Company Name	36-46 Main St.		Condeland Engineerin	g Ltd.			
Street Address	Mississauga		350 Creditstone Rd. U	nit 200			
City	State ON	Zip	City Vaughan		City	Vaughan	
State Zip			State ON	CA	State	ON	Zip
Phone	Date: Octo	ober 28, 2019	Phone 905-695-20	096	Phone		
Fax		-	Fax		Fax		
Email			Email				
Input Given Parameters					Cł	namber Spe	cifications
Unit of Measure	Metric			Height		775.0	mm
Select Model	Recharger 330XL	HD		Width		1321.00	mm
				Length		2.59	meters
Stone Porosity	40.0%			Installed Leng	gth	2.13	meters
Number of Header Systems	1 Header			Bare Chamber V	olume	1.48	cu. meters
Stone Depth Above Chamber	152 mm		A Star	Installed Chamber	Volume	2.05	cu. meters
Stone Depth Below Chamber	0 mm		A CONTRACTOR	Image for visual referen	ce only.May n	ot reflect select	ed model.
Workable Bed Depth	1.50 meters			Bed Denth		1 26	meters
Max Bed Width	5.00 meters			Bed Width		4 88	meters
Storage Volume Required	65.00 cu me	ters	>	Storage Volume P	rovided	67.71	cu meters
5	ou. mo			otorago rotanio r	lonaou	•••••	
Materials List							
Recharger 330XLHD Stormwater Syst	tem by CULTEC. Inc.						
Approx. Unit Count - not for construction	31 pieces		HVLV	FC-24	2	pieces	
Actual Number of Chambers Required	30 pieces		CULTEC No. 41	0™ Filter Fabric	295.98	sa. meters	
Starter Chambers	3 pieces		CULTEC No. 20L	Polyethylene Liner	4.88	meters	
Intermediate Chambers	24 pieces		Sto	one	55.93	cu. meters	
End Chambers	3 pieces		Volume of	Excavation	137.37	cu. meters	

Bed Detail

Number of Rows Wide	3	pieces
Number of Chambers Long	10	pieces
Chamber Row Width	4.27	meters
Chamber Row Length	21.79	meters
Bed Width	4.88	meters
Bed Length	22.40	meters
Bed Area Required	109.25	sa. meters

Bed detail for reference only. Not project specific. Not to scale. Use CULTEC StormGenie to output project specific detail.

Project Name:

October 28, 2019

Cross Section Detail

Recharger 330XLHD					
Pavement	76	mm			
95% Compacted Fill	254	mm			
Stone Above	152	mm			
Chamber Height	774.7	mm			
Stone Below	0	mm			
Effective Depth	926.8	mm			
Bed Depth	1257.3	mm			

Conceptual graphic only. Not job specific.

Α	Depth of Stone Base	0.0	mm	Breakdown of	Storage F	Provided by
в	Chamber Height	775.0	mm	Recharger 330XLHD	Stormwa	ater System
С	Depth of Stone Above Units	152.0	mm	Chambers	45.31	cu. meters
D	Depth of 95% Compacted Fill	254.0	mm	Feed Connectors	0.03	cu. meters
Е	Max. Depth of Cover Allowed Above Crown of Chamber	3.7	meters	Stone	22.37	cu. meters
F	Chamber Width	1321.0	mm	Total Storage Provided	67.71	cu. meters
G	Center to Center Spacing	1.47	meters			

<u> </u>						
Conversions:	I/s cfs	0.035315				
	m inches	39.370079				
		FC12 with 102	FC12 with 114	FC12 with 127	FC12 with 140	FC12 with 152
Head		mm Outlet				
(m)	Head (in)	Flow	Flow	Flow	Flow	Flow
0.000		(1/5)	(I/S)	(l/s)	(l/s)	(l/s)
0.000	0	0.000	0.000	0.000	0.000	0.000
0.152	6	4.813	5.662	6.228	8.493	12.740
0.305	12	5.500	8.125	11.100	12.740	16.569
0.457	18	5.400	7.927	11.041	13.023	17.100
0.610	24	5.700	8.493	11.324	13.589	17.550
0.000	27	6.416	9.042	11.731	14.498	18.121
0.762	30	6.763	9.531	12.366	15.282	19.101
0.030	33	7.093	9.997	12.969	16.028	20.033
0.914	36	7.408	10.441	13.546	16.741	20.924
0.991	39	7.711	10.867	14.099	17.424	21.779
1.007	42	8.002	11.278	14.631	18.082	22.601
1.143	45	8.283	11.674	15.145	18.717	23.394
1.219	48	8.554	12.056	15.641	19.331	24.161
1.295	51	8.817	12.427	16.123	19.925	24.905
1.372	54	9.073	12.788	16.590	20.503	25.627
1.448	57	9.322	13.138	17.045	21.065	26.329
1.524	60	9.564	13.479	17.488	21.612	27.013
1.600	63	9.800	13.812	17.920	22.146	27.680
1.676	66	10.031	14.137	18.341	22.667	28.331
1.753	69	10.256	14.455	18.753	23.177	28.968
1.829	72	10.477	14.766	19.157	23.675	29.591
1.905	75	10.693	15.070	19.552	24.163	30.201
1.981	78	10.904	15.369	19.939	24.642	30.800
2.057	81	11.112	15.662	20.319	25.111	31.386
2.134	84	11.316	15.949	20.692	25.572	31.962
2.210	87	11.516	16.231	21.058	26.025	32.528
2.286	90	11.713	16.509	21.418	26.469	33.084
2.362	93	11.907	16.782	21.772	26.907	33.631
2.438	96	12.097	17.050	22.120	27.338	34.169
2.515	99	12.285	17.315	22.463	27.761	34.699
2.591	102	12.470	17.575	22.801	28.179	35.221
2.667	105	12.652	17.832	23.134	28.590	35.735
2.743	108	12.831	18.085	23.462	28.996	36,242
2.819	111	13.008	18.334	23.786	29.396	36.742
2.896	114	13.183	18.580	24.105	29.790	37.235
2.9/2	117	13.355	18.823	24.420	30.180	37.722
3.048	120	13.525	19.063	24.731	30.564	38,202

CITY OF MISSISSAUGA Transportation and Works

Existing Main Street Storm Sewer Analysis Pre-Development Condition

10-Year Storm

DATE: 10/25/19

SHEET: 1 of 1 CHECKED BY: M.E.H., P.Eng.

DESIGNED BY : DLM

Development: City Park (Main St.) Homes Inc. Consultant: Condeland Engineering Limited Major Drainage area:

LOCATION OF SITE	FROM UPSTREAM	TO DOWNSTREAM	ADJACENT CONTRIBUTARY AREA	RUNOFF COEFFICIENT	AREA TIMES RUNOFF COEFFICIENT	ACCUMULATED AREA DRAINED BY SECTION	ACCUMULATED AREA TIMES RUNOFF COEFFICIENT FOR SECTION	FLOW TIME TO SECTION FROM EXTREME UPSTREAM INLET	INITIAL TIME OF CONCENTRATION AT EXTREME UPSTREAM INLET	TIME OF CONCENTRATION UPSTREAM END OF SECTION	INTENSITY OF RAINFALL	QUANTITY OF FLOW TO BE ACCOMMODATED IN SECTION	TYPE OF PIPE	MANNING'S ROUGHNESS COEFFICIENT	SLOPE	DIAMETER	LENGTH OF SECTION	VELOCITY OF FLOW WITH	CAPACITY OF PIPE FLOWING FULL	PIPE INVERT AT UPSTREAM MANHOLE	PIPE INVERT AT DOWNSTREAM MANHOLE	TIME OF FLOW IN SECTION	% Utilization
	MH#	MH#	A _A	C _A	A _A x C _A	Sum A _A	Sum $A_A \times C_A$	tc _f	tci	$tc = tc_f + tc_i$	i			n	S	D	L	V	Q				
			(ha)			(ha)		(min)	(min)	(min)	(min/hr)	(liter/sec)			(%)	(mm)	(m)	(m/sec)	(m ³ /sec)	(m)	(m)	(min)	(m)
Main Street	Ex. MH 1	Ex. MH 2	1.640	0.40	0.656	1.640	0.656		10.00	10.00	124.77	227.39	RCP	0.013	7.00%	300	105.00	3.62	0.256	158.75	151.40	0.48	88.95%
Wyndham St.		Ex. MH 2	0.980	0.40	0.392	0.980	0.392																
Main Street	Ex. MH 2	Ex. MH 3	0.880	0.40	0.352	3.500	1.400			10.63	120.73	469.55	RCP	0.013	2.50%	450	107.00	2.83	0.450	151.18	148.50	0.63	104.24%
Mill Street		Ex. MH 3	0.560	0.40	0.224	0.560	0.224																
Main Street	Ex. MH 3	Ex. MH 5	0.210	0.40	0.084	4.270	1.708			11.01	118.45	562.04	RCP	0.013	2.50%	450	64.00	2.83	0.450	148.05	146.45	0.38	124.77%
Main St. / Creek	Ex. MH 5	OUTFALL	0.000	0.40	0.000	4.270	1.708			11.13	117.74	558.65	RCP	0.013	1.00%	525	14.50	1.99	0.430	145.80	145.65	0.12	129.99%

CITY OF MISSISSAUGA Transportation and Works

Existing Main Street Storm Sewer Analysis Post-Development Condition

<u>10-Year Storm</u>

DATE: 10/28/19

DESIGNED BY : DLM CHECKED BY: M.E.H., P.Eng.

SHEET: 1 of 1

Development: City Park (Main St.) Homes Inc.
Consultant: Condeland Engineering Limited
Major Drainage area:

LOCATION OF SITE	FROM UPSTREAM	TO DOWNSTREAM	ADJACENT CONTRIBUTARY AREA	RUNOFF COEFFICIENT	AREA TIMES RUNOFF COEFFICIENT	ACCUMULATED AREA DRAINED BY SECTION	ACCUMULATED AREA TIMES RUNOFF COEFFICIENT FOR SECTION	FLOW TIME TO SECTION FROM EXTREME UPSTREAM INLET	INITIAL TIME OF CONCENTRATION AT EXTREME UPSTREAM INLET	TIME OF CONCENTRATION UPSTREAM END OF SECTION	INTENSITY OF RAINFALL	QUANTITY OF FLOW TO BE ACCOMMODATED IN SECTION	TYPE OF PIPE	MANNING'S ROUGHNESS COEFFICIENT	SLOPE	EXISTING PIPE DIAMETER	LENGTH OF SECTION	VELOCITY OF FLOW WITH PIPE FLOWING FULL	CAPACITY OF PIPE FLOWING FULL	PIPE INVERT AT UPSTREAM MANHOLE	PIPE INVERT AT DOWNSTREAM MANHOLE	TIME OF FLOW IN SECTION	% Utilization
	MH#	MH#	A _A	C _A	$A_A \times C_A$	$Sum\;A_A$	$Sum\ A_A \ge C_A$	tc _f	tci	$tc = tc_f + tc_i$	i			n	s	D	L	V	Q				
			(ha)			(ha)		(min)	(min)	(min)	(min/hr)	(liter/sec)			(%)	(mm)	(m)	(m/sec)	(m ³ /sec)	(m)	(m)	(min)	(m)
Main Street	Ex. MH 1	Ex. MH 2	1.640	0.40	0.656	1.640	0.656		10.00	10.00	124.77	227.39	RCP	0.013	7.00%	300	105.00	3.62	0.256	158.75	151.40	0.48	88.95%
Wyndham St.	Entry	Ex. MH 2	0.980	0.40	0.392	0.980	0.392																
Site Connection			0.327	0.80	0.262							11.68											
					*Co	ntrolled area	from the prop	osed develop	oment = 11.68	3 lps													
Main Street	Ex. MH 2	Ex. MH 3	0.553	0.40	0.221	3.500	1.269			10.63	120.73	437.36	RCP	0.013	2.50%	450	107.00	2.83	0.450	151.18	148.50	0.63	97.09%
Mill Street		Ex. MH 3	0.560	0.40	0.224	0.560	0.224																
Main Street	Ex. MH 3	Ex. MH 5	0.210	0.40	0.084	4.270	1.577			11.01	118.45	530.68	RCP	0.013	2.50%	450	64.00	2.83	0.450	148.05	146.45	0.38	117.81%
Main St. / Creek	Ex. MH 5	OUTFALL	0.000	0.40	0.000	4.270	1.577			11.13	117.74	527.54	RCP	0.013	1.00%	525	14.50	1.99	0.430	145.80	145.65	0.12	122.75%

MUNICIPAL DESIGN DIVISION -	HYDRAULIC C	ALCULATION	IS																	
PROJECT NO: PROJECT LOCATION: CLIENT: DATE:		17-018 Main St Existi 2576954 ONTA 10/29/19	STORM SEN ng Storm Sewer IRIO INC.	WER ANALYSIS - : or (EX MH1 to OUTFA	SITE PLAN DEVEL ILL)	OPMENT		CALCS BY:	DM			CHECKED BY:	МЕН							
PRE- DEVELOPME	NT HYDF	RAULIC	GRADE		EXISTING	STORM	<u>SEWER</u>												COEFFICIENT FRICTION LOSS	
OUTFALL TO EX MHE EX MH5 TO EX MH3 EX MH3 TO PR. SITE CONN PR. SITE CONN. TO EX MH2 EX MH2 TO EX MH1	10-YR FLOW 0.5587 0.5620 0.4696 0.4696 0.2274	RATES 7 cms 0 cms 5 cms 5 cms 4 cms	LOCATION MAIN ST. @ MAIN ST. @ MAIN ST. @ MAIN ST. @	OUTFALL MILL ST PROJECT CONNE WYNDHAM ST CHURCH ST.	ECTION (EX CB 5)														K = 2gn ² = 2*9.814*(0.013) ² = 0.0033	
HGL @ EX. OUTFALL DO	WNSTREAM =	= 146.175	(BASED FR	ROM THE OUTFAL	LL PIPE OBVERT)														
STATION	PIPE DIAMETER	DEPTH OF FLOW	AREA	WETTED PERIMETER	HYDRAULIC RADIUS	R4/3	V(VELOCITY)	VELOCITY HEAD	COEFFICIENT FRICTION LOSS	FRICTION SLOPE(Sf)	AVG Sf	LENGTH DOWNSTREAM PIPE	FRICTION HEAD LOSS	MH / BEND LOSS	TOTAL HEAD LOSS	INVERT OF STORM SEWER	NORMAL DEPTH ELV.	OBVERT OF STORM SEWER	HYDRAULIC GRADE LINE ELEVATION	COMMENT
	0.505	0.505												0.0000	0.0000	445.05	440.40	140.40	440.40	UCL at Dire Oburt
EX OUTFALL UPSTREAM	0.525	0.525												0.0000	0.0000	145.65	146.18	146.18	146.18	HGL at Pipe Obvert
EX MH5 DNSTREAM	0.525	0.525	0.2164	1.6485	0.1313	0.06675	2.5822	0.3398	0.0033	0.0168	0.0168	14.50	0.2436		0.2436	145.80	146.33	146.33	146.42	Surcharge Condition
EX MH5 UPSTREAM	0.450													0.0170	0.0170	146.45	146.90	146.90	146.90	Surcharge Condition
EX MH3 DNSTREAM	0.450	0.450	0 1590	1 4130	0 1125	0.05435	3 5354	0.6371	0.0033	0.0387	0.0387	64.00	2 4757		2 4757	148.05	148.50	148.50	149.38	Surcharge Condition
EX MH3 UPSTREAM	0.450													0.0319	0.0319	148.50	148.95	148.95	149.41	Surcharge Condition
PR. SITE CONNEC. DNSTREAM	0.450	0.450	0.1590	1.4130	0.1125	0.05435	2.9542	0.4448	0.0033	0.0270	0.0270	35.80	0.9669		0.9669	149.50	149.95	149.95	150.37	Surcharge Condition
	0.100														0.0000	110.00	110.00	110.00	100.01	Curonaligo Contaition
EX MH2 DNSTREAM	0.450	0.450	0.1590	1.4130	0.1125	0.05435	2.9542	0.4448	0.0033	0.0270	0.0270	71.20	1.9230		1.9230	151.18	151.63	151.63	152.30	Surcharge Condition
EX MH2 UPSTREAM	0.300													0.0222	0.0222	151.40	151.62	151.70	152.32	Surcharge Condition
EX MH1 DNSTREAM	0.300	0.300	0.0707	0.9420	0.0750	0.03166	3.2187	0.5280	0.0033	0.0550	0.0550	105.00	5,7797		5,7797	158.75	158.97	159.05	158.10	No Surcharge Condition
																		-		
																			HGL IS ABOVE SEWER.	OBVERT.
																			SURCHARGE CONDITIO	N
																			1	
																			THEORETICAL HGL IS BI	ELOW OBVERT BASED ON
																			GRAVITY FLOW LEVEL V	WITHIN PIPE
			-						+				+							
				-			+													
		l	+				+													

CONDELAND ENGINEERING LIN MUNICIPAL DESIGN DIVISION - I	MITED HYDRAULIC CA	ALCULATION	IS]															
PROJECT NO: PROJECT LOCATION: CLIENT: DATE:		17-018 Main St Existir 2576954 ONTA 10/29/19	STORM SEV ng Storm Sewer RIO INC.	VER ANALYSIS - 5 (EX MH1 to OUTFA	SITE PLAN DEVEL LL)	OPMENT		CALCS BY:	DM			CHECKED BY:	мен							
POST- DEVELOPM	ENT HYD	RAULIC	GRAD	E LINE OF		G STORN	I SEWER												COEFFICIENT	
		DATES																	FRICTION LOSS	
OUTFALL TO EX MH5 EX MH5 TO EX MH3 EX MH3 TO PR. SITE CONN. PR. SITE CONN. TO EX MH2 EX MH2 TO EX MH1	6 0.5275 0.5307 0.4374 0.4374 0.2274	cms cms cms cms cms cms	MAIN ST. @ MAIN ST. @ MAIN ST. @ MAIN ST. @	OUTFALL MILL ST PROJECT CONNE WYNDHAM ST CHURCH ST.	CTION (EX CB 5)														K = 2gn ² = 2*9.814*(0.013) ² = 0.0033	
HGL @ EX. OUTFALL DO	WNSTREAM =	146.175	(BASED FR	OM THE OUTFAL	L PIPE OBVERT)		1						1						
STATION	PIPE DIAMETER	DEPTH OF FLOW	AREA	WETTED PERIMETER	HYDRAULIC RADIUS	R4/3	V(VELOCITY)	VELOCITY HEAD	COEFFICIENT FRICTION LOSS	FRICTION SLOPE(Sf)	AVG Sf	LENGTH DOWNSTREAM PIPE	FRICTION HEAD LOSS	MH / BEND LOSS	TOTAL HEAD LOSS	INVERT OF STORM SEWER	NORMAL DEPTH ELV.	OBVERT OF STORM SEWER	HYDRAULIC GRADE LINE ELEVATION	COMMENT
	0.525	0.525												0.0000	0.0000	145.65	146.18	146.18	146.18	HGL at Pine Obvert
	0.020	0.020												0.0000	0.0000	140.00	140.10	140.10	140.10	
EX MH5 DNSTREAM EX MH5 UPSTREAM	0.525	0.525	0.2164	1.6485	0.1313	0.06675	2.4380	0.3029	0.0033	0.0150	0.0150	14.50	0.2172	0.0151	0.2172	145.80	146.33 146.90	146.33	146.39	Surcharge Condition Surcharge Condition
	0.100													0.0101	0.0101		110.00	110.00	110.00	Curonalgo Contailon
EX MH3 DNSTREAM	0.450	0.450	0.1590	1.4130	0.1125	0.05435	3.3385	0.5681	0.0033	0.0345	0.0345	64.00	2.2076	0.0284	2.2076	148.05	148.50	148.50	149.11	Surcharge Condition
EX MH3 UPSTREAM	0.450													0.0284	0.0284	148.50	146.60	148.95	149.14	Surcharge Condition
PR. SITE CONNEC. DNSTREAM	0.450	0.450	0.1590	1.4130	0.1125	0.05435	2.7516	0.3859	0.0033	0.0234	0.0234	35.80	0.8388		0.8388	149.50	149.86	149.95	149.97	Surcharge Condition
PR. SITE CONNEC. UPSTREAM	0.450														0.0000	149.50	149.86	149.95	149.97	Surcharge Condition
EX MH2 DNSTREAM	0.450	0.450	0.1590	1.4130	0.1125	0.05435	2.7516	0.3859	0.0033	0.0234	0.0234	71.20	1.6683		1.6683	151.18	151.54	151.63	151.64	Surcharge Condition
EX MH2 UPSTREAM	0.300													0.0193	0.0193	151.40	151.62	151.70	151.66	No Surcharge Condition
EX MH1 DNSTREAM	0.300	0.300	0.0707	0.9420	0.0750	0.03166	3.2187	0.5280	0.0033	0.0550	0.0550	105.00	5.7797		5.7797	158.75	158.97	159.05	158.97	No Surcharge Condition
																				00/507
																			SURCHARGE CONDITIC	N
																			THEORETICAL HGL IS B NO SURCHARGE - HGI	ELOW OBVERT BASED ON
																			GRAVITY FLOW LEVEL	NITHIN PIPE
														-						
				1	1															

				S	ERVI	ICE	DAT	A		
	:	SERVICE		DATE	INI	T.	SERV	ICE	DATE	INIT
1	SAN.	SEWERS			_	0	SAS MAIN	IS		
	STOP	RM SEWERS	-				BELL U/G	CABLE		
	WAT	ERMAINS	-			-+'	11080 0/0	GABLE		+
					REV	15	ONS	an an an an Anna A	-	
		DATE	Γ			DE	TAILS			INIT
	JU	LY 11/86	C.	B'S ON WY	NDHAN	A ST.				D.N.
			–							
			-							<u>+ </u>
1										
	D	TCH IN	-E.	C.B.D	ETAI	LS				
	No.	INLET EL	EV.	INVERT I	ELEV.	0.P.	S.D. TYP	PΕ		
	L.	154.00		152-9	0	70	05·0I		. :	
	2.	152.20		151-3	0	7	05.02	TYPE	'Α'	
	3.	152.00		151-0	00	7	05.02	TYPE	Ά.	
	4.	151-90		150.	70	70	05.02	TYPE	'Α'	
	5.	151-30		150-	10	70	05.02	TYPE	'Α'	
	6.	150-80		149.9	90	7	05-01			
	7.	153.80		152-1	30	7	05-01			
						1				
,	<u>"L</u>	IFE LIG	HT	" INSTA	LLAT	ION	DETA	ILS		
/	ST/	ART STA.	S 1	OP STA.	SPAC	ING	QUAINT	ITY		
	0	+032		0+086	181	n	4			
	0	+120		0+156	9 n	n	5			
	C	0+160		0+240	5 1	n	17	,		
	C	0+250		0+332	91	n	9			
	M/ YE EP	ARKERS ELLOW) D ITH MANI NGINEERIN DENOT	TO DOU UFA NG, TES	BE STINS BLE YEL CTER'S I TRAFFIC "LIFE L	SONITI LOW, NSTR SECT IGHT	E MO TO I UCTI ION MAI	DDEL NG BE INST ONS UN	0.96 L. ALLED DER TH	P.A.Y. (TWO IN ACCOR IE GUIDAN	WAY DANCE NCE OF

· · |

	SE	RVIC	E DATA		
SERVICE	DATE	INIT	SERVICE	DATE	INIT
SAN. SEWERS			GAS MAINS		
STORM SEWERS			BELL U/G CABLE		
WATERMAINS			HYDRO U/G CABLE		
	F	REVIS	SIONS		
DATE	1.1	DE	ETAILS		INIT
			1		

WATER BALANCE CALCULATION									
PROJECT:	CITY PARK (MA	IN ST) INC.	Date: 0	October 28, 2019					
Total Site Area =	8268.63 cu.n	1.							
Based on daily rainfall target depth of Average Rainfall Vol. for the Site = 8268.63 sq.m x (0.005 m =	5.0 mm 41.34 cu.m.							
Drainage Catchment Area (sq.m	ı.)	Initial Abstraction / Capture	Daily Volume Retained (cr	u.m.)					
Hard/ Soft Area directed to Cultec1 =	1143.59	-	-	9.40					
Hard Surface Controlled (road, d/w, s/w) =	791.87	1.0 mm	791.87 x 0.001	0.79					
Soft Landscaped Controlled=	386.20	5.0 mm	386.20 x 0.005	1.93					
Hard Surface Uncontrolled(road, d/w, s/w) =	222.10	1.0 mm	222.10 x 0.001	0.22					
Soft Landscaped/ Undisturbed Uncontrolled=	4245.83	5.0 mm	4245.83 x 0.005	21.23					
*Condo Roof Areas (Rain Barrels / Cistern) =	949.57	5.0 mm	949.57 x 0.005	4.75					
*Freehold Roof Areas (Rain Barrels / Cistern) =	529.47	5.0 mm	529.47 x 0.005	7.40					
	8268.63		Total =	45.72 cu.m.					
			% = 45.72 / 41.34	110.6%					
			Calculated Runoff Retention	5.5 mm					
^r Refer to Rainwater Barrel and Infiltration Bed Design Calculations for More Details Infiltration for Condo Lots 1,2, 18 and 19 are directed to Cultec 1. Therefore the minimum water balance target of 5 mm has been achieved .									

SUB-SURFACE	INFILTRATION TREN	CH DESIGN BELC	OW CULTEC SYST	ГЕМ (Chamber #1)
* * In-situ Percolatio The minimum perc	Percolation Rate Used = on Rate for the site not avail colation rate is 15 mm/hr re	15.0 (mm/Hr) lable yet. quired for infiltration is	used.	
Trench Design Calculate Trench I	Bottom Area Using Equatio	n = 4.3 (MOE SWM M	anual)	
A = 1000 V/ PnT Where A = Trench Botton V = Runoff Volumo P = Percolation ra n = Porosity of the	n Area (sq.m) e to be infiltrated te in mm/hr storage Media (Clear Stor	ne = 0.4)		
T= Retention Time	e in hours			
Calculating Runc	off Volume to be infiltrate	d		
	Post-development Dra	inage Area captured b	y CULTEC System = 100 Yr Coefficient = Impervious Area =	1143.59 sq.m. 0.80 914.87 sq.m.
	To contrib from a 5 m	ute to the overall Site \ m storm event must b	Water Balance runoff e retained, therefore:	5.00 mm 24 hr rainfall
	То	tal site Runoff volum	e to be infiltrated =	4.57 cu.m.
Calculating Requ	ired Trench Bottom Area			
V (runoff) cu.m	P (percolation rate mm/h)	n = Porosity of storage media (clear stone)	Retention Time (T) hrs	Required Trench Bottom Area (sq.m)
4.57	15.00	0.40	24.00	31.77
Calculating Dept Using Equation 4.2 D = PT/1000 Where D = Depth of Stora P = Percolation Ra T = Drawdown Tin Depth (m)= D =	h of Storage Media (Tren 2 (MOE SWM Manual) age Media (m) ate (mm/hr) = ne (hrs) = 0.360	ch Depth) 15.00 24.00 Use Depth(m) =	0.35	
Porcelation Pate	Over Trench Area, or Oin	filtration		
	Gver Hench Alea, UI QII			
P (percolation rate mm/h)	P (percolation rate m/h)	Total Trench Bottom Area (sq.m.) 31 77	Qinfiltration (m ³ /h)	Qinfiltration (lps)
10.00	0.010	01.77	0.10	0.00
Checking Storag	e availability		n porocity of	
Trench Bottom Area (sq.m)	Trench Depth (m)	Trench Volume (cu.m)	Storage Media (clear stone)	Storage Media Volume (cu.m)
67.16	0.35	23.51	0.40	9.40
Infiltration Trench	#1 - CULTEC 150XLHD = 3.4	3m x 19.58m = 67.16 sc	ı.m.	

RAINWATER BARREL / CISTERN SIZING CALCULATION (CONDO	D LOTS)	
PROJECT: CITY PARK (MAIN ST) INC.		
Date: 10/28/2019	Residential Roof Area = Imperviousness % =	949.57 sq.m. 90%
	Impervious Area =	854.61 sq.m.
	Water Balance Target calculation,	
runoff from a 10mm storm eve	ent must be retained on-site, therefore:	5.0 mm 24hr rainfall
Total site Rune	off Volume to be Retained On-site =	4.27 cu.m.
	Total Number of Lots =	15
*Required	Rainwater Barrel Capacity per Lot =	0.28 cu.m.
* Rai	n Barrel size is readily available.	

RAINWATER BARREL / CISTERN SIZING CALCULATION (FREEHOLD	DLOTS)		
PROJECT: CITY PARK (MAIN ST) INC.			
Date: 10/29/2019	Residential Roof Area =	529.47 sq.m.	
	Imperviousness % =	90%	
	Impervious Area =	476.52 sq.m.	
\ \	Vater Balance Target calculation,		
runoff from a 10mm storm event m	ust be retained on-site, therefore:	5.0 mm 24hr rainfall	
Total site Runoff Vo	olume to be Retained On-site =	2.38 cu.m.	
	Total Number of Lots =	7	
*Required Rain	water Barrel Capacity per Lot =	0.34 cu.m.	
* Rain Ba	rrel size is readily available.		

]

City of Toronto - Water Balance Initial Abstraction Chart

Surface Type	Initial Abstraction	TSS Removal	Runoff Coefficient
Impervious roof	1mm	80%	0.90
Asphalt pavement	1mm	0%	0.90
Landscape	5mm	80%	0.25
Green Roof	7mm max for intensive roofs otherwise 5mm	80%	0.45-0.5
Permeable Pavers	5mm	80% with storage bed otherwise 50%	0.40
Concrete pavers	1mm	0%	0.9
Grassed swale	5mm	50% for a min length of 16m	0.25

GEOTECHNICAL INVESTIGATION AND SLOPE STABILITY STUDY PROPOSED RESIDENTIAL DEVELOPMENT 190 WYNDHAM STREET MISSISSAUGA, ONTARIO

Prepared for:	Wyndham Holdings Inc. c/o ABA Architects Inc. 564 Weber Street N, Unit #5
	Waterloo, Ontario N2L 5C6

Attention: Ms. Carrie Curtis, P. Eng.

File No. 11-14-4109 February 13, 2015 ©Terraprobe Inc.

Distribution:

4 Copies	-	ABA Architects Inc.
1 Copy	-	Wyndham Holdings Inc.
1 Copy	-	Terraprobe Inc., Brampton

Terraprobe Inc.

Greater Toronto 11 Indell Lane Brampton, Ontario L6T 3Y3 (905) 796-2650 Fax: 796-2250 Hamilton – NiagaraCentral903 Barton Street, Unit 22220 BayStoney Creek, Ontario L8EBarrie, 0(905) 643-7560 Fax: 643-7559(705) 73www.terraprobe.ca

Central Ontario 220 Bayview Drive, Unit 25 Barrie, Ontario L4N 4Y8 (705) 739-8355 Fax: 739-8369

Northern Ontario

1012 Kelly Lake Rd., Unit 1 **Sudbury**, Ontario P3E 5P4 (705) 670-0460 Fax: 670-0558

Borehole No.	Sample No.	Depth	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Description (MIT)
3	2	1.0 m BG	6	15	45	34	CLAYEY SILT some sand, trace gravel
4	3	1.8 m BG	4	14	53	29	CLAYEY SILT some sand, trace gravel
5	3	1.8 m BG	4	10	42	44	CLAY AND SILT some sand, trace gravel
6	2	1.0 m BG	8	33	40	19	SANDY SILT some clay, trace gravel
7	2	1.0 m BG	28	42	3	0	SILTY, GRAVELLY SAND
9	2	1.0 m BG	37	44	1	9	GRAVELLY SAND some silt
BG = Below Grade							

The results of the Atterberg Limits tests were plotted on A-Line Graph (refer to enclosed figures, Atterberg Limits Test Results). The following table presents a summary of the results of the Atterberg Limit tests:

Borehole No., Sample No.	Depth	Liquid Limit (W _L)	Plastic Limit (W _P)	Plasticity Index (I _P)	Natural Water Content (W _ℕ)	Plasticity
BH 3, Sa. 2	1.0 m BG	36	19	17	16	Medium Plastic
BH 4, Sa. 3	1.8 m BG	33	20	13	13	Slightly Plastic
BH 5, Sa. 3	1.8 m BG	45	24	20	19	Medium Plastic

The results of the Atterberg Limits Tests classify the cohesive soil samples having a Slightly to Medium plasticity.

4.6 Ground Water

Observations pertaining to caving and ground water levels were made in the boreholes upon completion of drilling. Water levels were also measured on October 7, 2014 in the standpipe piezometers which were installed in selected boreholes at the time of drilling. The results of these observations are summarized as follows:

Borehole No.	Depth of Boring	Depth to Cave	Water Level Depth / Elevation at the time of drilling	Water Level Depth / Elevation on October 7, 2014
1	3.9 m BG	open	dry	3.2 m BG / 148.9 m
2	5.3 m BG	open	4.4 m BG / 147.6 m	NP
3	4.1 m BG	open	dry	NP

Borehole No.	Depth of Boring	Depth to Cave	Water Level Depth / Elevation at the time of drilling	Water Level Depth / Elevation on October 7, 2014
4	4.7 m BG	open	dry	3.4 m BG / 147.5 m
5	3.1 m BG	open	dry	NP
6	3.7 m BG	open	dry	dry
7	6.2 m BG	open	dry	NP
8	6.2 m BG	open	dry	4.2 m BG / 148.2 m
9	4.6 m BG	open	dry	NP

BG = Below Grade

NP = Piezometer not installed

It should be noted that the ground water levels indicated above may fluctuate seasonally depending on the amount of precipitation and surface runoff.

It is recommended that the final site grading plans should be reviewed by Terraprobe to ensure that they are consistent with the above recommendations.

5.12 In-Situ Infiltration Test

The in-situ permeability of the site soils was determined at two selected locations using Guelph Permeameter on September 18, 2014. The test locations (identified as Test holes TH1 and TH2) were specified by ABA Architects Inc., as shown on Figure 2. The tests were performed using a Guelph Permeameter (Model 2800). The test results are summarized below.

Test Location	Test Depth (m)	Field Permeability (cm/sec)	Approximate Percolation Rate	Soil Types
TH 1	0.6	3.92 x 10 ⁻⁴	12 mins/cm	Sandy Silt, trace gravel
TH 2	0.45	3.48 x 10 ⁻⁴	12 mins/cm	Sandy Silt, trace gravel

It should be noted that the soil percolation rates/permeability as noted above are estimated values based on the composition of the soil samples tested. It should be noted that the soil conditions may vary between and beyond the boreholes. Terraprobe does not present the estimated percolation rate/permeability given in this report as a warranty of performance for the soils tested. The client or any other party using this information as a basis for the design assumes all risks associated with their evaluation of this information and all other pertinent criteria used in the design.

Terraprobe Inc. assumes no responsibility for the application of the above-noted soil percolation rate/ permeability for use in the intended design. The site design must be conducted by a qualified professional with due regard to site-specific conditions and other design considerations. Further, Terraprobe Inc. does not present the estimated percolation rates and soil permeability values given in this report as a warranty of performance for the soils tested.

6. LIMITATIONS AND USE OF REPORT

It must be recognized that there are special risks whenever engineering or related disciplines are applied to identify subsurface conditions. A comprehensive sampling and testing programme implemented in strict accordance with the most stringent level of care may fail to detect certain conditions. Terraprobe has assumed for the purposes of providing advice, that the conditions that exist between sampling points are similar to those found at the sample locations. The conditions that Terraprobe has interpreted to exist between sampling points can differ from those that actually exist.

APPENDIX 'F'

Conceptual Servicing Plan, Dwg #17-018-02 Conceptual Grading Plan, Dwg #17-018-03 Pre-Storm Tributary Plan, Dwg #17-018-04 Post-Storm Tributary Plan, Dwg #17-018-05 Sanitary Tributary Plan, Dwg #17-018-06

2220.032.

NOTE:

NOTE:

NOTE ROADWAY

