

Revised FINAL Phase Two Environmental Site Assessment

131 Eglinton Avenue East Mississauga, Ontario

Prepared for:

91 Eglinton Limited Partnership

1 Steelcase Road West, Unit 8 Markham, ON L3R 0T3

Attn: Mark Liddy, P.Eng.

July 19, 2019

Pinchin File: 230989.001

July 19, 2019 Pinchin File: 230989.001 FINAL

Issued To:	91 Eglinton Limited Partnership
Contact:	Mark Liddy, P.Eng.
Issued On: Pinchin File: Issuing Office: Primary Pinchin Contact:	July 19, 2019 230989.001 Mississauga, ON Michael Birch, Project Manager 905.363.1304 <u>Mbirch@pinchin.com</u>

Author:

William Martyniw, B.Sc.Hons. Project Technologist 289.971.5043. wmartyniw@pinchin.com

Author:

Natalia Voloshchuk, M.Env.Sc. Project Coordinator 905.363.1303. nvoloshchuk@pinchin.com

Reviewer:

Michael Birch, B.Sc., P.Geo. Project Manager 905.363.1304. <u>mbirch@pinchin.com</u>

Reviewer:

Craig Kelly, B.Sc. (Hons), P.Geo., QP-ESA Senior Geoscientist 905.363.1352. <u>ckelly@pinchin.com</u>

TABLE OF CONTENTS

1.0	INTR	ODUCTION	4
	1.1 1.2 1.3 1.4	Site Description Property Ownership Current and Proposed Future Uses Applicable Site Condition Standards	5 6 6 6
2.0	BACK	GROUND INFORMATION	7
	2.1 2.2	Physical SettingPast Investigations2.2.1Summary of Previous Environmental Investigations by Others2.2.2Pinchin Phase One ESA Summary	7 8 8 8
3.0	SCOF	PE OF INVESTIGATION	10
	3.1 3.2 3.3 3.4 3.5	Overview of Site Investigation Media Investigated Phase One Conceptual Site Model Deviations from Sampling and Analysis Plan Impediments	10 12 13 15 16
4.0	INVE	STIGATION METHOD	16
	4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12	General Drilling Soil Sampling Field Screening Measurements Groundwater Monitoring Well Installation Groundwater Field Measurements of Water Quality Parameters Groundwater Sampling Sediment Sampling Sediment Sampling Residue Management Procedures Elevation Surveying Quality Assurance and Quality Control Measures 4.12.1 Sample Containers, Preservation, Labelling, Handling and Custody of Samples 4.12.2 Equipment Cleaning Procedures 4.12.3 Field Quality Control Measures 4.12.4 QA/QC Sampling Program Deviations	16 18 18 19 20 21 22 22 22 23 23 23 24 24 25
5.0	REVI	EW AND EVALUATION	26
	5.1 5.2 5.3 5.4 5.5 5.6	Geology Groundwater Elevations and Flow Direction Groundwater Hydraulic Gradients 5.3.1 Groundwater Horizontal Hydraulic Gradients 5.3.2 Groundwater Vertical Hydraulic Gradients Fine-Medium Soil Texture Soil Field Screening Soil Quality	26 27 28 28 29 29 29 30

	5.6.1	VOCs	. 30		
	5.6.2	PHCs F1-F4	. 30		
	5.6.3	PAHs	. 30		
	5.6.4	Metals and Inorganics	. 30		
	5.6.5	Organochlorinated Pesticides and PCBs	. 31		
	5.6.6	General Comments on Soil Quality	. 31		
5.7	Groundv	vater Quality	31		
	5.7.1	VOCs	31		
	5.7.2	PHCs F1-F4	32		
	5.7.3	PAHs	32		
	5.7.4	Metals and Inorganics	32		
	5.7.5	Organochlorinated Pesticides and PCBs	32		
	5.7.6	General Comments on Groundwater Quality	32		
5.8	Sedimer	nt Quality	32		
5.9	Quality A	Assurance and Quality Control Results	32		
	5.9.1	Soil Duplicate Results	.34		
	5.9.2	Groundwater Sample Duplicate Results	35		
	5.9.3	Groundwater Trip Blank Results	36		
	5.9.4	Deviations from Analytical Protocol	36		
	5.9.5	Laboratory Certificates of Analysis	36		
	5.9.6	Laboratory Comments Regarding Sample Analysis	37		
	5.9.7	QA/QC Sample Summary	38		
5.10	Phase T	wo Conceptual Site Model	38		
	5.10.1	Potentially Contaminating Activities	39		
	5.10.2	Areas of Potential Environmental Concern	40		
	5.10.3	Subsurface Utilities	42		
	5.10.4	Physical Setting	42		
	5.10.5	Applicable Site Condition Standards	43		
	5.10.6	Contaminants Exceeding Applicable Site Condition Standards in Soil	.44		
	5.10.7	Contaminants Exceeding Applicable Site Condition Standards in Groundwater	44		
	5.10.8	Meteorological and Climatic Conditions	44		
	5.10.9	Soil Vapour Intrusion	45		
	5.10.10	Contaminant Exposure Assessment	45		
CONC	LUSION	5	45		
6.1	Signatur	es	46		
6.2	Terms a	nd Limitations	46		
REFE	RENCES		48		
FIGURES AND TABLES					
APPEI	NDICES .		50		

6.0

7.0 8.0 9.0

APPENDICES

APPENDIX A	Legal Survey and Survey Data
APPENDIX B	Sampling and Analysis Plan
APPENDIX C	Borehole Logs
APPENDIX D	Field Instrument Calibration Records
APPENDIX E	Well Records
APPENDIX F	Field Measured Parameters
APPENDIX G	Residue Management
APPENDIX H	Laboratory Certificates of Analysis

FIGURES

Кеу Мар
Phase Two Property
Phase One Study Area
Potentially Contaminating Activities
Areas of Potential Environmental Concern
Borehole and Monitoring Well Location Plan
Cross-Section Lines
Cross-Section Detail A – A'
Cross-Section Detail B – B'
Groundwater Elevations and Inferred Groundwater Flow Direction (April 18, 2019)

TABLES

Table 1	Soil Analytical Results
Table 2	Groundwater Monitoring Well Elevations and Construction Details
Table 3	Groundwater Monitoring - Water Levels
Table 4	Groundwater Monitoring - Non-Aqueous Phase Liquids
Table 5	Groundwater Analytical Results
Table 6	Maximum Concentrations in Soil
Table 7	Maximum Concentrations in Groundwater

EXECUTIVE SUMMARY

Pinchin Ltd. (Pinchin) was retained by 91 Eglinton Limited Partnership (Client), to complete a Phase Two Environmental Site Assessment (Phase Two ESA) of the property located at 131 Eglinton Avenue East in Mississauga, Ontario (hereafter referred to as the Site or Phase Two Property). The Phase One Property consists of a vacant 1.4-acre parcel of land formerly developed with a residential property and a garden supply centre.

This Phase Two ESA was conducted at the request of the Client in order to support the acquisition of the Site, financing and in support of the Client's application for zoning and other approvals being requested from the City of Mississauga. The Phase Two ESA was conducted in accordance with the Province of Ontario's *Ontario Regulation 153/04: Records of Site Condition – Part XV.1 of the Act*, which was last amended by Ontario Regulation 312/17 on July 28, 2017 (O. Reg. 153/04), should the filing of a Record of Site Condition (RSC) with the Ontario Ministry of the Environment, Conservation and Parks (MECP) be deemed required, and in accordance with the City of Mississauga's requirements.

The objectives of this Phase Two ESA were to assess the soil and groundwater quality in relation to 4 areas of potential environmental concern (APECs) and related potentially contaminating activities (PCAs) and contaminants of potential concern (COPCs) identified in a Phase One ESA completed by Pinchin in accordance with O. Reg. 153/04. The identified APECs, PCAs and COPCs are summarized in the following table:

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (On- Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
APEC #1 (Historical heating oil AST associated with the historical farm house formerly utilized as a car parking garage)	West exterior wall of the historical farm house that was converted to a car parking garage located at the southeast end of the Phase One Property.	Item 28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs PAHs BTEX	Soil and Groundwater

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (On- Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
APEC #2 (Unknown heating source for the historical farm house)	In the vicinity of the historical farm house located at the southeast end of the Phase One Property.	Item 28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs PAHs BTEX	Soil and Groundwater
APEC #3 (Frank's Garden Centre)	Central and southeast portions of the Phase One Property	Item 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large- Scale Applications	On-Site	Metals and Inorganics Pesticides and Herbicides	Soil
APEC #4 (Frank's Garden Centre)	Central and southeast portions of the Phase One Property	Item 22 – Fertilizer Manufacturing, Processing and Bulk Storage	On-Site	Metals and Inorganics Pesticides and Herbicides	Soil and Groundwater

Notes:

NA – Not applicable

BTEX – benzene, toluene, ethylbenzene and xylenes

PHCs – petroleum hydrocarbon fractions F1-F4

PAHs – polycyclic aromatic hydrocarbons

A plan showing the locations of the identified APECs and PCAs with respect to the Phase Two Property and surrounding properties is attached as Figure 4.

The Phase Two ESA was completed by Pinchin between March 27, 2019 and April 5th 2019, and included the advancement of 8 boreholes at the Phase Two Property, 5 of which were completed as groundwater monitoring wells to facilitate the sampling of groundwater and the assessment of groundwater flow. The boreholes were advanced to depths ranging from 3.35 to 3.96 metres below

ground surface (mbgs). Select soil samples collected from each of the borehole locations were submitted for laboratory analysis of volatile organic compounds (VOCs), petroleum hydrocarbons (PHCs) fractions 1 through 4 (F1-F4), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs, metals and/or inorganic parameters, sodium, and organochlorine (OC) pesticides. In addition, groundwater samples were collected from each of the newly-installed monitoring wells and submitted for laboratory analysis of VOCs, PHCs, PAHs, PCBs metals and/or inorganic parameters, OC pesticides, ammonium, sodium, and chloride.

Based on Site-specific information, the applicable regulatory standards for the Phase Two Property were determined to be the *"Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition",* provided in the MECP document entitled, *"Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act"* dated April 15, 2011 (*Table 2 Standards*) for medium and fine-textured soils, and residential/parkland/institutional property.

The laboratory results for the submitted soil and groundwater samples indicated that all reported concentrations for the parameters analyzed met the corresponding *Table 2 Standards*. The maximum reported soil and groundwater concentrations for the parameters analyzed are summarized in Tables 6 and 7, respectively.

It is the opinion of the QP who supervised the Phase Two ESA that the applicable *Table 2 Standards* for soil and groundwater at the Phase Two Property have been met as of the Certification Date of April 5th, 2019 and that no further subsurface investigation is required in relation to assessing the environmental quality of soil and groundwater at the Phase Two Property.

This Executive Summary is subject to the same standard limitations as contained in the report and must be read in conjunction with the entire report.

1.0 INTRODUCTION

A Phase Two ESA is defined as an "assessment of property conducted in accordance with the regulations by or under the supervision of a QP to determine the location and concentration of one or more contaminants in the land or water on, in or under the property". Under O. Reg. 153/04, the purpose of a Phase Two ESA is as follows:

- To determine the location and concentration of contaminants in the land or water on, in or under the Phase Two Property;
- To obtain information about environmental conditions in the land or water on, in or under the Phase Two Property necessary to undertake a Risk Assessment, in accordance with O. Reg. 153/04, with respect to one or more contaminants of concern; and
- To determine if applicable Site Condition Standards and standards specified in a Risk Assessment for contaminants on, in or under the Phase Two Property were met as of the certification date by developing an understanding of the geological and hydrogeological conditions at the Phase Two Property and conducting one or more rounds of field sampling for all contaminants associated with any APEC identified in the Phase Two ESA sampling and analysis plan (SAP) and for any such contaminants identified during subsequent Phase Two ESA activities and analyses of environmental conditions at the Phase Two Property.

This Phase Two ESA was conducted at the request of the Client in order to support the acquisition of the Site, financing and of the Client's application for zoning and other approvals being requested from the City of Mississauga. The Phase Two ESA was completed in accordance with Ontario Regulation (O.Reg.) 153/04 should the filing of a Record of Site Condition (RSC) with the Ontario Ministry of the Environment, Conservation and Parks (MECP) be deemed required, and in accordance with the City of Mississauga's requirements.

The overall objectives of this Phase Two ESA were to assess the soil and groundwater quality in relation to APECs and related COPCs identified in a Phase One ESA completed by Pinchin, the findings of which were summarized in the report entitled "*Phase One Environmental Site Assessment, 131 Eglinton Avenue East, Mississauga, Ontario*", completed by Pinchin for the Client and dated April 18, 2019. The property assessed by the Pinchin Phase One ESA is referred to herein as the Phase One Property. The Phase Two ESA was conducted on the entire Phase One Property, at specific APECs identified during the Phase One ESA.

1.1 Site Description

This Phase Two ESA was completed for all of CON 1 EHS PT LOT 1, located at the municipal address of 131 Eglinton Avenue East, Mississauga, Ontario. The Phase Two Property is 0.95 acres (0.38 hectares) in size and is located approximately 375 metres (m) northeast of the intersection of Hurontario Street and Eglinton Avenue East. A Key Map showing the Phase Two Property location is provided on Figure 1 and a detailed plan of the Phase Two Property and surrounding lands is provided on Figure 2 (all Figures are provided within Section 9.0).

The Phase Two Property is a vacant lot which was formerly developed with a residential property and a garden supply centre.

Detail	Source / Reference	Information
Legal Description	City of Mississauga Plan & Build eServices	CON 1 EHS PT LOT 1
Municipal Address	City of Mississauga Interactive Online Mapping	131 Eglinton Avenue East, L4Z 1B2
Parcel Identification Number (PIN)	ServiceOntario Parcel Register	13289-0298 (LT)
Current Owner	Site Representatives	2190777 Ontario Inc.
Owner Contact Information	Mr. John Torchia	3222 Credit Height Drive, Mississauga, ON, L5C 2L7 Phone: 416-518-8326
Current Occupant(s)	Client	Unoccupied
Occupant Contact Information	Client	Not applicable
Client	Authorization to Proceed Form for Pinchin Proposal	91 Eglinton Limited Partnership
Client Contact Information	Authorization to Proceed Form for Pinchin Proposal	Michael Uster c/o 91 Eglinton Limited Partnership 1 Steelcase Road West, Unit 8 Markham, ON L3R 0T3 Phone: 905.731.8687 Michael@libertydevelopment.ca
Site Area	City of Mississauga Plan & Build eServices	0.38 ha. (3,799 m², 0.95 acres)

A summary of the pertinent details of the Phase Two Property is provided in the following table:

Detail	Source / Reference	Information
Current Zoning	City of Mississauga Plan & Build eServices	D – Development
		608896 Easting
Centroid UTM Co- ordinates	Google Earth™	4829473 Northing
		Zone 17T

A legal survey showing the Phase Two Property will be included in Appendix A upon receipt from the Client (all Appendices are provided in Section 10.0).

1.2 **Property Ownership**

The entirety of the Phase Two Property is currently owned by 2190777 Ontario Inc. Contact information for the Phase Two Property owner is provided in the preceding section.

Pinchin was retained by Mr. Michael Uster of the Client to conduct the Phase Two ESA of the Site. Contact information for Mr. Uster is provided in the preceding section.

1.3 Current and Proposed Future Uses

The Phase Two Property is presently vacant, however was historically used for agricultural and residential purposes. The proposed future use of the Site is residential.

1.4 Applicable Site Condition Standards

The Phase Two Property is currently a vacant lot located within the City of Mississauga and the proposed future land use is residential. It is Pinchin's understanding that drinking water for the Phase Two Property and surrounding properties within 250 metres of the Phase Two Property is supplied by the City of Mississauga. Source water is obtained by the City of Mississauga from Lake Ontario.

The depth to bedrock at the boreholes completed at the Phase Two Property during the Phase Two ESA ranged from 2.13 to 3.66 mbgs. Based on the available information, the depth to bedrock is interpreted to be greater than two mbgs over more than two-thirds of the Phase Two Property and, as such, the Phase Two Property is not a shallow soil property as defined in Section 43.1 of O. Reg. 153/04.

The Phase Two Property does not contain a water body nor is it located within 30 metres of a water body and the use of standards for properties situated within 30 metres of a water body is not required.

Section 41 of O. Reg. 153/04 states that a property is classified as an "environmentally sensitive area" if the pH of the surface soil (less than 1.5 mbgs) is less than 5 or greater than 9, if the pH of the subsurface soil (greater than 1.5 mbgs) is less than 5 or greater than 11, or if the property is an area of natural significance or is adjacent to or contains land within 30 metres of an area of natural significance. A total of ten representative soil samples (including one field duplicate sample) collected from the boreholes advanced at the Phase Two Property were submitted for pH analysis. The pH analytical results are summarized in Table 1 (all Tables are provided in Section 9.0). The pH values measured in the submitted soil samples were within the limits for non-sensitive sites. The Phase Two Property is also not an area of natural significance and it is not adjacent to, nor does it contain land within 30 metres of, an area of natural significance. As such, the Phase Two Property is not an environmentally sensitive area.

As discussed further in Section 6.4, based on the results of grain size analysis completed on representative soil samples collected during the Phase Two ESA and the observed stratigraphy at the borehole locations at the Phase Two Property, it is the QP's opinion that over two-thirds of the overburden at the Phase Two Property is medium and fine-textured as defined by O. Reg. 153/04. Therefore, the soil at the Phase Two Property has been considered medium and fine-textured for the purpose of establishing the applicable MECP Site Condition Standards.

Based on the above, the appropriate Site Condition Standards for the Phase Two Property are the Table 2 Standards for:

- Medium and fine-textured soils; and
- Residential/parkland/institutional property use.

As such, all analytical results have been compared to these Table 2 Standards.

2.0 BACKGROUND INFORMATION

2.1 Physical Setting

The Phase Two Property is located in the north/central portion of the City of Mississauga at an elevation of approximately 170 metres above mean sea level (mamsl). The topography of the Phase Two Property is generally flat with a slight grade downwards in elevation to the south. The properties surrounding the Phase Two Property are at an equivalent grade with a gradual decrease in elevation towards the south. There are no drainage features (e.g., open ditches or swales) present on-Site. Surface water (e.g., storm runoff) is inferred to run overland and drain into the off-Site municipal storm sewer catch basins, south of the property.

There are no open water bodies or areas of natural significance located on-Site or within the area assessed by the Pinchin Phase One ESA (the Phase One Study Area). A plan showing the Phase One Study Area is presented on Figure 3. The nearest surface water body to the Phase Two Property is Cooksville Creek located approximately 690 m southwest of the Phase Two Property.

2.2 Past Investigations

2.2.1 Summary of Previous Environmental Investigations by Others

The Client informed Pinchin that no previous environmental reports were available for review for the Site as part of the Phase One or Two Environmental Site Assessment.

2.2.2 Pinchin Phase One ESA Summary

From January 22, 2019 through April 15, 2019, Pinchin conducted a Phase One ESA in support of the future filing of an RSC for the Phase Two Property. The Phase One ESA consisted of a Site visit, interviews with Site personnel, records review, evaluation of information, and preparation of a written report which was completed under the supervision of a QP. A plan showing the Phase One Study Area is attached as Figure 3.

The Phase One ESA was completed recently (i.e., within three months of the start of the Phase Two ESA) and in accordance with the requirements of O. Reg. 153/04. Therefore, the information provided within the Phase One ESA Report is considered adequate such that it can be relied upon for the purpose of this Phase Two ESA and future filing of an RSC.

Based on information obtained during the Phase One ESA, a total of four APECs and corresponding potentially contaminating activities (PCAs) and COPCs were identified that could potentially affect the environmental condition of the subsurface media on, in or under the Phase Two Property. The COPCs associated with each APEC were determined based on a review of the PCAs and substances associated with the related activities, and on several sources of information, including but not limited to, Pinchin's experience with environmental contamination and hazardous substances, common industry practices for analysis of such contaminants and point sources, literature reviews of COPCs and associated hazardous substances, and evaluations of contaminant mobility and susceptibility for migration in the subsurface.

The following table presents the APECs and their associated PCAs and COPCs:

Summary of APECs

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (On- Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
APEC #1 (Historical heating oil AST associated with the historical farm house formerly utilized as a car parking garage)	West exterior wall of the historical farm house that was converted to a car parking garage located at the southeast end of the Phase One Property.	Item 28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs PAHs BTEX	Soil and Groundwater
APEC #2 (Unknown heating source for the historical farm house)	In the vicinity of the historical farm house located at the southeast end of the Phase One Property.	Item 28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs PAHs BTEX	Soil and Groundwater
APEC #3 (Frank's Garden Centre)	Central and southeast portions of the Phase One Property	Item 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large- Scale Applications	On-Site	Metals and Inorganics Pesticides and Herbicides	Soil

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (On- Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
APEC #4 (Frank's Garden Centre)	Central and southeast portions of the Phase One Property	Item 22 – Fertilizer Manufacturing, Processing and Bulk Storage	On-Site	Metals and Inorganics Pesticides and Herbicides	Soil and Groundwater

Notes:

NA – Not applicable

BTEX – benzene, toluene, ethylbenzene and xylenes

PHCs – petroleum hydrocarbon fractions F1-F4

PAHs – polycyclic aromatic hydrocarbons

A plan showing the locations of the identified APECs and PCAs with respect to the Phase Two Property and surrounding properties is attached as Figure 4.

3.0 SCOPE OF INVESTIGATION

3.1 Overview of Site Investigation

The scope of work for this Phase Two ESA was prepared to address the APECs identified at the Phase Two Property and consisted of the following:

- Prepared a health and safety plan and arranged for the completion of underground utility locates prior to the commencement of drilling activities;
- Developed a detailed SAP prior to the advancement of the boreholes and the installation of the monitoring wells. The SAP was outlined in the document entitled "*Proposal for Phase Two Environmental Site Assessment, 131 Eglinton Avenue East, Mississauga, Ontario*". Based on Pinchin's knowledge of the surrounding properties and known hydrogeological conditions, boreholes were advanced at the Phase Two Property to maximum depths ranging between approximately 2.13 and 3.96 mbgs;
- Retained Strata Drilling Group Inc. (Strata) to advance boreholes and complete monitoring well installations using a Geoprobe 7822 DT drill rig. Strata is licensed by the MECP in accordance with O. Reg. 903 (as amended) to undertake borehole drilling/well installation activities. Strata advanced 8 boreholes at the Phase Two Property to

investigate the potential for soil contaminants associated with the APECs identified in the Phase One ESA. Five of the advanced boreholes were instrumented with a monitoring well in accordance with O. Reg. 903 for the purpose of monitoring hydrogeological conditions and groundwater quality on-Site;

- Collected soil samples at regular intervals within each borehole;
- Field screened soil samples for petroleum-derived vapours in soil headspace using a combustible gas indicator (CGI) calibrated to hexane and VOC-derived vapours in soil headspace using a photoionization detector (PID), in addition to visual and olfactory considerations;
- Submitted a minimum of one "worst case" soil sample from each borehole for chemical analysis of one or more of the following parameters:
 - BTEX;
 - PHCs F1-F4;
 - PAHs;
 - O. Reg. 153/08 metals;
 - Hydrides;
 - Inorganic parameters including cyanide, electrical conductivity and sodium adsorption ratio (SAR);
 - Organochlorinated pesticides; and
 - Polychlorinated biphenyls (PCBs).
- Developed each of the newly-installed monitoring wells prior to the collection of groundwater samples;
- Submitted one representative groundwater sample from each of the newly-installed monitoring wells for chemical analysis of one or more of the following parameters:
 - BTEX;
 - PHCs F1-F4;
 - PAHs;
 - O. Reg. 153/08 metals;
 - Inorganic parameters including chloride, cyanide, ammonia, nitrate and nitrates;

- Organochlorinated pesticides; and
- Polychlorinated biphenyls (PCBs).
- Submitted 5 duplicate soil samples and 2 duplicate groundwater samples for chemical analysis of the above-noted parameters for quality assurance/quality control (QA/QC) purposes;
- Submitted 2 trip blanks for the groundwater sampling program for the chemical analysis of BTEX and VOCs for QA/QC purposes;
- Submitted 2 representative soil samples for the laboratory analysis of grain size and 9 representative soil samples (including 1 field duplicate soil sample) for the laboratory analysis of pH in order to confirm the appropriate MECP Site Condition Standards;
- Conducted groundwater monitoring at each of the newly-installed groundwater monitoring wells by measuring depth to groundwater from both the top of casing and ground surface reference points, and assessing the presence/absence of non-aqueous phase liquid (NAPL) using an oil/water interface probe;
- Surveyed the location and elevations of the boreholes and newly-installed monitoring wells;
- Compared the soil and groundwater analytical results to the applicable criteria stipulated in the *Table 2 Standards*; and
- Prepared a report (this Phase Two Report) documenting the findings of the Phase Two ESA which meets the reporting requirements listed in *Schedule E* and *Table 1 Mandatory Requirements for Phase Two Environmental Site Assessment Reports* of O. Reg. 153/04.

3.2 Media Investigated

The scope of work for this Phase Two ESA was prepared to address the APECs and corresponding media at the Phase Two Property as identified through completion of the Phase One ESA.

The media of concern for the Phase Two ESA were soil and groundwater. Pinchin included the assessment of groundwater as part of the Phase Two ESA to investigate groundwater quality in relation to a former on-Site heating oil AST used for the historical farm house (APEC #1), unknown historical on-Site heating infrastructure for the historical farmhouse (APEC #2) and potential subsurface contamination from the historical garden centre operations which included the storage and sale of fertilizers. (APEC #4).

For assessing the soil at the Phase Two Property for the presence of COPCs, a total of eight boreholes were advanced at locations across the Phase Two Property for the purpose of collecting soil samples. A total of 15 soil samples, comprising select "worst case" samples collected from each of the boreholes, were submitted for laboratory analysis of the COPCs.

For assessing the groundwater at the Phase Two Property for the presence of COPCs, groundwater monitoring wells were installed in 5 of the 8 boreholes completed at the Phase Two Property to permit the collection of groundwater samples. A total of 5 groundwater samples, comprising samples collected from each of the newly installed monitoring wells (MW19-01, MW19-02. MW19-03, MW19-04 and MW19-05) were submitted to the analytical laboratory for analysis of the COPCs.

3.3 Phase One Conceptual Site Model

A conceptual site model (CSM) was created to provide a summary of the findings of the Phase One ESA. The Phase One CSM is summarized in Figures 1 through 4 (of the Phase One Report), which illustrate the following features within the Phase One Study Area, where present:

- Existing buildings and structures;
- Water bodies located in whole or in part within the Phase One Study Area;
- Areas of natural significance located in whole or in part within the Phase One Study Area;
- Drinking water wells located at the Phase One Property;
- Land use of adjacent properties;
- Roads within the Phase One Study Area;
- PCAs within the Phase One Study Area, including the locations of tanks; and
- APECs at the Phase One Property.

The following provides a narrative summary of the Phase One CSM:

• The Phase One Property is a rectangular-shaped parcel of land approximately 0.38 ha (0.95 acres) in size, located approximately 375 m northeast of the intersection of Hurontario Street and Eglinton Avenue East. The Phase One Property was formerly developed with a residential property and a garden supply centre. The Phase One Property was developed with a farm house constructed prior to 1954, was converted to a car parking garage sometime before 2007, and was demolished in 2015. The Phase One Property was utilized for agricultural and residential uses. There is no record of industrial

use or of a commercial use (e.g., garage, bulk liquid dispensing facility or dry cleaner) that would require classifying the Phase One Property as an enhanced investigation property;

- No water bodies were identified within the Phase One Study Area. The nearest water body is Cooksville Creek located approximately 690 m southwest of the Phase One Property;
- No areas of natural significance were identified within the Phase One Study Area;
- No drinking water wells were located on the Phase One Property;
- The adjacent properties to the west, north and east of the Phase One Property consist of residential lands. The Phase One Property is bounded by Eglinton Avenue East to the south. The historical information shows no record of any previous use of the adjacent properties other than for possible agricultural and residential purposes;
- A total of 12 PCAs were identified within the Phase One Study Area, consisting of four PCAs at the Phase One Property and 12 PCAs within the Phase One study, outside of the Phase One Property. As shown on Figure 4, two of the APECs are related to the on-Site historical heating sources for the former car parking garage and farm house located at the southeast end of the Phase One Property. The other two APECs are related to the historical operations conducted at the Phase One Property by Frank's Garden Centre, a garden supply centre. Groundwater flow within the Phase One Study Area is interpreted to be to the southeast and the off-Site PCAs are not considered to represent APECs for the Phase One Property due to the distance from the Phase One Property and/or the downgradient/transgradient location of the PCAs relative to the Phase One Property. Figures 4 and 5 provide a detailed summary of the APECs and associated PCAs and COPCs;
- There are currently no active underground utilities on the Phase One Property. According to the Site Representatives, a water service line was capped at Eglinton Avenue East at the time of the demolition of the former car parking garage. Plans were not available to confirm the depth of this utility but it is estimated to be located approximately 2 to 3 mbgs. The depth to groundwater at the Phase One Property is 3.42 mbgs. As such, it is unlikely that the utility corridors may act as preferential pathways for contaminant distribution and transport in the event that shallow subsurface contaminants exist at the Phase One Property;

- The Phase One Property and the surrounding properties located within the Phase One Study Area are located within drumlinized till plains as the dominant landform with the primary native material consisting of clay loam. Bedrock is expected to consist of shale, limestone, dolostone, and siltstone at a depth greater than 4.57 mbgs. The topography is considered to be mainly flat. According to the information presented in the Water Well Information System database stratigraphy was observed to consist of sandy silt to approximately 3.6 mbgs and sand to approximately 5.5 mbgs overlying grey shale to the maximum exploration depth of 30 mbgs; and
- The Phase One Property is relatively flat with little relief. The area surrounding the Phase One Property slopes gradually to the southeast towards the Cooksville Creek. Local groundwater flow is inferred to be to the east, based on the topography of the area surrounding the Phase One Property and the location of the Cooksville Creek. Regional groundwater flow is inferred to be to the southeast towards Lake Ontario.

There were no deviations from the Phase One ESA requirements specified in O. Reg. 153/04 or absence of information that have resulted in uncertainty that would affect the validity of the Phase One CSM.

3.4 Deviations from Sampling and Analysis Plan

The following deviations from the SAP occurred during the completion of the Phase Two ESA investigation activities:

- Boreholes and monitoring wells were advanced to a maximum depth of 2.13 to 3.96 mbgs compared to a proposed maximum depth of 5.0 mbgs due to the presence of bedrock at shallower depths than anticipated during the development of the Phase Two scope of work;
- The groundwater sample collected from monitoring well MW19-05 was not analyzed for ammonia or pH as originally proposed due to the low groundwater yield of the monitoring well;
- More than one soil sample was submitted at the following locations: MW19-01, MW19-03, MW19-04, BH19-06 and BH19-08; and
- No other notable constraints and limitations with respect to the SAP were documented during the field activities, and as such Pinchin has conducted the Phase Two ESA in a manner generally consistent with the SAP provided in Appendix B.

It is the QP's opinion that the above-noted deviations from the SAP did not affect the investigation of the APECs for COPCs and had no impact on the overall findings and conclusions of the Phase Two ESA.

3.5 Impediments

Pinchin had full access to the Phase Two Property throughout the completion of the Phase Two ESA.

4.0 INVESTIGATION METHOD

4.1 General

The Phase Two ESA field work was conducted in accordance with Pinchin's standard operating procedures (SOPs) as provided in the SAP, which have been developed in accordance with the procedures and protocols provided in the MECP document entitled "*Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario*", dated December 1996, in the Association of Professional Geoscientists of Ontario document entitled "*Guidance for Environmental Site Assessments under Ontario Regulation 153/04 (as amended)*", dated April 2011, and in O. Reg. 153/04.

In addition, Pinchin's SOP for groundwater sampling using low-flow purging and sampling procedures is based upon the United States Environmental Protection Agency Region I document entitled *"Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells*" dated January 19, 2010 (Low Flow Sampling Protocol).

Deviations from Pinchin's SOPs, and the rationale for the deviations, are summarized as follows:

- Groundwater purging and sampling at monitoring well MW19-05 could not be completed in strict accordance with the Low Flow Sampling Protocol as stabilization was not achieved prior to purging dry due to the low hydraulic yield of the formation in which the wells were installed. At these locations, the monitoring wells were purged until dry then grab sampled with a Geotech[™] bladder pump upon recovery to minimize well disturbance and potential VOC losses.
- Water quality parameters were measured during pre-sampling purging completed on March 28, 2019 at monitoring well MW19-02. Low flow purging and sampling methods could not be employed at wells (MW19-01, MW19-03, MW19-03 and MW19-05) due to the low yield of the formation in which the wells were installed.

4.2 Drilling

Pinchin retained Strata to advance a total of eight boreholes (MW19-01 through BH19-08) at the Phase Two Property on March 27, 2019 to investigate the potential presence of COPCs associated with the APECs identified in the Phase One ESA. Five of the eight advanced boreholes (MW19-01 through MW19-05) were completed as monitoring wells in accordance with O. Reg. 903 for the purpose of

monitoring hydrogeological conditions and groundwater quality on-Site. The boreholes were drilled to a maximum depth of 3.96 mbgs using a Geoprobe 7822DT[™]. Upon completion of the drilling and monitoring well installations, Strata completed and filed a Water Well Record with the MECP for the well cluster in accordance with O. Reg. 903.

The locations of the boreholes and monitoring wells were selected using the following rationale:

- MW19-01 Completed in the north portion of the Phase Two Property, in order to investigate soil and groundwater quality in relation to APECs #3 and 4;
- MW19-02 Completed adjacent to the west boundary of the former shed, in order to investigate soil and groundwater quality in relation to APECs #1;
- MW19-03 and BH19-07 Completed on the south-central portion of the Phase Two Property, adjacent to the former farm house in order to investigate soil and groundwater quality in relation to APECs #2;
- MW19-04, MW19-05 and BH19-06 Completed along the southern boundary of the Phase Two Property, in order to investigate soil and groundwater quality in relation to APECs #3 and 4; and
- BH19-08 Completed in the central portion of the Phase Two Property, in order to assess the soil quality in relation to APECs #3 and 4.

The locations of the boreholes and monitoring wells are provided on Figure 5. A description of the subsurface stratigraphy encountered during the drilling program is documented in the borehole logs included in Appendix C. Well completion details and elevation data are provided in Table 2 and on the borehole logs provided in Appendix C.

Measures taken to minimize the potential for cross-contamination during the borehole drilling program included:

- The use of dedicated, disposable PVC soil sample liners for soil sample collection during direct-push drilling;
- The use of dedicated, pre-cleaned augers for each borehole location;
- The extraction of soil samples from the interior of the sampling device (where possible), rather than from areas in contact with the sampler walls;
- The cleaning of all non-dedicated drilling and soil sampling equipment (i.e., auger flights) before initial use and between sample and borehole locations; and
- The use of dedicated and disposable nitrile gloves for all soil sample handling.

Soil samples were collected at continuous intervals during direct-push drilling at a general frequency of one soil sample for every 0.75 metres drilled.

No excavating activities (e.g., test pitting) were completed as part of the Phase Two ESA.

4.3 Soil Sampling

Soil samples were collected in the boreholes at continuous 0.76 m intervals using 10.1 centimetre (cm) inner diameter (ID) direct push soil samplers with dedicated single-use sample liners.

Discrete soil samples were collected from the dedicated sample liners by Pinchin personnel. Dedicated and disposable nitrile gloves were worn during the collection of each soil sample. A portion of each sample was placed in a resealable plastic bag for field screening and a portion was containerized in laboratory-supplied glass sampling jars. Following sample collection, the sample jars were placed into dedicated coolers with ice for storage pending transport to Maxxam Analytics Inc. (Maxxam) in Mississauga, Ontario. Formal chain of custody records were maintained between Pinchin and the staff at Maxxam.

Subsurface soil conditions were logged on-Site by Pinchin personnel at the time of borehole drilling. Based on the soil samples recovered during the borehole drilling program, the soil stratigraphy at the drilling locations generally consists of fill material comprised of a brown clayey silt, with some sand and organic material and trace weathered rock, to a maximum depth of approximately 2.13 mbgs, followed by a grey silt till with weathered rock that extended to the maximum investigation depth of 3.96 mbgs. Moist to wet soil conditions were generally observed between 2.59 and 3.51 mbgs.

No odours or staining were observed in the soil samples collected during the borehole drilling program.

4.4 Field Screening Measurements

Soil samples were collected at each of the sampling intervals during the drilling activities and analyzed in the field for VOC-derived vapour concentrations and petroleum-derived vapour concentrations in soil headspace with an RKI Eagle II[™] CGI operated in methane elimination mode. The soil samples collected for field-screening purposes were placed in resealable plastic bags. The plastic bags were stored in a vehicle for a minimum of five minutes and agitated in order to release organic vapours within the soil pore space prior to analysis with the PID and CGI.

Based on a review of the operator's manual, the RKI Eagle II[™] CGI has an accuracy/precision of up to +/- 25 ppm, or +/- 5% of the reading (whichever is greater). The CGI was calibrated prior to field use by Maxim according to Maxim's standard operating procedures. A copy of Maxim's calibration record for the CGI is provided in Appendix D.

In general, the soil samples with the highest measured vapour concentrations (i.e., "worst case") from a given borehole were submitted for laboratory analysis. Sample depth and visual and olfactory observations of potential contaminants were also used in conjunction with the vapour concentrations in making the final selection of "worst case" soil samples for laboratory analysis.

Soil samples collected during the drilling activities completed on March 27, 2019, were field screened for petroleum-derived vapour concentrations using the RKI Eagle II[™] CGI. The organic vapour concentrations measured in the soil samples were relatively low, ranging from less than 5 ppm by volume (ppm_v) to a maximum of 50 ppm_v, which are generally not indicative of soil PHC impacts. As such, the primary consideration in selecting soil samples for submission was sample depth, and samples collected from the near surface (including fill material) and near the water table were considered to represent "worst case" samples with respect to assessing impacts related to pesticide application, leaks from AST's and fill material quality.

4.5 Groundwater Monitoring Well Installation

Following soil sampling, Strata installed a groundwater monitoring well in boreholes MW19-01, MW19-02, MW19-03, MW19-04 and MW19-05 under the full-time monitoring of a Pinchin field representative. To accommodate the well installations, each borehole was drilled using 15 cm (6-inch) diameter solid stem augers to a maximum depth of 3.96 mbgs using the Geoprobe 7822DT[™] drill rig.

Each of the monitoring wells was constructed with 51-millimetre (2-inch) ID flush-threaded schedule 40 polyvinyl chloride (PVC) risers followed by a 3.05 metre length of No. 10 slot PVC screen. Each well screen was sealed at the bottom using a threaded cap and each riser was sealed at the top with a lockable J-plug cap. Silica sand was placed around and above the screened interval to form a filter pack around the well screen. A layer of bentonite was placed above the silica sand and was extended to just below the ground surface. A 7.62 cm ID Schedule 40 PVC outer casing, approximately 20 cm in length, was installed in each well around the top of the riser and into the top of the bentonite seal. A bentonite seal was then placed between the riser and outer casing. A protective flush-mount cover and aboveground monument casing was installed at the ground surface over each riser pipe and outer casing and cemented in place.

All monitoring wells were installed in accordance with O. Reg. 903. The monitoring well construction details are provided in Table 2 and on the borehole logs in Appendix C. Upon completion of the monitoring well installations, Strata completed and filed a Water Well Record with the MECP for the well cluster. A copy of the MECP Water Well Records is provided in Appendix E.

No additional soil sampling or groundwater sampling was completed during the well installations.

The monitoring wells were developed on March 27 and April 1, 2019 in general accordance with Pinchin's SOP for well development by removing a minimum of three to a maximum of five standing water column volumes using a dedicated inertial pump comprised of Waterra polyethylene tubing and foot valves. The well development activities were completed a minimum of 24 hours prior to the groundwater sampling activities.

Measures taken to minimize the potential for cross-contamination during well installation and well development included the following:

- The use of dedicated, pre-cleaned augers for drilling each borehole location;
- The use of dedicated and disposable nitrile gloves for handling well materials during well installation and during well development;
- The use of dedicated inertial pumps for each well; and
- The cleaning of the interface probe (IP) between monitoring well locations by rinsing with a solution of Alconox[™] detergent and distilled water.

4.6 Groundwater Field Measurements of Water Quality Parameters

Water quality parameters were measured during the low-flow purging and sampling procedure completed on March 28, 2019 at monitoring well MW19-02.

Measurements of the water quality parameters oxidation-reduction potential, dissolved oxygen, temperature, specific conductance, pH and turbidity were made during purging using a flow-through cell and a Horiba U-52. The Horiba U-52 was calibrated prior to use by the equipment supplier (Maxim) in accordance with the manufacturer's specifications.

Field-measured parameters were recorded from the Horiba U-52 at regular intervals in order to determine stabilized groundwater geochemical conditions and hence representative groundwater sampling conditions, in general accordance with the criteria stipulated in the Low Flow Sampling Protocol.

The field parameter values measured over the course of the low flow sampling activities are provided in the field-measured parameters monitoring logs provided in Appendix F. It should be noted that representative groundwater sampling conditions were determined by Pinchin personnel utilizing the field parameter stabilization criteria noted within the Low Flow Sampling Protocol.

Water quality parameters were measured during pre-sampling purging completed on March 28, 2019 at monitoring well MW19-02. Low flow purging and sampling methods could not be employed at wells (MW19-01, MW19-03, MW19-03 and MW19-05) due to the low yield of the formation in which the wells were installed.

Measurements of the water quality parameters oxidation-reduction potential, dissolved oxygen, temperature, specific conductance, pH and turbidity were made during pre-sampling purging using a flow-through cell and Horiba U-52. The Horiba U-52 was calibrated prior to use by the equipment supplier (Maxim) in accordance with the manufacturer's specifications.

The field parameter values measured during pre-sampling purging activities are provided in the fieldmeasured parameters monitoring logs provided in Appendix F.

4.7 Groundwater Sampling

The monitoring wells were sampled a minimum of 24 hours after the completion of well development activities (see Section 5.5). Monitoring well MW19-02 was sampled in accordance with the Low Flow Sampling Protocol as described below.

Well purging was completed using a Geotech[™] submersible bladder pump and Geotech[™] controller powered by a 12-Volt battery. Compressed air was delivered to the bladder pump unit via 47-millimetre (3/16-inch) ID polyethylene tubing. Groundwater was returned to the surface from the bladder pump via dedicated 0.64-cm (1/4-inch) ID polyethylene tubing. A Horiba U-52 connected to a flow-through cell was used to monitor water quality parameters during groundwater purging to assess whether water quality parameter stabilization (i.e., steady-state conditions) was achieved prior to sample collection. The flow rate of the bladder pump was adjusted to minimize drawdown of the water table and the introduction of sediment into the samples.

Once field parameter stabilization was achieved, groundwater samples were collected at each well using the bladder pump and dedicated polyethylene tubing by pumping groundwater directly into new laboratory-supplied sample bottles at a pumping rate of less than 0.5 litres per minute.

Monitoring wells MW19-01, MW19-03, MW19-04 and MW19-05 could not be sampled using the Low Flow Sampling Protocol because the wells did not yield enough water above the pump to create enough pressure for the Geotech bladder to fill even when pumping at the lowest possible pumping rate. Following recovery after purging these wells/this well to dryness, groundwater samples for volatile parameters (i.e., VOCs and PHCs F1), metals and inorganics analysis were collected using a dedicated inertial pump comprised of Waterra polyethylene tubing and a foot valve, and groundwater samples for PHCs (F2-F4) and PAHs analysis were collected using a spectra peristaltic pump and dedicated 0.64-cm (1/4-inch) ID polyethylene tubing.

Groundwater samples for metals analyses were field-filtered prior to preservation using dedicated 0.45 micron in-line filters. As appropriate, laboratory sample bottles were pre-filled by Maxxam with preservatives intended to preserve the collected groundwater samples prior to analysis.

Following sample collection, the sample bottles were placed into dedicated coolers with ice for storage pending transport to Maxxam. Formal chain of custody records were maintained between Pinchin and the staff at Maxxam.

4.8 Sediment Sampling

Sediment sampling was not completed as part of this Phase Two ESA.

4.9 Analytical Testing

All collected soil and groundwater samples were delivered to Maxxam for analysis. Maxxam is an independent laboratory accredited by the Canadian Association for Laboratory Accreditation. Formal chain of custody records of the sample submissions were maintained between Pinchin and the staff at Maxxam. Maxxam conducted the laboratory analysis in accordance with the MECP document entitled *"Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act"* dated March 9, 2004 and revised on July 1, 2011 (*Analytical Protocol*).

4.10 Residue Management Procedures

Soil cuttings generated by the borehole drilling program were containerized in two 205-L drums and 10 20-L pails and were stored adjacent to the south boundary of the Phase Two Property.

One composite soil sample (representative of the excess soil cuttings generated by the borehole drilling program) collected from the boreholes was submitted for the laboratory analysis of the leachate concentrations of inorganics, VOCs, Polychlorinated Biphenyls (PCBs) and benzo(a)pyrene in accordance with the Toxicity Characteristic Leachate Procedure (TCLP) analysis as per O. Reg. 347/90 (O. Reg. 347/90) in order to characterize the soil cuttings for off-Site disposal purposes. The TCLP analytical results are provided in Appendix G, which illustrate that the excess soil cuttings are classified as non-hazardous waste in accordance with O. Reg. 347/90.

Excess water produced during well purging activities was containerized in 10 20-L clean, sealed plastic pails stored adjacent to the southwest boundary of the Phase Two Property.

Pinchin notes that at the time of writing, the drums of excess soil cuttings, purge water and equipment cleaning fluids have not been removed from the Phase Two Property. Pinchin will assist the Client in arranging for disposal of these materials by MECP-approved waste haulers at MECP-approved waste management facilities. Records of the removal of these excess soil cuttings, purge water and equipment cleaning fluids will be provided in Appendix G.

During the drilling and groundwater sampling activities, no evidence of NAPL or significant staining was observed in the subsurface. As such, the limited volumes of wash water utilized to clean the sampling equipment were discharged to the ground surface at the Phase Two Property.

4.11 Elevation Surveying

On April 18, 2019, Pinchin surveyed the vertical elevation of each of the on-Site monitoring wells and borehole locations with a hand held geodetic Global Navigation Satellite System (GNSS) unit.

A summary of the well elevation survey data is provided in Table 2.

4.12 Quality Assurance and Quality Control Measures

The QA/QC protocols that were followed during borehole drilling and soil and groundwater sampling so that representative samples were obtained are described in the following subsections.

4.12.1 Sample Containers, Preservation, Labelling, Handling and Custody of Samples

Soil and groundwater samples were containerized within laboratory-prepared sample containers in accordance with the *Analytical Protocol*.

The following soil sample containers and preservatives were used:

- VOCs and PHCs F1: 40 millilitre (mL) glass vials with septum-lids, pre-charged with methanol preservative; and
- PHCs F2-F4, PAHs, metals, inorganics, pH and grain size: 120 or 250 mL unpreserved clear glass wide-mouth jars with a Teflon[™]–lined lid.

The following groundwater sample containers and preservatives were used:

- VOCs and PHCs F1: 40 mL clear glass vials with septum-lids, pre-charged with sodium bisulphate preservative;
- PHCs F2-F4: 250 mL amber glass bottles with Teflon[™]–lined lids, pre-charged with sodium bisulphate preservative;
- PAHs: 250 mL unpreserved amber glass bottles with Teflon[™]–lined lids;
- Inorganics: 500 mL unpreserved high density polyethylene (HDPE) bottles;
- Metals (excluding hexavalent chromium and mercury): 125 mL acid-rinsed HDPE bottles, pre-charged with nitric acid preservative;
- Hexavalent chromium: 125 mL acid-rinsed HDPE bottles, pre-charged with ammonium sulphate/ammonium hydroxide preservative; and

• Mercury: 125 mL clear glass bottles with Teflon[™]–lined lids, pre-charged with hydrochloric acid preservative.

Groundwater samples submitted for metals analyses (including hexavalent chromium and mercury) were field-filtered using dedicated 0.45 micron filters.

Trip blank water samples for VOC parameter analysis were provided by Maxxam in 40 mL clear glass vials filled with VOC-free water.

Each soil, groundwater and QA/QC sample was labelled with a unique sample identifier along with the company name, sampling date, Pinchin project number and analysis required.

Each sample was placed in a cooler on ice immediately upon collection and prior to submission to Maxxam for analysis. Formal chain of custody records of the sample submissions were maintained between Pinchin and the staff at Maxxam.

4.12.2 Equipment Cleaning Procedures

Dedicated, single-use PVC sample liners were used for each soil sample collected, which precluded the need for drilling equipment cleaning during soil sample collection.

During auger drilling, the augers used to drill the boreholes were pre-cleaned by Strata prior to arrival at the Site.

During groundwater sampling activities, the Geotech[™] bladder pump used for purging and sampling was cleaned before initial use and between well locations with a solution of Alconox[™] detergent and potable water. During groundwater monitoring activities, the oil/water interface probe used to measure water levels and the Horiba U-52 used for groundwater field parameter measurements were cleaned with a solution of Alconox[™] detergent and potable water prior to initial use and between well locations.

4.12.3 Field Quality Control Measures

A total of 5 field duplicate soil samples were collected by Pinchin during the Phase Two ESA for analysis of one or more of the COPCs. The frequency of field duplicate soil sample analysis complied with the requirement that one field duplicate soil sample is analyzed for every ten regular soil samples submitted for analysis of the COPCs. The soil sample field duplicate pairings and corresponding analytical schedules are summarized as follows:

- Soil sample "MW19-01 S3" and its corresponding field duplicate "DUP-19-01" were submitted for laboratory analysis of Metals;
- Soil sample "MW19-03 S3" and its corresponding field duplicate "DUP19-03" were submitted for laboratory analysis of BTEX, PHC and PAH;

- Soil sample "MW19-05 S1" and its corresponding field duplicate "DUP19-05" were submitted for laboratory analysis of pH;
- Soil sample "MW19-06 S1" and its corresponding field duplicate "DUP19-06" were submitted for laboratory analysis of Organochlorine Pesticides and PCBs; and
- Soil sample "MW19-07 S1" and its corresponding field duplicate "DUP19-07" were submitted for laboratory analysis of Electrical Conductivity and Sodium Adsorption Ratio.

A total of 2 field duplicate groundwater samples were collected by Pinchin during the Phase Two ESA for analysis of the COPCs. The frequency of field duplicate groundwater sample analysis complied with the requirement that one field duplicate groundwater sample is analyzed for every ten regular groundwater samples submitted for analysis of the COPCs. The groundwater sample field duplicate pairings and corresponding analytical schedules are summarized as follows:

- Groundwater sample "MW19-01" and its corresponding field duplicate "DUP-02" were submitted for laboratory analysis of metal, PCBs, Ammonia and pH;
- Groundwater sample "MW19-02" and its corresponding field duplicate "DUP-19-02 GW" were submitted for laboratory analysis of BTEX, VOCs, PHCs, PAHs, metals and inorganics, PCBs and Organochlorine Pesticides; and
- Groundwater sample "MW19-03" and its corresponding field duplicate "DUP-02" were submitted for laboratory analysis of BTEX, PHC and PAH.

2 laboratory-prepared trip blanks were analyzed for VOC/F1 parameters to comply with the requirement that one trip blank is analyzed for each submission of groundwater samples for VOC/F1 parameter analysis.

The calibrations of the RKI Eagle II[™] CGI used for field screening and the Horiba U-52used for water quality parameter measurements were checked by the equipment supplier (Maxim) prior to use in the field by Pinchin.

Maxim completed the calibration checks in accordance with the equipment manufacturers' specifications and/or Maxim's SOPs. As described in Section 5.4, calibration checks and recalibration (if required) were completed daily for the RKI Eagle II[™] CGI during the drilling program.

4.12.4 QA/QC Sampling Program Deviations

There were no deviations from the QA/QC sampling program outlined in the SAP.

5.0 REVIEW AND EVALUATION

5.1 Geology

Based on the stratigraphic information obtained from the soil samples recovered during the drilling activities completed as part of the Phase Two ESA, the grass-covered ground surface at the Phase Two Property is underlain by fill material comprised of a reworked native brown clayey silt, with some sand and organic material and trace weathered rock, and minor debris (brick pieces, etc.) to a maximum depth of approximately 1.52 mbgs. The native soil underlying the surficial soil is generally a grey clayey silt to silt till with weathered rock material at depth, that extended to the bedrock surface ranging from 1.83 to 3.66 mbgs. The underlying weathered shale bedrock extended to the maximum investigation depth of 3.96 mbgs. The water table is located within the till soils, extending into the weathered bedrock unit at a depth of approximately 2.12 to 2.82 mbgs, and this uppermost water bearing unit represents an unconfined aquifer. The unconfined aquifer extends to the maximum investigation depth of 3.96 mbgs.

The following table provides a summary of the primary geologic units observed during borehole drilling at the Phase Two Property:

Geologic Unit	Estimated Thickness (metres)	Top Elevation (mamsl)	Bottom Elevation (mamsl)	Properties
Fill Material	0.0 to 1.52	169.1 to 171.10 (Ground Surface)	167.74 to 170.34	Unsaturated
Unconfined Aquifer – Till and	2.17 to 3.35	167.74 to 170.34	165.14 to 167.04	Saturated below 2.1 to 2.2 mbgs (water table) to maximum depth of investigation (3.96 mbgs)
Weathered Bedrock				Hydraulic conductivity ranges from approximately 5.5 x 10 ⁻⁷ metres/second to 5.0 x 10 ⁻⁶ metres/second

Lines of cross-section to aid in visualization of the subsurface conditions are presented in Figure 6A. Cross-sections summarizing the subsurface geological conditions have been provided as Figures 6B and 6C.

The APECs investigated by the Phase Two ESA related to surface soil impacted with BTEX, PHCs, PAHs, metals and Organochlorinated Pesticides (OCP) parameters. Impacts on groundwater quality, if any, from these contaminants would be expected in the shallow groundwater zone and, as such, the water table groundwater quality (unconfined aquifer) was assessed during the Phase Two ESA.

5.2 Groundwater Elevations and Flow Direction

The wells screens in each monitoring well installed by Pinchin ranged in length from 1.52 m at MW19-02 to 3.05 m ay MW19-01 and MW19-03, and was based on the depth where bedrock was encountered and observations of moisture content in the soils. All monitoring wells were installed at depth intervals intended to investigate groundwater quality in the shallow groundwater zone within the unconfined aquifer. Given that PHCs were a COPC for groundwater at the Phase Two Property, the monitoring wells were installed at the Phase Two Property such that the well screens intersected the suspected water table.

The following summarizes the findings of the groundwater monitoring event completed on April 1 to 2, 2019 and April 18, 2019:

- The depths to groundwater measured within the on-Site monitoring wells on April 1 to 2, 2019 installed within the unconfined aquifer ranged from 2.12 mbgs at monitoring well MW19-04 to 2.82 mbgs at monitoring well MW19-05.
- The calculated groundwater elevations within the groundwater monitoring wells on April 18, 2019 installed within the unconfined aquifer ranged from 2.20 mbgs at monitoring well MW19-02 to 2.80 mbgs at monitoring well MW19-05.
- No NAPL thicknesses were measured with the oil/water interface probe or observed in the dedicated bailers in any of the groundwater monitoring wells.

The surveyed top of well riser pipe elevations were utilized in conjunction with the measured depths to groundwater to calculate the groundwater level elevation data. The measured depths to groundwater and calculated groundwater elevation measurements, and the results of NAPL monitoring for both monitoring events are summarized in Tables 3 and 4, respectively. Groundwater levels measured at MW19-02 on March 28, 2019 are not considered to have stabilized, and do not comprise a groundwater level monitoring event.

The inferred groundwater flow vectors and calculated groundwater elevation contour intervals at the Phase Two Property based on depth to groundwater measurements on April 18, 2019, are shown on Figure 7. The groundwater elevation contours were created using Golden Software Incorporated's 'Surfer' contouring software version 10.7.972 (updated March 5, 2012) by applying a 'triangulation with linear interpolation' gridding method with 0.2 metre contour spacing.

All depth to groundwater measurements in each of the on-Site groundwater monitoring wells were used to calculate the groundwater elevation contours. As shown on Figure 7, the calculated groundwater surface elevation contours indicate that groundwater flow across the Phase Two Property is generally to the southeast in the unconfined aquifer.

The groundwater depth data collected over the course of both monitoring events indicate that the temporal fluctuations in the unconfined water table appear to be minimal over the short time interval between monitoring rounds (16 days). However, there is insufficient information available for Pinchin to assess the potential for seasonal variability in groundwater depths at the Phase Two Property due to the short time interval between monitoring events.

Interaction of the groundwater at the Phase Two Property with buried utilities is possible given that the water table at the Phase Two Property is located at approximate depths of between 2.12 and 2.80 mbgs and the utilities may be located at depths ranging from approximately 2 to 3 mbgs. However, there were no underground utilities on the Site at the time of the Phase Two ESA. In addition, given that no groundwater impacts were identified at the Phase Two Property, preferential migration of contaminants along utilities is not considered to be a concern.

5.3 Groundwater Hydraulic Gradients

5.3.1 Groundwater Horizontal Hydraulic Gradients

The plotted groundwater surface elevation contours (as shown on Figure 7) was utilized to estimate horizontal hydraulic gradient values for the unconfined aquifer at the Phase Two Property. The horizontal hydraulic gradient can be estimated by dividing the difference between two groundwater contour values by the distance between the two plotted groundwater contours. The distance between select groundwater contours can be determined by drawing a straight line which transects each contour in a perpendicular fashion on the plotted groundwater contour figure.

By utilizing groundwater contours which are closely spaced, the estimated maximum horizontal hydraulic gradient for the unconfined aquifer at the Phase Two Property is approximately 0.04.

By utilizing groundwater contours which are more distantly spaced, the estimated minimum horizontal gradient for the unconfined aquifer at the Phase Two Property is approximately 0.02.

By utilizing the two most distant (highest and lowest) groundwater elevation contours plotted at the Phase Two Property, a normalized horizontal hydraulic gradient value for the unconfined aquifer at the Phase Two Property using groundwater surface elevations measured on April 18, 2019, was estimated to be approximately 0.02.

5.3.2 Groundwater Vertical Hydraulic Gradients

Nested monitoring wells were not installed at the Phase Two Property as part of the Phase Two ESA. As such, vertical hydraulic gradients were not determined.

5.4 Fine-Medium Soil Texture

Two soil samples collected from the boreholes advanced at the Phase Two Property were submitted for 75 micron single-sieve grain size analysis. The soil samples selected for analysis were considered to be representative of the stratigraphic units most likely to be impacted based on the stratigraphy observed during borehole drilling. As indicated in Table 1, two soil samples (MW19-01 S1 and BH19-06 S2) that were representative of the clayey silt material present beneath the grass surface at the Site were classified as fine-grained (69.8% and 81.5% fine-grained soil).

Based on these grain size analysis results and the observed stratigraphy at the borehole locations at the Phase Two Property, it is the QP's opinion that over two-thirds of the overburden at the Phase Two Property is medium and fine-textured as defined by O. Reg. 153/04. Therefore, the soil at the Phase Two Property was interpreted to be medium and fine-textured for the purpose of determining the MECP Site Condition Standards applicable to the Phase Two Property.

5.5 Soil Field Screening

Soil vapour headspace concentrations measured in the soil samples collected as part of this Phase Two ESA are presented in the borehole logs. Soil vapour headspace values measured with the PID in methane elimination mode ranged from 0 ppm by volume (ppm_v) in several of the collected soil samples to a maximum of 50 ppm_v in soil sample MW19-01 S3 collected from borehole MW19-01 at a depth of approximately 1.52 to 2.13 mbgs.

Up to two most apparent "worst case" soil sample, based on vapour concentrations as well as visual and/or olfactory considerations preferred pathway migration, groundwater depths and contaminant characteristics and previous historical PCAs recovered from each borehole was submitted for laboratory analysis of BTEX, PHCs (F1-F4), PAHs, metals and inorganics, PCBs and organochlorinated pesticides.

5.6 Soil Quality

A total of eight boreholes were advanced at the Phase Two Property at the locations shown on Figure 5 in order to assess for the presence of subsurface impacts resulting from the APECs identified in the Pinchin Phase One ESA. Select soil samples were collected from each of the advanced boreholes and submitted for laboratory analysis of the COPCs. The depth intervals of the soil samples submitted for analysis ranged between 0.00 TO 0.76 mbgs and 2.29 to 3.05 mbgs. The soil sample locations, depths and laboratory analyses are summarized in Table 1 and in the borehole logs.

The soil sample analytical results were compared to the *Table 2 Standards* and the following subsections provide a discussion of the findings.

5.6.1 VOCs

The soil sample analytical results for VOCs, along with the corresponding *Table 2 Standards*, are presented in Table 1. As indicated in Table 1, all reported concentrations of VOCs in the soil samples submitted for analysis were below the *Table 2 Standards*.

5.6.2 PHCs F1-F4

The soil sample analytical results for PHCs F1-F4, along with the corresponding *Table 2 Standards*, are presented in Table 1. As indicated in Table 1, all reported concentrations of PHCs F1- F4 in the soil samples submitted for analysis were below the *Table 2 Standards*.

5.6.3 PAHs

The soil sample analytical results for PAHs, along with the corresponding *Table 2 Standards*, are presented in Table 1. As indicated in Table 1, all reported concentrations of PAHs in the soil samples submitted for analysis were below the *Table 2 Standards*.

5.6.4 Metals and Inorganics

The soil sample analytical results for metals and inorganics parameters, along with the corresponding *Table 2 Standards*, are presented in Table 1. As indicated in Table 1, all reported concentrations of metals and inorganics in the soil samples submitted for analysis were below the *Table 2 Standards*, except for the following:

The concentration of barium reported for soil sample BH19-07 S1 (410 µg/g vs. the *Table 2 Standard* of 390 µg/g), collected at borehole BH19-07 S1 from a depth of 0.0 to 0.76 mbgs, exceeded the *Table 2 Standards*.

It is the opinion of the QP that the primary cause of the elevated barium concentration in the soil sample is related to the heterogeneity in the matrix of the soil materials from which the sample was collected. Pinchin notes that the concentration of barium reported for two additional soil samples BH19-07 S1 A (23 μ g/g vs. the *Table 2 Standard* of 390 μ g/g) and BH19-07 S1 B (20 μ g/g vs. the *Table 2 Standard* of 390 μ g/g) collected at BH19-07 from a depth of 0.0 to 0.76 mbgs met the *Table 2 Standard*. Further, the average concentration of the three soil samples meets the *Table 2 Standard*. As such, it is the QP's opinion that the elevated barium concentration in the soil sample BH19-07 S1 does not represent an issue of concern and does not relate to the APECs.

5.6.5 Organochlorinated Pesticides and PCBs

The soil sample analytical results for Organocholorinated Pesticides and PCBs, along with the corresponding *Table 2 Standards*, are presented in Table 1. As indicated in Table 1, all reported concentrations of Organocholorinated Pesticides and PCBs in the soil samples submitted for analysis were below the *Table 2 Standards*.

5.6.6 General Comments on Soil Quality

The soil sample results show no evidence of chemical or biological transformations of chemical parameters in the subsurface.

The soil sample analytical results also show no evidence of NAPLs in the subsurface at the Site. In addition, no evidence of NAPL was observed during borehole drilling.

5.7 Groundwater Quality

Groundwater samples were collected from monitoring wells MW19-01, MW19-02, MW19-03, MW19-04, MW19-05 and submitted for analysis of the COPCs to assess for the presence of subsurface impacts within the APECs identified in the Pinchin Phase One ESA. The locations of the monitoring wells are shown on Figure 5. The groundwater sample collection depths and laboratory analysis are summarized in Table 5. All groundwater samples collected for metals analysis were filtered in the field using dedicated, disposable 0.45 micron in-line filters prior to preservation in accordance with the *Analytical Protocol*.

The groundwater sample analytical results were compared to the *Table 2 Standards* and the following subsections provide a discussion of the findings.

5.7.1 VOCs

The groundwater analytical results for VOCs, along with the corresponding *Table 2 Standards*, are presented in Table 5. As indicated in Table 5, all reported concentrations of VOCs in the groundwater samples submitted for analysis were below the *Table 2 Standards*.

5.7.2 PHCs F1-F4

The groundwater analytical results for PHCs F1-F4, along with the corresponding *Table 2 Standards*, are presented in Table 5. As indicated in Table 5, all reported concentrations of PHCs F1-F4 in the groundwater samples submitted for analysis met the *Table 2 Standards*.

5.7.3 PAHs

The groundwater analytical results for PAHs, along with the corresponding *Table 2 Standards*, are presented in Table 5. As indicated in Table 5, all reported concentrations of PAHs in the groundwater samples submitted for analysis met the *Table 2 Standards*.

5.7.4 Metals and Inorganics

The groundwater analytical results for metals and inorganic parameters, along with the corresponding *Table 2 Standards*, are presented in Table 5. As indicated in Table 5, all reported concentrations of metals and inorganics parameters in the groundwater samples submitted for analysis met the *Table 2 Standards*.

5.7.5 Organochlorinated Pesticides and PCBs

The groundwater analytical results for Organochlorinated Pesticides and PCBs, along with the corresponding *Table 2 Standards*, are presented in Table 5. As indicated in Table 5, all reported concentrations of Organochlorinated Pesticides and PCBs parameters in the groundwater samples submitted for analysis met the *Table 2 Standards*.

5.7.6 General Comments on Groundwater Quality

The groundwater sample results show no evidence of chemical or biological transformations of chemical parameters in the subsurface.

The groundwater sample analytical results also show no evidence of NAPLs in the subsurface at the Site.

5.8 Sediment Quality

Sediment sampling was not completed as part of this Phase Two ESA.

5.9 Quality Assurance and Quality Control Results

QA/QC comprises technical activities that are used to measure or assess the effect of errors or variability in sampling and analysis. It may also include specification of acceptance criteria for the data and corrective actions to be taken when they are exceeded. QA/QC also includes checks performed to

evaluate laboratory analytical quality, checks designed to assess the combined influence of field sampling and laboratory analysis, and checks to specifically evaluate the potential for cross contamination during sampling and sample handling.

The QA/QC samples collected and submitted for analysis by Pinchin during the Phase Two ESA consisted of the following:

- Field duplicate soil and groundwater samples to assess the suitability of field sampling methods and laboratory performance; and
- Trip blank water samples to assess whether ambient conditions during transport of groundwater sample containers from the analytical laboratory to the Phase Two Property and back to the analytical laboratory may have biased the groundwater sample results with respect to volatile constituents.

In addition to the above, laboratory quality control activities and sample checks employed by Maxxam included:

- Method blanks where a clean sample is processed simultaneously with and under the same conditions (i.e., using the same reagents and solvents) as the samples being analyzed. These are used to confirm whether the instrument, reagents and solvents used are contaminant free;
- Laboratory duplicates where two samples obtained from the sample container are analyzed. These are used to evaluate laboratory precision;
- Surrogate spike samples where a known mass of compound not found in nature (e.g., deuterated compounds such as toluene-d8) but that has similar characteristics to the analyzed compounds is added to a sample at a known concentration. These are used to assess the recovery efficiency;
- Matrix spike samples where a known mass of target analyte is added to a matrix sample with known concentrations. These are used to evaluate the influence of the matrix on a method's recovery efficiency; and
- Use of standard or certified reference materials a reference material where the content or concentration has been established to a very high level of certainty (usually by a national regulatory agency). These are used to assess accuracy.

The results of the field QA/QC samples are discussed in the following subsections.

5.9.1 Soil Duplicate Results

During borehole soil sampling activities, a total of five separate soil duplicate sample pairs were submitted for laboratory analysis. The field duplicate samples were collected by vertically splitting the soil cores into two halves, with one half collected as the regular sample and the other half collected as the field duplicate sample. The sample pairings and corresponding laboratory analyses are as follows:

- Soil sample "MW19-01 S3" and its corresponding field duplicate "DUP-19-01" were submitted for laboratory analysis of Metals;
- Soil sample "MW19-03 S3" and its corresponding field duplicate "DUP19-03" were submitted for laboratory analysis of BTEX, PHC and PAH;
- Soil sample "MW19-05 S1" and its corresponding field duplicate "DUP19-05" were submitted for laboratory analysis of pH;
- Soil sample "MW19-06 S1" and its corresponding field duplicate "DUP19-06" were submitted for laboratory analysis of Organochlorine Pesticides and PCBs; and
- Soil sample "MW19-07 S1" and its corresponding field duplicate "DUP19-07" were submitted for laboratory analysis of Electrical Conductivity and Sodium Adsorption Ratio.

The quality of the analytical results was evaluated by calculating relative percent differences (RPDs) for the parameters analyzed for the original and field duplicate samples. The RPD for each parameter was calculated using the following equation:

An RPD was not calculated unless the parameter concentration in both the original and duplicate sample had detectable concentrations above the corresponding practical quantitation limit for the parameter, which is equal to five times the lowest laboratory reportable detection limit (RDL).

The calculated RPDs for the original and field duplicate soil samples have been compared to performance standards provided in the *Analytical Protocol*. Pinchin notes that although these performance standards only strictly apply to laboratory duplicate samples, they have been considered suitable for comparison to the field duplicate soil sample results as well.

The calculated RPDs values met the performance standards with the exception of the following:

• The RPD values for soil sample pairing MW19-01 S3/DUP19-01, collected from borehole MW19-01 at a depth of 1.52 – 2.29 mbgs, exceeded the corresponding performance standard of 30% for the analytical results reported for arsenic (RPD of 58%) and the performance standard of 30% for the analytical results reported for copper.

The primary cause of the elevated RPD values and discrepancies observed in the analytical results for soil sample pairings MW19-01 S3/DUP19-01 is inferred to be heterogeneity in the matrix of the soil material from which the samples were collected. As such, the observed variance in RPDs for this sample pairing is not expected to reflect deficiencies in sampling or analytical methods. Furthermore, the parameter concentrations in the soil sample pairing is below the corresponding *Table 2 Standards* so the apparent lack of precision is not considered a concern. Based on Pinchin's review of the calculated RPD values for the remainder of the collected soil duplicate sample pairings, the level of observed variance in the reported analytical results is considered acceptable for the purpose of meeting the data quality objectives of this Phase Two ESA.

5.9.2 Groundwater Sample Duplicate Results

During groundwater sampling activities, a total of 3 separate groundwater duplicate sample pairs were submitted for laboratory analysis. The sample pairings and corresponding laboratory analyses are as follows:

- Groundwater sample "MW19-01" and its corresponding field duplicate "DUP-02" were submitted for laboratory analysis of metal, PCBs, Ammonia and pH;
- Groundwater sample "MW19-02" and its corresponding field duplicate "DUP-19-02 GW" were submitted for laboratory analysis of BTEX, VOCs, PHCs, PAHs, metals and inorganics, PCBs and Organochlorine Pesticides; and
- Groundwater sample "MW19-03" and its corresponding field duplicate "DUP-02" were submitted for laboratory analysis of BTEX, PHC and PAH.

The calculated RPDs for the original and field duplicate groundwater samples have been compared to performance standards provided in the *Analytical Protocol*. Pinchin notes that although these performance standards only strictly apply to laboratory duplicate samples, they have been considered suitable for comparison to the field duplicate groundwater sample results as well.

Each of the calculated RPDs met the corresponding performance standard.

5.9.3 Groundwater Trip Blank Results

Trip blank samples, consisting of VOC-free water contained within a set of BTEX/F1 sample vials, were prepared by Maxxam and accompanied the BTEX/F1 groundwater sample containers during transportation to the Phase Two Property and were stored in the coolers with the BTEX/F1 groundwater samples in the field and during transportation back to Maxxam. One trip blank sample was submitted to Maxxam for chemical analysis of BTEX during the groundwater sampling activities completed as part of this Phase Two ESA.

5.9.4 Deviations from Analytical Protocol

There were no deviations from the holding times, preservation methods, storage requirements and container types specified in the *Analytical Protocol* during the completion of the Phase Two ESA, with the following exception:

• Soil sample BH19-07 S1 A and BH19-07 S1 B were collected on March 27, 2019 from borehole BH19-07 at a depth of 0.0 to 2.5 mbgs and submitted to Maxxam on April 16, 2019 for barium. The purpose of the metals analysis was to confirm the barium concentration in that depth interval at this borehole location. The sample was stored in a plastic Ziplock bag in a cooler on ice. Although this sample was not handled in accordance with the *Analytical Protocol*, the reported barium results are considered generally accurate based on the physical/chemical properties of this analyte (i.e., non-volatile properties).

5.9.5 Laboratory Certificates of Analysis

Pinchin has reviewed the laboratory Certificates of Analysis provided by Maxxam for the samples submitted during the Phase Two ESA and confirms the following:

- All laboratory Certificates of Analysis contain a complete record of the sample submission and analysis and meet the requirements of Section 47(3) of O. Reg. 153/04;
- A laboratory Certificate of Analysis has been received for each sample submitted for analysis during the Phase Two ESA;
- All laboratory Certificates of Analysis have been included in full in Appendix H; and
- All of the analytical data reported in the Certificates of Analysis have been summarized, in full, in Tables 1 and 5.

5.9.6 Laboratory Comments Regarding Sample Analysis

Maxxam routinely conducts internal QA/QC analyses in order to satisfy regulatory QA/QC requirements. The results of the Maxxam QA/QC analyses for the submitted soil samples are summarized in the laboratory Certificates of Analyses provided in Appendix H. Also included in Appendix H are all correspondences between the laboratory and staff at Pinchin.

The following summarizes comments noted by Maxxam on the laboratory Certificates of Analysis for the submitted soil samples:

- Laboratory Certificate B980920 The RDLs for Organochlorinated Pesticides in some soil samples were adjusted due to the fact that some samples required dilution due to matrix interferences. Given that the concentrations of Organochlorinated Pesticides in the soil sample were below the RDLs and that the RDLs were below the corresponding *Table 2 Standards*, the adjusted RDLs have no impact on the conclusion that the Organochlorinated Pesticides are below the corresponding *Table 2 Standards*; and
- Laboratory Certificate B980920 BTEX and F1 Analysis: samples were extracted on "2019-04-05". Pinchin notes that the amount of time elapsed between the sampling date (March 27, 2019) and extraction date (April 5, 2019) does not exceed the preserved holding time of 14 days. This does not have impact on the conclusion that the BTEX and F1 parameters are below the corresponding *Table 2 Standards*.

The following summarizes comments noted by Maxxam on the laboratory Certificates of Analysis for the submitted groundwater samples:

 Laboratory Certificate B986440 - Maxxam indicated that containers submitted for groundwater sample MW19-04 and its duplicate sample DUP-02 for analysis of metals and inorganics, organochlorinated pesticides and PCBs contained visible to trace sediment that was included in the laboratory extraction. Based on Pinchin's field observations, the volume of sediment in the submitted groundwater sample containers was a trace to minor amount. Some of these parameters have a tendency to sorb to soil particles. As such, the reported concentrations of metals and inorganics, organochlorinated pesticides and PCBs in the submitted groundwater samples may be positively biased. However, Pinchin notes that all reported concentrations of metals and inorganics, organochlorinated pesticides and PCBs for the submitted groundwater samples were below the corresponding *Table 2 Standards*. As such, the presence of

sediment does not alter the conclusion that the concentrations of metals and inorganics, organochlorinated pesticides and PCBs in the submitted groundwater samples are below the *Table 2 Standards*.

The results of the QA/QC analyses were reviewed by the project staff at Maxxam and observed to be within the laboratory's internal requirements. Pinchin has also reviewed the laboratory Certificates of Analysis and has confirmed that the results of the analyses are acceptable for the purpose of meeting the data quality objectives of this Phase Two ESA.

The following general comments apply to the laboratory Certificates of Analysis received from Maxxam as part of this Phase Two ESA:

- The temperatures of the submitted soil and groundwater samples upon receipt met the sample preservation requirements of the *Analytical Protocol* of 5 ± 3°C (i.e., between 2 and 8°C); and
- The custody seal was present and intact on all submissions.

5.9.7 QA/QC Sample Summary

The overall evaluation of the QA/QC sample results indicates no issues with respect to field collection methods and laboratory performance, and no apparent bias due to ambient conditions at the Phase Two Property and during transportation of the sample containers/samples to and from the analytical laboratory.

As such, it is the QP's opinion that the soil and groundwater analytical data obtained during the Phase Two ESA are representative of actual Site conditions and are appropriate for meeting the objective of assessing whether the soil and groundwater at the Phase Two Property meets the applicable MECP Site Condition Standards.

5.10 Phase Two Conceptual Site Model

The Phase Two Property is comprised of a vacant plot of land located approximately 375 metres (m) northeast of the intersection of Hurontario Street and Eglinton Avenue East. The Phase Two Property is located on the north side of Eglinton Avenue East and is bound by Forum Drive on the north boundary of the Property and residential land uses on the east and west property boundaries. A key map showing the Phase Two Property location is provided as Figure 1.

A Phase One CSM was created during the Pinchin Phase One ESA in order to provide a detailed visualization of the APECs which could occur on, in, under, or affecting the Phase Two Property. The Phase One CSM is summarized in Figures 1 through 4, which illustrate the following features within the Phase One Study Area, where present:

- Existing buildings and structures;
- Water bodies located in whole or in part within the Phase One Study Area;
- Areas of natural significance located in whole or in part within the Phase One Study Area;
- Drinking water wells located at the Phase One Property;
- Land use of adjacent properties;
- Roads within the Phase One Study Area;
- PCAs within the Phase One Study Area, including the locations of tanks; and
- APECs at the Phase One Property.

The following subsections expand on the Phase One CSM with the information collected during the completion of the Phase Two ESA.

5.10.1 Potentially Contaminating Activities

The Phase One ESA identified a total of 12 PCAs within the Phase One Study Area that could potentially affect the environmental condition of the subsurface media on, in or under the Phase Two Property. Four of the 12 these PCAs were located on the Phase Two Property. As noted in the Phase One ESA, 8 of the PCAs located outside of the Phase Two Property were not considered to result in APECs at the Phase Two Property. The PCAs and their corresponding APECs at the Phase Two Property are summarized in the following table:

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of Contaminants PCA (On- Site or Off- Site)		Media Potentially Impacted (Groundwater, Soil and/or Sediment)	
APEC #1 (Historical heating oil AST associated with the historical farm house formerly utilized	West exterior wall of the historical farm house that was converted to a car parking garage located	Item 28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs PAHs BTEX	Soil and Groundwater	

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (On- Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
as a car parking garage)	at the southeast end of the Phase One Property.				
APEC #2 (Unknown heating source for the historical farm house)	In the vicinity of the historical farm house located at the southeast end of the Phase One Property.	Item 28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs PAHs BTEX	Soil and Groundwater
APEC #3 (Frank's Garden Centre)	Central and southeast portions of the Phase One Property	Item 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large- Scale Applications	On-Site	Metals and Inorganics Pesticides and Herbicides	Soil
APEC #4 (Frank's Garden Centre)	Central and southeast portions of the Phase One Property	Item 22 – Fertilizer Manufacturing, Processing and Bulk Storage	On-Site	Metals and Inorganics Pesticides and Herbicides	Soil and Groundwater

Figure 4 shows the locations of the on-Site PCAs/APECs.

5.10.2 Areas of Potential Environmental Concern

The Phase Two ESA included an assessment of soil and groundwater quality within each of the APECs. A summary of the findings for each of the APECs is provided below.

<u>APEC #1</u>

A former AST of unknown capacity was historically associated with the heating infrastructure for the farm house that was historically located on the Phase Two Property. The AST was located along the west exterior wall of the farm house, which was converted to a parking garage, located at the southeast end of the Phase Two Property. APEC #1 was assessed for soil and groundwater impacts at borehole and monitoring well locations adjacent to and downgradient of the former farmhouse location.

APEC #2

The historical farm house also housed an unknown heating source. The location of this unknown source was within the vicinity of the historical farm house located at the southeast end of the Phase Two Property. APEC #2 was assessed for soil and groundwater impacts at borehole and monitoring well locations adjacent to and downgradient of the former farmhouse location.

APEC #3

Historical operations on the Phase Two Property, aside from the farmhouse, included a garden centre, which was located in the central and southeast portions of the Property. The media in question was soil and boreholes were advanced to assess the presence of Metals, Inorganic parameters and Pesticides, related to the bulk storage and sale of pesticides, as well as the use of pesticides during the agricultural land use of the property.

APEC #4

Similar to APEC#3, historical operation of the garden centre and precious agricultural activities also made use of fertilizers. Soil and groundwater was assessed throughout the Phase Two Property in order to assess the soil the presence of Metals and Inorganics and Pesticides.

The following table summarizes the boreholes and monitoring wells completed to investigate each of the APECs:

APEC	Investigation Location
APEC #1	MW19-02, MW19-03, BH19-07*
APEC #2	MW19-03, MW19-04, BH19-06* and BH19-07*
APEC #3	MW19-01, MW19-03, MW19-04, MW19-05, BH19-06* and BH19-08*
APEC #4	MW19-01, MW19-03, MW19-04, MW19-05, BH19-06* and BH19-08*

* Soil sampling only

5.10.3 Subsurface Utilities

No underground utilities are known to be present at the Phase Two Property. Therefore, preferential migration of contaminants along utilities is not considered to be a concern.

5.10.4 Physical Setting

Based on the work completed as part of this Phase Two ESA, the following subsections provide a summary of the physical setting of the Phase Two Property.

Stratigraphy

The observed stratigraphy at the borehole locations completed for the Phase Two ESA generally consisted of grass-covered ground surface underlain by fill material comprised of a reworked native brown clayey silt, with some sand and organic material and trace weathered rock, and minor debris (brick pieces, etc.) to a maximum depth of approximately 1.52 mbgs. The native soil underlying the surficial soil is generally a grey clayey silt to silt till with weathered rock material at depth, that extended to the bedrock surface ranging from 1.83 to 3.66 mbgs. The underlying weathered shale bedrock extended to the maximum investigation depth of 3.96 mbgs. The water table is located within the till soils, extending into the weathered bedrock unit at a depth of approximately 2.12 to 2.82 mbgs, and this uppermost water bearing unit represents an unconfined aquifer. The unconfined aquifer extends to the maximum investigation depth of 3.96 mbgs.

The borehole locations are shown on Figure 5. A figure showing the lines of cross-section is provided as Figure 6A. Cross-sections summarizing the subsurface geological conditions at the time of the Phase Two ESA have been provided as Figures 6B and 6C.

Hydrogeological Characteristics

The groundwater flow direction in the unconfined aquifer at the Phase Two Property is inferred to be towards the southeast (see Figure 7).

The horizontal hydraulic gradient within the unconfined aquifer at the Phase Two Property was estimated to be 0.02 across the Site, with a steeper horizontal hydraulic gradient of 0.04 at the southeastern end of the property, near the Eglinton Avenue road allowance. As nested wells were not installed on the Site, vertical hydraulic gradients were not calculated.

Depth to Bedrock and Shallow Soil Property Assessment

Bedrock was encountered at each of the borehole locations at depths ranging from 1.83 mbgs at borehole MW19-04 to 3.66 mbgs at borehole MW19-02 (i.e., greater than 2.0 mbgs at all borehole locations). As such, the Phase Two Property is not a shallow soil property as defined by Section 43.1 of O. Reg. 153/04.

Depth to Water Table

The water table at the Phase Two Property is located within the shallow clayey silt to silt unit, located above the weathered shale bedrock that has been interpreted to be an unconfined aquifer. The depth to the water table across the Phase Two Property ranges from approximately 2.12 to 2.80 mbgs.

Site Sensitivity

The pH values measured in the submitted soil samples were within the limits for non-sensitive sites. The Phase Two Property is also not an area of natural significance and it is not adjacent to, nor does it contain land within 30 metres of, an area of natural significance. As such, the Phase Two Property is not an environmentally sensitive area as defined by Section 41 of O. Reg. 153/04.

Soil Imported to Phase Two Property

No soil was imported to the Phase Two Property during completion of the Phase Two ESA.

Proposed Buildings and Other Structures

Pinchin understands that the redevelopment of the Phase Two Property will include the construction of 3storey town homes and part of a residential tower with one level of underground parking. The remainder of the tower extends to the property to the west (91 Eglinton Avenue West).

5.10.5 Applicable Site Condition Standards

Based on the grain size analysis of representative soil samples collected during the Phase Two ESA and the observed stratigraphy at the borehole locations, Pinchin concluded that over two-thirds of the overburden at the Phase Two Property is medium and fine-textured as defined by O. Reg. 153/04 and Site Condition Standards for coarse-textured soil were not applied.

Based on the information obtained from the Phase One and Two ESAs, the appropriate Site Condition Standards for the Phase Two Property are:

- *"Table 2: Full Depth Generic Site Condition Standards for Use in a Potable Ground Water Condition"*, provided in the Ontario Ministry of the Environment, Conservation and Parks (MECP) document entitled, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" dated April 15, 2011 (Table 2 Standards) for:
 - Medium to fine-textured soils; and
 - Residential/parkland/institutional property use.

5.10.6 Contaminants Exceeding Applicable Site Condition Standards in Soil

All soil samples collected during the Phase Two ESA met the applicable *Table 2 Standards* for the parameters analyzed.

5.10.7 Contaminants Exceeding Applicable Site Condition Standards in Groundwater

All groundwater samples collected during the Phase Two ESA met the applicable *Table 2 Standards* for the parameters analyzed.

5.10.8 Meteorological and Climatic Conditions

The groundwater depth data collected over the course of both monitoring events indicate that the temporal fluctuations in the unconfined water table appear to be minimal over the short time interval between monitoring rounds (16 days). However, there is insufficient information available for Pinchin to assess the potential for seasonal variability in groundwater depths at the Phase Two Property, due to the short time interval between monitoring events.

Interaction of the groundwater at the Phase Two Property with buried utilities is possible given that the water table at the Phase Two Property is located at approximate depths of between 2.12 and 2.80 mbgs and the utilities may be located at depths ranging from approximately 2 to 3 mbgs. However, there were no underground utilities on the Site at the time of the Phase Two ESA. In addition, given that no groundwater impacts were identified at the Phase Two Property, preferential migration of contaminants along utilities is not considered to be a concern. As such, it is the QP's opinion that meteorological or climatic conditions have not influenced the distribution or migration of the contaminants at the Phase Two Property.

5.10.9 Soil Vapour Intrusion

No volatile parameters were identified at concentrations exceeding the *Table 2 Standards*. As such, soil vapour intrusion into buildings at the Phase Two Property is not considered a concern.

5.10.10 Contaminant Exposure Assessment

Given that all soil and groundwater samples collected during the Phase Two ESA met the applicable *Table 2 Standards*, Pinchin considered that an evaluation of potential exposure pathways and receptors was unnecessary.

6.0 CONCLUSIONS

Pinchin completed a Phase Two ESA at the Phase Two Property at the request of the Client, in accordance with the requirements stipulated in O. Reg. 153/04, in order to support the acquisition of the Site, financing and in support of the Client's application for zoning and other approvals being requested from the City of Mississauga.

The Phase Two ESA completed by Pinchin included the advancement of 8 boreholes at the Phase Two Property, 5 of which were completed as groundwater monitoring wells to facilitate the sampling of groundwater.

Based on Site-specific information, the applicable regulatory standards for the Phase Two Property were determined to be the *Table 2 Standards* for residential land use and medium and fine-textured soils. Soil samples were collected from each of the borehole locations and submitted for laboratory analysis of PHCs, PAHs, PCBs, metals and/or inorganic parameters, sodium. and OC pesticides. In addition, groundwater samples were collected from the 5 newly-installed monitoring wells and submitted for laboratory analysis of PHCs, PAHs, PCBs, metals, PCBs, metals and/or inorganic parameters, oC pesticides, sodium, chloride, and ammonia.

The laboratory results for the submitted soil and groundwater samples indicated that all reported concentrations for the parameters analyzed met the corresponding *Table 2 Standards*. The maximum reported soil and groundwater concentrations for the parameters analyzed are summarized in Tables 6 and 7, respectively.

It is the opinion of the QP who supervised the Phase Two ESA that the applicable *Table 2 Standards* for soil and groundwater at the Phase Two Property have been met as of the Certification Date of April 5th, 2019 and that no further subsurface investigation is required in relation to assessing the environmental quality of soil and groundwater at the Phase Two Property.

6.1 Signatures

This Phase Two ESA was undertaken under the supervision of Craig Kelly, B.Sc., P.Geo., QP_{ESA} in accordance with the requirements of O. Reg. 153/04, as per the requirements of the City of Mississauga.

6.2 Terms and Limitations

This Phase Two ESA was performed for 91 Eglinton limited Partnership (Client) in order to investigate potential environmental impacts at 131 Eglinton Avenue East in Mississauga, Ontario (Site). The term recognized environmental condition means the presence or likely presence of any hazardous substance on a property under conditions that indicate an existing release, past release, or a material threat of a release of a hazardous substance into structures on the property or into the ground, groundwater, or surface water of the property. This Phase Two ESA does not quantify the extent of the current and/or recognized environmental condition or the cost of any remediation.

Conclusions derived are specific to the immediate area of study and cannot be extrapolated extensively away from sample locations. Samples have been analyzed for a limited number of contaminants that are expected to be present at the Site, and the absence of information relating to a specific contaminant does not indicate that it is not present.

No environmental site assessment can wholly eliminate uncertainty regarding the potential for recognized environmental conditions on a property. Performance of this Phase Two ESA to the standards established by Pinchin is intended to reduce, but not eliminate, uncertainty regarding the potential for recognized environmental conditions on the Site, and recognizes reasonable limits on time and cost.

This Phase Two ESA was performed in general compliance with currently acceptable practices for environmental site investigations, and specific Client requests, as applicable to this Site.

This report was prepared for the exclusive use of the Client, subject to the terms, conditions and limitations contained within the duly authorized proposal for this project. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, is the sole responsibility of such third parties. Pinchin accepts no responsibility for damages suffered by any third party as a result of decisions made or actions conducted.

If additional parties require reliance on this report, written authorization from Pinchin will be required. Pinchin disclaims responsibility of consequential financial effects on transactions or property values, or requirements for follow-up actions and costs. No other warranties are implied or expressed. Furthermore, this report should not be construed as legal advice. Pinchin will not provide results or information to any party unless disclosure by Pinchin is required by law.

Phase Two Environmental Site Assessment 131 Eglinton Avenue East, Mississauga, Ontario 91 Eglinton Limited Partnership

Pinchin makes no other representations whatsoever, including those concerning the legal significance of its findings, or as to other legal matters touched on in this report, including, but not limited to, ownership of any property, or the application of any law to the facts set forth herein. With respect to regulatory compliance issues, regulatory statutes are subject to interpretation and these interpretations may change over time.

7.0 REFERENCES

The following documents provided information used in this report:

- Association of Professional Geoscientists of Ontario. Guidance for Environmental Site Assessments under Ontario Regulation 153/04 (as amended). April 2011.
- Ontario Ministry of the Environment. Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario. December 1996.
- Ontario Ministry of the Environment. Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. March 9, 2004 amended July 1, 2011.
- Ontario Ministry of the Environment. Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. April 15, 2011.
- Pinchin Ltd. Phase One Environmental Site Assessment, 131 Eglinton Avenue East, Mississauga, Ontario. Prepared for 91 Eglinton Limited Partnership, April 18, 2019.
- Province of Ontario. Environmental Protection Act, R.S.O 1990, Chapter E.19.
- Province of Ontario. R.R.O. 1990, Regulation 347, General Waste Management, as amended by Ontario Regulation 234/11.
- Province of Ontario. Ontario Regulation 153/04: Records of Site Condition Part XV.1 of the Act. Last amended by Ontario Regulation 312/17 on July 28, 2017.
- U.S. Environmental Protection Agency Region 1. Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells. Revised January 19, 2010.
- U.S. Environmental Protection Agency Region 1. Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells. Revised January 19, 2010.

\\pinchin.com\Miss\Job\230000s\0230989.000 Liberty,131Eglinton,EDR,PhaseOneESA\0230989.001 Liberty,131Eglinton,EDR,PhaseTwo\Deliverables\Report Text\230989.001 revised FINAL RSC Phase Two ESA 131 Eglinton Ave E Miss ON Jul 19 2019.docx

Template: Master Report for RSC Phase Two ESA Report – Unimpacted Site, EDR, September 25, 2018

8.0 FIGURES AND TABLES

PCA Designation	Location of Potential Environmental Concerns (PCAs) within the Phase One Study Area	Potentially Contaminating Activity	Locat (On-Sit
1	Heating for the former parking garage located at the southeast end of the Phase One Property was provided by a fuel oil-fired furnace since 2002. Furnace oil was supplied from a 227-litre (50-gallon) capacity AST located at the west exterior wall prior to its removal in 2006.	Item 28 – Gasoline and Associated Products Storage in Fixed Tanks	(
2	Historical heating source for the former farm house located at the southeast end of the Phase One Property could not be determined. The former farm house was constructed prior to 1954 and demolished in 2015/2016.	Item 28 – Gasoline and Associated Products Storage in Fixed Tanks	(
3	Frank's Garden Centre, located at the Phase One Property, was listed in the Pesticide Register database as a limited vendor of pesticides (year unknown).	ltem 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications	(
4	Frank's Garden Supply was listed in the city directories at the Phase One Property in 1991. Pinchin infers that the historical operations conducted by the garden supply center could involve bulk storage of fertilizers.	Item 22 – Fertilizer Manufacturing, Processing and Bulk Storage	(
5	On September 21, 1996, an undisclosed quantity of diesel fuel was released from a cargo truck at the intersection of Forum Drive and Eglinton Avenue, located approximately 200 metres (m) northeast and inferred to be hydraulically transgradient of the Phase One Property.	Other – Spills	C
6	Hazardous waste generation at 155 Forum Drive. This property is located approximately 100 m north, and is inferred to be hydraulically upgradient of the Phase One Property.	Other - Hazardous Waste Generation	C
7	Hazardous waste generation at 5033 Hurontario Street. This property is located approximately 230 m southwest, and is inferred to be hydraulically transgradient of the Phase One Property.	Other - Hazardous Waste Generation	C
8	Hazardous waste generation at 5035 Hurontario Street. This property is located approximately 250 m southwest, and is inferred to be hydraulically transgradient of the Phase One Property.	Other - Hazardous Waste Generation	C
9	The property located at 5033 Hurontario Street was listed in the Pesticide Register database as a vendor. This property is located approximately 230 m southwest, and is inferred to be hydraulically transgradient of the Phase One Property.	ltem 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications	C
10	An inferred apple orchard was located at 91 Eglinton Avenue East, as indicated on the 1954 through 1985 aerial photographs. Pinchin notes that the application of pesticides and herbicides was a generally acceptable practice. The apple orchard was located approximately 60 m southwest and inferred to be hydraulically transgradient relative to the Phase One Property.	ltem 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications	C
11	Speedy Auto Service and Speedy Muffler King were listed in the city directories at 5033 Hurontario Street from 1997 to 2001. This property is located approximately 230 m southwest of the Phase One Property, and is inferred to be hydraulically transgradient relative to the Phase One Property.	Item 28 – Gasoline and Associated Products Storage in Fixed Tanks	C
12	A pad-mounted oil-cooled transformer was observed to the northwest of the Phase One Property during the Site reconnaissance. The transformer is located approximately 15 m northwest of the Phase One Property, and is inferred to be hydraulically upgradient relative to the Phase One Property.	Item 55 – Transformer Manufacturing, Processing and Use	(

	LEGEND
ation of PCA ite or Off-Site)	PHASE TWO PROPERTY BOUNDARY PHASE ONE STUDY AREA BOUNDARY MTC MULTI-TENANT COMMERCIAL MTR MULTI-TENANT RESIDENTIAL
On-Site	 TRANSFORMER PCA NUMBER CONTRIBUTES TO AN APEC
On-Site	 PCA NUMBER DOES NOT CONTRIBUTE TO AN APEC APEC AREA OF ENVIRONMENTAL CONCERN PCA POTENTIALLY CONTAMINATING
On-Site	ACTIVITY
On-Site	
Off-Site	
Off-Site	
Off-Site	PINCHIN
Off-Site	
Off-Site	PROJECT NAME PHASE TWO ENVIRONMENTAL SITE ASSESSMENT CLIENT NAME
Off-Site	91 EGLINTON LIMITED PARTNERSHIP PROJECT LOCATION 131 EGLINTON AVENUE EAST, MISSISSAUGA, ONTARIO FIGURE NAME
Off-Site	POTENTIALLY CONTAMINATING ACTIVITIES
Off-Site	SCALE PROJECT NO. AS SHOWN 230989.001
	JULY 2019 4A

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (On- Site or Off- Site)	Contaminants of Potential Concern	M Pe In (C Se
APEC #1 (Historical heating oil AST associated with the historical farm house formerly utilized as a car parking garage)	West exterior wall of the historical farm house that was converted to a car parking garage located at the southeast end of the Phase One Property.	ltem 28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs PAHs BTEX	So
APEC #2 (Unknown heating source for the historical farm house)	In the vicinity of the historical farm house located at the southeast end of the Phase One Property.	Item 28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs PAHs BTEX	So
APEC #3 (Frank's Garden Centre)	Central and southeast portions of the Phase One Property	Item 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large- Scale Applications	On-Site	Metals and Inorganics Pesticides and Herbicides	So
APEC #4 (Frank's Garden Centre)	Central and southeast portions of the Phase One Property	ltem 22 – Fertilizer Manufacturing, Processing and Bulk Storage	On-Site	Metals and Inorganics Pesticides and Herbicides	So

ledia otentially npacted Groundwater, oil and/or ediment)	LEGEND MTR MULTI-TENANT F APEC AREA OF ENVIR BTEX BENZENE, TOLU AND TOTAL XYLENES PHCs PETROLEUM HY F1-F4 PAHS POLYCYCLIC AF HYDROCARBONS NA NOT APPLICABLE APEC1 APEC2 APEC2 APEC3&4	RESIDENTIAL ONMENTAL CONCERN ENE, ETHYLBENZENE DROCARBON FRACTIONS ROMATIC
oil and roundwater		
oil and roundwater		
oil	PROJECT NAME PHASE TWO ENVI ASSES CLIENT NAME	RONMENTAL SITE SMENT
oil	91 EGLINTON LIMIT PROJECT LOCATION 131 EGLINTON MISSISSAUG	AVENUE EAST,
	FIGURE NAME AREAS OF ENVIRONMEN	POTENTIAL TAL CONCERN
	SCALE	PROJECT NO.
	AS SHOWN	230989.001
	DATE JULY 2019	FIGURE NO. 4B

HORIZONTAL SCALE 1:200 VERTICAL SCALE 1:150

Sample Designation	MW19-01-S1	MW19-01_S3	DI IP19-01	MW19-02 S1	MW19-03-S1	MW19-03-S2	
Sample Collection Date (dd/mm/uner)	27/02/2010	27/03/2010	27/03/2010	27/02/2010	27/03/2010	27/02/2010	
Sample Denth (mbgs)	0.00 - 0.76	1 52 - 2 20	1 52 - 2 20	0.00 - 0.76	0.00 - 0.76	0.76 - 1.52	
Sample Location	0.00 = 0.70	1.52 = 2.29	1.52 = 2.29 MM/10.01	MIM/10.00	0.00 - 0.70	N/1/10 00	MECP Table 2
Laboratory Cortificate of Analysis No	MW19-01	MW19-01	MW19-01	MW19-02	MW19-03	MW19-03	Standards*
Laboratory Certificate of Analysis No.	B980920	B980920	B980920	B980920	B980920	B980920	
Date of Analysis (dd/mm/yyyy)	2019/03/29 -	2019/03/29 -	2019/03/29 -	2019/03/29 -	2019/03/29 -	2019/03/29 -	
	2019/04/03	2019/04/03	2019/04/03	2019/04/03	2019/04/03	2019/04/03	
Miscellaneous Parameters							
pH (pH Units)	7.49	-	-	7.67	-	7.68	NV
Sieve #200 <0.075 mm (%)	69.8	-	-	-	-	-	NV
Sieve #200 >0.075 mm (%)	30.2 Fine	-	-	-		-	NV
Volatile Organic Compounds	T IIIG						140
Benzene	-	-	-	<0.020 (<0.020)	-	-	0.17
Ethylbenzene	-	-	-	<0.020 (<0.020)	-	-	6.0
Toluene	-	-	-	<0.020 (<0.020)	-	-	1.6
Xylenes (I otal) Potroloum Hydrocarbons (PHCs)	-	-	-	<0.040 (<0.040)	-	-	25
PHCs F1 (Ce - Cto)	-	-	-	<10 (<10)	-		65
PHCs E2 (>Cup - Cup)		_		<10 (110)		_	150
PHCs F3 (>Cro - Cro)	-	-	-	< 10	-	-	150
PHCs E4 (>C _ C)	-	-	-	<50	-	-	1300
Polycyclic Aromatic Hydrocarbons	-	-	-	<50	-	-	5600
Acenaphthene	-	-	-	<0,0050	-	-	29
Acenaphthylene	-			<0.0050			0.17
Anthracene	-	-	-	< 0.0050	-	-	0.74
Benzo(a)anthracene	-	-	-	< 0.0050	-	-	0.63
Benzo(a)pyrene Benzo(b)fluoranthene	-	-	-	<0.0050	-	-	0.3
Benzo(ghi)perylene	-	-	-	<0.0050		-	7.8
Benzo(k)fluoranthene	-			<0.0050			0.78
Chrysene	-	-	-	<0.0050	-	-	7.8
Dibenzo(a,h)anthracene	-	-	-	< 0.0050	-	-	0.1
Fluorene	-	-	-	<0.0050	-	-	0.69
Indeno(1,2,3-cd)pyrene	-	-	-	<0.0050		-	0.48
Methylnaphthalene 2-(1-)	-	-	-	< 0.0071	-	-	3.4
Naphthalene	-	-	-	<0.0050	-	-	0.75
Phenanthrene	-	-	-	< 0.0050	-	-	7.8
Pyrene Motale	-	-	-	<0.0050	-	-	78
Antimony	0.35	<0.20 (<0.20)	0.37	0.22	-	0.28	7.5
Arsenic	6.1	5.5 (5.6)	10	6.5	-	11	18
Barium	75	57 (56)	61	130	-	99	390
Beryllium Beren (Tetal)	0.74	0.69 (0.71)	0.76	0.74	-	0.74	5
Boron (Hot Water Soluble)	7.9	10 (9.9)		9		0.2	120
Cadmium	0.36	<0.10 (0.10)	<0.10	0.77	-	0.19	1.2
Chromium (Total)	21	18 (19)	19	20	-	23	160
Chromium (Hexavalent)	<0.2	<0.2	<0.2	<0.2	-	<0.2	10
Copper	10	11 (11)	13	9.8	-	14	22
Lead	30	8.7 (8.8)	10	38		16	120
Mercury	< 0.050	<0.050 (<0.050)	<0.050	< 0.050	-	<0.050	1.8
Molybdenum	0.53	<0.50 (<0.50)	0.57	0.64	-	<0.50	6.9
Nickel	19	22 (23)	26	21	-	29	130
Selenium Silver	<0.50	<0.50 (<0.50)	<0.50	<0.50	-	<0.50	2.4
Thallium	0.14	0.14 (0.14)	0.13	0.13	-	0.13	1
Uranium	0.59	0.46 (0.45)	0.52	0.61	-	0.5	23
Vanadium	30	26 (26)	27	30	-	34	86
	68	53 (53)	5/	78	-	5/	340
Cvanide (Free)	0.03	-	-	0.02	-	<0.01	0.051
Electrical Conductivity (mS/cm)	0.25		-	0.43	-	-	0.7
Sodium Adsorption Ratio (No Units)	0.19	-	-	0.32	-	-	5
Organochlorinated Pesticides & PCBs	10,0000			10 0000	-0.000		0.05
o p-DDD + p p-DDD	<0.0020			<0.0020	<0.020		0.05
o,p-DDE + p,p-DDE	0.0071			<0.0020	<0.020	1	0.33
o,p-DDT + p,p-DDT	0.0028			<0.0020	<0.020		1.4
Total Endosulfan	<0.0020			<0.0020	<0.020		0.04
Aldrin	<0.015		1	<0.015	<0.15		0.35
a-Chlordane	<0.0020			<0.0020	<0.020		NV
g-Chlordane	<0.0020			<0.0020	<0.020		NV
o,p-DDD	<0.0020			<0.0020	<0.020		NV
p,p-DDD	< 0.0020			< 0.0020	< 0.020		NV
n p-DDE	<0.0020			<0.0020	<0.020		IN V NV
o,p-DDT	<0.0020			<0.0020	<0.020	1	NV
p,p-DDT	0.0028			<0.0020	<0.020		NV
Dieldrin	<0.0020			<0.0020	<0.020		0.05
Lindane	< 0.0020			< 0.0020	< 0.020		0.063
Endosulfan II (apria)	<0.0020			<0.0020	<0.020		IN V NV
Endrin	<0.0020			<0.0020	<0.020	1	0.04
Heptachlor	<0.0020			<0.0020	<0.020		0.15
Heptachlor epoxide	<0.0020			<0.0020	<0.020		0.05
Hexachlorobenzene	< 0.0020			< 0.0020	< 0.020		0.52
Hexachloroethane	<0.0020			<0.0020	<0.020		0.014
Methoxychlor	<0.0050			<0.0050	< 0.050	<u> </u>	0.13
		-					

MECP Table 2 Standards*

Notes:

Soll, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, Table 2 Standards, Medium/Fine-Textured Soils, Potable Groundwater Condition, for Residential/Parkland/Institutional Property Use.

Exceeds Site Condition Standard Reportable Detection Limit Exceeds Site Condition Standard All Units In Micrograms Per Gram, Unless Otherwise Noted Bracketed Values Indicate Laboratory Duplicate Results Metres Below Ground Surface MilliSiemens Per Centimetre No Value

BOLD Units (##) mbgs mS/cm NV

Sample Designation	MW19-03 S3	DUP19-03	MW19-04 S1	MW19-04 S2	MW19-04 S3	MW19-05 S1	
Sample Collection Date (dd/mm/yyyy)	27/03/2019	27/03/2019	27/03/2019	27/03/2019	27/03/2019	27/03/2019	
Sample Depth (mbgs)	1.52 - 2.29	1.52 - 2.29	0.00 - 0.76	0.76 - 1.52	1.52 - 2.13	0.00 - 0.76	
Sample Location	MW19-03	MW19-03	MW19-04	MW19-04	MW19-04	MW19-05	MECP Table 2
Laboratory Certificate of Analysis No.	B980920	B980920	B980920	B980920	B980920	B980920	Standards*
	2010/02/20	2010/02/20	2010/02/20	2010/02/20	2010/02/20	2010/02/20	
Date of Analysis (dd/mm/yyyy)	2019/03/29 -	2019/03/29 -	2019/03/29 -	2019/03/29 =	2019/03/29 -	2019/03/29 -	
Miscellaneous Parameters							
pH (pH Units)	-	-	7.29	-	7.77	7.22	NV
Sieve #200 <0.075 mm (%)	-	-	-	-	-	-	NV
Soil Texture	-	-	-	-	-	-	NV
Volatile Organic Compounds			-				
Benzene Ethylbenzene	<0.020	<0.020	-	-	<0.020	<0.020	0.17
Toluene	<0.020	<0.020	-	-	<0.020	<0.020	1.6
Xylenes (Total)	<0.040	<0.040	-	-	<0.040	<0.040	25
PHCs F1 (Ce - Cto)	<10	<10	-	-	<10	<10	65
PHCs F2 (>C ₁₀ - C ₁₆)	17	<10	-	-	<10	<10	150
PHCs F3 (>C ₁₆ - C ₃₄)	<50	<50	-	-	<50	<50	1300
PHCs F4 (>C ₃₄ - C ₅₀)	<50	<50	-	-	<50	<50	5600
Polycyclic Aromatic Hydrocarbons	-0.0050	-0.0050			-0.0050	-0.0050	00
Acenaphthylene	<0.0050	<0.0050	-	-	<0.0050	<0.0050	29
Anthracene	<0.0050	< 0.0050	-	-	<0.0050	< 0.0050	0.74
Benzo(a)anthracene	< 0.0050	< 0.0050	-	-	< 0.0050	< 0.0050	0.63
Benzo(b)fluoranthene	<0.0050	<0.0050	-	-	< 0.0050	< 0.0050	0.3
Benzo(ghi)perylene	<0.0050	<0.0050	-	-	< 0.0050	<0.0050	7.8
Denzo(K)fluorantnene Chrysene	<0.0050	<0.0050	-	-	<0.0050	<0.0050	0.78
Dibenzo(a,h)anthracene	<0.0050	<0.0050	-		<0.0050	<0.0050	0.1
Fluoranthene	< 0.0050	< 0.0050	-	-	< 0.0050	< 0.0050	0.69
Indeno(1,2,3-cd)pyrene	<0.0050	<0.0050	-	-	<0.0050	<0.0050	69 0.48
Methylnaphthalene 2-(1-)	<0.0071	<0.0071	-	-	<0.0071	<0.0071	3.4
Naphthalene	< 0.0050	< 0.0050	-	-	< 0.0050	< 0.0050	0.75
Pyrene	<0.0050	<0.0050	-	-	<0.0050	<0.0050	7.8
Metals	_						
Antimony Arsenic	-	-	-	<0.20	-	0.28	7.5
Barium	-	-	-	130	-	150	390
Beryllium	-	-	-	0.8	-	0.92	5
Boron (Hot Water Soluble)	-	-	-	- 8.2	-	8.4	120
Cadmium	-	-	-	0.21	-	0.26	1.2
Chromium (Total) Chromium (Hexavalent)	-	-	-	26	-	23	160
Cobalt	-	-	-	11	-	11	22
Copper	-	-	-	23	-	32	180
Lead Mercury	-	-	-	9.7	-	18	120
Molybdenum	-	-	-	<0.50	-	0.77	6.9
Nickel	-	-	-	19	-	20	130
Silver	-	-	-	<0.20	-	<0.20	2.4
Thallium	-	-	-	0.15	-	0.15	1
Uranınum Vanadium	-	-	-	0.75	-	1.1	23
Zinc	-	-	-	100	-	71	340
Inorganics			0.05			0.00	0.054
Electrical Conductivity (mS/cm)	-	-	0.05	-	-	0.02	0.051
Sodium Adsorption Ratio (No Units)	-	-	0.95	-	-	2.2	5
Organochlorinated Pesticides & PCBs			<0.020			<0.0020	0.05
o,p-DDD + p,p-DDD		-	<0.020	-	-	0.0022	3.3
o,p-DDE + p,p-DDE		-	< 0.020	-	-	0.053	0.33
o,p-DDT + p,p-DDT Total Endosulfan		-	<0.020	-	-	<0.0020	1.4
Total PCB		-	<0.15	-	-	<0.020	0.35
Aldrin		-	< 0.020	-	-	< 0.0020	0.05
a-Chlordane		-	<0.020	-	-	<0.0020	NV
o,p-DDD		-	<0.020	-	-	<0.0020	NV
p,p-DDD		-	< 0.020	-	-	0.0022	NV
p,p-DDE			<0.020		-	0.053	NV
o,p-DDT		-	<0.020	-	-	< 0.0020	NV
Dieldrin		-	<0.020	-	-	<0.0020	NV 0.05
Lindane		-	<0.020	-	-	<0.0020	0.063
Endosulfan I (alpha)		-	< 0.020	-	-	< 0.0020	NV
Endrin			<0.020	-	-	<0.0020	0.04
Heptachlor		-	<0.020	-	-	< 0.0020	0.15
Heptachlor epoxide Hexachlorobenzene		-	<0.020	-	-	<0.0020	0.05
Hexachlorobutadiene		-	<0.020	-	-	<0.0020	0.014
Hexachloroethane		-	<0.020	-	-	<0.0020	0.071
weutoxychior	1	-	SU.U5U	-	-	<0.0050	U.13

MECP Table 2 Standards* Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, Table 2 Standards, Medium/Fine-Textured Soils, Potable Groundwater Condition, for Residential/Parkland/Institutional Property Use.

BOLD Units (##) mbgs mS/cm NV

Exceeds Site Condition Standard Reportable Detection Limit Exceeds Site Condition Standard All Units In Micrograms Per Gram, Unless Otherwise Noted Francketed Values Indicate Laboratory Duplicate Results Metres Below Ground Surface MillSilemens Per Centimetre No Value

Notes:

Sample Designation	DUP19-05	BH19-06 S1	DUP 19-06	BH19-06 S2	BH19-07 S1	DUP19-07	
Sample Collection Date (dd/mm/vvvv)	27/03/2019	27/03/2019	27/03/2019	27/03/2019	27/03/2019	27/03/2019	
Semple Denth (mbas)	0.00 0.76	0.00 0.76	0.00 0.76	0.76 1.50	0.00 0.76	0.00 0.76	
Sample Depth (mbgs)	0.00 - 0.76	0.00 - 0.76	0.00 - 0.76	0.70 - 1.52	0.00 - 0.76	0.00 - 0.76	MECR Table 2
Sample Location	MW19-05	BH19-06	BH19-06	BH19-06	BH19-07	BH19-07	WECP Table 2
Laboratory Certificate of Analysis No.	B980920	B980920	B980920	B980920	B980920	B980920	Standards*
	8000020	2000020	BOCCOLO	DOCOLO	2000020	8000020	
Date of Analysis (dd/mm/uuuu)	2019/03/29 -	2019/03/29 -	2019/03/29 -	2019/03/29 -	2019/03/29 -	2019/04/03 -	
Date of Analysis (uu/inin/yyyy)	2010/04/03	2010/04/03	2010/04/03	2010/04/03	2010/04/03	2010/04/03	
	2013/04/03	2013/04/03	2013/04/03	2013/04/03	2013/04/03	2013/04/03	
Miscellaneous Parameters				-			
pH (pH Units)	7.51	7.71	-	-	7.28	-	NV
Sieve #200 <0.075 mm (%)	-	-	-	81.5	-	-	NV
Sieve #200 >0.075 mm (%)	-	-	-	18.5	-	-	NV
Soil Texture	-	-	-	Fine	-	-	NV
Volatile Organic Compounds							
Benzene	-	-	-	<0.020	< 0.020	-	0.17
Ethylbenzene	-	-	-	<0.020	< 0.020	-	6.0
Toluene	-	-	-	< 0.020	< 0.020	-	1.6
Xylenes (Total)	-	-		< 0.040	< 0.040	-	25
Petroleum Hydrocarbons (PHCs)							
PHCs F1 (C ₆ - C ₁₀)	-	-	-	<10	<10	-	65
PHCs E2 (>Cup = Cup)	_	-	_	<10	<10	-	150
	-	-		<10	~10	-	150
PHUS F3 (>C ₁₆ - C ₃₄)	-	-	-	<50	<50	-	1300
PHCs F4 (>C ₃₄ - C ₅₀)	-	-	-	<50	<50	-	5600
Polycyclic Aromatic Hydrocarbons							
Acenaphthene	-	-	-	< 0.0050	< 0.0050	-	29
Acenaphthylene	-	-	-	< 0.0050	< 0.0050	-	0.17
Anthracene	-	-	-	< 0.0050	< 0.0050	-	0.74
Benzo(a)anthracene	-	-	-	<0,0050	0.0098	-	0.63
Benzo(a)pyrene	-	-	-	<0,0050	0.0130	-	0.3
Benzo(b)fluoranthene	-	-	-	<0,0050	0.0210	-	0.78
Benzo(ghi)perylene	-	_	-	<0.0050	0.0150	_	7.8
Benzo(k)fluoranthene	-	-	-	<0.0050	0.0066	-	0.78
Chrysene	-	-	-	<0.0000	0.0120	-	7.8
Dibenzo(a,b)anthracene	-	-	-	<0.0050	<0.0120	-	0.1
Eluoranthene	-	-	-	<0.0050	~0.0000	-	0.60
Eluorene	-	-	-	<0.0050	<0.0240	-	0.09
Indepo(1.2.3-cd)pyrepe	-	-	-	<0.0050	0.0000	-	0.49
Methylpaphthalene 2 (1)	-	-	-	<0.0030	0.0120	-	0.48
Nanhthalene	-	-	-	<0.0071	<0.0071	-	3.4
Departhrope	-	-	-	<0.0050	<0.0050	-	0.75
Prene	-	-	-	<0.0050	0.0087	-	7.8
Fylelle	-	-	-	<0.0050	0.0250	-	/8
Metals							
Antimony	-	<0.20	-	-	<0.20	-	7.5
Arsenic	-	5.5	-	-	11	-	18
Barium	-	120	-	-	410	-	390
Beryllium	-	0.88	-	-	1.2	-	5
Boron (Total)	-	9.5	-	-	8.3	-	120
Boron (Hot Water Soluble)	-	-	-	-	0.82	-	1.5
Cadmium	-	0.13	-	-	0.59	-	1.2
Chromium (Total)	-	27	-	-	33	-	160
Chromium (Hexavalent)	-	<0.2	-	-	<0.2	-	10
Cobalt	-	12	-	-	18	-	22
Copper	-	34	-	-	45	-	180
Lead	-	9.4	-	-	11	-	120
Mercury	-	< 0.050	-	-	0.071	-	1.8
Molybdenum	-	0.51	-	-	0.74	-	6.9
Nickel	-	27	-	-	27	-	130
Selenium	-	< 0.50	-	-	1	-	2.4
Silver	-	<0.20	-	-	<0.20	-	25
Thallium	-	0.17	-	-	0.21	-	1
Uraninum	-	0.87	-	-	1.0	-	23
Vanadium	-	39	-	-	46	-	86
Zinc	-	58	-	-	72	-	340
Inorganics							
Cvanide (Free)	-	< 0.01	-	-	0.01	-	0.051
Electrical Conductivity (mS/cm)	-	0.46 (0.46)	-		0.34	0.37	0.7
Sodium Adsorption Ratio (No Units)	-	0.74	-		0.53	0.61	5
Organochlorinated Pesticides & PCBs							
Chlordane (Total)	-	<0.0020	<0.0020	-	<0.0020	-	0.05
o n-DDD + n n-DDD	-	<0.0020	<0.0020	-	0.0038		3.3
o.p-DDE + p.p-DDE	-	<0.0020	0.0038	-	0.034		0.33
$o_p - DDT + p_p - DDT$		<0.0020	<0.0000		0.004		1.4
Total Endosulfan		<0.0020	<0.0020		<0.0070		0.04
Total Endosulian	-	<0.0020	<0.0020	-	<0.0020	-	0.35
Aldrin	-	<0.013	<0.013	-	<0.013	-	0.05
a Chlordona	-	<0.0020	<0.0020	-	<0.0020	-	0.05
a Chlordane	-	<0.0020	<0.0020	-	<0.0020	-	NV NV
	-	<0.0020	<0.0020	-	<0.0020	-	NV NV
	-	<0.0020	<0.0020	-	<u>\0.0020</u>	-	INV NV
P,P-000		<0.0020	~0.0020	-	0.0038	-	IN V
	-	<0.0020	SU.UU2U	-	<0.0020 0.0020	-	INV NV
	-	<0.0020	0.0038	-	0.034	-	NV NV
0,p-DDT	-	<0.0020	<0.0020	-	<0.0020	-	NV
p,p-DD f	-	< 0.0020	< 0.0020	-	0.0079	-	NV
Dieldrin	-	<0.0020	<0.0020	-	<0.0020	-	0.05
Lindane	-	< 0.0020	< 0.0020	-	<0.0020	-	0.063
Endosulfan I (alpha)	-	<0.0020	<0.0020	-	<0.0020	-	NV
Endosulfan II (beta)	-	<0.0020	<0.0020	-	<0.0020	-	NV
Endrin	-	<0.0020	<0.0020	-	<0.0020	-	0.04
Heptachlor	-	<0.0020	<0.0020	-	<0.0020	-	0.15
Heptachlor epoxide	-	<0.0020	<0.0020	-	<0.0020	-	0.05
Hexachlorobenzene	-	<0.0020	<0.0020	-	<0.0020	-	0.52
Hexachlorobutadiene	-	<0.0020	< 0.0020	-	<0.0020	-	0.014
Hexachloroethane	-	< 0.0020	< 0.0020	-	< 0.0020	-	0.071
Methoxychlor	-	< 0.0050	<0.0050	-	<0.0050	-	0.13
-							

MECP Table 2 Standards* Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, Table 2 Standards, Medium/Fine-Textured Soils, Potable Groundwater Condition, for Residential/Parkland/Institutional Property Use.

Notes:

BOLD Units (##) mbgs mS/cm NV

Exceeds Site Condition Standard Reportable Detection Limit Exceeds Site Condition Standard All Units In Micrograms Per Gram, Unless Otherwise Noted Bracketed Values Indicate Laboratory Duplicate Results Metres Below Ground Surface MilliSiemens Per Centimetre No Value

Sample Designation	BH19-07 S1 A	BH19-07 S1 B	BH19-08 S1	BH19-08 S2	
Sample Collection Date (dd/mm/yyyy)	27/03/2019	27/03/2019	27/03/2019	27/03/2019	
Sample Depth (mbgs)	0.00 - 0.76	0.00 - 0.76	0.00 - 0.76	0.76 - 1.52	
Sample Location	BH19-07	BH19-07	BH19-08	BH19-08	MECP Table 2
Laboratory Certificate of Analysis No.	B999737	B999737	B980920	B980920	Standards*
	2000/0/	2000/0/	5000020	2000020	
Date of Analysis (dd/mm/yyyy)					
	2019/04/18	2019/04/18	2019/03/29 - 2019/04/03	2019/03/29 - 2019/04/03	
Miscellaneous Parameters			7.67		NIV/
Sieve #200 <0.075 mm (%)	-	-	-	-	NV
Sieve #200 >0.075 mm (%)	-	-	-	-	NV
Soil Texture	-	-	-	-	NV
Volatile Organic Compounds	1	1	<0.020		0.17
Ethylbenzene	-	-	<0.020	-	6.0
Toluene	-	-	<0.020	-	1.6
Xylenes (Total)	-	-	<0.040	-	25
Petroleum Hydrocarbons (PHCs)	1		<10		05
$PHCs F2 (>C_{40} - C_{40})$	-	-	<10		150
PHCs E3 (>Cro - Cro)			<50		130
PHCs F4 (>Co4 - Cro)			<50		5600
Polycyclic Aromatic Hydrocarbons					5000
Acenaphthene	-	-	<0.0050	-	29
Acenaphthylene	-		<0.0050	-	0.17
Benzo(a)anthracene	-	-	<0.0050	-	0.63
Benzo(a)pyrene	-		<0.0050		0.3
Benzo(b)fluoranthene	-	-	<0.0050	-	0.78
ben∠o(ghi)peryiene Benzo(k)fluoranthene	-	-	<0.0050	-	7.8
Chrysene	-	-	<0.0050	-	7.8
Dibenzo(a,h)anthracene	-	-	<0.0050	-	0.1
Fluoranthene	-	-	<0.0050	-	0.69
Indeno(1.2.3-cd)pyrene	-	-	<0.0050	-	69
Methylnaphthalene 2-(1-)	-	-	<0.0071	-	3.4
Naphthalene	-	-	<0.0050	-	0.75
Phenanthrene	-	-	<0.0050	-	7.8
Metals	-	-	<0.0050	-	10
Antimony	-	-	-	<0.20	7.5
Arsenic	-	-	-	3.7	18
Bervllium	- 23	- 20	-	0.61	390
Boron (Total)	-	-	-	9	120
Boron (Hot Water Soluble)	-	-	-	-	1.5
Cadmium Chromium (Total)	-	-	-	<0.10	1.2
Chromium (Hexavalent)	-	-		<0.2	100
Cobalt	-	-	-	10	22
Copper	-	-	-	37	180
Mercury	-	-	-	<0.050	1.8
Molybdenum	-	-	-	<0.50	6.9
Nickel	-	-	-	21	130
Selenium Silver	-	-	-	<0.50	2.4
Thallium	-	-		0.14	1
Uraninum	-	-	-	0.48	23
Vanadium	-	-	-	25	86
Inorganics	-	-	-	43	340
Cyanide (Free)	-	-	-	<0.01	0.051
Electrical Conductivity (mS/cm)	-	-	0.14	-	0.7
Organochlorinated Pesticides & PCBs	-	-	0.28	-	0
Chlordane (Total)	-	-	<0.020	-	0.05
o,p-DDD + p,p-DDD	-	-	<0.020	-	3.3
o,p-DDE + p,p-DDE	-	-	<0.020	-	0.33
Total Endosulfan	-	-	<0.020	-	0.04
Total PCB	-	-	<0.15	-	0.35
Aldrin	-		<0.020	-	0.05
a-Chlordane	-	-	<0.020	-	NV
o,p-DDD	-		<0.020	-	NV
p,p-DDD	-	-	<0.020	-	NV
0,P-UUE	-	-	<0.020	-	NV NV
o,p-DDT	-	- 1	<0.020	-	NV
p,p-DDT	-	-	<0.020	-	NV
Dieldrin	-		<0.020	-	0.05
Endosulfan I (alpha)	-	-	<0.020	-	0.063 NV
Endosulfan II (beta)	-	-	<0.020	-	NV
Endrin	-	-	<0.020	-	0.04
Heptachlor Heptachlor epoxide	-	-	<0.020	-	0.15
Hexachlorobenzene	-		<0.020	-	0.52
Hexachlorobutadiene	-	-	<0.020	-	0.014
Hexachloroethane Methoxychlor	-	-	<0.020	-	0.071
mounoxyonioi	-	-	~0.000	-	0.10

MECP Table 2 Standards*

Notes:

BOLD Units (##) mbgs mS/cm NV

Exceeds Site Condition Standard Reportable Detection Limit Exceeds Site Condition Standard All Units In Micrograms Per Gram, Unless Otherwise Noted Bracketed Values Indiate Laboratory Duplicate Results Metres Below Ground Surface MilliSiemens Per Centimetre No Value

Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, Table 2 Standards, Medium/Fine-Textured Soils, Potable Groundwater Condition, for Residential/Parkland/Institutional Property Use.

TABLE 2 GROUNDWATER MONITORING WELL ELEVATIONS AND CONSTRUCTION DETAILS

91 Egitinton Limited Partnership 131 Egiinton Avenue East, Mississauga, Ontario

	Organish	Top of Pipe Elevation (mamsl)	Well Construction Details								
Monitoring Well	Surface Elevation (mamsl)		Total Well Depth (mbgs)	Stick-Up Height (metres)	Well Diameter (centimetres)	Screen Slot Size	Monitoring Well Screen Interval (mbgs)	Screen Length (metres)	Sealant Thickness (metres)		
MW19-01	171.10	171.94	3.96	0.84	5.08	010	0.91 - 3.36	3.05	0.61		
MW19-02	169.49	170.37	3.66	0.89	5.08	010	2.13 - 3.66	1.52	1.83		
MW19-03	169.10	169.92	3.96	0.83	5.08	010	0.91 - 3.96	3.05	0.61		
MW19-04	169.26	170.12	3.35	0.86	5.08	010	1.11 - 3.35	2.44	0.61		
MW19-05	169.38	170.37	3.35	0.99	5.08	010	1.11 - 3.35	2.44	0.61		
MW19-05 (Shallow Dry Well)	NM	NM	3.35	-0.10	5.08	010	2.44 - 3.35	0.9	2.1		

Notes:

mamsl Metres Above Mean Sea Level

mbgs Metres Below Ground Surface

TABLE 3 GROUNDWATER MONITORING - WATER LEVELS

91 Egltinton Limited Partnership 131 Eglinton Avenue East, Mississauga, Ontario

Monitoring Well	Ground Surface Elevation (mamsl)	Top of Pipe Elevation (mamsl)	Stick-Up Height (metres)	Date of Monitoring (dd/mm/yyyy)	Calculated Depth to Groundwater from Surface (mbgs)	Measured Depth to Groundwater from Top of Pipe (metres)	Groundwater Elevation (mamsl)	Visual/Olfactory Observations	
	171.10	171.94	0.84	01/04/2019	2.21	3.05	168.89	No sheen or odours	
MW 19-01				02/04/2019	2.35	3.17	168.77	No sheen or odours	
				18/04/2019	2.37	3.21	168.74	No sheen or odours	
MW 19-02	169.49	170.37	0.89	28/3/2019	2.12	3.01	167.36	No sheen or odours	
				28/3/2019	2.19	3.08	167.29	No sheen or odours	
				18/04/2019	2.20	3.09	167.29	No sheen or odours	
MW 19-03	169.10	169.92	0.83	01/04/2019	2.18	3.01	166.91	No sheen or odours	
				02/04/2019	2.24	3.07	166.85	No sheen or odours	
				18/04/2019	2.22	3.05	166.88	No sheen or odours	
MW 19-04	169.26	170.12	0.86	01/04/2019	2.12	2.98	167.14	No sheen or odours	
				02/04/2019	2.50	3.36	166.76	No sheen or odours	
				18/04/2019	2.77	3.63	166.50	No sheen or odours	
MW 19-05	169.38	170.37	0.99	01/04/2019	2.77	3.76	166.61	No sheen or odours	
				02/04/2019	2.82	3.81	166.56	No sheen or odours	
				18/04/2019	2.80	3.79	166.58	No sheen or odours	
MW19-05 (Shallow	NM	NM	-0.10	28/3/2019	NA	Dry	NA	No water yielded after 24 hours. Returned to Re Install well.	

Notes:

mamsl Metres Above Mean Sea Level

mbgs Metres Below Ground Surface

TABLE 4 **GROUNDWATER MONITORING - NON-AQUEOUS PHASE LIQUIDS** 91 Eglinton Limited Partnership 131 Eglinton Avenue East, Mississauga, Ontario

		Date of Monitoring (dd/mm/yyyy)	LNAPL					DNAPL					
Monitoring Well	Top of Pipe Elevation (mamsl)		Measured Depth to Top of LNAPL from Top of Pipe (metres)	Measured Depth to Bottom of LNAPL from Top of Pipe (metres)	LNAPL Thickness (metres)	Top of LNAPL Elevation (mamsl)	Bottom of LNAPL Elevation (mamsl)	Measured Depth to Top of DNAPL from Top of Pipe (metres)	Measured Depth to Bottom of DNAPL from Top of Pipe (metres)	DNAPL Thickness (metres)	Top of DNAPL Elevation (mamsl)	Bottom of DNAPL Elevation (mamsl)	
MW/10.01	NIM	01/04/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1010019-01	INIVI	02/04/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
MW19-02	NM	28/3/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
		28/3/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
MW19-03	NM	01/04/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
		02/04/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
MW 19-04	NM	01/04/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
		02/04/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
MW19-05	NM	01/04/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
		02/04/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Notes:			-	·•		·		•		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	

DNAPL Dens	e Non-Aqueous Phase Liquid
LNAPL Light	Non-Aqueous Phase Liquid

Light Non-Aqueous Phase Liquid Metres Above Mean Sea Level Metres Below Ground Surface mamsl

mbgs ND Not Detected

Pinchin File: 230989.001

TABLE 5 GROUNDWATER ANALYTICAL RESULTS 91 Egitinton Limited Partnership

131 Eglinton Avenue East, Mississauga, Ontario

Sample Deletionation MV1101 DUP-02 MV11022 DUP102 DUP102 <thdup102< th=""> DUP102 <thdup102< th=""></thdup102<></thdup102<>									
Sample Cale (close the set of a se	Sample Designation	MW19-01	DUP-02	MW19-02	DUP19-02 GW	MW19-03	DUP-02		
Sample Coeffining) 2.52 2.57 2.67 2.67 2.68 2.40 BUP Control BUP Contro	Sample Collection Date (dd/mm/yyyy)	02/04/2019	02/04/2019	28/03/2019	28/03/2019	02/04/2019	02/04/2019		
Sample Location MV19-01 MV19-02 MV19-03	Sample Depth (mbgs)	2.52	2.52	2.97	2.97	2.43	2.43	MECR Table 2	
Laboratory Carificate at Analysis (dommyyyy) Biolocate B	Sample Location	MW19-01	MW19-01	MW19-02	MW19-02	MW19-03	MW19-03	Standards*	
Date of Analysis (dotimaryyy) EX.2017. B40219 B40219 B40219 B40219 B40219 B40219 B40219 B40219 B40219 B40219 B40219 Vesse - <t< td=""><td>Laboratory Certificate of Analysis No.</td><td>B986440</td><td>B986440</td><td>B981984</td><td>B981984</td><td>B986440</td><td>B986440</td><td>otandardo</td></t<>	Laboratory Certificate of Analysis No.	B986440	B986440	B981984	B981984	B986440	B986440	otandardo	
Date of Analysis (deferminypy) Set 2019 Patz(11) Patz(11) <thpatz(11)< th=""> Patz(11) <thp< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thp<></thpatz(11)<>									
Description Description Description Description Description Description Structure - <t< td=""><td>Date of Analysis (dd/mm/yyyy)</td><td>5/4/2019 -</td><td>5/4/2019 -</td><td>1/4/2019 -</td><td>1/4/2019 -</td><td>5/4/2019 -</td><td>5/4/2019 -</td><td></td></t<>	Date of Analysis (dd/mm/yyyy)	5/4/2019 -	5/4/2019 -	1/4/2019 -	1/4/2019 -	5/4/2019 -	5/4/2019 -		
Changenergy - <th< td=""><td>Neletile Omenie Opmenunde</td><td>8/4/2019</td><td>8/4/2019</td><td>4/4/2019</td><td>4/4/2019</td><td>8/4/2019</td><td>8/4/2019</td><td></td></th<>	Neletile Omenie Opmenunde	8/4/2019	8/4/2019	4/4/2019	4/4/2019	8/4/2019	8/4/2019		
Englangmen .	Volatile Organic Compounds	T -	-	<0.20 (<0.20)	<0.20	<0.20	<0.20	5	
Tabers . <td>Ethylbenzene</td> <td>-</td> <td>-</td> <td><0.20 (<0.20)</td> <td><0.20</td> <td><0.20</td> <td><0.20</td> <td>2.4</td>	Ethylbenzene	-	-	<0.20 (<0.20)	<0.20	<0.20	<0.20	2.4	
Adder (1980) - <t< td=""><td>Toluene</td><td>-</td><td>-</td><td><0.20 (<0.20)</td><td><0.20</td><td><0.20</td><td><0.20</td><td>24</td></t<>	Toluene	-	-	<0.20 (<0.20)	<0.20	<0.20	<0.20	24	
PARTON TOTAL Control PARTON TO	Xylenes (Total)	-	-	<0.40 (<0.40)	<0.40	<0.40	<0.40	300	
Prince Product Product Product Product Product Product Product Product Product Product Pro	Petroleum Hydrocarbons (PHCs)	1	1	-05 (-05)	-05	-05	-05	750	
PICE F5 (C2) C3 Number P1 Nu	PHCs F2 (26 - C10)	-	-	<25 (<25)	<20	<25	<20	750	
Prince is transmission -	PHCs F3 (>C++++++++++++++++++++++++++++++++++++	-	-	<100	<100	<100	<100	150	
Product Result Output Case Uses - - - - - - - - 0.000 0.000 - 0.000 0	PHO- F4 (> 0 _ 0 _)	-	-	<200	<200	<200	<200	500	
Catalog - - - - <td>PHCS F4 (>C₃₄ - C₅₀)</td> <td>-</td> <td>-</td> <td><200</td> <td><200</td> <td><200</td> <td><200</td> <td>500</td>	PHCS F4 (>C ₃₄ - C ₅₀)	-	-	<200	<200	<200	<200	500	
Accessfullysine .	Acenaphthene	-	-	< 0.050	< 0.050	< 0.050	< 0.050	4.1	
Anthraceme - - - 0.050 -0.050	Acenaphthylene	-	-	< 0.050	< 0.050	< 0.050	< 0.050	1	
and construction -	Anthracene	-	-	< 0.050	< 0.050	< 0.050	< 0.050	2.4	
Benczbylipsymeme - - - - 0.000 -0.000 -0.000 -0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000	Benzo(a)anthracene	-	-	< 0.050	<0.050	< 0.050	< 0.050	1	
Bindorg/bip/ender - - - - - - - 0.0500 - 0.0500 - 0.0500 0.0500 - 0.0500 0.0100 - 0.0500 0.0100 - 0.0500 0.0100 </td <td>Benzo(b)fluoranthene</td> <td>-</td> <td>-</td> <td><0.050</td> <td><0.050</td> <td><0.050</td> <td>< 0.050</td> <td>0.1</td>	Benzo(b)fluoranthene	-	-	<0.050	<0.050	<0.050	< 0.050	0.1	
Bencol/Unique and here -	Benzo(ghi)perylene	-	-	< 0.050	< 0.050	< 0.050	< 0.050	0.2	
Conservation - <t< td=""><td>Benzo(k)fluoranthene</td><td>-</td><td>-</td><td>< 0.050</td><td>< 0.050</td><td>< 0.050</td><td>< 0.050</td><td>0.1</td></t<>	Benzo(k)fluoranthene	-	-	< 0.050	< 0.050	< 0.050	< 0.050	0.1	
Pincenten I Pincenten I Pincenten	Dibenzo(a.h)anthracene	-	-	<0.050	<0.050	<0.050	<0.050	0.1	
Fluorene .<	Fluoranthene	-	-	<0.050	< 0.050	<0.050	<0.050	0.41	
Inder(1,2,2,cd)grame -	Fluorene	-	-	< 0.050	< 0.050	< 0.050	< 0.050	120	
mean managements (2, 1°) - <td>Indeno(1,2,3-cd)pyrene</td> <td></td> <td>-</td> <td>< 0.050</td> <td>< 0.050</td> <td>< 0.050</td> <td>< 0.050</td> <td>0.2</td>	Indeno(1,2,3-cd)pyrene		-	< 0.050	< 0.050	< 0.050	< 0.050	0.2	
Phenem . <td>Neurymaphinaiene 2-(1-) Naphthalene</td> <td>-</td> <td>-</td> <td><0.071</td> <td><0.071</td> <td><0.071</td> <td><0.071</td> <td>3.2 11</td>	Neurymaphinaiene 2-(1-) Naphthalene	-	-	<0.071	<0.071	<0.071	<0.071	3.2 11	
Pymen - - -0.050	Phenanthrene	-	-	<0.030	< 0.030	< 0.030	<0.030	1	
Metals	Pyrene	-	-	< 0.050	<0.050	<0.050	< 0.050	4.1	
Allowing CDD (CDD) CDD (CDD) <th< td=""><td>Metals</td><td></td><td></td><td></td><td>0.50</td><td></td><td></td><td></td></th<>	Metals				0.50				
Sanum 65 (6) 17 46 45 - 1000 Bordin <0.50 (0.50)	Anumony	<0.50 (<0.50)	<0.50	<0.50	<0.50	-	-	6	
Berglium c0.50 (c0.50) c0.50 c0.50 c0.50 c1. . 4 Cadmium c0.11 (c0.10) c0.10	Barium	65 (66)	67	45	45	-	-	1000	
Boron 130 (130) 140 19 19 - - 5000 Chromium (16a) <0.010	Beryllium	<0.50 (<0.50)	< 0.50	< 0.50	<0.50	-	-	4	
Constraint (10al) 40,10 41,10	Boron	130 (130)	140	19	19	-	-	5000	
Chromann (Hexawaleri) Co. 20	Cadmium Chromium (Total)	<0.10 (<0.10)	<0.10	<0.10	<0.10	-	-	2.7	
Cobait 3.8 Copper <10 (<10)	Chromium (Hexavalent)	<0.50	<0.50	<0.50	<0.50	-	-	25	
Copper <10	Cobalt	<0.50 (<0.50)	< 0.50	< 0.50	<0.50	-	-	3.8	
Lead (-0, b) (-0, b) (-0, b) (-0, b) (-0, b) (-1, b) Molyadenum (-0, b) (-0, b) (-0, b) (-0, b) (-1,	Copper	<1.0 (<1.0)	<1.0	1.2	1.2	-	-	87	
Molydefarum 40 50 (-0.50) 40 50 <td>Mercury</td> <td><0.50 (<0.50)</td> <td><0.50</td> <td><0.50</td> <td><0.50</td> <td>-</td> <td>-</td> <td>10</td>	Mercury	<0.50 (<0.50)	<0.50	<0.50	<0.50	-	-	10	
Nickel <10 <10 <10 <10 <10 <100 Steinium <20.(Molybdenum	<0.50 (<0.50)	<0.50	< 0.50	<0.50	-	-	70	
Selenum < < < < 10 Siver <0.10 (0.10)	Nickel	<1.0 (<1.0)	<1.0	<1.0	<1.0	-	-	100	
Charding Co. 10 (CO.10) Co. 10 Co. 10 (CO.10) Co. 10 Co. 10 (CO.10) Co.10	Selenium	<2.0 (<2.0)	<2.0	<2.0	<2.0	-	-	10	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sodium	<0.10 (<0.10) 7700 (7700)	<0.10	17000	<0.10 17000	-	-	490000	
Uranium 1.4 (1.4) 1.3 1 0.99 . . 20 Znc <.5.0 (<5.0)	Thallium	<0.050 (<0.050)	< 0.050	< 0.050	< 0.050	-	-	2	
Variability < 6.2 Zinc <	Uranium	1.4 (1.4)	1.3	1	0.99	-	-	20	
Imaginality Solid (Sol)	Vanadium Zinc	<0.50 (<0.50)	< 0.50	< 0.50	< 0.50	-	-	6.2	
Chloride 10 10 36 35 - - 790000 Cyandie (Free) <1	Inorganics	<5.0 (<5.0)	<5.0	<5.0	<5.0	-	-	1100	
Cyanide (Free) <1	Chloride	10	10	36	35	-	-	790000	
IOdal Antimionia-N 0.0062 <0.0010 <1 <1 0.0084 - NV Nitrate (N) 4.0310 <0.010	Cyanide (Free)	<1	<1	<1	<1	-	-	66	
Nitrate (N) 4.73 4.63 - - - NV Nitrate + Nitrite (N) 4.73 4.63 - - NV Organochlorinated Pesticides & PCBs - - - NV Chordane (Total) <0.005	I otal Ammonia-N Nitrite (N)	0.062	<0.050	<1	<1	0.084	-	NV NV	
Nitrate + Nitrite (N) 4.73 4.63 NV pH 7.4 7.39 7.33 7.64 . NV Organochlorinated Pesticides & PCBs NV Chlordane (Total) .	Nitrate (N)	4.73	4.63	-	-	-	-	NV	
pH 7.4 7.39 7.39 7.33 7.64 - NV Organochlorinated Pesicides & PCBs - - - - - - - - - - - - - - 10 - - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 115 - - 15 - - 15 - - 0.35 - - 0.35 - - 0.35 - - 0.35 - - 0.35 - - 0.35 - - 0.35 - - 0.35 -	Nitrate + Nitrite (N)	4.73	4.63	-	-	-	-	NV	
Organization Constraints Constraints <thconstraints< th=""> <thconstraints< th=""></thconstraints<></thconstraints<>	pH Organophlaringtod Bastinidan & BOD-	7.4	7.39	7.39	7.33	7.64	-	NV	
Op-DDD + p.p-DDD Counce Source <	Chlordane (Total)	<0.005	<0.005 (<0.005)	<0.005	< 0.005	-	-	7	
0p-DDE + pp-DDE <0.005	o,p-DDD + p,p-DDD	< 0.005	<0.005 (<0.005)	< 0.005	< 0.005	-	-	10	
o.p.DDT + p.p.DDT <0.005	o,p-DDE + p,p-DDE	< 0.005	< 0.005 (< 0.005)	< 0.005	<0.005	-	-	10	
Nome introduction CUUDD CUUDD <td>o,p-DD f + p,p-DDT</td> <td>< 0.005</td> <td><0.005 (<0.005)</td> <td>< 0.005</td> <td>< 0.005</td> <td>-</td> <td>-</td> <td>2.8</td>	o,p-DD f + p,p-DDT	< 0.005	<0.005 (<0.005)	< 0.005	< 0.005	-	-	2.8	
Aldrin 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < <td>Total PCB</td> <td><0.005</td> <td><0.005 (<0.005)</td> <td><0.005</td> <td><0.005</td> <td>-</td> <td>-</td> <td>1.5</td>	Total PCB	<0.005	<0.005 (<0.005)	<0.005	<0.005	-	-	1.5	
Dieldrin <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.00	Aldrin	< 0.005	<0.005 (<0.005)	< 0.005	< 0.005	-	-	0.35	
a-Chiordane <0.005 <0.005 (<0.005) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <	Dieldrin	< 0.005	< 0.005 (< 0.005)	< 0.005	<0.005	-	-	0.35	
g-Clinicidarie <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <th< td=""><td>a-Chlordane</td><td>< 0.005</td><td><0.005 (<0.005)</td><td>< 0.005</td><td>< 0.005</td><td>-</td><td>-</td><td>NV</td></th<>	a-Chlordane	< 0.005	<0.005 (<0.005)	< 0.005	< 0.005	-	-	NV	
p-DDD <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 </td <td>o.p-DDD</td> <td><0.005</td> <td><0.005 (<0.005)</td> <td><0.005</td> <td><0.005</td> <td>-</td> <td>-</td> <td>NV</td>	o.p-DDD	<0.005	<0.005 (<0.005)	<0.005	<0.005	-	-	NV	
op-DDE <0.005 <0.005 <0.005 <0.005 <0.005 NV p.P-DDE <0.005	p,p-DDD	<0.005	<0.005 (<0.005)	<0.005	< 0.005			NV	
p.p-DUE <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	o,p-DDE	< 0.005	< 0.005 (< 0.005)	< 0.005	< 0.005	-	-	NV	
Norm Norm Norm Norm 0,0-001 <0,0005		< 0.005	<0.005 (<0.005)	< 0.005	< 0.005	-	-	NV	
Lindane 0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005<	p,p-DDT	<0.005	<0.005 (<0.005)	<0.005	<0.005	-	-	NV	
Endosulfan I (alpha) <0.005 <0.005 <0.005 <0.005 <0.005 NV Endosulfan II (beta) <0.005	<0.048	Lindane	< 0.003	<0.003 (<0.003)	< 0.003	< 0.003	-	-	1.2
Lenosuiran II (beta) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	Endosulfan I (alpha)	<0.005	<0.005 (<0.005)	<0.005	< 0.005	-	-	NV	
Line Structure Str	Endosultan II (beta)	< 0.005	<0.005 (<0.005)	< 0.005	< 0.005	-	-	NV 0.49	
Heptachlor epoxide 0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.004 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.009 <0.001 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <	Heptachlor	<0.005	<0.005 (<0.005)	<0.005	<0.005	-	-	1.5	
Hexachlorobenzene <0.005 (<0.005) (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005) (<0.005 (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<0.005) (<	Heptachlor epoxide	< 0.005	<0.005 (<0.005)	< 0.005	< 0.005	-	-	0.048	
retexaction cobulationene <0.009 <0.009 <0.009 <0.009 <0.009 <0.06 Hexachloroethane <0.01	Hexachlorobenzene	< 0.005	<0.005 (<0.005)	< 0.005	< 0.005	-	-	1	
South South <th< td=""><td>nexachiorobutadiene Hexachloroethane</td><td><0.009</td><td><0.009 (<0.009)</td><td><0.009</td><td><0.009</td><td></td><td>-</td><td>0.6</td></th<>	nexachiorobutadiene Hexachloroethane	<0.009	<0.009 (<0.009)	<0.009	<0.009		-	0.6	
Soli Compet Water and Sectionant Standards for Least Vid 4 the Environmental Dastration Act Antil 45 2014 Teles Act-sect	Methoxychlor	<0.01	<0.01 (<0.01)	<0.01	<0.01	-	-	6.5	
	<u>.</u>	Soil Ground Wat	d Sediment Stands-1-	for Lieg Lindor Dort V	V 1 of the Environ	tal Protection Act. A-	vil 15 2014 Table 2	Standarde	

Notes:

BOLD BOLD Units (##) mbgs NA NV

Exceeds Site Condition Standard Reportable Detection Limit Exceeds Site Condition Standard All Units In Micrograms Per Litre Bracketed Values Indicate Laboratory Duplicate Results Metres Below Ground Surface Not Applicable No Value
TABLE 5 GROUNDWATER ANALYTICAL RESULTS 91 Eglitinton Limited Partnership 131 Eglinton Avenue East, Mississauga, Ontario

TRIP BLANK Sample Designation MW19-04 MW19-05 BLANK Sample Collection Date (dd/mm/yyyy) 02/04/2019 05/04/2019 28/03/2019 02/04/2019 Sample Depth (mbgs) 2.60 2.95 NA NA MECP Table 2 Sample Location MW19-04 MW19-05 NA NA Standards* Laboratory Certificate of Analysis No. B986440 440 & B98 B981984 B986440 2/4/2019 -5/4/2019 -5/4/2019 -1/4/2019 -Date of Analysis (dd/mm/yyyy) 10/4/2019 8/4/2019 2/4/2019 3/4/2019 Volatile Organic Compounds Benzene < 0.20 <0.20 <0.20 < 0.20 5 hylbenzene <0.20 <0.20 < 0.20 <0.20 2.4 < 0.20 < 0.20 24 < 0.20 ylenes (Total) < 0.40 < 0.40 < 0.40 < 0.20 300 Petroleum Hydrocarbons (PHCs) PHCs F1 (C₆ - C₁₀) <25 <25 <25 750 PHCs F2 (>C₁₀ - C₁₆) PHCs F3 (>C₁₆ - C₃₄) <100 <100 150 <200 <200 500 PHCs F4 (>C34 - C50) <200 <200 500 Polycyclic Aromatic Hydrocarbons <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 Acenaphthene Acenaphthylene 4.1 2.4 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranther < 0.010 <0.010 0.01 < 0.050 0.1 Benzo(ghi)perylene Benzo(k)fluoranthene <0.050 <0.050 <0.050 <0.05 0.1 Chrysene Dibenzo(a,h)anthracene < 0.05 0.1 < 0.05 0.2 luoranthene Fluorene Indeno(1,2,3-cd)pyrene Methylnaphthalene 2-(1-) < 0.050 < 0.05 < 0.050 < 0.05 0.2 < 0.071 < 0.071 3.2 Naphthalene henanthrene < 0.030 < 0.030 Metals Antimony Arsenic <0.50 1.7 ariun 55 1000 Beryllium < 0.50 < 0.5068 5000 oron admi 83 < 0.10 <0.10 Chromium (Hexavalent <0.5 obalt 1.2 Mercury <0.1 <0.1 1.7 lolyb ckel <1.0 elenium <2 (ilver odiur 19000 hallium < 0.050 < 0.050 Jranium /anadium 79 6.4 1.5 0.63 1100 6 Inorganics Chloride Cyanide (Free) Total Ammonia Nitrite (N) 310 450 66 NV 0.073 NV Nitrate (N) Nitrate + Nitrite (N) 7.56 (7.56) pН N٧ Organochlorinated Pesticides & PCBs Chlordane (Total) o,p-DDD + p,p-DDD o,p-DDE + p,p-DDE o,p-DDT + p,p-DDT Total Endosulfan Total PCB < 0.005 < 0.00 <0.005 <0.005 <0.005 < 0.00 10 < 0.00 < 0.005
 Total PCB

 Aldrin

 Dieldrin

 a-Chlordane

 g-Chlordane

 o,p-DDD

 o,p-DDE

 p,p-DDE

 o,p-DDE

 p,p-DDT

 o,p-DDT

 Lindane
 < 0.005 < 0.00 0.35 < 0.005 < 0.00 0.35 < 0.005 < 0.005 < 0.005 < 0.005 NV <0.005 <0.005 <0.005 NV < 0.00 <0.00 <0.005 NV < 0.00 < 0.005 < 0.005 Endosulfan I (alpha) Endosulfan II (beta) <0.005 <0.005 <0.005 NV NV < 0.005 < 0.005 0.48 Heptachlor < 0.005 < 0.005 Heptachlor epoxide < 0.005 < 0.005 0.048 < 0.005 < 0.005 0.6 Hexachloroethane < 0.01 < 0.01 Methoxychlor < 0.01 < 0.01 6.5

MECP Table 2 Standards*

Soll, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Ac April 15, 2011, Table 2 Standards, Medium/Fine-Textured Sols, Potable Groundwater Condition, for All Types of Property Use.

Exceeds Site Condition Standard Reportable Detection Limit Exceeds Site Condition Standard All Units In Micrograms Per Liufe Bracketed Values Indicate Laboratory Duplicate Results Metres Below Ground Surface Not Applicable

No Value

TABLE 6 MAXIMUM CONCENTRATIONS IN SOIL 91 Egitinton Limited Partnership 131 Eginton Avenue East, Mississauga, Ontario

Parameter	Maximum	Sample Designation	Sample Location	Sample Depth
Volatile Organic Compounds	ooncenaadon			(11093)
Benzene	<0.020	-	- All submitted samples.	-
Bromodichloromethane Bromoform	-	-	-	-
Bromomethane Carbon Tetrachloride	-	-	-	-
Chlorobenzene	-	-	-	-
Dibromochloromethane	-	-	-	-
1,2-Dichlorobenzene 1,3-Dichlorobenzene	-	-	-	-
1,4-Dichlorobenzene Dichlorodifluoromethane	-	-	-	-
1,1-Dichloroethane	-	-	-	-
1,1-Dichloroethylene	-	-	-	-
trans-1,2-Dichloroethylene	-	-	-	-
1,2-Dichloropropane 1,3-Dichloropropene (Total)	-	-	-	-
Ethylbenzene Ethylene Dibromide	<0.020		All submitted samples.	
Hexane Mathul Ethul Katana	-	-	-	
Methyl Isobutyl Ketone	-	-	-	-
Methyl t-Butyl Ether (MTBE) Methylene Chloride	-	-	-	-
Styrene 1.1.1.2-Tetrachloroethane	-	-	-	-
1,1,2,2-Tetrachloroethane	-	-	-	-
Toluene	<0.020	-	All submitted samples.	
1,1,2-Trichloroethane	-	-	-	-
Trichloroethylene Trichlorofluoromethane	-	-	-	-
Vinyl Chloride Xylenes (Total)	<0.040	-	- All submitted samples.	-
Petroleum Hydrocarbons (PHCs)	2.010		All outpritted served in	
PHCs F2 (>C ₁₀ - C ₁₆)	<10 17	MW19-03 S3	MW19-03	1.52 - 2.29
PHCs F3 (>C16 - C34)	<50		All submitted samples.	
PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons	<50			
Acenaphthene	<0.0050		All submitted samples	
Anthracene	<0.0050		Air aubrintee aampiea.	
Benzo(a)pyrene	0.0098			
Benzo(b)fluoranthene Benzo(ghi)perylene	0.021 0.015	BH19-07 S1	BH19-07	0.00 - 0.76
Benzo(k)fluoranthene Chrvsene	0.0066			
Dibenzo(a,h)anthracene	<0.0050	PU10.07.91	All submitted samples.	0.00 0.76
Fluorent	<0.0050	BI119-07-31	All submitted samples.	0.00 - 0.70
Methylnaphthalene 2-(1-)	<0.0071	BH19-07 S1	BH19-07 All submitted samples	0.00 - 0.76
Naphthalene Phenanthrene	<0.0050 0.0087	PH10.07.91	RU10.07	0.00 0.76
Pyrene Metals	0.025	Billistor of	51113-07	0.00 - 0.70
Antimony	0.37	DUP19-01	MW19-01 S3	1.52 - 2.29
Bandium	410	BH19-07 S1	BH19-07	0.00 - 0.76
Boron (Total)	1.2 11	DUP19-01	MW 19-01 S3	1.52 - 2.29
Boron (Hot Water Soluble) Cadmium	1.3 0.77	MW19-05 S1 MW19-02 S1	MW19-05 MW19-02	0.00 - 0.76
Chromium (Total) Chromium (Hexavalent)	33	BH19-07 S1	BH19-07 All submitted samples.	0.00 - 0.76
Copper	18	BH19-07 S1	BH19-07	0.00 - 0.76
Lead	38	MW19-02 S1	MW19-02	0.00 - 0.76
Mercury Molybdenum	0.071	BH19-07 S1 MW19-05 S1	BH19-07 MW19-05	0.00 - 0.76
Nickel Selenium	29 1	MW19-03 S2 BH19-07 S1	MW19-03 BH19-07	0.76 - 1.52 0.00 - 0.76
Silver Thallium	<0.20	BH19-07 S1	All submitted samples. BH19-07	0.00 - 0.76
Uraninum Vanadium	1.1	MW19-05 S1	MW19-05	0.00 - 0.76
Zinc	40 100	MW19-04 S2	MW19-04	0.76 - 1.52
Cyanide (Free)	0.03	MW19-01 S1	MW19-01	0.00 - 0.76
Electrical Conductivity (mS/cm) Sodium Adsorption Ratio (No Units)	0.51	MW19-05 S1	MW19-05	0.00 - 0.76
Organochlorinated Pesticides & PCBs	<0.0020	·	All submitted complete	
o,p-DDD + p,p-DDD	0.0020	BH19-07 S1	BH19-07	0.00 - 0.76
o,p-DDE + p,p-DDE o,p-DDT + p,p-DDT	0.053 0.0079	MW19-05 S1 BH19-07 S1	MW19-05 BH19-07	0.00 - 0.76
Total Endosulfan Total PCB	<0.0020 <0.015			
Aldrin	<0.0020	1	All submitted samples.	
g-Chlordane	<0.0020	1		
p,p-DDD	<0.0020 0.0038	BH19-07 S1	BH19-07	0.00 - 0.76
o.p-DDE p.p-DDE	<0.0020 0.053	MW19-05 S1	All submitted samples. MW19-05	0.00 - 0.76
o,p-DDT p.p-DDT	<0.0020	BH19-07 S1	All submitted samples. BH19-07	0.00 - 0.76
Dieldrin	<0.0020	5.110-07-01	01110-01	0.00 - 0.70
Endosulfan I (alpha)	<0.0020	1		
Endosulfan II (beta) Endrin	<0.0020 <0.0020			
Heptachlor Heptachlor epoxide	<0.0020		All submitted samples.	
Hexachlorobenzene	<0.0020	1		
Hexachloroethane	<0.0020	1		
Methoxychlor Notes:	<0.0050	1		

Units mbgs mS/cm All Units In Micrograms Per Gram, Unless Otherwise Noted Metres Below Ground Surface MilliSiemens Per Centimetre

TABLE 7 MAXIMUM CONCENTRATIONS IN GROUNDWATER 91 Eglitinton Limited Partnership 131 Eglinton Avenue East, Mississauga, Ontario

Parameter	Maximum Concentration	Sample Designation	Sample Location	Sample Depth (mbqs)
Volatile Organic Compounds	-10			(
Benzene	<10 <0.20	ţ		
Bromodichloromethane Bromoform	<0.50 <1.0	-		
Bromomethane	<0.50	1		
Chlorobenzene	<0.20			
Dibromochloromethane	<0.20			
1,2-Dichlorobenzene 1,3-Dichlorobenzene	<0.50	ł		
1,4-Dichlorobenzene	<0.50	1		
1,1-Dichloroethane	<0.20	+		
1,2-Dichloroethane 1,1-Dichloroethylene	<0.50 <0.20	+		
cis-1,2-Dichloroethylene	<0.50	1		
1,2-Dichloropropane	<0.20	t t	All submitted samples.	
Ethylbenzene	<0.20			
Ethylene Dibromide Hexane	<0.20	-		
Methyl Ethyl Ketone	<10	1		
Methyl t-Butyl Ether (MTBE)	<0.50			
Methylene Chloride Styrene	<2.0 <0.50	+		
1,1,1,2-Tetrachloroethane	<0.50	Ī		
Tetrachloroethylene	<0.20	t t		
1,1,1-Trichloroethane	<0.20	ţ		
1,1,2-Trichloroethane Trichloroethylene	<0.50 <0.20	ł		
Trichlorofluoromethane	<0.50	1		
Xylenes (Total)	<0.40	t		
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀)	<25			
PHCs F2 (>C ₁₀ - C ₁₆)	<100	ţ	All submitted earnolog	
PHCs F3 (>C ₁₆ - C ₃₄)	<200	ł	, suomitteu samples.	
Polycyclic Aromatic Hydrocarbons	<200	I		
Acenaphthene	<0.050			
Anthracene	<0.050			
Benzo(a)pyrene	<0.050			
Benzo(b)fluoranthene Benzo(ghi)perylene	<0.050 <0.050	-		
Benzo(k)fluoranthene	<0.050	1	All submitted samples	
Dibenzo(a,h)anthracene	<0.050		Air aubrinited auripiea.	
Fluoranthene	<0.050	ł		
Indeno(1,2,3-cd)pyrene Methylnaphthalene 2-(1-)	<0.050	ł		
Naphthalene	<0.050	1		
Pyrene	<0.030			
Metals Antimony	1.7			1
Arsenic Barium	1.4	MW19-05	MW19-05	2.95
Berglium	<0.50	DUD 00	All submitted samples.	0.50
Cadmium	<0.10	DUP-02	MVV19-01	2.52
Chromium (Total) Chromium (Hexavalent)	<5.0 <0.50	+	All submitted samples.	
Copper Copper	1.2	MW19-05	MW19-05	2.95
Lead	<0.50	10100 13-04	All submitted samples.	2.00
Mercury Molybdenum	<0.1 3.7	MW19-05	MW/10-05	2.95
Nickel Selenium	2			2.00
Silver	<0.10	MW10_0F	MINITED Samples.	2.05
Thallium	<0.050	19-05	All submitted samples.	2.93
Uranium Vanadium	7.9 1.5	MW19-04	MW19-04	2.60
Zinc Inorganics	6	MW19-05	MW19-05	2.95
Chloride Cycanide (Eree)	450	MW19-05	MW19-05	2.95
Total Ammonia-N	<1 0.084	MW19-03	MW19-03	2.43
Nitrite (N) Nitrate (N)	<0.010 4.73	MW/10_01	All submitted samples.	252
Nitrate + Nitrite (N)	4.73	MW10.02	WW19-01	2.52
Organochlorinated Pesticides & PCBs	7.04	WIVY 19-03	WIVY 19-03	2.43
o,p-DDD + p,p-DDD	<0.005	+		
o,p-DDE + p,p-DDE	<0.005	Į		
Total Endosulfan	<0.005	1		
Aldrin	<0.05 <0.005	ł		
Dieldrin a-Chlordane	<0.005	ł		
g-Chlordane	<0.005	1		
p.p-DDD	<0.005	ţ		
o,p-DDE	<0.005 <0.005	ł	All submitted samples.	
o,p-DDT	<0.005	Į		
Lindane	<0.003	ţ		
Endosulfan I (alpha) Endosulfan II (beta)	<0.005 <0.005	ł		
Endrin Heptachlor	<0.005	Į		
Heptachlor epoxide	<0.005	ļ		
Hexachlorobutadiene	<0.005	ţ		
Hexachloroethane Methoxychlor	<0.01	ł		
Notes:	All I Inite In Misso	Litra		
Units	Metres Below Ground Surfa	C0		

Page 11 of 11

9.0 APPENDICES

APPENDIX A Legal Survey and Survey Data

APPENDIX B Sampling and Analysis Plan

FINAL Sampling and Analysis Plan for Phase Two Environmental Site Assessment

131 Eglinton Avenue East Mississauga, Ontario

Prepared for:

91 Eglinton Limited Partnership

1 Steelcase Road West, Unit 8 Markham, ON L3R 0T3

Attn: Mark Liddy

April 29, 2019

Pinchin File: 230989.001

Sampling and Analysis Plan for Phase Two Environmental Site Assessment 131 Eglinton Avenue East, Mississauga, Ontario 91 Eglinton Limited Partnership April 29, 2019 Pinchin File: 230989.001 FINAL

Issued To: Contact:

Pinchin File: Issuing Office:

Primary Pinchin Contact: 91 Eglinton Limited Partnership Mark Liddy April 29, 2019 230989.001 2470 Milltower Court, Mississauga, ON L5N 7W5 Michael Birch, P.Geo. 905.363.1304 <u>mbirch@pinchin.com</u>

mit

Author:

Michael Birch, B.Sc., P.Geo. Project Manager 905.363.1304 mbirch@pinchin.com

hauly

Reviewer:

Craig Kelly, B.Sc.H., P.Geo.,QP-ESA Senior Geoscientist 905.363.1352 cxkelly@pinchin.com

TABLE OF CONTENTS

1.0	INTRODUCTION	1							
2.0	AREAS OF POTENTIAL ENVIRONMENTAL CONCERN								
3.0	SCOPE OF WORK								
4.0	DATA QUALITY OBJECTIVES	5							
5.0	QUALITY ASSURANCE/QUALITY CONTROL PROGRAM	5							
	 5.1 Non-Dedicated Sampling and Monitoring Equipment Cleaning	5 6 6 6							
6.0	STANDARD OPERATING PROCEDURES	6							
7.0	SAMPLING SYSTEM	7							
8.0	PHYSICAL IMPEDIMENTS	7							
9.0	TERMS AND LIMITATIONS	8							

APPENDICES

APPENDIX I	Figures
APPENDIX II	Tables
APPENDIX III	Pinchin Standard Operating Procedures

FIGURES

Figure 1 - Key Map

Figure 2 - Areas of Potential Environmental Concern

Figure 3 - Proposed Borehole and Monitoring Well Location Plan

TABLES

Table 1 - Phase Two ESA Scope of Work Summary

1.0 INTRODUCTION

Pinchin Ltd. (Pinchin) has prepared this Sampling and Analysis Plan (SAP) for the Phase Two Environmental Site Assessment (ESA) to be performed at the property located at 131 Eglinton Avenue East in Mississauga, Ontario (hereafter referred to as the Site or Phase Two Property). The Phase Two Property is a vacant lot which was formerly developed with a residential property and a garden supply centre. A Key Map showing the Phase Two Property location is provided on Figure 1 (all Figures are located in Appendix I).

This Phase Two ESA was conducted at the request of 91 Eglinton Limited Partnership (Client) in order to support the acquisition of the Site and of the Client's application for a Site Plan Approval (SPA) with the City of Mississauga. It is Pinchin's understanding that a portion of the Site (the southern 4 to 5 metres) will be dedicated (conveyed) to the City of Mississauga. The Phase Two ESA was completed in accordance with Ontario Regulation (O.Reg.) 153/04 should the filing of a Record of Site Condition (RSC) with the Ontario Ministry of the Environment, Conservation and Parks (MECP) be deemed required.

The work completed for the Phase Two ESA will be performed in general accordance with standard environmental consulting practices and the following documents:

- MECP document entitled "*Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario*", revised December 1996;
- Association of Professional Geoscientists of Ontario document entitled *"Guidance for Environmental Site Assessments under Ontario Regulation 153/04 (as amended)"*, dated April 2011; and
- O. Reg. 153/04.

This SAP provides the scope of work and procedures for completing the field investigation for the Phase Two ESA. The Phase Two ESA will be performed in accordance with the scope of work, and terms and conditions described in the proposal entitled *"Proposal for Phase Two Environmental Site Assessment"*, prepared for the Client, dated February 11, 2019.

2.0 AREAS OF POTENTIAL ENVIRONMENTAL CONCERN

The objectives of the Phase Two ESA will be to assess soil and groundwater quality at the Phase Two Property in relation to four areas of potential environmental concern (APECs) and related potentially contaminating activities (PCAs) and contaminants of potential concern (COPCs) identified in a Phase One ESA completed by Pinchin in accordance with O. Reg. 153/04, the findings of which are provided in

the report entitled "*Phase One Environmental Site Assessment, 131 Eglinton Avenue East, Mississauga, Ontario*", prepared for the Client. The APECs and corresponding PCAs and COPCs are summarized on Figure 2 and in the following table:

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (On- Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
APEC #1 (Historical heating oil AST associated with the historical farm house formerly utilized as a car parking garage)	West exterior wall of the historical farm house that was converted to a car parking garage located at the southeast end of the Phase One Property.	Item 28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs PAHs BTEX	Soil and Groundwater
APEC #2 (Unknown heating source for the historical farm house)	In the vicinity of the historical farm house located at the southeast end of the Phase One Property.	Item 28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs PAHs BTEX	Soil and Groundwater
APEC #3 (Frank's Garden Centre)	Central and southeast portions of the Phase One Property	Item 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large- Scale Applications	On-Site	Metals and Inorganics Pesticides and Herbicides	Soil

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (On- Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
APEC #4 (Frank's Garden Centre)	Central and southeast portions of the Phase One Property	Item 22 – Fertilizer Manufacturing, Processing and Bulk Storage	On-Site	Metals and Inorganics Pesticides and Herbicides	Soil and Groundwater

Notes:

BTEX – benzene, toluene, ethylbenzene and total xylenes

PHCs - petroleum hydrocarbon fractions F1-F4

PAHs – polycyclic aromatic hydrocarbons

NA - not applicable

3.0 SCOPE OF WORK

The information obtained from the Phase One ESA, in particular the Phase One Conceptual Site Model, was used to determine the environmental media requiring investigation during the Phase Two ESA (i.e., soil and groundwater), the locations and depths for sample collection, and the parameters to be analyzed for the samples submitted from each APEC. The Phase Two ESA scope of work will include the advancement of eight boreholes, five of which will be completed as groundwater monitoring wells. The proposed borehole and groundwater monitoring well locations are provided on Figure 3.

Table 1 in Appendix II provides a detailed summary of the Phase Two ESA scope of work, including:

- Boreholes and/or groundwater monitoring wells to be completed within each APEC and the COPCs to be analyzed for samples collected in each APEC.
- Media to be sampled at each sampling location, the sampling system (see Section 7.0), the soil sampling depth intervals, monitoring well screen intervals and the sampling frequency.
- Number of samples per borehole or groundwater monitoring well to be collected and submitted for laboratory analysis.

Note that the soil sampling depth intervals (i.e., borehole depths), monitoring well screen intervals and sampling frequency presented in Table 2 are based on the actual conditions as observed in the field during the drilling program. There were deviations from the original proposed scope of work in terms of borehole depths, soil sample intervals, and well screen intervals, due to the presence of bedrock at shallower depths than were anticipated during development of the Phase Two scope of work.

Additional scope of work items include the following:

- Submit up to three representative soil samples for hydrometer grain size analysis and eight soil samples for laboratory analysis of pH in order to confirm the appropriate standards identified in the MECP document entitled "Soil, Ground Water and Sediment Standards For Use Under Part XV.1 of the Environmental Protection Act", dated April 15, 2011 (MECP Standards). Under O. Reg. 153/04, a property is deemed to be a "sensitive site" if the pH is less than 5 or greater than 9 (surface soil), or less than 5 or greater than 11 (subsurface soil). If a property is determined to be a sensitive site based on these criteria, more stringent MECP Standards will apply. Grain size analysis is required to determine whether the predominant subsurface soil is either "coarse-grained" or "medium/fine-grained".
- Submit one representative composite soil sample collected from the soil cuttings generated by the borehole drilling program for analysis of leachate concentrations of inorganics, VOCs, benzo(a)pyrene and polychlorinated biphenyls in accordance with the Toxicity Characteristic Leaching Procedure as per Ontario Regulation 347/90 (as amended) to characterize the soil cuttings for off-Site disposal purposes.
- Conduct elevation surveying of the ground surface elevations of all monitoring well locations, and the top of pipe elevations for all groundwater monitoring wells.
- Obtain depth to water measurements of all newly-installed monitoring wells, including assessment for non-aqueous phase liquid. Depth to water measurements will be made during well development and groundwater sampling.
- Complete groundwater sampling using low-flow purging and sampling methods as per SOP-EDR023 (see Section 6.0), unless well yields are too low to permit this method to be used. For well(s) where low flow sampling cannot be employed, groundwater sampling will be conducted using the well volume method described in SOP-EDR008.

4.0 DATA QUALITY OBJECTIVES

The data quality objectives (DQOs) for the Phase Two ESA will be to obtain unbiased analytical data that are representative of actual soil and groundwater conditions at the Phase Two Property. This will be accomplished by implementing a quality assurance/quality control (QA/QC) program, as described in Section 5.0, and by completing the field work in accordance with Pinchin's standard operating procedures (SOPs), as described in Section 6.0. Pinchin's SOPs are based in part on the MECP's *"Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario"*, dated December 1996 and the Association of Professional Geoscientists of Ontario document entitled *"Guidance for Environmental Site Assessments under Ontario Regulation 153/04 (as amended)"*, dated April 2011.

The DQOs are intended to minimize uncertainty in the analytical data set such that the data are considered reliable enough to not affect the conclusions and recommendations of the Phase Two ESA and to meet the overall objective of the Phase Two ESA, which is to assess the environmental quality of the Phase Two Property in relation to the identified APECs.

5.0 QUALITY ASSURANCE/QUALITY CONTROL PROGRAM

5.1 Non-Dedicated Sampling and Monitoring Equipment Cleaning

Based on the proposed scope of work, the following non-dedicated sampling and monitoring equipment will be used during completion of the Phase Two ESA:

Interface probe.

All of the above-listed equipment will be cleaned prior to initial use and between samples or sampling locations, as appropriate, following the equipment cleaning procedures described in SOP-EDR009. Any non-dedicated sampling or monitoring equipment not listed above that is used during the Phase Two ESA will also be cleaned in accordance with SOP-EDR009.

5.2 Trip Blanks

A groundwater trip blank is a set of VOC sample vials filled by the analytical laboratory with VOC-free distilled water and shipped with the groundwater sample containers. A soil trip blank is a set of VOC sample vials that are pre-charged with methanol preservative and shipped with the soil sample containers.

Trip blanks will be stored with the sample containers provided by the analytical laboratory during travel to the Phase Two Property, while on the Phase Two Property, and during travel from the Phase Two Property back to the analytical laboratory. The sample containers comprising a trip blank will not be opened in the field.

One trip blank will accompany each submission to the laboratory. Each trip blank will be submitted for analysis of PHCs F1 and VOCs. Based on the scope of work and anticipated field work schedule for the Phase Two ESA, it is estimated that analysis of one groundwater trip blank will be required. Additional trip blanks will be submitted if there are additional laboratory submissions.

As a further field quality control measure, one soil sampling trip blank will be analyzed for PHCs F1 and VOCs.

5.3 Field Duplicate Samples

Field duplicate soil and groundwater samples will be collected for laboratory analysis in accordance with SOP-EDR025 at a frequency of one sample for every ten samples submitted for laboratory analysis, with a minimum of one sample per media sampled per COPC.

5.4 Calibration Checks on Field Instruments

5.4.1 Field Screening Instruments

The photoionization detector (PID) and combustible gas indicator (CGI) used for the field screening of soil samples will be calibrated in accordance with the procedures described in SOP-EDR003. Calibration checks will also be made at the frequency specified in SOP-EDR003.

Records of the calibration and calibration checks of the PID and CGI, including any calibration sheets provided by the equipment supplier, will be kept for inclusion in the Phase Two ESA report.

5.4.2 Water Quality Measurement Instruments

Water quality instruments used to measure field parameters during groundwater sampling will be calibrated in accordance with the procedures described in SOP-EDR016. Calibration checks will also be made at the frequency specified in SOP-EDR016.

Records of the calibration and calibration checks of the probes/instruments used for water quality parameter measurements, including any calibration sheets provided by the equipment supplier, will be kept for inclusion in the Phase Two ESA report.

6.0 STANDARD OPERATING PROCEDURES

The proposed field investigation for the Phase Two ESA will require the following SOPs to be followed:

- Borehole drilling (SOP-EDR006).
- Soil sampling and logging (SOP-EDR013 and SOP-EDR019).
- Field screening of soil samples (SOP-EDR003).

- Monitoring well design and construction (SOP-EDR007).
- Monitoring well development (SOP-EDR017).
- Field measurement of water quality indicators (SOP-EDR016).
- Monitoring well sampling (SOP-EDR008 and/or SOP-EDR023).
- QA/QC sampling (SOP-EDR025).
- Field decontamination of non-dedicated monitoring and sampling equipment (SOP-EDR009).

The above-referenced SOPs are provided in Appendix III. Each SOP includes a section describing the specific requirements for Phase Two ESAs completed to support the filing of an RSC in accordance with O. Reg. 153/04.

Any deviations from the SOPs will be summarized in the Phase Two ESA report.

7.0 SAMPLING SYSTEM

The borehole and monitoring well locations in all APECs will be selected following a judgemental sampling system. Boreholes and monitoring wells will be placed at locations where the potential for COPCs to be present is considered the highest (i.e., "worst case"), as per the following:

- Boreholes and monitoring wells will be completed in the suspected former vicinity of the historical oil AST associated with the historical farm house formerly utilized as a car parking (APECs #1);
- Boreholes and monitoring wells will be completed in the vicinity of the former historical farm house (APEC #2); and
- Boreholes and monitoring wells will be completed throughout the location of the former garden centre (APECs #3 and 4).

In addition, the field screening results for soil samples collected from each borehole will be used to select "worst case" samples for laboratory analysis.

The sampling system that will be used for each APEC is summarized in Table 1.

8.0 PHYSICAL IMPEDIMENTS

Pinchin does not anticipate any physical impediments that will limit access to the Phase Two Property during completion of the Phase Two ESA.

9.0 TERMS AND LIMITATIONS

This Sampling and Analysis Plan (SAP) has been prepared to summarize the general scope of work and field procedures to be followed for the Phase Two ESA that will be performed for 91 Eglinton Limited Partnership (Client) in order to investigate potential environmental impacts at 131 Eglinton Avenue East, Mississauga, Ontario (Site). The term recognized environmental condition means the presence or likely presence of any hazardous substance on a property under conditions that indicate an existing release, past release, or a material threat of a release of a hazardous substance into structures on the property or into the ground, groundwater, or surface water of the property. The Phase Two ESA will not quantify the extent of the current and/or recognized environmental condition or the cost of any remediation.

Conclusions derived from the Phase Two ESA will be specific to the immediate area of study and cannot be extrapolated extensively away from sample locations. Samples will be analyzed for a limited number of contaminants that are expected to be present at the Site, and the absence of information relating to a specific contaminant does not indicate that it is not present.

No environmental site assessment can wholly eliminate uncertainty regarding the potential for recognized environmental conditions on a property. Performance of the Phase Two ESA to the standards established by Pinchin is intended to reduce, but not eliminate, uncertainty regarding the potential for recognized environmental conditions on the Site, and recognizes reasonable limits on time and cost.

The Phase Two ESA will be performed in general compliance with currently acceptable practices for environmental site investigations, and specific Client requests, as applicable to this Site.

This SAP was prepared for the exclusive use of the Client, subject to the terms, conditions and limitations contained within the duly authorized proposal for this project. Any use which a third party makes of this SAP, or any reliance on or decisions to be made based on it, is the sole responsibility of such third parties. Pinchin accepts no responsibility for damages suffered by any third party as a result of decisions made or actions conducted.

If additional parties require reliance on this SAP, written authorization from Pinchin will be required. Pinchin disclaims responsibility of consequential financial effects on transactions or property values, or requirements for follow-up actions and costs. No other warranties are implied or expressed. Furthermore, this SAP should not be construed as legal advice. Pinchin will not provide results or information to any party unless disclosure by Pinchin is required by law.

Pinchin makes no other representations whatsoever, including those concerning the legal significance of its findings, or as to other legal matters touched on in this SAP, including, but not limited to, ownership of any property, or the application of any law to the facts set forth herein. With respect to regulatory compliance issues, regulatory statutes are subject to interpretation and these interpretations may change over time.

\\pinchin.com\Miss\Job\230000s\0230989.000 Liberty,131Eglinton,EDR,PhaseOneESA\0230989.001 Liberty,131Eglinton,EDR,PhaseTwo\Deliverables\Appendices\Appendix B - Sampling and Analysis Plan\230989.001 FINAL Phase Two ESA SAP Apr 29 2019.docx

Template: RSC Sampling and Analysis Plan, EDR, January 18, 2018

APPENDIX I Figures

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (On- Site or Off- Site)	Contaminants of Potential Concern	M Pe In (C Se
APEC #1 (Historical heating oil AST associated with the historical farm house formerly utilized as a car parking garage)	West exterior wall of the historical farm house that was converted to a car parking garage located at the southeast end of the Phase One Property.	ltem 28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs PAHs BTEX	So
APEC #2 (Unknown heating source for the historical farm house)	In the vicinity of the historical farm house located at the southeast end of the Phase One Property.	Item 28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs PAHs BTEX	So
APEC #3 (Frank's Garden Centre)	Central and southeast portions of the Phase One Property	Item 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large- Scale Applications	On-Site	Metals and Inorganics Pesticides and Herbicides	So
APEC #4 (Frank's Garden Centre)	Central and southeast portions of the Phase One Property	ltem 22 – Fertilizer Manufacturing, Processing and Bulk Storage	On-Site	Metals and Inorganics Pesticides and Herbicides	So

ledia otentially npacted Groundwater, oil and/or ediment)	LEGEND MTR MULTI-TENANT F APEC AREA OF ENVIR BTEX BENZENE, TOLU AND TOTAL XYLENES PHCs PETROLEUM HY F1-F4 PAHS POLYCYCLIC AF HYDROCARBONS NA NOT APPLICABLE APEC1 APEC2 APEC2&	RESIDENTIAL ONMENTAL CONCERN ENE, ETHYLBENZENE DROCARBON FRACTIONS ROMATIC
oil and iroundwater		
oil and roundwater	DINC	
oil	PROJECT NAME SAMPLING AND AN PHASE TWO ENVI ASSES CLIENT NAME 91 EGUINT	IALYSIS PLAN FOR RONMENTAL SITE SMENT
oil	PROJECT LOCATION 131 EGLINTON	AVENUE EAST,
	FIGURE NAME AREAS OF ENVIRONMEN	POTENTIAL TAL CONCERN
	SCALE AS SHOWN	PROJECT NO. 230989.001
	DATE APRIL 2019	FIGURE NO. 2

APPENDIX II Tables

TABLE 1 PHASE TWO ESA SCOPE OF WORK SUMMARY 91 Eglinton Limited Partnership

131 Eglinton Avenue East, Mississauga, ON

									COF	PCs												
APEC #	Sampling Location	Media Sampled	BTEX & F1	PHC F2-F4	PAHs	PCBs	Organochlorines	Metals	Hydrides (As, Sb, Se)	Free Cyanide	Ammonia	Sodium	Chloride		SAR	рН	Number of Samples Submitted for Analysis	Soil Sampling Depth Interval (mbgs)	Screen Interval (mbgs)	Sampling Frequency	Sampling System	Rationale/Notes
		Soil	•	•	•	•	•	•	•	•		•		•	•	•	1	0.00 - 0.76	NA	Continous/Soil cores everv 1.5 m	Judgemental	Assess soil and groundwater guality in relation to a historical oil AST associated
1	MW19-02	Groundwater	•	•	•	•	٠	٠	•	٠	•	•	•			•	1	NA	2.13 - 3.66	NA	Judgemental	with the historical farm house formerly utilized as a car parking garage (PCA # 1)
	MM/40.02	Soil	٠	٠	٠	٠	٠	•	•	•		•			•	•	3	0.00 - 2.29	NA	Continous/Soil cores every 1.5 m	Judgemental	
2	IVIVV 19-03	Groundwater	٠	٠	٠						•					•	1	NA	0.91 - 3.96	NA	Judgemental	Assess soil and groundwater quality in relation to the unknown heating source for the historical farm house (PCA # 2)
	BH19-07	Soil	•	•	•	٠	٠	٠	٠	٠		•		•	•	•	1	0.00 - 0.76	NA	Continous/Soil cores every 1.5 m	Judgemental	
	N/04/40 04	Soil				٠	٠	٠	٠	٠		•		•	•	•	2	0.00 - 2.29	NA	Continous/Soil cores every 1.5 m	Judgemental	
	IVIVV 19-01	Groundwater				٠	٠	٠	٠	٠	•	•	•			•	1	NA	0.91 - 3.36	NA	Judgemental	
	N8440.04	Soil	٠	٠	٠	•	٠	٠	٠	٠		•		•	•	•	3	0.00 - 2.13	NA	Continous/Soil cores every 1.5 m	Judgemental	
2.8.4	10100 19-04	Groundwater	•	•	•	•	٠	•	•	•	•	•	•			•	1	NA	1.11 - 3.35	NA	Judgemental	Assess soil and groundwater quality in relation to former Site use as a garden
3 & 4	NUM 0 05	Soil	•	•	•	•	٠	•	•	•		•		•	•	•	1	0.00 - 0.76	NA	Continous/Soil cores every 1.5 m	Judgemental	centre which sold pesticides and fertilizers (PCA # 3 and 4)
	WW 19-05	Groundwater	•	•	•	•	٠	•	•	•		•	•				1	NA	1.11 - 3.35	NA	Judgemental	
	BH19-06	Soil	•	•	•	•	٠	•	•	•		•		•	•	•	2	0.00 - 1.52	NA	Continous/Soil cores every 1.5 m	Judgemental	
	BH19-08	Soil	٠	٠		•	٠	•	•	•		•		•	•	•	2	0.00 - 1.52	NA	Continous/Soil cores every 1.5 m	Judgemental	
PHCs Petroleum Hydrocarbons (Fraction 1 to Fraction 4) BTEX Benzane, Toluene, Ethylbenzene and Xylenes VOCs Volatile Organic Compounds PAHs Polycyclic Aromatic Hydrocarbons As, 5b, 5e Arsenic, Antimory, Selenium Boron (HWS) Hot Water Soluble Boron Chromium VI Hexavalent Chromium EC Electrical Conductivity									APEC COPCs m mbgs NA PCA AST SAR	Area of Potential E Contaminants of Po Metres Metres Below Grou Not Applicable Potentially Contam Aboveground Stora Sodium Adsorption	nvironmental Concern otential Concern and Surface inating Activity age Tank I Ratio											

APPENDIX III
Pinchin Standard Operating Procedures

SOP – EDR003 – REV004 – FIELD SCREENING OF SOIL SAMPLES

Title:	Field Screening of Soil Samples
Practice:	EDR
First Effective Date:	June 16, 2009
Version:	004
Version Date:	January 3, 2018
Author:	Robert MacKenzie
Authorized by:	Robert MacKenzie
Signature:	Not won-75m

TABLE OF CONTENTS

1.0	VERSION HISTORY	. 2
2.0	SCOPE AND APPLICATION	. 2
3.0	OVERVIEW	. 3
4.0	DISTRIBUTION	. 3
5.0	PROCEDURE	. 3
5.1	Equipment and Supplies	. 3
5.2	Soil Headspace Vapour Measurement Procedure	.4
5.3	Visual Screening	. 5
5.4	Olfactory Screening	. 6
5.5	Additional Considerations for Ontario Regulation 153/04 Phase Two ESA Compliance	. 6
6.0	TRAINING	. 6
7.0	MAINTENANCE OF SOP	. 7
8.0	REFERENCES	. 7
9.0	APPENDICES	. 7

Version	Date	Summary of Changes	Author
Original	June 16, 2009	N/A	MEM
001	November 26, 2010	Update approval signature	FG
002	September 25, 2013	Revised SOP to reflect current practices/Added section on O.Reg. 153/04 compliance	RLM
003	April 29, 2016	Updated Section 4.0/Modified time between readings to 1 hour	RLM
004	April 28, 2017	Removed reference to Pinchin West/In Section 5.2, clarified that soil vapour measurements do not need to be made within one hour of sampling during winter conditions	RLM
004	January 3, 2018	Reviewed and confirmed current	RLM

1.0 VERSION HISTORY

2.0 SCOPE AND APPLICATION

This Standard Operating Procedure (SOP) presents the quantitative and qualitative methods to be used by Pinchin field personnel for field screening soil samples for potential impacts during field investigations.

The quantitative part of field screening consists of the measurement of vapour concentrations in soil sample headspace in order to assess the potential for volatile constituents to be present in the soil. The soil vapour readings obtained from these measurements are then used to assist in selecting potential "worst case" soil samples for submission to the laboratory for analysis. There are no regulatory standards for comparison with soil headspace vapour readings and we are using the general principle that the sample with the highest soil headspace vapour concentration from a group of samples is often the most likely to be impacted by volatile constituents.

The qualitative part of field screening includes assessing the soil for visual or olfactory indicators of potential contamination and is used in conjunction with the soil headspace vapour readings to select "worst case" soil samples to be submitted for laboratory analysis.

Note that soil vapour measurements have limited value when selecting "worst case" soil samples for laboratory analysis of non-volatile parameters such as metals. Visual observations of the presence of staining and debris (e.g., brick fragments and other building materials, coal ash, etc.), along with sample depth and likely migration pathways are to be factored into selecting the samples. The sample with the highest soil headspace vapour reading is not automatically selected under these circumstances.

Soil samples collected for soil vapour measurement must not be submitted for laboratory analysis except for analysis of non-volatile parameters (i.e., metals and inorganics) or grain size analysis.

This SOP also applies to the field screening of sediment samples but for simplicity, only soil samples are referred to below.

3.0 OVERVIEW

Not applicable.

4.0 DISTRIBUTION

This is an on-line document. Paper copies are valid only on the day they are printed. Refer to the author if you are in any doubt about the accuracy of this document.

This SOP will be distributed to all Pinchin staff and others as follows:

- Posted to the SOP section of the Environmental Due Diligence and Remediation (EDR) Practice Line on the Pinchin Orchard; and
- Distributed to senior staff at Le Groupe Gesfor Poirier and Pinchin LeBlanc for distribution as appropriate.

5.0 PROCEDURE

5.1 Equipment and Supplies

• Resealable plastic bags (e.g., Ziploc®);

(Note that small capacity bags (e.g., 500 millilitre capacity) are preferred over larger sized bags. When conducting headspace screening of a set of soil samples, the size of bag used should be consistent throughout in order to maintain the same approximate headspace volume in each bag);

 Combustible gas indicator (CGI) capable of operating in methane-elimination and/or photo-ionization detector (PID);

(The Project Manager will be responsible for selecting the appropriate instrument(s) for each project. CGIs (e.g., RKI Eagle or Gastechtor) are acceptable for screening of petroleum hydrocarbons (PHCs) and related compounds, whereas PIDs (e.g., MiniRAE) are acceptable for screening for volatile organic compounds (VOCs), including chlorinated solvents, but can also be used when screening for PHCs. For many projects, it will be appropriate to employ both a CGI and a PID); and

• Calibration equipment (e.g., calibration gas, regulators, tubing, calibration bags, etc. as provided by the equipment supplier).

5.2 Soil Headspace Vapour Measurement Procedure

The procedure for conducting soil headspace vapour measurements for soil sample headspace is as follows:

- Unless pre-calibrated by the equipment supplier, calibrate the CGI/PID as per the instrument manufacturer's instructions before commencing soil vapour measurements. Record the date and time of calibration, and type and concentration of the calibration gas used in the field logbook or field forms;
- 2. Label the plastic bag with the sample number;
- 3. Create a split soil sample by splitting the sample core vertically (i.e., along the longitudinal axis) with one half used for soil headspace vapour measurement and the other half used to fill sample jars for laboratory analysis of volatile parameters (e.g., VOCs and PHCs (F1 fraction)). In other words, the depth interval of the soil subjected to soil headspace vapour measurements should be the same as the depth interval from which samples for volatile parameters are collected. This procedure doesn't apply to grab samples but is to be completed when soil cores are obtained, such as sampling with dual tube samplers, split-spoon samplers and hand augers. For grab samples, soil used for laboratory analysis and soil headspace vapour measurements should be collected from proximal locations;
- 4. Place the soil into the plastic bag until the bag is approximately one-quarter full as soon as possible after the sampling device is retrieved/opened;
- 5. Seal the bag and break apart the soil by manually kneading the soil in the sealed bag;
- 6. Allow the soil sample to equilibrate at ambient temperature for a minimum of 5 minutes but no longer than one hour before taking a soil headspace vapour measurement. The exception to this is that during winter conditions, the soil samples should be placed in a heated environment (e.g., building interior) to warm up for a minimum of 15 minutes before taking soil vapour measurements. In this case, the soil vapour measurements do not need to be completed within one hour of sample collection;
- Do not store the bagged soil samples in direct sunlight prior to taking soil headspace vapour measurements;
- When conducting soil headspace vapour measurements with a CGI, make sure it is switched to methane elimination mode;
- 9. When completing soil headspace vapour measurements of a soil sample using both a PID and CGI, the vapour measurement using the PID should be made first;

- 10. Immediately before taking a soil headspace vapour measurement, gently agitate the bag and then create a small opening in the top of the bag. Insert the tip of the CGI/PID into the headspace of the bag and quickly reseal the bag around the tip to minimize leakage. If there is any water inside the bag, ensure that the tip does not contact the water;
- 11. Record the maximum vapour concentration measured within the first 10 seconds after inserting the tip of the CGI/PID into the bag. Note any anomalies that occur during the taking of the measurement (e.g., if the readings displayed by the instrument progressively increase and do not reach an obvious peak);
- 12. Remove the tip of the CGI/PID from the bag and reseal the bag immediately in case additional soil headspace vapour measurements are needed. If the soil headspace vapour is measured for a sample using a PID and an additional measurement with a CGI is required, wait a minimum of five minutes after the bag is resealed before taking the measurement with the CGI;
- 13. Before completing the next soil headspace vapour measurement, allow the CGI/PID to reach "zero" or "baseline". If the CGI/PID does not return to "zero" or "baseline" it should be recalibrated before further soil headspace vapour measurements are made; and
- 14. At the discretion of the Project Manager, a calibration check of the CGI/PID should be completed at least once per day or at a frequency of once per 100 soil headspace vapour measurements (for projects where numerous soil headspace vapour measurements are made on a daily basis such as a large remediation project). A calibration check is made by measuring the concentration of a sample of the calibration gas with the CGI/PID without making any adjustments to the instrument beforehand and comparing the measured concentration with the known concentration. The comparison of the measured concentration may have been altered during soil headspace vapour measurements, which is known as "instrument drift". Should the calibration check show instrument drift of more than 10%, the CGI/PID needs to be recalibrated before completing further soil headspace vapour measurements. Record all pertinent information for the calibration check (e.g., date and time, initial measured concentration, calibration pin the field logbook or field forms.

5.3 Visual Screening

Visual screening consists of examining the soil sample for potential indicators of contamination as per the following:

1. Visually examine the soil sample, including breaking apart a portion of the sample;

- 2. Note any indications of a mottled appearance, dark discolouration or staining, free-phase product or unusual colour;
- 3. Note any indications of non-soil constituents, such as brick, asphalt, wood or concrete fragments, coal fragments, coal ash, etc.; and
- 4. Record the findings of the visual screening in the field logbook or field forms. If there is no visual evidence of impacts this should be noted.

5.4 Olfactory Screening

Record in the field logbook or field forms the presence of any odours noted during sample collection and visual screening. Field staff are not expected to directly smell soil samples to assess the presence/absence of odours.

If it is possible to identify the likely type of odour (e.g., PHC-like, solvent-like, etc.) then this information should be recorded along with a comment on the severity of the odour (e.g., slight, strong, etc.). If the odour cannot be readily identified, it should be described in the field notes as "unidentified odour".

If no odours are observed, this information should also be recorded in the field logbook or field forms.

5.5 Additional Considerations for Ontario Regulation 153/04 Phase Two ESA Compliance

When completing a Phase Two Environmental Assessment (ESA) in accordance with Ontario Regulation 153/04, the following additional procedures must be undertaken:

- Calibration of the CGI/PID must be completed at the beginning of each field day and calibration checks must be made either at the end of each field day or after every 100 soil vapour readings (whichever occurs first); and
- Thorough records of the CGI/PID calibration and calibration checks must be kept, including any calibration sheets provided by the equipment supplier. The Quality Assurance/Quality Control section of the Phase Two ESA report requires a discussion of field screening instrument calibration, and equipment calibration records must be appended to the Phase Two ESA report.

6.0 TRAINING

The Practice Leader is responsible for identifying the training needs of EDR staff and ensuring that staff are trained and competent before undertaking work assignments.

<u>All trained personnel</u> are responsible for identifying coaching or re-training needs (if they are uncomfortable with work assignments that have been assigned).

The careful application of <u>*Health & Safety Training*</u> by each employee is an integral part of all activities and is assumed as part of this SOP.

7.0 MAINTENANCE OF SOP

1 Year.

8.0 **REFERENCES**

Association of Professional Geoscientists of Ontario, *Guidance for Environmental Site Assessments under Ontario Regulation 153/04 (as amended),* April 2011.

Ontario Ministry of the Environment, *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario*, December 1996.

9.0 APPENDICES

None.

I:\2018 SOP Updates\SOP - EDR003 - REV004 - Field Screening of Soil Samples.docx

Template: Master SOP Template - February 2014

SOP - EDR006 - REV003 - BOREHOLE DRILLING

Title:	Borehole Drilling
Practice:	EDR
First Effective Date:	November 25, 2010
Version:	003
Version Date:	January 3, 2018
Author:	Francesco Gagliardi and Robert MacKenzie
Authorized by:	Robert MacKenzie
Signature:	not wan-76m

TABLE OF CONTENTS

1.0	VERSION HISTORY
2.0	SCOPE AND APPLICATION
3.0	OVERVIEW
4.0	DISTRIBUTION
5.0	PROCEDURE
5.1	General4
5.2	Prior Planning and Preparation4
5.3	Borehole Drilling Procedures
5.4	Borehole Nomenclature
5.5	Borehole Advancement
5.6	Direct-Push Drilling
5.7	Auger Drilling (Split-Spoon)
5.8	Auger Drilling (Direct Sampling)7
5.9	Borehole Advancement In Bedrock7
5.10	Borehole Soil Sample Logging and Collection8
5.11	Borehole Backfilling9
5.12	Borehole Location Documentation

5.13	Field Notes	10
5.14	Additional Considerations for O. Reg. 153/04 Phase Two ESA Compliance	10
6.0	TRAINING	10
7.0	MAINTENANCE OF SOP	10
8.0	REFERENCES	11
9.0	APPENDICES	11

1.0 VERSION HISTORY

Version	Date	Summary of Changes	Author
Original	November 25, 2010	N/A	FG
001	November 22, 2013	Streamlined text to reflect most common current practices/Removed sections covered by other SOPs	RM
002	April 29, 2016	Updated Section 4.0	RM
003	April 28, 2017	Removed reference to Pinchin West	RM
003	January 3, 2018	Reviewed and confirmed current	RM

2.0 SCOPE AND APPLICATION

This Standard Operating Procedure (SOP) presents a description of the methods employed for the completion of boreholes and the collection of subsurface soil samples.

Boreholes are typically completed to determine geologic conditions for hydrogeological evaluation, to allow the installation of monitoring wells, and to allow for the collection of subsurface soil samples for laboratory analysis.

Several methods are available for the collection of shallow subsurface soil samples using hand-held equipment (e.g., hand augers, post-hole augers). However, the use of a drill rig, equipped with direct-push tooling, solid-stem augers and/or hollow-stem augers, is the most common method used by Pinchin to advance boreholes and will be the focus of this SOP.

A detailed discussion of all the various drilling rigs and drilling methods (e.g., direct push, augering, sonic drilling, air/water/mud rotary drilling, etc.) is beyond the scope of this SOP. The Project Manager will be responsible for determining the appropriate drill rig and drilling method for the site investigation.

The majority of the site investigations completed by Pinchin involve relatively straightforward drilling within the overburden within a one aquifer system. In some situations, such as when multiple aquifers are spanned by a borehole, when drilling into bedrock or when there are known impacts in the shallow subsurface, drilling using telescoped casing methods may be appropriate. Telescoped casing and bedrock drilling methods are beyond the scope of this SOP. In these situations, the Project Manager, in consultation with the drilling contractor, will be required to confirm the drilling requirements and procedures.

3.0 OVERVIEW

Not applicable.

4.0 **DISTRIBUTION**

This is an on-line document. Paper copies are valid only on the day they are printed. Refer to the author if you are in any doubt about the accuracy of this document.

This SOP will be distributed to all Pinchin staff and others as follows:

- Posted to the SOP section of the Environmental Due Diligence and Remediation (EDR)
 Practice Line on the Pinchin Orchard; and
- Distributed to senior staff at Le Groupe Gesfor Poirier and Pinchin LeBlanc for distribution as appropriate.

5.0 PROCEDURE

5.1 General

The overall borehole drilling program is to be managed in accordance with SOP-EDR005. In particular, utility locates must be completed in accordance with SOP-EDR021 before any drilling activities commence.

All non-dedicated drilling and sample collection equipment must be decontaminated in accordance with SOP-EDR009.

5.2 Prior Planning and Preparation

The planning requirements for borehole drilling programs are covered in detail in SOP-EDR005.

As noted above, the type of drilling rig and drilling method will be determined by the Project Manager when scoping out the site investigation. In some cases, a switch in drilling rig and/or drilling method may be required depending on site conditions. For example, if competent bedrock is encountered in the subsurface at a depth above the water table, bedrock coring would be required to advance the borehole deep enough to install a monitoring well.

5.3 Borehole Drilling Procedures

Once the final location for a proposed boring has been selected and utility clearances are complete, one last visual check of the immediate area should be performed before drilling proceeds. This last visual check should confirm the locations of any adjacent utilities (subsurface or overhead) and verification of adequate clearance.

In some instances, in particular where there is uncertainty regarding the location of buried utilities or the borehole is being completed near a buried utility, the use of a hydro-excavating (hydro-vac) unit will be required to advance the borehole to a depth below the bottom of the utility. The hydro-vac uses a

combination of high-pressure water and high-suction vacuum (in the form of a vacuum truck) to excavate soil. This is also known as "daylighting". The need to use a hydro-vac will be determined by the Project Manager.

If it is necessary to relocate any proposed borehole due to terrain, utilities, access, etc., the Project Manager must be notified and an alternate location will be selected.

5.4 Borehole Nomenclature

If a borehole is advanced strictly for the purpose of soil sampling and no monitoring well is installed, the borehole should be identified as "BHxx". If a monitoring well is installed in a borehole, the borehole should be identified as "MWxx".

To avoid confusion, for site investigations involving both boreholes and monitoring wells, the numerical identifiers are to be sequential (e.g., there should not be a BH01 and MW01 for the same project).

When completing supplemental drilling programs, the borehole number should start at either the next sequential number after the last borehole number used in the first stage, or label them as '100 series', '200 series', etc. as appropriate (e.g., BH101, MW102, etc. for the first series of additional boreholes).

It is also acceptable to add the 2 digit year either before or after the borehole or monitoring well name (e.g., 17-MW101 or MW101-17).

5.5 Borehole Advancement

Each borehole will be advanced incrementally to permit intermittent or continuous sampling as specified by the Project Manager. Typically, the sampling frequency is one sample for every 2.5 or 5 feet (0.75 or 1.5 metres) the borehole is advanced. At the discretion of the Project Manager, soil samples may be collected at a lower frequency in homogeneous soil or at a higher frequency if changes in stratigraphy or other visual observations warrant it.

5.6 Direct-Push Drilling

This method is most commonly used at Pinchin to obtain representative samples of the subsurface soil material at a site. Direct-push drilling is achieved by driving a steel sampler into the subsurface at 1.5 metre intervals until the desired depth is achieved. The samplers are advanced by the drilling rig by means of a hydraulic hammer. For each soil sample run, a dedicated PVC sample liner is placed within the steel sampler which collects the soil as the sampler is advanced. After each sample run, a new sampler is assembled and it is advanced deeper down the open borehole.

There are generally two methods of direct-push drilling which are used:

- Dual-tube sampling; and
- Macro-core sampling.

A dual-tube sampler consists of an 8.25 centimetre (cm) inner diameter steel tooling (outer tube), equipped with a steel cutting-shoe affixed to the advancing end. A smaller diameter steel tooling, consisting of a 5.75 cm inner diameter (inner tube), fits within the outer tube and contains a PVC sample liner within. These two tubes form the completed dual-tube sampler. The completed dual-tube sampler has a length of 1.5 metres.

A macro-core sampler consists of the smaller inner tube (mentioned above) used independently. The macro-core sampler measures approximately 1.5 metres in length.

The difference in drilling methods used is typically determined by soil conditions. Where soil conditions consist of tight or dense soil types (e.g., silts or clays), the macro-core sampling method may be used as this method provides less resistance to advancing the sampler. In soil types that are less resistive (e.g., loose sands), the dual-tube sampler may be used.

5.7 Auger Drilling (Split-Spoon)

The auger drilling method for borehole advancement and sampling involves using an auger drill rig to advance the borehole to the desired sampling depth and sampling with a split-spoon sampler. Borehole advancement with hollow stem augers is the preferred drilling method when sampling with split-spoon samplers as it minimizes the potential for sloughed material to reach the bottom of a borehole and possibly cross-contaminate samples when the split-spoon is driven beyond the bottom of the borehole. Solid stem augers can be used when drilling at sites with cohesive soils (e.g., silty clay), provided that the borehole remains open after the augers are removed from the ground prior to driving the split-spoon sampler.

The split-spoon sampler consists of an 18- or 24-inch (0.45- or 0.60-metre) long, 2-inch (5.1 cm) outside diameter tube, which comes apart lengthwise into two halves.

Once the borehole is advanced to the target depth, the sampler is driven continuously for either 18 or 24 inches (0.45 or 0.60 metres) by a 140-pound (63.5 kilogram) hammer. The hammer may be lifted and dropped by either the cathead and rope method, or by using an automatic or semi-automatic drop system.

The number of blows applied in each 6-inch (0.15 metre) increment is counted until one of the following occurs:

- A total of 50 blows have been applied during any one of the 6-inch (0.15 metre) increments described above;
- A total of 100 blows have been applied;

- There is no advancement of the sampler during the application of ten successive blows of the hammer (i.e., the spoon is "bouncing" on a cobble or bedrock); or
- The sampler has advanced the complete 18 or 24 inches (0.45 or 0.60 metre) without the limiting blow counts occurring as described above.

On the field form, record the number of blows required to drive each 6-inch (0.15 metre) increment of penetration. The first 6 inches is considered to be a seating drive.

The sum of the number of blows required for the second and third 6 inches (0.15 metres) of penetration is termed the "standard penetration resistance" or the "N-value". This information is typically provided on the borehole logs included in our site investigation reports.

The drill rods are then removed from the borehole and the split-spoon sampler unthreaded from the drill rods.

Caution must be used when drilling with augers below the groundwater table, particularly in sandy or silty soils. These soils tend to heave or "blow back" up the borehole due to the difference in hydraulic pressure between the inside of the borehole and the undisturbed formation soil. If blowback occurs, the drilling contractor will introduce water or drilling mud into the borehole or inside of the hollow-stem augers (if used) to equalize the hydraulic pressure and permit drilling deeper to proceed.

Heaving conditions and the use of water or drilling mud must be noted on the field logs, including the approximate volume of water or drilling mud used.

5.8 Auger Drilling (Direct Sampling)

In some jurisdictions (e.g., BC, Manitoba) it may be acceptable to collect soil samples directly from auger flights when using solid stem augers.

When sampling directly from auger flights, care must be exercised not to collect soils that were in direct contact with the auger or that were smeared along the edge of the borehole.

5.9 Borehole Advancement In Bedrock

It is sometimes possible to advance augers through weathered bedrock but borehole advancement through competent bedrock requires alternate drilling procedures. Bedrock drilling can be accomplished by advancing core barrels or tri-cone bits using air rotary or water rotary drilling methods. A description of the various bedrock drilling procedures is beyond the scope of this SOP.

The bedrock drilling method selected will depend in part on the type of bedrock, the borehole depth required, whether bedrock core logging is required, whether telescoped casing is required, etc. The Project Manager, in consultation with the drilling contractor, will determine the best method for advancing boreholes in competent bedrock.

5.10 Borehole Soil Sample Logging and Collection

The following describes the methods for logging and collection of samples from a split-spoon or directpush sampler but can be adapted for sample collection from augers:

- After the driller opens the split-spoon sampler or PVC liner, measure the length of the soil core retained in the sampler in inches or centimetres. Be sure to be consistent in the use of metric or imperial units, and that the units used are clearly noted in the field notes. The percentage of soil retained versus the length of the sampler is known as "sample recovery" and this information is presented on the borehole logs within our Phase II ESA reports;
- 2. Dedicated, disposable nitrile gloves are to be worn during soil logging and sampling;
- 3. When using a dual-tube or macro-core sampler with direct-push drilling, there is usually sufficient sample recovery to permit the collection of two soil samples from each sample run. In this case, if the sample recovery is greater than 2.5 feet (0.75 metres), divide the recovered soil into two depth intervals and log/collect a sample from each interval. Split-spoon samplers typically are not long enough nor provide enough sample to divide a sample run into two. However, if a recovered sample contains distinct stratigraphic units (e.g., fill material and native material, obviously impacted soil and non-impacted soil), the distinct units are to be sampled separately. It is especially important that potentially impacted soil (e.g., fill material, obviously impacted soil) is not mixed with potentially unimpacted soil (e.g., native soil, soil without obvious impacts) to form one sample;
- Discard the top several centimetres in each core as this material is the most likely to have sloughed off the borehole wall and may not be representative of the soil from the intended depth interval;
- To minimize the potential for cross-contamination, scrape the exterior of the soil core with a clean, stainless-steel putty knife, trowel or similar device to remove any smeared soil.
 Note that is not practical and can be skipped if the soil is non-cohesive (e.g., loose sand);
- 6. Split the soil core longitudinally along the length of the sampler and to the extent practical, collect the soil samples for laboratory analysis from the centre of the core (i.e., soil that has not contacted the sampler walls). When sampling directly from augers, soils in direct contact with the auger or soils retained on the augers that may have been in contact with the edge of the borehole should not be collected.

Collect soil samples for potential volatile parameter analysis and soil vapour measurement (in that order) as soon as possible after the core is opened. The length of time between opening the sampler and sample collection for these parameters should not

exceed 2 minutes. It is important to follow this as it minimizes the potential for volatile constituents in the soil to be lost. See SOP-EDR003 for additional details regarding the collection of soil samples for soil vapour measurement;

- 7. Drillers are not to open the split-spoon sampler or PVC liner until instructed to do so. If drilling and sample retrieval is occurring at a rate faster than Pinchin staff are able to sample and log the soil cores, the drillers are to be instructed to slow down or stop until further notice. This will prevent a back log of soil cores from accumulating and minimize the exposure of the soil cores to ambient conditions. This is particularly important when sampling for VOCs;
- 8. Collect soil samples for the remaining parameters to be analyzed;
- 9. Soil samples are to be labelled and handled in accordance with SOP-EDR013;
- 10. Record the parameters sampled for, the type(s) and number of sample containers, and the time and date of sample collection in the field notes;
- 11. Determine the soil texture in accordance with SOP-EDR019 and record this information in the field notes;
- 12. Soil samples collected for soil headspace vapour measurement must not be submitted for laboratory analysis except for analysis of non-volatile parameters (i.e., metals and inorganics) or grain size analysis;
- Immediately following collection, place each sample container in a cooler containing ice bags or ice packs; and
- 14. After the maximum borehole drilling depth is reached, measure the borehole depth with a weighted measuring tape and record the total depth in the field notes if the borehole diameter is large enough to permit measurement.

5.11 Borehole Backfilling.

Following completion of each borehole in which a well is not installed, it must be properly backfilled with bentonite and/or bentonite grout by the drilling contractor. The drilling contractor is to be consulted to confirm the proper borehole abandonment procedures required by the local regulations (e.g., Ontario Regulation 903 for Ontario sites).

Drill cuttings are not be used to backfill boreholes.

Record the borehole backfilling method and materials used in the field notes.

5.12 Borehole Location Documentation

For each borehole, complete the following to document its location:

- Photograph the completed borehole location. Close up photographs of the borehole are to be taken as well as more distant photographs that show the location of site landmarks relative to the borehole so that the photograph can be used to locate the borehole in the future; and
- 2. Using a measuring tape or measuring wheel, measure the distance between the borehole and a nearby landmark (e.g., corner of the nearest building) and provide a borehole location sketch in the field notes. Measurements are to be made at right angles relative to the orientation of the landmark or to a fixed axis (e.g., relative to true north). If required by the Project Manager, measure the UTM coordinates of the borehole with a hand-held GPS device.

5.13 Field Notes

The field notes must document all drilling equipment used, sample depths and measurements collected during the borehole drilling activities. The field notes must be legible and concise such that the entire borehole drilling and soil sampling event can be reconstructed later for future reference. The field notes are to be recorded on the field forms or in a field book.

5.14 Additional Considerations for O. Reg. 153/04 Phase Two ESA Compliance

None. Following this SOP will be sufficient to comply with the Ontario Regulation 153/04 requirements for Phase Two Environmental Site Assessments.

6.0 TRAINING

The Practice Leader is responsible for identifying the training needs of EDR staff and ensuring that staff are trained and competent before undertaking work assignments.

<u>All trained personnel</u> are responsible for identifying coaching or re-training needs (if they are uncomfortable with work assignments that have been assigned).

The careful application of <u>Health & Safety Training</u> by each employee is an integral part of all activities and is assumed as part of this SOP.

7.0 MAINTENANCE OF SOP

1 Year.

8.0 **REFERENCES**

Canadian Standards Association, *Phase II Environmental Site Assessment, CSA Standard Z769-00* (*R2008*), dated 2000 and reaffirmed in 2008.

Association of Professional Geoscientists of Ontario, *Guidance for Environmental Site Assessments under Ontario Regulation 153/04 (as amended)*, April 2011.

9.0 APPENDICES

None.

I:\2018 SOP Updates\SOP - EDR006 - REV003 - Borehole Drilling.docx

Template: Master SOP Template - February 2014

SOP – EDR007 – REV004 – MONITORING WELL DESIGN AND CONSTRUCTION

Title:	Monitoring Well Design and Construction
Practice:	EDR
First Effective Date:	August 03, 2009
Version:	004
Version Date:	January 3, 2018
Author:	Robert MacKenzie
Authorized by:	Robert MacKenzie
Signature:	761 m-76m

TABLE OF CONTENTS

1.0	VERS	SION HISTORY	3
2.0	SCO	PE AND APPLICATION	3
3.0	OVER	RVIEW	3
4.0	DIST	RIBUTION	4
5.0	PRO	CEDURE	4
5.1	Ger	neral Considerations	4
5	.1.1	Borehole and Well Diameters	4
5	.1.2	Screen Length and Placement	4
5	.1.3	Well Screen/Casing Materials	5
5	.1.4	Well Screen Slot Size and Sand Pack	5
5	.1.5	Bentonite Seal	5
5	.1.6	Surface Completions	6
5.2	We	II Installation Procedures	6
5.3	Add	litional Considerations for O. Reg. 153/04 Phase Two ESA Compliance	9
6.0	TRAI	NING	9
7.0	MAIN	ITENANCE OF SOP	9

8.0	REFERENCES	9
9.0	APPENDICES	9

Version	Date	Summary of Changes	Author
Original	August 03, 2009	N/A	MEM
001	November 26, 2010	Update approval signatures	FG
002	November 15, 2013	Streamlined to cross reference AAPGO guidance document/Added section on O. Reg. 153/04 compliance	RLM
003	April 29, 2016	Updated Section 4.0/Added procedure for outer casing installation in Ontario	RLM
004	April 28, 2017	Remove reference to Pinchin West/Added note to Section 5.2 about placing a reference mark at the top of the well pipe/Added note to Section 5.3 that O.Reg.153/04 requires well screens to intersect the water table when assessing groundwater for petroleum hydrocarbon impacts during a Phase Two ESA	RLM
004	January 3, 2018	Reviewed and confirmed current	RLM

1.0 VERSION HISTORY

2.0 SCOPE AND APPLICATION

Monitoring wells are installed in overburden and bedrock to enable the collection of groundwater samples from water bearing formations at project sites. For some projects, monitoring wells are also used to monitor for combustible gases in the subsurface.

A monitoring well consists of two parts: the well screen and the well casing (also known as the well riser). The well screen allows groundwater to enter the well from the formation adjacent to the well so that it can be sampled. The well casing allows access to the well from the ground surface.

In Ontario, the regulatory requirements for monitoring well installation are provided in Ontario Regulation 903. All drilling contractors who install groundwater monitoring wells in Ontario must be licensed with the Ontario Ministry of the Environment and Climate Change (MOECC). In addition, for any well installed at a depth of greater than 3.0 metres below ground surface, a Water Well Record must be prepared by the drilling contractor and submitted to the MOECC and the well owner (typically our client).

The design and construction of soil vapour monitoring wells is beyond the scope of this SOP and is described in SOP-EDR018.

3.0 OVERVIEW

Not applicable.

4.0 **DISTRIBUTION**

This is an on-line document. Paper copies are valid only on the day they are printed. Refer to the author if you are in any doubt about the accuracy of this document.

This SOP will be distributed to all Pinchin staff and others as follows:

- Posted to the SOP section of the Environmental Due Diligence and Remediation (EDR) Practice Line on the Pinchin Orchard; and
- Distributed to senior staff at Le Groupe Gesfor Poirier and Pinchin LeBlanc for distribution as appropriate.

5.0 PROCEDURE

5.1 General Considerations

5.1.1 Borehole and Well Diameters

The borehole diameter must be sufficient in size to accommodate the well casing, sand pack and seal materials. In Ontario, the borehole diameter and annular space surrounding the monitoring well must meet the requirements of Ontario Regulation 903. Other provinces have similar requirements that must be considered. It is the Project Manager's responsibility to be aware of specific provincial requirements. Wherever possible, 2-inch (5.1. centimetre) interior diameter monitoring wells should be installed as they permit the use of most sampling and monitoring devices, and will generally provide greater water volume for sampling, especially in low permeability soils. Monitoring wells with interior diameters between 1-inch (2.5 centimetres) and 1.5-inches (3.8 centimetres) are also considered acceptable in some jurisdictions but the use of monitoring wells smaller than 1-inch (2.5 centimetres) is not permitted unless approved by the Project Manager.

5.1.2 Screen Length and Placement

Well screens typically range in length from 1.5 to 3.0 metres. Saturated well screen lengths beyond 1.8 metres, including sand pack, should be avoided in British Columbia, as per British Columbia Ministry of Environment Technical Guidance 8.

Wells screens must not straddle more than one hydrostratigraphic unit and should not be placed such that a preferential pathway for contaminant migration is created between two hydrostratigraphic units. In particular, a well screen must not straddle the overburden/bedrock interface, and the well screen, sand pack and seal must be situated entirely within either the overburden or the bedrock. An exception to this if the well is installed for assessing dense non-aqueous phase liquid (DNAPL), the penetration into the bedrock is minimal, and bedrock fractures are isolated from the sand pack. This type of well installation must only be completed under the guidance of staff with the appropriate geological expertise to ensure it is done correctly.

When determining the well screen length and depth of screen placement for a project, the following should be considered by the Project Manager:

- When assessing for the presence of light non-aqueous phase liquid (LNAPL) at the water table, longer well screens are preferred due to seasonal fluctuations in the water table and the well screen should intersect the water table whenever possible;
- When assessing for the presence of DNAPL, the well screen should be positioned at the bottom of the aquifer immediately above the aquitard;
- When assessing geochemical parameters, shorter well screens may be preferable to reduce the potential for mixing of water from distinct vertical geochemical zones;
- The use of long well screens within the saturated zone may result in the mixing of impacted and unimpacted groundwater from different depths within the aquifer, with the resulting dilution effect biasing the groundwater concentrations low; and
- Nested wells can be used to determine contaminant stratification within an aquifer or assess multiple aquifers, as long as the wells and individual aquifers are properly sealed off from each other within the borehole.

5.1.3 Well Screen/Casing Materials

Polyvinyl chloride (PVC) is the standard material used to construct groundwater monitoring wells. However, some organic compounds if present at excessive concentrations can degrade PVC, and stainless-steel or Teflon well materials may be considered for use by the Project Manager at such project sites.

A filter sock must not be placed over a well screen.

5.1.4 Well Screen Slot Size and Sand Pack

The slot size of the well screen will be determined by the size of the filter pack used. Pinchin typically uses No. 10 slot screen and #1 silica sand to form the sand pack around the well screen. When investigating a site with fine-grained soil, it may be appropriate to use a finer sand pack and smaller slot size to act as a "filter" to prevent as much fine-grained soil from entering the well as possible. The Project Manager should consult with the drilling contractor to determine the most appropriate screen slot size and sand pack size.

5.1.5 Bentonite Seal

The annular space above the sand pack in all wells is to be filled with bentonite. The purpose of placing the bentonite is create a seal above the sand pack that prevents a connection between other water bearing zones within the subsurface and/or water infiltration from the surface.

5.1.6 Surface Completions

A protective steel casing and lockable cap are to be installed at each well to protect the well and prevent tampering. Protective casings come in two varieties: aboveground casings (commonly known as monument casings) and flush-mount casings.

Aboveground casings have the advantage of having better visibility and can be located more easily, especially during winter, are less likely to need repair, and have fewer problems related to water intrusion and frost heave of the casing.

Flush-mount casings are usually the only available option for wells installed in areas of high vehicular or pedestrian traffic. Also, some clients prefer flush-mount casings for aesthetic reasons as they are less obtrusive.

When installing a well in a high vehicular traffic area such as a roadway, the flush-mount casing must have sufficient strength to avoid damage when run over by vehicles. Flush-mount casings with brass lids should not be installed in high vehicular traffic areas as they are easily damaged to the point where they can no longer be opened.

5.2 Well Installation Procedures

Note that Pinchin field staff are not trained, nor have the necessary licensing, to install monitoring wells. This task is to be performed by the drilling contractor in accordance with the applicable regulatory requirements (e.g., Ontario Regulation 903 in Ontario). Pinchin field staff will assist the drilling contractor by specifying the general design of the monitoring well but will not perform the actual installation. The primary role of Pinchin field staff during well installation is to document the installation (e.g., measuring and/or recording the well length, screen length, depth to top of sand pack, etc.) as outlined below.

The following presents the general procedure for the completion of overburden and bedrock monitoring well installations after the borehole has been advanced to the appropriate depth:

- Assemble the well by threading sufficient lengths of screen and riser materials together, and placing a threaded cap or slip-on cap at the bottom of the well. Well materials are to be kept in their plastic sleeves until immediately prior to well installation, and are not to be placed on the ground unless the ground surface is covered by clean plastic sheeting. Well materials should not be stored near potentially contaminated materials (e.g., soil cuttings);
- 2. Dedicated, disposable nitrile gloves are to be worn by all personnel handling the well materials and are to be replaced if they become contaminated during well installation. Confirm the length of the well screen, well riser and total length of well. This is especially important if the screen and/or riser are trimmed to fit the borehole depth or desired

screen interval. Record the length of the well screen, the length of the well casing, the total length of the well (including the bottom cap), the type of bottom cap used, and the interior diameter of the well screen/well casing in the field notes;

- 3. Prior to placing the assembled well into the borehole, measure the depth from ground surface to the bottom of the borehole and record this depth in the field notes;
- 4. When possible, place a minimum of 0.15 metres of filter pack into the bottom of the borehole to provide a firm base for the well. Note that the placement of such a filter pack base may not be appropriate when investigating a site where DNAPLs are suspected as the filter pack base may act as a DNAPL "sump" beneath the well and the DNAPL may go undetected when monitoring the well;
- 5. Place the assembled well into the open borehole or within the interior of the hollow stem augers. If trimming of the well casing is required, measure the length of the trimmed piece and record this information in the field notes. Before installing the sand pack, place a J-plug or slip cap on the top of the well to prevent sand and seal materials from entering the well when backfilling the annular space between the well and the borehole walls;
- 6. Install the sand pack around the exterior of the well screen and extend it to between 0.3 and 0.6 metres above the top of the well screen. The sand pack should be installed slowly, and with a tremie pipe if possible, to minimize the potential for bridging of the sand pack. When installing a sand pack in a borehole that has been drilled with hollow stem augers, the sand pack should be installed in lifts of approximately 0.5 metres. After placement of each lift, the augers are withdrawn from the ground by approximately 0.5 metres and the process repeated until the sand pack is placed to the required depth. Measure the depth to the top of the sand pack and record this depth in the field notes;
- 7. Install a bentonite seal comprised of granular and/or powdered bentonite above the sand pack to within approximately 0.6 metres of the ground surface. The bentonite should be installed slowly, and with a tremie pipe if possible, to minimize the potential for bridging of the seal. For the portion of the seal located above the water table, distilled water is to be poured into the borehole for each lift placed above the water table (approximately 0.3 to 0.6 metres per lift) to hydrate the seal. Approximately 1 to 2 litres of distilled water per lift is considered sufficient to hydrate the seal. Measure the depth to the top of the bentonite seal and record this depth in the field notes;
- 8. Record whether the seal was hydrated during installation and over which depth interval. Note that in some jurisdictions very long bentonite seals can be broken up with sand intervals. This reduces the potential for ground heaving due to bentonite shrinking and swelling but the sand intervals must not connect hydraulically separated aquifers;

- 9. (Ontario only) If the well is to be installed with a flush-mount protective casing, an outer casing comprised of a short length (10 to 15 cm) of PVC riser, or PVC coupling, that is slightly larger in diameter than the well casing needs to be installed around the well casing into the top of the bentonite seal, with the gap between the two casings sealed with bentonite. The top of the outer casing needs to be flush with or slightly below the top of the well casing. For example, if a 2-inch diameter well is installed, then a 10 to 15 cm length of 3-inch or 4-inch diameter riser or coupling placed around the 2-inch diameter well casing will suffice provided that bentonite is placed between the two casings. The flush-mount protective casing is then installed around the two casings. The outer casing does not need to be capped, and we only need to cap the well casing with a J-plug or slip cap;
- 10. (Ontario only) If the well is to be installed with a stick up protected by a monument casing, the procedure for installing the outer casing is essentially the same, except that the outer casing will extend from 10 to 15 cm below ground to above the ground surface, preferably flush with or slightly below the top of the well casing if the design of the monument casing permits it;
- 11. Place a protective well casing (monument or flush-mount) around the well casing and cement it in place;
- Using a permanent marker, mark a point on the top of the well casing that will serve as a reference point for all future depth to water and elevation survey measurements. Measure the depth to groundwater in the well at the time of completion. Note the depth to water and time of measurement in the field notes;
- 13. Place a lockable J-plug on the well casing and ensure that the J-plug is tightened sufficiently to prevent surface water from infiltrating into the well if the well has a flushmount completion. Place a lock on the J-plug for a flush-mount completion or on the lockable cap for an aboveground completion if required by the Project Manager. A PVC slip cap can also be used, especially for an aboveground completion;
- 14. Photograph the completed well installation. Close up photographs of the well are to be taken as well as more distant photographs that show the location of site landmarks relative to the well so that the photograph can be used to locate the well in the future; and
- 15. Using a measuring tape or measuring wheel, measure the distance between the well and a nearby landmark (e.g., corner of the nearest building) and provide a well location sketch in the field notes. Measurements are to be made at right angles relative to the orientation of the landmark or to a fixed axis (e.g., relative to true north). If required by the Project Manager, measure the UTM coordinates of the well with a hand-held GPS device.

5.3 Additional Considerations for O. Reg. 153/04 Phase Two ESA Compliance

Ontario Regulation 153/04 mandates that well screens <u>must not exceed 3.1 metres</u> in length. In addition, whenever the Phase Two ESA includes the assessment of petroleum hydrocarbon impacts in groundwater, the well screen in each well must intersect the water table.

6.0 TRAINING

The Practice Leader is responsible for identifying the training needs of EDR staff and ensuring that staff are trained and competent before undertaking work assignments.

<u>All trained personnel</u> are responsible for identifying coaching or re-training needs (if they are uncomfortable with work assignments that have been assigned).

The careful application of <u>*Health & Safety Training*</u> by each employee is an integral part of all activities and is assumed as part of this SOP.

7.0 MAINTENANCE OF SOP

1 Year.

8.0 REFERENCES

Association of Professional Geoscientists of Ontario, *Guidance for Environmental Site Assessments under Ontario Regulation 153/04 (as amended),* April 2011.

British Columbia Ministry of the Environment, *Technical Guidance 8: Groundwater Investigation and Characterization*, July 2010.

9.0 APPENDICES

None.

I:\2018 SOP Updates\SOP - EDR007 - REV004 - Monitoring Well Design and Construction.docx

Template: Master SOP Template - February 2014

SOP – EDR008 – REV005 – MONITORING WELL SAMPLING

Title:	Monitoring Well Sampling
Practice:	EDR
First Effective Date:	November 8, 2013
Version:	005
Version Date:	January 3, 2018
Author:	Robert MacKenzie
Authorized by:	Robert MacKenzie
Signature:	not won-76m

TABLE OF CONTENTS

1.0	VERS	SION HISTORY	. 3
2.0	SCOF	PE AND APPLICATION	. 3
3.0	OVER	RVIEW	. 3
4.0	DISTR	RIBUTION	. 3
5.0	PROC	CEDURE	. 4
5.1	Equ	ipment and Supplies	. 4
5.1	.1	Documents and Information Gathering	. 4
5.1	.2	Well Purging and Sampling Equipment	. 4
5.2	Purg	ging Procedures	. 5
5.2	2.1	Purging of High Yield Wells	. 5
5.2	2.2	Purging of Low Yield Wells	. 8
5.3	Wel	I Purging Record	. 9
5.4	Sam	nple Collection	. 9
5.4	l.1	General Considerations	. 9
5.4	1.2	Sampling of High and Low Yield Wells1	10
5.5	Add	itional Considerations for O. Reg. 153/04 Phase Two ESA Compliance	12
6.0	TRAIN	NING	12

7.0	MAINTENANCE OF SOP	12
8.0	REFERENCES	12
9.0	APPENDICES	13

Version	Date	Summary of Changes	Author
Original	November 08, 2013	N/A	RM
001	September 25, 2015	Incorporated procedures specific to Pinchin West into SOP	RM
002	February 9, 2016	Revised overall procedure to be consistent with well development SOP/Added reference to revised well development field forms	RM
003	April 29, 2016	Updated Section 4.0	RM
004	April 28, 2017	Removed reference to Pinchin West	RM
005	January 3, 2018	Changed "submersible" to "centrifugal" throughout	RM

2.0 SCOPE AND APPLICATION

This Standard Operating Procedure (SOP) describes the standard procedures for groundwater monitoring well purging and sampling, and provides a description of the equipment required and field methods.

Note that this SOP pertains to monitoring well sampling using the "well volume" purging procedure. Groundwater monitoring well purging and sampling using low flow procedures is described in SOP-EDR023.

3.0 OVERVIEW

Groundwater sampling involves two main steps: well purging followed by sample collection. All groundwater monitoring wells must be purged prior to groundwater sampling to remove groundwater that may have been chemically altered while residing in the well so that groundwater samples representative of actual groundwater quality within the formation intersected by the well screen can be obtained.

Monitoring well sampling should not be completed until at least 24 hours have elapsed following monitoring well development to allow subsurface conditions to equilibrate. Any deviation from this procedure must be discussed with the Project Manager before proceeding.

4.0 **DISTRIBUTION**

This is an on-line document. Paper copies are valid only on the day they are printed. Refer to the author if you are in any doubt about the accuracy of this document.

This SOP will be distributed to all Pinchin staff and others as follows:

- Posted to the SOP section of the Environmental Due Diligence and Remediation (EDR) Practice Line on the Pinchin Orchard; and
- Distributed to senior staff at Le Groupe Gesfor Poirier and Pinchin LeBlanc for distribution as appropriate.

5.0 PROCEDURE

5.1 Equipment and Supplies

- 5.1.1 Documents and Information Gathering
 - A copy of the proposal or work plan;
 - Monitoring well construction details (borehole logs, well construction summary table from a previous report or well installation field notes);
 - A copy of this SOP;
 - A site-specific Health and Safety Plan (as per the project requirements); and
 - Client or site representative's contact details.
- 5.1.2 Well Purging and Sampling Equipment
 - Inertial pump (e.g., Waterra tubing and foot valve) (Optional depending on jurisdiction);
 - Peristaltic pump (Optional depending on the parameters being sampled);
 - Centrifugal or bladder pump (Optional depending on jurisdiction and well depth);
 - Disposable bailer (Optional);
 - Graduated pail (to contain purge water and permit the volume of groundwater purged to be tracked);
 - Pails or drums for purge water storage prior to disposal;
 - Well keys (if wells are locked);
 - Tools to open monitoring well (T-bar, socket set, Allen keys, etc.);
 - Interface probe;
 - Equipment cleaning supplies (see SOP-EDR009);
 - Disposable latex or nitrile gloves; and
 - Field forms.

5.2 Purging Procedures

The well purging procedure employed will be determined by the hydraulic conductivity of the formation in which the groundwater monitoring well is installed. For this SOP, a high yield well is defined as a well that cannot be purged to dryness when pumping continuously at a rate of up to 2 litres per minute (L/min) and a low yield well is defined as a well that can be purged to dryness when pumping continuously at a rate of 2 L/min or less. This threshold represents a "normal" pumping rate when hand pumping with an inertial pump.

5.2.1 Purging of High Yield Wells

The procedure for purging a high yield monitoring well is as follows:

- Decontaminate all non-dedicated monitoring and sampling equipment that will be used, including the interface probe and centrifugal or bladder pump (if used), in accordance with the procedures described in SOP-EDR009;
- 2. Review the well construction details provided in the borehole logs, previous field notes or well construction summary table from a previous report. Determine the well depth, well stick up, screen length, depth to top of sand pack and diameter of the borehole annulus. If the well depth is unavailable, measure it with the interface probe;
- 3. Measure the initial water level (i.e., static water level) from the reference point on the well (which should be marked at the top of the well pipe) with an interface probe. If measurable free-phase product is present on the water table, record the depth to the top of the free-phase product and the depth to the free-phase product/water boundary (i.e., water level), and discuss this with the Project Manager before proceeding further;
- 4. Calculate the well volume. Note that for the purpose of this SOP, there are two definitions of well volume depending on the province in which the project is being conducted. For Ontario and Manitoba, the well volume is defined as the volume of water within the wetted length of the well pipe (well pipe volume) plus the volume of water within the wetted length of the sand pack (sand pack volume). For British Columbia, Alberta and Saskatchewan, the well volume is defined as the volume of water within the wetted length of the sand pack (sand pack volume).

The volume of water in the well pipe is calculated as follows:

Well Pipe Volume (litres) = $h_w x \pi r_w^2 x 1,000$ litres per cubic metre (L/m³)

Where π = 3.14

- h_w = the height of the water column in the monitoring well in metres (wetted length)
- r_w = the radius of the monitoring well in metres (i.e., half the interior diameter of the well)

The volume of the sand pack in the monitoring well is calculated as follows:

Sand Pack Volume (litres) = $h_w x [(0.3 \pi r_b^2 x 1,000 L/m^3) - (0.3 \pi r_w^2 x 1,000 L/m^3)]$

Where 0.3 = the assumed porosity of the sand pack

h_w = the height of the water column in the monitoring well in metres (wetted length)

π = 3.14

 r_{b} = the radius of the borehole annulus in metres

 r_w = the radius of the monitoring well in metres

For Ontario and Manitoba projects, the following table provides well volumes in litres/metre for typical well installations:

Borehole Annulus Diameter	Well Interior Diameter	Well Pipe Volume	Well Volume
(Inches/Metres)	(Inches)	(Litres/Metre)*	(Litres/Metre)*
4/0.1	1.25	0.8	2.9
	1.5	1.1	3.2
	2	2.0	3.8
6/0.15	1.25	0.8	5.9
	1.5	1.1	6.1
	2	2.0	6.7
8.25/0.21	1.5	1.1	11.2
	2	2.0	11.8
10.25/0.26	1.5	1.1	16.7
	2	2.0	17.3

* Litres to be removed per metre of standing water in the well (wetted length).

If the borehole annulus and well interior diameters match one of those listed above, to determine the volume of one well volume simply multiply the number in the last column of the table by the wetted length in the well. For example, if a 2-inch diameter well installed in a 8.25-inch diameter borehole has 2.2 metres of standing water, one well volume equals 26.0 litres (2.2 metres x 11.8 litres/metre).

Note that the above well volume calculations apply only to wells where the water level in the well is below the top of the sand pack. If the water level is above the top of the sand pack, then the well volume is the volume of water in the sand pack and well pipe within the sand pack interval, plus the volume of water in the well pipe (i.e., well pipe volume) above the top of the sand pack. For example, assume a 2-inch diameter well has been installed in a 8.25-inch diameter borehole to a depth of 6.0 metres below ground surface (mbgs), with a 3.05 metre long screen. The sand pack extends from 6.0 mbgs to 2.5 mbgs and the water level is at 1.85 mbgs. One well volume equals ([6.0 metres – 2.5 metres] x 11.8 litres/metre) + ([2.5 metres – 1.85 metres] x 2.0 litres/metre) or 42.6 litres.

For British Columbia, Alberta and Saskatchewan projects, the well volume is calculated using the conversion factor listed in the third column of the above table. For example, if there are 2.5 metres of standing water in a 1.5-inch diameter well, one well volume equals 2.75 litres (2.5 metres x 1.1 litres/metre);

- 5. Lower the pump intake into the well until it is approximately 0.3 metres above the bottom of the well. Remove half a well volume while pumping at a rate of approximately 1 to 2 L/min. Record the approximate purge volume, pump intake depth and pertinent visual/olfactory observations (e.g., sheen, odour, free-phase product, sediment content, clarity, colour, etc.);
- 6. Move the pump intake upward to the middle of the water column (or middle of the screened interval if the water level in the well is above the top of the screen). Remove half a well volume (for a cumulative total of 1 well volume) while pumping at a rate of approximately 1 to 2 L/min. Record the approximate purge volume, pump intake depth and any pertinent visual/olfactory observations;
- 7. Move the pump intake upward to near the top of the screened interval (or near the top of the water column if the water level is currently below the top of the screen). Remove half a well volume (for a cumulative total of 1.5 well volumes) while pumping at a rate of approximately 1 to 2 L/min. Record the approximate purge volume, pump intake depth and any pertinent visual/olfactory observations.

Note that if the wetted length is short within a well (e.g., 1.5 metres or less), there will not be enough separation between pump intake depths to warrant pumping from three depths (i.e., near the bottom, middle and top of the water column). In this case, pumping from two depths (i.e., near the bottom and top of the water column) is sufficient;

8. Repeat steps 5 through 7 until a minimum of 3 well volumes in total have been removed. If the purge water contains high sediment content after the removal of 3 well volumes, well purging should continue by removing additional well volumes until the sediment content visibly decreases. If the purge water continues to have high sediment content after the removal of 2 additional well volumes (i.e., 5 well volumes in total), contact the Project Manager to discuss whether well purging should continue; and

9. Proceed with groundwater sample collection (see below).

Note that the use of a bailer to purge a high yield well with a wetted interval greater than 2 metres is not recommended given that the depth from which groundwater is removed is difficult to control.

5.2.2 Purging of Low Yield Wells

The procedure for purging a low yield monitoring well is as follows:

- Decontaminate all non-dedicated monitoring and sampling equipment that will be used, including the interface probe and centrifugal or bladder pump (if used), in accordance with the procedures described in SOP-EDR009;
- 2. Review the well construction details provided in the borehole logs, previous field notes or well construction summary table from a previous report. Determine the well depth, well stick up, screen length, depth to top of sand pack and diameter of the borehole annulus. If the well depth is unavailable, measure it with the interface probe;
- 3. Measure the initial water level (i.e., static water level) from the reference point on the well (which should be marked at the top of the well pipe) with an interface probe. If measurable free-phase product is present on the water table, record the depth to the top of the free-phase product and the depth to the free-phase product/water boundary (i.e., water level), and discuss this with the Project Manager before proceeding further;
- 4. Position the pump intake at the bottom of the well. Purge the well to dryness at a rate of between approximately 1 and 2 litres L/min. At the conclusion of purging, drain the pump tubing if possible. Record the approximate purge volume;
- 5. After allowing sufficient time for the well to recover, proceed with sample collection (see below). Note that wherever possible, the well should be allowed to recover to at least 90% recovery before proceeding with sample collection. However, if recovery to this level requires more than one hour to complete, it is better to sample the well as soon as it recovers sufficiently to permit sampling, especially if samples are being collected for volatile parameters such as volatile organic compounds (VOCs) and petroleum hydrocarbons (PHCs) (F1); and
- 6. Record the water levels, time of water level measurements and well status (e.g., well recovery incomplete, 90% recovery target met) on the field form to document the well recovery. Purging of wells at the end of a day and returning to the site the following day to collect samples is not permitted unless the well recovery is so poor that this amount of time is needed for there to be sufficient recovery to permit sample collection.

Note that bailers can be used in lieu of a pump to purge a low yield well provided that the well yield is low enough to permit the draining of all of the groundwater in the well with the bailer.

5.3 Well Purging Record

Well purging prior to sampling is to be documented through the completion in full of the following field forms located in the Pinchin Orchard:

- EDR-GW-Well Sampling-Low Yield Well; or
- EDR-GW-Well Sampling-High Yield Well.

Any deviations from this SOP along with the rationale for these deviations must be recorded on the forms.

5.4 Sample Collection

5.4.1 General Considerations

Inertial pumps are generally suitable for all sample collection for due diligence projects. However, the motion of the inertial pump in the water column of a well, even when pumping at a low rate, can create turbulence in the well that can suspend sediment already in the well or draw it in from the formation. Sediment captured in a sample can often result in positive bias to the analytical results, especially for the parameters PHCs (F3 and F4) and polycyclic aromatic hydrocarbons (PAHs), resulting in "false positives" that are not representative of actual groundwater quality. Sampling for these parameters following low flow purging and sampling procedures (SOP-EDR023) is an acceptable option to minimize potential sediment bias but because it is more expensive and time consuming than "conventional" sampling, it is typically not completed for due diligence projects. In lieu of low flow purging and sampling, a peristaltic pump, centrifugal pump or bladder pump is to be used as a "grab sampler" when sampling for PHCs (F2-F4) and PAHs.

In Ontario and Manitoba, or where otherwise prohibited by provincial guidance documents, peristaltic pumps <u>must not</u> be used to collect samples for analysis of volatile parameters, namely VOCs and PHCs (F1). As such, if the suite of parameters to be sampled at a given well includes VOCs and/or PHCs (F1), a "hybrid" sampling procedure is to be followed, in which samples for VOCs, PHCs (F1), PCBs and/or metals analysis are to be collected using an inertial pump and samples for PHCs (F2-F4) and PAHs analysis are to be collected using a peristaltic pump. Alternatively, the entire suite of parameters can be collected using a centrifugal or bladder pump.

The following table summarizes the pump types, parameters that can be sampled using each pump and how the well volume is determined for each province:

Jurisdiction	Ритр Туре	Parameters	Well Volume
BC	Inertial Pump	All Parameters	Well Pipe Volume
	Peristaltic Pump	All Parameters	Well Pipe Volume

Jurisdiction	Pump Type	Parameters	Well Volume
Alberta/Saskatchewan	Inertial Pump	All Parameters Except PHCs (F2) and PAHs	Well Pipe Volume
	Peristaltic Pump	PHCs (F2) and PAHs	Well Pipe Volume
Manitoba/Ontario	Inertial Pump	All Parameters Except PHCs (F2-F4) and PAHs	Well Pipe Volume + Casing Volume
	Peristaltic Pump	PHCs (F2-F4) and PAHs	
All Provinces	Centrifugal Pump	All Parameters	As Per Above
All Provinces	Bladder Pump	All Parameters	As Per Above

Bailers should not be used for sample collection unless there is no other option (e.g., when there is minimal groundwater in a well). They can be used as a substitute for an inertial pump but may bias concentrations of volatile parameters low and concentrations of PHCs (F2-F4) and PAHs high. The use of a bailer for groundwater sample collection must be approved by the Project Manager.

There is a common misconception that using a peristaltic pump, centrifugal pump or bladder pump and sampling at a low pumping rate is "low flow sampling". Sampling in this manner is essentially "grab sampling" using a device other than an inertial pump and is not "low flow sampling". Only if groundwater sampling was completed in accordance with SOP-EDR023 can the sampling be referred to as "low flow sampling".

5.4.2 Sampling of High and Low Yield Wells

The procedure for collecting groundwater samples from a high or low yield monitoring well is as follows:

- Label the sample containers with the sample identifier, project number and date and time of sample collection. The sample containers for each well are be filled in the following order:
 - Volatiles parameters (e.g., VOCs, PHCs (F1));
 - Semi-volatile parameters (e.g., PHCs (F2-F4), PAHs); and
 - Non-volatile parameters (e.g., inorganic parameters, metals).

<u>There is an exception to the above sample collection order when using the "hybrid"</u> <u>sampling method</u>. In this case, the semi-volatile parameters (PHCs (F2-F4) and/or PAHs) are to be sampled first using the peristaltic pump, centrifugal pump or bladder

pump, followed by sampling volatile parameters and then non-volatile parameters using the inertial pump;

- 2. Position the pump intake at the approximate middle of the screened interval (or middle of the water column if the water level is below the top of the screen). At the discretion of the Project Manager, the pump intake may be positioned near the top of the water column if light non-aqueous phase liquids (LNAPLs) are being investigated (e.g., gasoline, fuel oil) and at the bottom of the well when dense non-aqueous phase liquids (DNAPLs) (e.g., chlorinated solvents) are being investigated. For a low yield well when the tubing was (or could) not be drained at the conclusion of purging, or when a high yield well is not sampled immediately after purging, pump sufficient water from the tubing before initiating sample collection at a rate of approximately 0.5 L/min to remove any water that was left over in the tubing following purging;
- 3. When sampling for volatile parameters (i.e., VOCs and PHCs (F1)), pump at a rate of approximately 0.5 L/min. When using an inertial pump, hold the pump vertical while pumping to minimize agitation and possible contaminant volatilization. During volatile parameter sampling, the tubing of the inertial pump must not contain air bubbles. If air bubbles are present, continue pumping until there are no air bubbles in the tubing. Once the tubing is full and free of air bubbles, carefully pour the groundwater from the tubing into the sample vials until they are filled to be headspace-free. When using a peristaltic pump (BC only), centrifugal pump or bladder pump for volatile parameter sampling, the samples can be collected by pumping directly into the sample containers until they are headspace-free. Once filled and capped, check each vial for air bubbles by turning it upside down. If bubbles are present in a vial, reopen it and add additional groundwater until there are no remaining bubbles;
- When sampling for semi-volatile parameters, pump at a rate of between 0.5 and 1 L/min.The samples can be collected by pumping directly into the sample containers;
- When sampling for non-volatile parameters, pump at a rate of between 0.5 and 1 L/min.
 The samples can be collected by pumping directly into the sample containers;
- 6. Samples collected for dissolved metals analysis are to be filtered in the field using dedicated, disposable 0.45 micron in-line filters or marked to be filtered by the laboratory, except for samples collected in Ontario for methyl mercury analysis which are not to be filtered. Field filtering must occur before samples for metals analysis are preserved. Prior to filling the first sample container using a new filter, the filter is to be "primed" by flushing a volume of water equal to twice the capacity of the filter through the filter. Samples for other parameters are not to be filtered in the field. In situations where field filtering cannot be completed, such as when sampling with a bailer, samples for metals analysis

are to be collected in sample containers without preservatives and the analytical laboratory is to be instructed on the Chain-of-Custody to filter and preserve the samples upon receipt;

- 7. When collecting samples in containers that are pre-charged with preservatives, care must be taken not to overfill the containers as some of the preservative may be lost which will result in the sample not being properly preserved. Also, sample containers for metals analysis typically have a fill line marked on the container and the container must not be filled to above this line as this will cause dilution of the preservative and the sample may not be properly preserved;
- 8. Record the parameters sampled for, the purging and sampling equipment used, whether samples for metals analysis were field filtered, and the time and date of sample collection in the field forms; and
- 9. Immediately following collection, place each sample container in a cooler containing ice bags or ice packs.

5.5 Additional Considerations for O. Reg. 153/04 Phase Two ESA Compliance

Groundwater sampling conducted for a Phase Two ESA completed in accordance Ontario Regulation 153/04 must be completed when well yields permit using the low flow purging and sampling methods provided in SOP-EDR023 unless authorized by the Qualified Person responsible for the Phase Two ESA.

6.0 TRAINING

The Practice Leader is responsible for identifying the initial training needs of EDR staff and ensuring that staff are trained and competent before undertaking work assignments.

<u>All trained personnel</u> are responsible for identifying coaching or re-training needs (if they are uncomfortable with work assignments that have been assigned).

The careful application of <u>*Health & Safety Training*</u> by each employee is an integral part of all activities and is assumed as part of this SOP.

7.0 MAINTENANCE OF SOP

1 Year.

8.0 **REFERENCES**

Association of Professional Geoscientists of Ontario, "*Guidance for Environmental Site Assessments under Ontario Regulation 153/04 (as amended)*", April 2011.

9.0 APPENDICES

None.

I:\2018 SOP Updates\SOP - EDR008 - REV005 - Monitoring Well Sampling.docx

Template: Master SOP Template - February 2014

SOP – EDR009 – REV004 – FIELD DECONTAMINATION OF NON-DEDICATED MONITORING AND SAMPLING EQUIPMENT

Title:	Field Decontamination of Non-Dedicated Monitoring and Sampling Equipment	
Practice:	EDR	
First Effective Date:	August 03, 2009	
Version:	004	
Version Date:	January 3, 2018	
Author:	Robert MacKenzie	
Authorized by:	Robert MacKenzie	
Signature:	not wan-76m	

TABLE OF CONTENTS

1.0	VERSION HISTORY			
2.0	SCOPE AND APPLICATION			
3.0	OVERVIEW	3		
4.0	DISTRIBUTION	4		
5.0	PROCEDURE	4		
5.1	Equipment and Supplies	4		
5.2	Procedure	5		
5.2	2.1 General Procedures and Considerations	5		
5.2	2.2 Decontamination of Manually Operated Monitoring/Sampling Equipment	6		
5.2	2.3 Decontamination of Groundwater Sampling Pumps	7		
5.2	2.4 Decontamination of Downhole Drilling Equipment	8		
5.3	Decontamination Records	8		
5.4	Additional Considerations for Ontario Regluation 153/04 Phase Two ESA Compliance	8		
6.0	TRAINING	9		
7.0	MAINTENANCE OF SOP	9		

8.0	REFERENCES	9
9.0	APPENDICES	9

Version	Date	Summary of Changes	Author
Original	August 02, 2009	N/A	MEM
001	November 26, 2010	Updated Approval Signature/Added reference to Ontario Regulation 511/09	FG
002	September 20, 2013	Revised majority of text to reflect current practices/Focused on equipment cleaning and removed reference to personnel decontamination/Added section on O. Reg. 153/04 requirements/Revised reference list	RLM
003	April 29, 2016	Updated Section 4.0/Removed methanol as optional cleaning reagent	RLM
004	April 28, 2017	Removed reference to Pinchin West/In Section 5.2.2, modified requirements for cleaning water level tapes and interface probes/In Section 5.2.3, modified requirements for cleaning electrical or retrieval cables for pumps	RLM
004	January 3, 2018	Reviewed and confirmed current	RLM

1.0 VERSION HISTORY

2.0 SCOPE AND APPLICATION

This Standard Operating Procedure (SOP) presents the general requirements for field decontamination of non-dedicated equipment used for monitoring of environmental media and the collection of environmental samples (i.e., equipment that is re-used between monitoring and sampling locations). Note that the procedures described in this SOP also apply to pumps used for well development.

3.0 OVERVIEW

The main purpose of non-dedicated monitoring and sampling equipment decontamination is to minimize the potential for cross-contamination during monitoring/sampling activities completed for site investigations. Cross-contamination can occur when equipment used to monitor/sample contaminated soil, groundwater or sediment is reused at another monitoring/sampling location without cleaning. This can result in the transfer of contaminants from a "dirty" monitoring/sampling location to a "clean" monitoring/sampling location, causing possible positive bias of subsequent samples. Positive sample bias can result in reported analytical results that are not representative of actual site conditions and, if significant cross-contamination occurs, can result in reported exceedances of the applicable regulatory standards for samples that would have met the standards had cross-contamination not occurred.

Site investigations completed by Pinchin typically use the following non-dedicated monitoring/sampling equipment:

- Manually operated equipment (e.g., water level tapes/interface probes using during groundwater monitoring and sampling, knifes/spatulas used for soil sampling, hand augers);
- Pumps for groundwater monitoring well development, purging and/or sampling (e.g., bladder pumps, submersible pumps); and
- Downhole drilling/sampling equipment (e.g., split-spoon samplers, augers).

The above list is not all inclusive and other non-dedicated monitoring/sampling equipment may be employed during a site investigation that requires decontamination. For example, it may be appropriate to decontaminate the bucket of a backhoe used for test pitting between test pit locations. The Project Manager will be responsible for identifying the additional monitoring/sampling equipment that requires decontamination and instructing field staff regarding the procedure to be followed for cleaning this equipment.

When conducting field monitoring and sampling work in the field, it is not always possible to judge whether a monitoring/sampling location is uncontaminated. Because of this, it is important that all nondedicated monitoring/sampling equipment be properly cleaned before initial use and between uses to minimize the potential for cross-contamination to occur.

4.0 DISTRIBUTION

This is an on-line document. Paper copies are valid only on the day they are printed. Refer to the author if you are in any doubt about the accuracy of this document.

This SOP will be distributed to all Pinchin staff and others as follows:

- Posted to the SOP section of the Environmental Due Diligence and Remediation (EDR)
 Practice Line on the Pinchin Orchard; and
- Distributed to senior staff at Le Groupe Gesfor Poirier and Pinchin LeBlanc for distribution as appropriate.

5.0 PROCEDURE

5.1 Equipment and Supplies

The following is a list of equipment needed to perform the decontamination of non-dedicated monitoring and sampling equipment in accordance with this SOP:

- Personal Protective Equipment (PPE);
- Potable tap water;
- Distilled water (store bought);

- Volatile organic compound (VOC)-free deionized distilled water (supplied by the analytical laboratory);
- Laboratory grade, phosphate-free soap;
- Wash buckets (minimum of three);
- Scrub brushes;
- Paper towels; and
- Buckets or drums with resealable lids for containing liquids generated by equipment cleaning.

Other equipment required to clean drilling equipment (e.g., steam cleaner, power washer, tub for containing wash water, etc.) is typically provided by the drilling subcontractor. The Project Manager is responsible for ensuring that the drilling subcontractor brings the required cleaning equipment to the project site. Prior to mobilization, the Project Manager should also assess the availability of a potable water supply for drilling equipment cleaning at the project site. When no accessible potable water supply is available at a project site, the drilling subcontractor will need to bring a potable water supply to the site in the drill rig water supply tank or separate support vehicle, or arrange to have a third-party supplier deliver potable water to the site.

5.2 Procedure

5.2.1 General Procedures and Considerations

The following general procedures and considerations apply to all decontamination of non-dedicated monitoring/sampling equipment activities:

- Personnel will dress in suitable PPE to reduce personal exposure during equipment decontamination activities;
- In addition to cleaning between monitoring/sampling locations, all non-dedicated monitoring/sampling equipment must be cleaned before initial use. Field staff should not assume that the equipment was properly cleaned by the last person to use it;
- Prior to starting a drilling program, the downhole drilling equipment (e.g., augers) must be inspected and any "dirty" equipment must not be used in the drilling program or it must be cleaned prior to use; and
- All liquids and solids generated by the cleaning of non-dedicated monitoring/sampling equipment are to be containerized and managed in accordance with the procedures outlined in SOP-EDR020 – Investigation Derived Wastes.

5.2.2 Decontamination of Manually Operated Monitoring/Sampling Equipment

The procedure for decontaminating manually operated monitoring/sampling equipment is as follows:

- Wash the equipment in a bucket filled with a mixture of phosphate-free soap/potable water, while using a brush to remove any obvious contamination and/or adhered soil;
- Rinse the equipment thoroughly in a bucket filled with potable water;
- Rinse the equipment thoroughly using a spray bottle filled with distilled water, capturing the rinsate in a bucket; and
- Allow the equipment to air dry. If there is insufficient time to allow the equipment to air dry before reusing, or the equipment cleaning is occurring during winter conditions, the equipment should be dried after the final rinse with a clean paper towel.

At the discretion of the Project Manager, it may be acceptable to use spray bottles, rather than buckets, for lightly contaminated equipment or if no obvious contaminants are present.

Should soil or obvious contaminants remain on the equipment after cleaning, the above procedure must be repeated until the soil or contaminants have been removed. The equipment should not be reused if repeated cleanings do not remove the soil or contaminants.

The above equipment cleaning procedure applies to, but is not limited to, the following non-dedicated monitoring/sampling equipment:

- Knives/spatulas used for soil sampling;
- Hand augers;
- Water level tapes and interface probes (both the end probe and portion of the tape that entered the well);
- The exterior of submersible pumps and interior/exterior of bladder pumps (including the portion of the electrical or retrieval cables that contact groundwater in a well); and
- Various pieces of drilling equipment, including split-spoon samplers, hollow stem auger centre plugs, continuous sampling tubes, and the reusable portions of dual-tube samplers.

At the discretion of the Project Manager, the distilled water used for the final equipment rinse will be VOCfree deionized distilled water supplied by the analytical laboratory. For example, the use of VOC-free distilled water would be appropriate for a project where trace VOCs are being investigated and it is important to minimize the potential for cross-contamination and positive bias of VOC sample results.

For tapes associated with water level tapes and interface probes, if they were submerged in a monitoring well water free of non-aqueous phase liquids or obvious contamination, the tape can be cleaned at the discretion of the Project Manager by pulling the tape through a towel dampened with phosphate-free soap/potable water as the tape is retrieved. The end probe should then be cleaned as described above.

5.2.3 Decontamination of Groundwater Sampling Pumps

The exterior of each bladder or submersible pump that is used for well development, well purging and/or groundwater sampling, and the portion of any electrical or retrieval cables that entered the well, are to be cleaned following the procedure described above for decontaminating manually operated monitoring/sampling equipment.

Submersible pumps are not designed to be disassembled in the field and cleaning of the interior of this type of pump requires flushing of cleaning solutions through the pump. After cleaning the exterior of the pump, the minimum decontamination requirement for a submersible pump is the flushing of a phosphate-free soap/potable water mixture contained in a bucket through the pump (i.e., pumping the mixture through the pump and capturing the pump outflow in the same bucket or a separate bucket), followed by flushing distilled water contained in a separate bucket through the pump and capturing the pump outflow in the same bucket or separate bucket. Note that store bought distilled water is acceptable for this purpose.

At the discretion of the Project Manager and depending on the requirements of the project, the final step in the process is a final flush with laboratory-supplied VOC-free distilled water.

The following summarizes the flushing sequence for decontaminating the interior of a submersible pump:

- Soap/water mixture*;
- Distilled water (store bought)*; and
- Distilled water (laboratory supplied VOC-free distilled water to be confirmed by the Project Manager).

* Minimum requirement.

Bladder pumps are designed for disassembly in the field to facilitate the replacement of the bladders. The internal parts of a bladder pump are to be cleaned in accordance with the procedure described above for decontaminating manually operated monitoring/sampling equipment. Whenever possible, bladders are to be disposed of between well locations. However, if it is necessary to reuse a bladder, it must be cleaned in accordance with the procedure for cleaning manually operated monitoring/sampling equipment. It should be noted that bladders are difficult to clean and the decontamination procedure needs to be thorough.

Flushing of a bladder pump with distilled water after cleaning and reassembly is not required unless specified by the Project Manager.

5.2.4 Decontamination of Downhole Drilling Equipment

Hollow stem and solid stem augers used for borehole advancement are to be decontaminated by the drilling contractor using the following procedure:

- Wherever possible, all augers used for borehole drilling should be cleaned before initial use and between borehole locations by steam cleaning or power washing with potable water. However, the minimum requirements for auger cleaning are as follows:
 - Use a brush or shovel to remove excess soil from <u>all</u> used augers; and
 - Any augers that <u>may come into contact with groundwater</u> are to be decontaminated by steam cleaning or power washing with potable water. An auger must not be used for the balance of the drilling program if obvious contaminants or residual soil remain on the auger following decontamination, unless subsequent cleaning efforts remove these materials.

As noted previously, downhole drilling equipment used for soil sample retrieval (e.g., split-spoon samplers, continuous sampling tubes and the reusable portions of dual-tube samplers used with direct push rigs) and the hollow stem auger centre plug are to be decontaminated following the procedure outlined above for cleaning manually operated monitoring/sampling equipment.

5.3 Decontamination Records

Field personnel will be responsible for documenting the decontamination of non-dedicated monitoring/sampling equipment and drilling equipment in their field log book or field forms. The documentation should include the type of equipment cleaned and the frequency of cleaning, the methods and reagents used for equipment cleaning, and how fluids generated by the equipment cleaning were stored.

5.4 Additional Considerations for Ontario Regulation 153/04 Phase Two ESA Compliance

When completing a Phase Two Environmental Assessment (ESA) in accordance with Ontario Regulation 153/04, the following additional procedures must be undertaken:

• All augers must have excess soil removed by a brush or shovel and be steam cleaned or power washed before initial use and between borehole locations regardless of whether they contact the groundwater or not (i.e., the minimum requirements listed above for auger cleaning are not sufficient); and

 Thorough records of the frequency and cleaning materials used for the decontamination of non-dedicated monitoring/sampling equipment and downhole drilling equipment must be kept. The Quality Assurance/Quality Control section of the Phase Two ESA report requires a summary of what steps were taken to minimize the potential for crosscontamination during the Phase Two ESA. The handling and disposal of fluids generated by equipment decontamination must also be well documented in the field for inclusion in the Phase Two ESA report.

6.0 TRAINING

The Practice Leader is responsible for identifying the training needs of EDR staff and ensuring that staff are trained and competent before undertaking work assignments.

<u>All trained personnel</u> are responsible for identifying coaching or re-training needs (if they are uncomfortable with work assignments that have been assigned).

The careful application of <u>*Health & Safety Training*</u> by each employee is an integral part of all activities and is assumed as part of this SOP.

7.0 MAINTENANCE OF SOP

1 Year.

8.0 **REFERENCES**

Association of Professional Geoscientists of Ontario, *Guidance for Environmental Site Assessments* under Ontario Regulation 153/04 (as amended), April 2011.

9.0 APPENDICES

None.

I:\2018 SOP Updates\SOP - EDR009 - REV004 - Field Decontamination.docx

Template: Master SOP Template - February 2014

SOP – EDR013 – REV004 – SAMPLE HANDLING DOCUMENTATION

Title:	Sample Handling Documentation
Practice:	EDR
First Effective Date:	August 03, 2009
Version:	004
Version Date:	January 3, 2018
Author:	Mark McCormack and Robert MacKenzie
Authorized by:	Robert MacKenzie
Signature:	not won-76m

TABLE OF CONTENTS

1.0	VERSION HISTORY	2
2.0	SCOPE AND APPLICATION	2
3.0	OVERVIEW	2
4.0	DISTRIBUTION	2
5.0	PROCEDURE	2
5.1	Equipment Required	2
5.2	Procedures	3
5.2	.1 Sample Labelling	3
5.2	.2 Sample Containers, Preservation and Holding Times	3
5.2	.3 Sample Documentation	3
5.3	Additional Considerations for Ontario Regulation. 153/04 Phase Two ESA Compliance	6
6.0	TRAINING	6
7.0	MAINTENANCE OF SOP	6
8.0	REFERENCES	6
9.0	APPENDICES	6

Version	Date	Summary of Changes	Author
Original	August 03, 2009	N/A	MEM
001	November 26, 2010	Updated Approval Signature/Added reference to Ontario Regulation 511/09	FG
002	September 12, 2013	Updated text/Added tables from MOE lab protocol/Streamlined reference section/Added O. Reg. 153/04 compliance section	RLM
003	April 29, 2016	Updated Section 4.0/Aligned document retention with PEP	RLM
004	April 28, 2017	Removed reference to Pinchin West	RLM
004	January 3, 2018	Reviewed and confirmed current	RLM

1.0 VERSION HISTORY

2.0 SCOPE AND APPLICATION

This Standard Operating Procedure (SOP) presents the general requirements for sample handling and documentation practices.

3.0 OVERVIEW

Not applicable.

4.0 DISTRIBUTION

This is an on-line document. Paper copies are valid only on the day they are printed. Refer to the author if you are in any doubt about the accuracy of this document.

This SOP will be distributed to all Pinchin staff and others as follows:

- Posted to the SOP section of the Environmental Due Diligence and Remediation (EDR)
 Practice Line on the Pinchin Orchard; and
- Distributed to senior staff at Le Groupe Gesfor Poirier and Pinchin LeBlanc for distribution as appropriate.

5.0 PROCEDURE

5.1 Equipment Required

- Laboratory-supplied sample containers;
- Field log book or field forms; and
- Laboratory-supplied Chain-of-Custody forms.

5.2 Procedures

5.2.1 Sample Labelling

Sample labels are to be filled out in the field at the time of sampling as completely as possible by field personnel. All sample labels shall be filled out using waterproof ink. At a minimum, each label shall contain the following information:

- Sample identifier, consisting of sample location (borehole number, monitoring well number, surface sample location, etc.) and sample number (if appropriate). For example, the second soil sample collected during borehole advancement at borehole BH3 would be labelled "BH3-2";
- Pinchin project number;
- Date and time of sample collection;
- Company name (i.e., Pinchin); and
- Type of analysis.

5.2.2 Sample Containers, Preservation and Holding Times

The sample containers, sample preservation and holding times for projects in Ontario are to be those specified in Table A (for soil and sediment) and Table B (groundwater) from the Ontario Ministry of the Environment Climate Change (MOECC, formerly the Ontario Ministry of the Environment) document entitled *"Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act"*, dated March 9, 2004, amended as of July 1, 2011. These tables are attached and form part of this SOP.

With reference to the attached Tables A and B, field personnel must use the sample containers appropriate for the parameters being sampled for, undertake any required field preservation or filtration and observe the sample holding times.

Each province has its own preservation and holding time regulations or guidance, which are generally similar. It is the Project Manager's responsibility to ensure that field staff are aware of, and can meet, the requirements in the province they are working in.

5.2.3 Sample Documentation

The following sections describe documentation required in the field notes and on the Chain-of-Custody forms.

Field Notes

Documentation of observations and data from the field will provide information on sample collection and also provide a permanent record of field activities. The observations and data will be recorded using a pen with permanent ink in the field log book or on field forms.

The information in the field book or field forms will, at a minimum, include the following:

- Site name;
- Name of field personnel;
- Sample location (borehole number, monitoring well number, surface sample location, etc.);
- Sample number;
- Date and time of sample collection;
- Description of sample;
- Matrix sampled;
- Sample depth (if applicable);
- Method of field preservation (if applicable);
- Whether filtration was completed for water samples;
- Analysis requested;
- Field observations;
- Results of any field measurements (e.g., field screening measurements, depth to water, etc.); and
- Volumes purged (if applicable).

In addition to the above, other pertinent information is to be recorded in the field log book or field forms depending on the type of sampling being completed (e.g., field parameter measurements and pumping rates for low flow sampling) as required by the SOP for the particular sampling activity.

Sufficient information should be recorded to allow the sampling event to be reconstructed without relying on the sampler's memory.

All field notes are to be scanned and saved to the project folder on the server immediately upon returning from the field.

Sample Chain-of-Custody

Sample Chain-of-Custody maintains the traceability of the samples from the time they are collected until the analytical data are issued by the laboratory. Initial information concerning collection of the samples will be recorded in the field log book or field forms as described above. Information on the custody, transfer, handling and shipping of samples will be recorded on a Chain-of-Custody for each sample submission.

All signed Chain-of-Custody forms will be photocopied or duplicate copies retained prior to sample shipment. A Chain-of-Custody should be laboratory-specific and will typically be supplied by the laboratory with the sample containers requested for the project. The sampler will be responsible for fully filling out the Chain-of-Custody for each sample submission.

The Chain-of-Custody will be signed by the sampler when the sampler relinquishes the samples to anyone else (i.e., courier or laboratory). Until samples are picked up by the courier or delivered to the laboratory, they must be stored in a secure area. The following information needs to be provided on the Chain-of-Custody at a minimum:

- Company name;
- Name, address, phone number, fax number and e-mail address of the main contact for the submission (typically the Project Manager);
- Project information (project number, site address, quotation number, rush turnaround number, etc.);
- Regulatory standards or criteria applicable to the samples (including whether the samples are for regulated drinking water or whether the samples are for a Record of Site Condition);
- Sample identifiers;
- Date and time of sample collection;
- Matrix (e.g., soil, groundwater, sediment, etc.);
- Field preservation information (e.g., whether groundwater samples for metals analysis were field filtered);
- Analyses required;
- Number of sample containers per sample;
- Analytical turnaround required (i.e., standard or rush turnaround);
- Sampler's name and signature;
- Date and time that custody of the samples was transferred;

- Name and signature of person accepting custody of the samples from Pinchin, and date and time of custody transfer; and
- Method of shipment (if applicable).

The person responsible for delivery of the samples to the laboratory or transfer to a courier will sign the Chain-of-Custody, retain a duplicate copy or photocopy of the Chain-of-Custody so it can be scanned and saved to the project file, document the method of shipment, and send the original copy of the Chain-of Custody with the samples.

5.3 Additional Considerations for Ontario Regulation. 153/04 Phase Two ESA Compliance

Custody seals must be placed on <u>all</u> coolers containing samples prior to transfer to a courier or delivery to the laboratory. The laboratory will comment on the presence/absence of custody seals in the Certificateof-Analysis for each submission and this information must be discussed in the Quality Assurance/Quality Control section of the Phase Two Environmental Site Assessment report.

6.0 TRAINING

The Practice Leader is responsible for identifying the training needs of EDR staff and ensuring that staff are trained and competent before undertaking work assignments.

<u>All trained personnel</u> are responsible for identifying coaching or re-training needs (if they are uncomfortable with work assignments that have been assigned).

The careful application of <u>*Health & Safety Training*</u> by each employee is an integral part of all activities and is assumed as part of this SOP.

7.0 MAINTENANCE OF SOP

1 Year.

8.0 REFERENCES

Ontario Ministry of the Environment and Climate Change, *Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act*, March 9, 2004, as amended as of July 1, 2011.

9.0 APPENDICES

Appendix I Tables A and B From Ontario MOECC Laboratory Protocol

I:\2018 SOP Updates\SOP - EDR013 - REV004 - Sample Handling Documentation.docx

Template: Master SOP Template - February 2014

APPENDIX I Tables A and B From Ontario MOECC Laboratory Protocol

TABLE A: SOIL AND SEDIMENT S	ample Handling and	Storage Requirements
------------------------------	--------------------	----------------------

SOIL Inorganic Parameters Container ¹		Field Preservation	Storage Temp. ²	Preserved Holding Time ³	Unpreserved Holding Time ³
Chloride, electrical conductivity	glass, HDPE or PET	none	5 ± 3 °C		30 days as received (without lab drying); indefinite when dried at the lab
Cyanide (CN ⁻)	glass wide-mouth jar, Teflon™ lined lid	protect from light	5 ± 3 °C		14 days
Fraction organic carbon (FOC)	glass jar, Teflon™ lined lid	none	5 ± 3 °C		28 days as received(without lab drying); indefinite storage time when dried
Hexavalent chromium	glass, HDPE	none	5 ± 3 °C		30 days as received
Metals (includes hydride-forming metals, SAR, HWS boron, calcium, magnesium, sodium)	glass, HDPE	none	5 ± 3 °C		180 days as received (without lab drying); indefinite when dried at the lab
Mercury, methyl mercury	glass, HDPE or PET	none	5 ± 3 °C		28 days
pH	glass, HDPE or PET	none	5 ± 3 °C		30 days as received
SOIL Organic Parameters	Container ^{1,5,6,7,20}	Field Preservation	Storage Temp. ²	Preserved Holding Time ³	Unpreserved Holding Time ³
BTEX ⁸ , PHCs (F1) ⁸ , THMs, VOCs ⁷ NB: SEE FOOTNOTE #20	40–60 mL glass vial (charged with methanol preservative, pre- weighed) ⁶ AND glass jar (for moisture content) [hermetic samplers are an acceptable alternative ^{5, 18}]	methanol (aqueous NaHSO ₄ is an acceptable alternative for bromomethane) ^{6, 7, 18,20}	5 ± 3 °C	14 days	hermetic samples: stabilize with methanol preservative within 48 hours of sampling ¹⁸
1,4-Dioxane ^{9, 15}	when processed as a VOC sampl when processed as an extractable (consult labora	e: same as per VOCs above; e: same as per ABNs below; ttory) ^{9,15,18}	5 ± 3 °C	14 days	when processed as a VOC sample: same as per VOCs above; when processed as an extractable: same as per ABNs below; (consult laboratory) ¹⁸
PHCs (F2–F4)	glass wide-mouth jar, Teflon™ lined lid	none	5 ± 3 °C		14 days
ABNs, CPs, OCs, PAHs	glass wide-mouth jar, Teflon™ lined lid	none	$5 \pm 3 \ ^{\circ}C$		60 days
Dioxins and furans, PCBs	glass wide-mouth jar Teflon™ lined lid	none	5 ± 3 °C		indefinite storage time

HDPE = high density polyethylene; PET = polyethylene terephthalate; HWS = hot water soluble boron; THM = trihalomethanes; VOC = volatile organic compounds; BTEX = benzene, toluene, ethylbenzene, xylenes; PHCs = petroleum hydrocarbons; CPs = chlorophenols; PCBs = polychlorinated biphenyls; OCs = organochlorine pesticides

^{1–20}footnotes immediately follow Table B

TABLE B: GROUND WATER Sample Handling and Storage Requirement

GROUND WATER Inorganic Parameters	Container ¹⁰	Field Preservation	Storage Temperature ²	Preserved Holding Time ³	Unpreserved Holding Time ³
Chloride, electrical conductivity, pH	HDPE or glass	none	5 ± 3 °C		28 days
Cyanide (CN ⁻)	HDPE or glass	NaOH to a $pH > 12$	$5 \pm 3 \ ^{\circ}C$	14 days	must be field preserved
Hexavalent chromium	HDPE or glass	field filter followed by buffer solution to a pH 9.3–9.7 ¹⁷	5 ± 3 °C	28 days ¹⁷	24 hours ¹⁷
Metals (includes hydride-forming metals, calcium, magnesium, sodium)	HDPE or Teflon ^{TM 10}	field filter followed by HNO ₃ to pH < 2 ¹¹	room temperature when preserved	60 days	must be field preserved
Mercury	glass or Teflon ^{TM 10}	field filter followed by HCl to $pH < 2^{11}$	room temperature when preserved	28 days	must be field preserved
Methyl mercury	glass or Teflon TM	DO NOT FILTER HCl or H ₂ SO ₄ to pH <2 ¹²	5 ± 3 °C	28 days	DO NOT FILTER must be field preserved ¹²
GROUND WATER Organic Parameters ^{10, 13, 14}	Container ^{10, 13, 14}	Field Preservation	Storage Temperature ²	Preserved Holding Time ³	Unpreserved Holding Time ³
BTEX, PHCs (F1), THMs, VOCs;	40–60 mL glass vials (minimum of 2) ¹⁴ (no headspace)	NaHSO ₄ or HCl to a pH $< 2^{16}$	5 ± 3 °C	14 days	7 days
1,4-Dioxane ^{9, 15}	when processed as a VOC sa when processed as an extract (consult la	mple: same as per VOCs above; table: same as per ABNs below; uboratory) ^{9, 15}	5 ± 3 °C	14 days	14 days
PHCs (F2–F4)	1L amber glass bottle, Teflon™ lined lid	NaHSO ₄ or HCl to a pH $< 2^{16}$	5 ± 3 °C	40 days	7 days
ABNs, CP, OCs, PAHs ¹⁹ , PCBs	1L amber glass bottle, Teflon™ lined lid	none	5 ± 3 °C		14 days
Dioxins and furans	1L amber glass bottle, Teflon [™] lined lid	None	5 ± 3 °C		indefinite storage time

HDPE = high density polyethylene; THM = trihalomethanes; VOC = volatile organic compounds; BTEX = benzene, toluene, ethylbenzene, xylenes; PHCs = petroleum hydrocarbons; CPs = chlorophenols; PCBs = polychlorinated biphenyls; OCs = organochlorine pesticides

¹ One soil container is generally sufficient for inorganic analysis and another for extractable organics. A separate container is required for BTEX, THM, VOC and PHC (F1) moisture analysis.

² Storage temperature refers to storage at the laboratory. Samples should be cooled and transported as soon as possible after collection.

³ Holding time refers to the time delay between time of sample collection and time stabilization/analysis is initiated. For samples stabilized with methanol, the hold time for the recovered methanol extract is up to 40 days.

⁴ PET can not be used for samples requiring antimony analysis.

⁵ As an alternative, the USEPA has investigated hermetic sample devices that take and seal a single core sample. The sample is submitted as is to the laboratory where it is extruded into an extracting solvent. Samples must be received at the laboratory within 48 hours of sampling. (Note that replicate samples are necessary for bisulphate and methanol extraction for all samples plus laboratory duplicates and spikes.) Consult the laboratory for the number of samples required.

⁶ The USEPA has approved field preservation. Pre-weighed vials containing known weights of methanol preservative (or aqueous sodium bisulphate if used for bromomethane) are sent to the field. Sample cores (approximately 5 g) are extruded directly into the vial. The vials are sealed, and submitted directly to the laboratory. In practice, this technique requires great care to prevent losses of methanol due to leaking vials or through splashing. Consult the laboratory for the number of containers required.

7 Methanol-preserved samples may elevate the detection limit for bromomethane (VOC); a separate bisulphate-preserved sample or hermetically sealed sample may be submitted at the time of sampling if bromomethane is a chemical of concern – contact the laboratory to determine if a separate sample should be collected.

⁸ For BTEX and PHC (F1) pre-charging the soil sampling container with methanol preservative is an accepted deviation from the CCME method.

9 1,4-Dioxane may be analyzed with the ABNs or VOCs; sample container requirements used for ABNs or VOCs are both acceptable. If 1,4-dioxane is to be analyzed with ABNs, follow the ABN sample container requirements; similarly if it is to be analyzed with VOCs, follow VOC sample container requirements. Consult the laboratory for the container type and the total number required (see also footnote #15).

¹⁰ Samples containing visual sediment at the time of analysis should be documented and noted on the Certificate of Analysis or written report as results may be biased high due to the inclusion of sediment in the extraction.

¹¹ Field filter with 0.45µm immediately prior to adding preservative or filling pre-charged container.

 12 Sample directly into a HCl or H₂SO₄ preserved container, or add acid to an unfiltered sample immediately after sample collection in the field.

¹³ Aqueous organic samples should be protected from light. If amber bottles are not available, glass should be wrapped in foil.

¹⁴ Separate containers are required for each organic water analysis. Consult the laboratory for required volumes. Chloride and electrical conductivity can be taken from the same container.

¹⁵ For 1,4-dioxane in soil and sediment, no preservative is required if processed as an ABN, however. Methanol is an acceptable alternative if processed as a VOC. For 1,4-dioxane in groundwater, no preservative is required, however, NaHSO₄ or HCl are acceptable alternatives.

16 Preserved to reduce biodegradation, however effervescence/degassing may occur in some ground water samples. In this case, rinse preservative out three times with sample and submit to the laboratory as unpreserved.

17 To achieve the 28-day holding time, use the ammonium sulfate buffer solution [i.e., (NH₄)₂SO₄/NH₄OH] or (NH₄)₂SO₄/NH₄OH/NaOH + NaOH] as specified in EPA Method 218.6 (revision 3.3, 1994) or Standard Methods 3500-Cr Chromium (2009).Using only NaOH without the ammonium sulfate buffer to adjust the pH would require analysis within 24 hours of sampling.

¹⁸ Alternatively, to achieve a longer hold time, hermetic samples may be frozen within 48 hours of sampling as per ASTM method D6418 – 09; however, storage stability must be validated by the laboratory with no more than 10% losses.

¹⁹ For benzo(a)pyrene in ground water samples filtration prior to analysis on a duplicate sample is permitted.

²⁰ For VOC, BTEX, F1 PHCs, 1,4 dioxane soil samples collected before July 1, 2011, the following sampling and handling requirements are also permitted.

SOIL Organic Parameters	Container	Preservative	Storage	Preserved	Unpreserved
			Temperature	Holding Time	Holding Time
VOC, BTEX, F1 PHCs, 1,4-dioxane*	glass jar, Teflon lined lid,	none	$5 \pm 3C$	See notations 1-3	Stabilize by extraction or freezing
	no headspace, separate	field preservation with		below	within 48 hrs of receipt at the
	container required	aqueous sodium			laboratory (7days from sampling).
	Hermetic samplers are an	bisulphate and methanol			Frozen or field preserved samples
	acceptable alternative	is an acceptable			must be extracted within 14 days
		alternative			of sampling.

*Special care must be used when sampling for VOC, BTEX and F1 in soil and sediment. Studies have shown that substantial losses can occur through volatilization and bacterial degradation. There are several allowable options for field collection of samples. Each is discussed below. Consult SW846, Method 5035A for additional detail. The laboratory is required to stabilize the sample on the day of receipt, either by extraction or freezing.

- 1. Collection in soil containers: To minimize volatilization losses, minimize sample handling and mixing during the process of filling the sample container. The bottle should be filled with headspace and voids minimized. Care is required to ensure that no soil remains on the threads of the jar, preventing a tight seal and allowing volatilization losses. To minimize losses through bacterial degradation, commence cooling of the samples immediately and transport the samples to the lab as soon as possible, ideally on the day of sampling. Samples must be received at the laboratory within 48 hours of sampling. Freezing can be used to extend the hold time to 14 days, however the practice is difficult to implement in the field and can cause sample breakage.
- 2. As an alternative, the USEPA has investigated hermetic sample devices that take and seal a single core sample. The sampler is submitted as is to the laboratory where it is extruded into the extracting solvent. Samples must be received at the laboratory within 48 hours of sampling. This technique minimizes volatilization losses and is worth consideration for critical sites. (Note that replicate samplers are necessary for bisulphate and methanol extraction for all samples plus lab duplicates and spikes). Consult the laboratory for the number of samplers required.
- 3 The USEPA has also approved field preservation. Pre-weighed vials containing known weights of methanol and aqueous sodium bisulphate preservative are sent to the field. Sample cores (\approx 5 g) are extruded directly into the vial. The vials are sealed, and submitted directly to the laboratory. In practice, this technique requires great care to implement successfully. Losses due to leaking vials, through splashing and effervescence (aqueous bisulphate) can easily occur and make the sample unusable. Consult the laboratory for the number of containers required.

SOP – EDR016 – REV003 – FIELD MEASUREMENT OF WATER QUALITY PARAMETERS

Title:	Field Measurement of Water Quality Parameters
Practice:	EDR
First Effective Date:	November 24, 2010
Version:	003
Version Date:	January 3, 2018
Author:	Paresh Patel
Authorized by:	Robert MacKenzie
Signature:	Not w-76m

TABLE OF CONTENTS

1.0	VERS	ION HISTORY	. 3
2.0	SCOP	PE AND APPLICATION	. 3
3.0	OVER	?VIEW	. 3
4.0	DISTF	RIBUTION	. 3
5.0	PROC	EDURE	. 4
5.1	Equ	ipment and Reagents Required	.4
5.2	Prob	be Measurement Accuracy	.4
5.3	Prob	be Calibration	.4
5.4	Sing	Jle-Parameter Probes	. 5
5.4	4.1	Temperature	. 5
5.4	1.2	рН	. 6
5.4	1.3	Dissolved Oxygen	. 6
5.4	1.4	ORP	. 6
5.4	1.5	Turbidity	. 6
5.4	1.6	Multi-Parameter Probe Use With A Flow-Through Cell	.7
5.5	Add	itional Considerations for Ontario Regulation 153/04 Phase Two ESA Compliance	.7
6.0	TRAIN	NING	. 7

7.0	MAINTENANCE OF SOP	8
8.0	REFERENCES	8
9.0	APPENDICES	8

Version	Date	Summary of Changes	Author
Original	November 24, 2010	N/A	PDP
001	October 31, 2013	Cross-referenced low flow sampling SOP/Added section on O. Reg. 153/04 compliance	RLM
002	April 29, 2016	Updated Section 4.0	RLM
003	April 28, 2017	Removed reference to Pinchin West	RLM
003	January 3, 2018	Reviewed and confirmed current	RLM

1.0 VERSION HISTORY

2.0 SCOPE AND APPLICATION

This Standard Operating Procedure (SOP) describes the standard procedures for measuring water quality parameters during water sampling, and covers the calibration and use of multi-parameter and single-parameter probes for monitoring in situ water quality parameters in streams, down hole in monitoring wells and in flow-through cells. Water quality parameters may include temperature, pH, dissolved oxygen (DO), oxidation reduction potential (ORP), conductivity and turbidity.

Measurements of water quality parameters are typically made for two main purposes: to provide information on water geochemistry to assist in designing in situ remediation programs and to assess whether representative formation groundwater is being sampled during low flow purging and sampling. They can also be used to assess whether well development is complete in certain situations (see SOP-EDR018).

3.0 OVERVIEW

Not applicable.

4.0 DISTRIBUTION

This is an on-line document. Paper copies are valid only on the day they are printed. Refer to the author if you are in any doubt about the accuracy of this document.

This SOP will be distributed to all Pinchin staff and others as follows:

- Posted to the SOP section of the Environmental Due Diligence and Remediation (EDR)
 Practice Line on the Pinchin Orchard; and
- Distributed to senior staff at Le Groupe Gesfor Poirier and Pinchin LeBlanc for distribution as appropriate.

5.0 PROCEDURE

5.1 Equipment and Reagents Required

- Single or multi-parameter probes for monitoring water quality parameters;
- Calibration solutions for calibrating the probes to the standard values;
- Field book or field forms;
- Distilled water;
- Beaker or bucket;
- Stirrer for DO measurement (optional); and
- Flow-through cell (optional).

5.2 Probe Measurement Accuracy

The probes utilized for measuring water quality parameters shall be capable of producing measurement accuracy greater or equal to the following specifications:

Temperature:	± 0.5 degrees Celsius (°C)
Conductivity:	± 1 microSiemens per centimetre (µS/cm)
pH:	±0.1 pH unit
Dissolved Oxygen:	±0.2 milligrams per litre (mg/L) up to20 mg/L
	± 0.6 mg/L greater than 20 mg/L
Turbidity:	$\pm 1\%$ up to 100 Nephelometric Turbidity Units (NTU)
	±3% up to 100-400 NTU
	±5% up to 400-3,000 NTU
ORP:	± 20 millivolts (mV)

5.3 Probe Calibration

Calibrate the water quality probes used for field parameter measurement in accordance with the manufacturer's specifications. Wherever possible, arrange for the equipment rental company to calibrate the water quality probes and provide a calibration sheet that contains information such as calibration date and calibration measurements for each parameter. If the water quality probes are used for more than one day, a calibration check must be performed using standard calibration solutions at the start of each day at a minimum. If the calibration check shows deviations from the standard values that exceed the ranges provided below, the probe(s) that exceed the ranges must be calibrated prior to further use:

pH	±0.1 pH units
Specific Conductance	±3%
Temperature	±3%

DO	±10%
ORP	±10 mV
Turbidity	±10%

A calibration check should also be performed if the parameter measurements suggest that calibration drift has occurred. Document all calibration activities in the field notes, including date and time of calibration/calibration check, calibration solutions used, probe readings, and make, model and serial number of the instrument(s). Note that if the water quality probe manufacturer recommends more frequent calibration/calibration checks than specified above, the manufacturer's recommendations are to be followed.

Extra care must be taken to calibrate a multi-parameter probe to prevent cross-contamination. Specifically, following immersion of the probes into each calibration standard, all probes should be thoroughly rinsed in distilled water and the excess water shaken off or blotted dry with a lint-free wipe. Conductivity standards are much more sensitive to cross contamination/dilution than other standards, and prior to immersion in a conductivity standard, all probes should be thoroughly rinsed and completely dried with lint-free wipes. Besides being easily diluted, conductivity also affects other parameters (specifically DO), and the conductivity probe should always be the first probe calibrated. The following order for calibration of a multi-parameter probe is to be followed:

- 1. Specific Conductance;
- 2. pH;
- 3. DO; and
- 4. Turbidity.

There is no recommended order for calibration of other parameters.

5.4 Single-Parameter Probes

Prior to conducting field measurements, probe sensors must be allowed to equilibrate to the temperature of the water being monitored. Probe sensors have equilibrated adequately when the temperature reading has stabilized. Deployment of single-parameter probes will follow the following procedures:

5.4.1 Temperature

Whenever possible the temperature shall be measured in situ (i.e., within a stream, direct deployment in a monitoring well). When temperature cannot be measured in situ, it can be measured in a beaker or bucket. The following conditions must be met when measuring temperature within a beaker or bucket:

• The beaker or bucket shall be large enough to allow full immersion of the temperature probe. The beaker or bucket is to be rinsed with water from the well or stream being measured prior to obtaining the measurement;

- The probe must be placed in the beaker or bucket immediately before the temperature changes due to ambient conditions;
- The beaker or bucket must be shaded from direct sunlight and strong breezes before and during temperature measurement; and
- The probe must be allowed to equilibrate for at least 1 minute before temperature is recorded.

5.4.2 pH

Preferably, pH is measured in situ at the centroid of flow and at the mid-depth of a stream, or the midpoint of the well screen in a well. The pH probe must be allowed to equilibrate according to the manufacturer's recommendations before the pH value is recorded without removing the probe from the water.

If the pH cannot be measured in situ, it should be measured in a bucket or beaker using the procedures outlined above for measuring temperature.

5.4.3 Dissolved Oxygen

As for pH, it is preferable to measure DO in situ at the centroid of flow and at the mid-depth of a stream, or the mid-point of the well screen in a well. The DO probe must be allowed to equilibrate according to manufacturer's recommendations before the DO value is recorded without removing the probe from the water.

If DO cannot be measured in situ, it should be measured in a bucket or beaker using the procedures outlined above for measuring temperature.

Some types of DO probes require a sufficient flow of fresh water across the membrane to maintain the accuracy and precision of the DO measurement. When taking DO measurements in a bucket or beaker, either employ a stirrer, or physically move the probe in a gentle motion. Moving the probe in a gentle motion should also be completed when measuring DO in situ down hole in a monitoring well.

5.4.4 ORP

ORP shall be measured using the procedures outlined above for measuring pH. Note that changes in temperature directly affect ORP values and ORP should be measured as soon as possible after the probe has stabilized.

5.4.5 Turbidity

In situ turbidity shall be measured using the procedures outlined above for measuring pH.

If turbidity cannot be measured in situ, it can be measured with a probe in a bucket or beaker using the procedures outlined above for measuring temperature. Note that some turbidity measuring instruments do not use a probe, and a sample of the water is collected in a small vial that is inserted into the instrument which then measures the turbidity of the water.

5.4.6 Multi-Parameter Probe Use With A Flow-Through Cell

A multi-parameter probe and a flow-through cell are typically employed when undertaking low flow purging and sampling of groundwater. SOP-EDR023 describes the procedures to be followed when using a multi-parameter probe and a flow-through cell.

5.5 Additional Considerations for Ontario Regulation 153/04 Phase Two ESA Compliance

When completing a Phase Two Environmental Assessment (ESA) in accordance with Ontario Regulation 153/04, the following additional procedures must be undertaken:

- Thorough records of the calibration and calibration checks of the probes/instruments used for water quality parameter measurement must be kept, including any calibration sheets provided by the equipment supplier. The Quality Assurance/Quality Control section of the Phase Two ESA report requires a discussion of field equipment calibration, and equipment calibration records must be appended to the Phase Two ESA report; and
- If groundwater samples collected for a Phase Two ESA are not collected using low flow purging and sampling, which mandates the measurement of water quality parameters, water quality parameters must be measured (pH, temperature and specific conductance at a minimum) and the measurements included in the Phase Two ESA report. Ontario Regulation 153/04 does not provide specifics as to when or how these water quality parameter measurements are to be made but one set of measurements made at the conclusion of purging prior to sampling is the minimum requirement. These measurements can be made by filling a clean bucket or beaker with purge water and immersing the probes in the purge water.

6.0 TRAINING

The Practice Leader is responsible for identifying the training needs of EDR staff and ensuring that staff are trained and competent before undertaking work assignments.

<u>All trained personnel</u> are responsible for identifying coaching or re-training needs (if they are uncomfortable with work assignments that have been assigned).

The careful application of <u>*Health & Safety Training*</u> by each employee is an integral part of all activities and is assumed as part of this SOP.

7.0 MAINTENANCE OF SOP

1 Year.

8.0 **REFERENCES**

New Jersey Department of Environmental Protection, Field Sampling Procedures Manual, August 2005.

Commonwealth of Kentucky – Department of Environmental Protection, *Standard Operating Procedure – In Situ Water Quality Measurements and Meter Calibration,* January 1, 2009.

U.S Environmental Protection Agency – Science and Ecosystem Support Division, Athens, Georgia, *In Situ Water Quality Monitoring*, December 7, 2009.

U.S. Geological Survey, National Field Manual for the Collection of Water-Quality Data: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 9, Chapters A1-A9, Various dates.

9.0 APPENDICES

None.

I:\2018 SOP Updates\SOP - EDR016 - REV003 - Field Measurement of Water Quality Parameters.docx

Template: Master SOP Template - February 2014

SOP - EDR017 - REV006 - MONITORING WELL DEVELOPMENT

Title:	Monitoring Well Development
Practice:	EDR
First Effective Date:	November 23, 2010
Version:	006
Version Date:	January 3, 2018
Author:	Paresh Patel and Robert MacKenzie
Authorized by:	Robert MacKenzie
Signature:	Not won-76m

TABLE OF CONTENTS

1.0	VERS	ION HISTORY
2.0	SCOP	PE AND APPLICATION
3.0	OVER	2VIEW
4.0	DISTF	RIBUTION
5.0	PROC	EDURE
5.1	Equ	ipment and Supplies5
5.2	Proc	edures5
5.2	2.1	Well Development for Low and High Yield Wells - Stage 16
5.2	2.2	Well Development for High Yield Wells - Stage 2
5.2	2.3	Well Development for Low Yield Wells - Stage 210
5.2	2.4	Removal of Water Lost During Well Installation11
5.2	2.5	Development of Monitoring Wells Installed Using Air Rotary Drilling Methods12
5.2	2.6	Assessing Field Parameter Stabilization
5.3	Well	Development Record
5.4	Add	itional Considerations for O. Reg. 153/04 Phase Two ESA Compliance
6.0	TRAIN	NING
7.0	MAIN	TENANCE OF SOP

MEMBER OF

8.0	REFERENCES	13
9.0	APPENDICES	13

Version	Date	Summary of Changes	Author
Original	November 23, 2010	N/A	PDP
001	June 15, 2013	Streamlined background section/Focused procedure on tasks that can be completed by Pinchin personnel/Provided step-by-step summary of field procedure	RLM
002	January 22, 2015	Incorporated procedures specific to Pinchin West into SOP	RLM
003	February 9, 2016	Revised overall procedure to include initial determination of well yield/Added reference to revised well development field forms/Provided guidance on assessing field parameter stabilization when developing wells where water or air were used during drilling	RLM
004	April 29, 2016	Updated Section 4.0	RLM
005	April 28, 2017	Removed references to Pinchin West	RLM
006	January 3, 2018	Modified Section 3.0 to allow well development to occur immediately after well installation under certain circumstances.	RLM

1.0 VERSION HISTORY

2.0 SCOPE AND APPLICATION

This Standard Operating Procedure (SOP) describes the standard procedures for groundwater monitoring well development and provides a description of the equipment required and field methods.

All groundwater monitoring wells are to be developed following installation prior to groundwater sampling or the completion of hydraulic conductivity testing. In addition, previously installed groundwater monitoring wells that have not been purged in over one year should be redeveloped prior to additional sampling or hydraulic conductivity testing if there is evidence of sediment impacting the monitoring well (e.g., the depth to bottom of well measurement indicates sediment accumulation) or at the discretion of the Project Manager.

This SOP pertains to monitoring well development that can be undertaken by Pinchin personnel. Monitoring well development completed by drilling rigs is beyond the scope of this SOP.

3.0 OVERVIEW

The main objective of groundwater monitoring well development is to ensure that groundwater sampled from a well is representative of the groundwater in the formation adjacent to the well and that hydraulic conductivity testing provides data representative of the hydraulic characteristics of the adjacent formation.

The specific goals of well development include the following:

- Rectifying the clogging or smearing of formation materials that may have occurred during drilling of the borehole;
- Retrieving lost drilling fluids;
- Improving well efficiency (i.e., the hydraulic connection between the sand pack and the formation);
- Restoring groundwater properties that may have been altered during the drilling process (e.g., volatilization of volatile parameters due to frictional heating during auger advancement or use of air rotary drilling methods); and
- Grading the filter pack to effectively trap fine particles that may otherwise interfere with water quality analysis.

Monitoring well development should not be completed until at least 24 hours have elapsed following monitoring well installation to permit enough time for the well seal to set up, unless both of the following conditions are met:

- The well seal is entirely above the water table; and
- Surface runoff (e.g., from heavy rainfall or snow melt) is not occurring at the well location at the time of development.

Any deviation from this procedure must be approved by the Project Manager before proceeding.

4.0 DISTRIBUTION

This is an on-line document. Paper copies are valid only on the day they are printed. Refer to the author if you are in any doubt about the accuracy of this document.

This SOP will be distributed to all Pinchin staff and others as follows:

- Posted to the SOP section of the Environmental Due Diligence and Remediation (EDR)
 Practice Line on the Pinchin Orchard; and
- Distributed to senior staff at Le Groupe Gesfor Poirier and Pinchin LeBlanc for distribution as appropriate.

5.0 PROCEDURE

5.1 Equipment and Supplies

- Inertial pump (e.g., Waterra tubing and foot valve);
- Surge block for use with an inertial pump (Optional);
- Submersible pump (including pump controller and power supply) (Optional);
- Disposable bailer (Optional);
- Graduated pail (to contain purge water and permit the volume of groundwater purged to be tracked);
- Pails or drums for purge water storage prior to disposal;
- Well keys (if wells are locked);
- Tools to open monitoring well (T-bar, socket set, Allen keys, etc.);
- Interface probe;
- Equipment cleaning supplies (see SOP-EDR009);
- Field parameter measurement equipment (see SOP-EDR016) (Optional);
- Disposable nitrile gloves; and
- Field forms.

Pinchin typically employs inertial pumps or bailers for well development because they can be dedicated to each well. However, the use of submersible pumps is a viable alternative for developing deep wells with high well volumes at the discretion of the Project Manager.

5.2 Procedures

The well development procedures employed will be determined by the hydraulic conductivity of the formation in which the groundwater monitoring well is installed. For this SOP, a high yield well is defined as a well that cannot be purged to dryness when pumping continuously at a rate of up to 2 litres per minute (L/min) and a low yield well is defined as a well that can be purged to dryness when pumping continuously at a rate of up to 2 L/min or less. This threshold represents a "normal" pumping rate when hand pumping with an inertial pump.

The initial stage of well development (Stage 1) will apply to all wells and will involve the removal of up to one well volume, followed by an evaluation of the well yield. The procedures followed for Stage 2 of well development will be contingent on whether the well is determined to be a low yield or high yield well.

5.2.1 Well Development for Low and High Yield Wells - Stage 1

The initial procedure for developing a low yield or high yield monitoring well is as follows:

- Decontaminate all non-dedicated monitoring and pumping equipment that will be used, including the interface probe and submersible pump (if used), in accordance with the procedures described in SOP-EDR009;
- 2. Review the well construction details provided in the borehole log, previous field notes or well construction summary table from a previous report. Determine the well depth, well stick up, screen length, depth to the top of the sand pack and diameter of the borehole annulus. If the well depth is unavailable, measure it with the interface probe;
- 3. Measure the initial water level (i.e., static water level) from the reference point on the well (which should be marked at the top of the well pipe) with an interface probe. If measurable free-phase product is present on the water table, record the depth to the top of the free-phase product and the depth to the free-phase product/water boundary (i.e., water level), and discuss this with the Project Manager before proceeding further;
- 4. Calculate the well volume. Note that for the purpose of this SOP, there are two definitions of well volume depending on the province in which the project is being conducted. For Ontario and Manitoba, the well volume is defined as the volume of water within the wetted length of the well pipe (well pipe volume) plus the volume of water within the wetted length of the sand pack (sand pack volume). For British Columbia, Alberta and Saskatchewan, the well volume is defined as the volume of water within the wetted length of the sell volume is defined as the volume of water within the wetted length of the well volume is defined as the volume of water within the wetter well volume is defined as the volume of water within the wetter well volume is defined as the volume of water within the wetter well pipe (well pipe volume) only.

The volume of water in the well pipe is calculated as follows:

Well Pipe Volume (litres) = $h_w x \pi r_w^2 x 1,000$ litres per cubic metre (L/m³)

Where $\pi = 3.14$

 h_w = the height of the water column in the monitoring well in metres (wetted length)

 r_w = the radius of the monitoring well in metres (i.e., half the interior diameter of the well)

The volume of the sand pack in the monitoring well is calculated as follows:

Sand Pack Volume (litres) = $h_w x [(0.3 \pi r_b^2 x 1,000 L/m^3) - (0.3 \pi r_w^2 x 1,000 L/m^3)]$

Where 0.3 = the assumed porosity of the sand pack

 h_w = the height of the water column in the monitoring well in metres (wetted length)

π = 3.14

 r_{b} = the radius of the borehole annulus in metres

 r_w = the radius of the monitoring well in metres

For Ontario and Manitoba projects, the following table provides well volumes in litres/metre for typical well installations:

Borehole Annulus Diameter	Well Interior Diameter	Well Pipe Volume	Well Volume
(Inches/Metres)	(Inches)	(Litres/Metre)*	(Litres/Metre)*
4/0.1	1.25	0.8	2.9
	1.5	1.1	3.2
	2	2.0	3.8
6/0.15	1.25	0.8	5.9
	1.5	1.1	6.1
	2	2.0	6.7
8.25/0.21	1.5	1.1	11.2
	2	2.0	11.8
10.25/0.26	1.5	1.1	16.7
	2	2.0	17.3

* Litres to be removed per metre of standing water in the well (wetted length).

If the borehole annulus and well interior diameters match one of those listed above, to determine the volume of one well volume simply multiply the number in the last column of the table by the wetted length in the well. For example, if a 2-inch diameter well installed in a 8.25-inch diameter borehole has 2.2 metres of standing water, one well volume equals 26.0 litres (2.2 metres x 11.8 litres/metre).

Note that the above well volume calculations apply only to wells where the water level in the well is below the top of the sand pack. If the water level is above the top of the sand pack, then the well volume is the volume of water in the sand pack and well pipe within the sand pack interval, plus the volume of water in the well pipe (i.e., well pipe volume) above the top of the sand pack.

For example, assume a 2-inch diameter well has been installed in a 8.25-inch diameter borehole to a depth of 6.0 metres below ground surface (mbgs), with a 3.05 metre long screen. The sand pack extends from 6.0 mbgs to 2.5 mbgs and the water level is at 1.85 mbgs. One well volume equals ([6.0 metres – 2.5 metres] x 11.8 litres/metre) + ([2.5 metres – 1.85 metres] x 2.0 litres/metre) or 42.6 litres.

For British Columbia, Alberta and Saskatchewan projects, the well volume is calculated using the conversion factor listed in the third column of the above table. For example, if there are 2.5 metres of standing water in a 1.5-inch diameter well, one well volume equals 2.75 litres (2.5 metres x 1.1 litres/metre);

- 5. Lower the pump into the well until the pump intake is approximately 0.3 metres above the bottom of the well. Remove half a well volume while pumping at a rate of approximately 1 to 2 L/min. Measure the depth to water after the half a well volume is removed. Record the approximate purge volume, pump intake depth and any pertinent visual/olfactory observations (e.g., sheen, odour, free-phase product, sediment content, clarity, colour, etc.); and
- 6. Move the pump intake upward to the middle of the water column (or middle of the screened interval if the static water level in the well is above the top of the screen). Remove half a well volume (for a cumulative total of 1 well volume) or purge until dry while pumping at a rate of approximately 1 to 2 L/min, whichever occurs first. Measure the depth to water after the half a well volume is removed unless dry. Record the approximate purge volume, pump intake depth and any pertinent visual/olfactory observations. Note that if suction is broken (indicating that drawdown to the pump intake depth has occurred), move the pump intake to the bottom of the well and continue purging.

After completing Step 6, review the water level data to assess whether the well is a low yield or high yield well. If the well is purged dry or close to dryness, or significant drawdown has occurred, then the well is a low yield well. If little or no drawdown has occurred then the well is a high yield well. Some judgement will be required by field personnel when classifying the well yield if moderate drawdown has occurred during removal of the first well volume.

5.2.2 Well Development for High Yield Wells - Stage 2

The procedure for the second stage of developing a high yield monitoring well is as follows:

1. Move the pump intake upward to near the top of the screened interval (or near the top of the water column if the water level is currently below the top of the screen). Remove half a well volume (for a cumulative total of 1.5 well volumes) while pumping at the maximum practical rate that is greater than 2 L/min. Record the approximate purge volume, pump

intake depth and any pertinent visual/olfactory observations (e.g., sheen, odour, freephase product, sediment content, clarity, colour, etc.);

- 2. Note that if the wetted length is short within a well (e.g., 1.5 metres or less), there will not be enough separation between pump intake depths to warrant pumping from three depths (i.e., near the bottom, middle and top of the water column). In this case, pumping from two depths (i.e., near the bottom and top of the water column) is sufficient;
- 3. Lower the pump intake until it is approximately 0.3 metres above the bottom of the well. Remove half a well volume (for a cumulative total of 2 well volumes) while pumping at the maximum practical rate that is greater than 2 L/min. Record the approximate purge volume, pump intake depth and any pertinent visual/olfactory observations;
- 4. Move the pump intake upward to the middle of the water column (or middle of the screened interval if the water level in the well is above the top of the screen). Remove half a well volume (for a cumulative total of 2.5 well volumes) while pumping at the maximum practical rate that is greater than 2 L/min. Record the approximate purge volume, pump intake depth and any pertinent visual/olfactory observations;
- 5. Move the pump intake upward to near the top of the screened interval (or near the top of the water column if the water level is currently below the top of the screen). Remove half a well volume (for a cumulative total of 3 well volumes) while pumping at the maximum practical rate that is greater than 2 L/min. Record the approximate purge volume, pump intake depth and any pertinent visual/olfactory observations;
- 6. If the purge water contains high sediment content after the removal of 3 well volumes, well development should continue by removing additional well volumes following the same procedure as above until the sediment content visibly decreases. If the purge water continues to have high sediment content after the removal of 2 additional well volumes (i.e., 5 well volumes in total), contact the Project Manager to discuss whether well development should continue. A cap of 10 well volumes removed is considered sufficient for high yield well development regardless of sediment content; and
- 7. Record the water level at the conclusion of well development.

Note that at the discretion of the Project Manager, when developing a monitoring well using an inertial pump, a surge block can be attached to the foot valve before completing Step 1 (i.e., the first time groundwater is pumped from near the top of the screened interval or water column) and then leaving it on the foot valve for the remainder of well development. A surge block is used to increase the turbulence created by pumping and enhance the removal of fine-grained material from the sand pack.

Note that the use of a bailer to develop a high yield well with a wetted interval greater than 2 metres is not recommended given that the depth from which groundwater is removed is difficult to control. However, a bailer can be used as a substitute for a surge block by raising and lowering it through the screened interval for approximately 5 to 10 minutes before the start of Step 1.

5.2.3 Well Development for Low Yield Wells - Stage 2

The procedure for the second stage of developing a low yield monitoring well is as follows:

- Position the pump intake at the bottom of the well and purge the well to dryness if it was not purged to dryness during completion of Stage 1 at the maximum practical rate that is greater than 2 L/min. Allow sufficient time for the well to recover to at least 90% of the initial static water level or allow the well to recover for a period of time designated by the Project Manager; and
- 2. Repeat Step 1 until the well has been purged to dryness a minimum of 3 times. An exception to this is that if recovery is slow, and especially if sediment content is low, repeat purging (i.e., purging the well to dryness more than once) may not be necessary and the need for additional purging is to be discussed with the Project Manager. If the purge water contains high sediment content after purging to dryness 3 times, well development should continue by purging the well to dryness until the sediment content after purging the well to dryness. If the purge water contains to have high sediment content after purging the well to dryness 5 times in total), contact the Project Manager to discuss whether well development should continue. A cap of purging a well to dryness 10 times is considered sufficient for low yield well development regardless of sediment content.

As per the procedure for high yield well development, a surge block can be attached to the foot valve to increase the effectiveness of the pumping action. If a surge block is used, pumping should commence at the top of the water column in the well (instead of near the bottom of the well as described above) with the pump intake progressively lowered as the water level in the well decreases.

Note that bailers can be used in lieu of an inertial pump for the development of a low yield well. The turbulence created in a well by the act of dropping a bailer into it and then removing it full of groundwater can be effective in removing fine-grained material from the sand pack. If a bailer is left in a well, it should be "hung" above the water table to facilitate future water level monitoring.

5.2.4 Removal of Water Lost During Well Installation

When water has been used during well installation (e.g., for bedrock coring, to control heaving sands), the total volume of water required to be purged from a well during development will be equal to 3 times the estimated volume of water lost during drilling plus the volume of water that would normally be removed during well development.

For example, for a high yield well where 25 litres of water were lost during drilling and the well volume is 10 litres, the minimum amount of water to be purged during development is 105 litres (i.e., 3 times the volume of water lost during drilling [75 litres] plus a minimum of 3 well volumes [30 litres]).

For a low yield well, the well will need to be purged to dryness enough times to remove a volume equivalent to 3 times the volume of water lost during drilling plus the volume of water that would normally be removed during well development.

As an alternative to removing 3 times the volume of water lost during drilling, field parameter stabilization during well development can be used to assess whether sufficient water has been removed. For example, the conductivity of drill water (which is usually tap water) is typically much lower than groundwater, and conductivity measurements can act as a guide during development as to whether the water being removed is formation groundwater or drill water.

For assessing field parameter stability when developing a high yield well, field parameter measurements of pH, conductivity, temperature and oxidation-reduction potential are to be made after every half well volume is removed and stability is considered achieved if the field parameters are all within $\pm 10\%$ over 3 consecutive readings. Note that a minimum of 3 well volumes must be removed even if field parameter stabilization is achieved prior to the removal of 3 well volumes to comply with the minimum well purging requirements of this SOP (i.e., removal of a minimum of 3 well volumes from a high yield well).

For assessing field parameter stability when developing a low yield well, field parameter measurements of pH, conductivity, temperature and oxidation-reduction potential are to be made once each time a well is purged to dryness, approximately halfway through purging. For example, if based on the current water level it is estimated that 10 litres will be removed before a well is purged to dryness, the field parameters are to be measured after 5 litres have been removed. Stability is considered achieved if the field parameters are all within ±10% over 3 consecutive readings. After stabilization is achieved, continue to purge the well to dryness a final time at which point development is complete.

A second alternative would be to allow sufficient time for the drill water to dissipate into the formation. The appropriate amount of time will depend on the amount of water lost to the formation and the formation characteristics, but will be a minimum of one week. A Senior Project

Manager or Senior Technical Reviewer will be responsible for determining the suitability of this approach and the required length of time. At the discretion of the Senior Project Manager or Senior Technical Reviewer, field parameter measurements may be made during pre-sampling purging to assess whether the drill water has dissipated by the time of sampling.

Note that it can be difficult to estimate the amount of water lost during drilling. If the driller's water tank is accessible, measure the water levels in the water tank before and after drilling the well and then estimate the volume of water used during drilling using the water tank dimensions and subtract this volume from the volume of water recovered at the end of drilling from this volume to estimate the volume of water lost. If this is not possible, ask the driller to estimate the approximate volume of water lost during drilling.

For some well installations, determining even an approximate volume of water lost during drilling is not possible. In this situation, field parameter stabilization should be used as a guide in deciding how much water to remove during well development.

5.2.5 Development of Monitoring Wells Installed Using Air Rotary Drilling Methods

When developing a monitoring well installed using an air rotary drilling procedure, field parameter stabilization <u>must</u> be used to assess whether sufficient water has been removed and the field parameters measured must include dissolved oxygen. This is particularly important when the contaminants of concern at a site include volatile organic compounds (VOCs) as the use of compressed air during the drilling process can result in sparging of VOCs from the groundwater, resulting in groundwater samples that are biased low with respect to VOC concentrations.

The well development procedure is the same as described in Section 5.2.4, except that the field parameters measured are to include pH, conductivity, temperature, oxidation-reduction potential and dissolved oxygen. The criterion for determining field parameter stabilization for dissolved oxygen is ±10% over 3 consecutive readings or 3 consecutive readings with concentrations less than 0.5 milligrams per litre.

5.2.6 Assessing Field Parameter Stabilization

When determining whether field parameter stabilization has occurred over 3 consecutive readings (except for dissolved oxygen when using the less than 0.5 milligrams per litre over 3 consecutive readings criterion), the following procedure is to be followed:

- 1. For each parameter, use the first of the 3 readings and calculate 10% of this reading; and
- 2. The range that the next 2 readings must be within is \pm 10% of the first reading.

For example, if the temperature of the first of 3 consecutive readings is 10° C, the next 2 readings must fall between 9 and 11 ° C for temperature to be considered stable.

5.3 Well Development Record

Well development is to be documented through the completion in full of the following field forms located in the Pinchin Orchard:

- EDR-GW-Well Development-S1-Low/High Yield Well (completed for Stage 1 for both low and high yield wells);
- EDR-GW-Well Development-S2-Low Yield Well (completed for Stage 2 for low yield wells); and/or
- EDR-GW-Well Development-S2-High Yield Well (completed for Stage 2 for high yield wells).

Any deviations from this SOP along with the rationale for these deviations must be recorded on the EDR-GW-Well Development-S1-Low/High Yield Well form.

5.4 Additional Considerations for O. Reg. 153/04 Phase Two ESA Compliance

When developing a low yield well, the well must be purged to dryness a minimum of 3 times regardless of the recovery time unless reduced purging is authorized by the Qualified Person responsible for the Phase Two ESA.

6.0 TRAINING

The Practice Leader is responsible for identifying the training needs of EDR staff and ensuring that staff are trained and competent before undertaking work assignments.

<u>All trained personnel</u> are responsible for identifying coaching or re-training needs (if they are uncomfortable with work assignments that have been assigned).

The careful application of <u>*Health & Safety Training*</u> by each employee is an integral part of all activities and is assumed as part of this SOP.

7.0 MAINTENANCE OF SOP

1 Year.

8.0 **REFERENCES**

Association of Professional Geoscientists of Ontario, "*Guidance for Environmental Site Assessments under Ontario Regulation 153/04 (as amended)*", April 2011.

9.0 APPENDICES

None.

I:12018 SOP Updates\SOP - EDR017 - REV006 - Well Development.docx Template: Master SOP Template - February 2014

SOP - EDR019 - REV004 - SOIL SAMPLE LOGGING

Title:	Soil Sample Logging
Practice:	EDR
First Effective Date:	August 03, 2013
Version:	004
Version Date:	January 3, 2018
Author:	Francesco Gagliardi and Robert MacKenzie
Authorized by:	Robert MacKenzie
Signature:	Kol w-75ú

TABLE OF CONTENTS

1.0	VERS	ION HISTORY
2.0	SCOP	PE AND APPLICATION
3.0	OVER	3 VIEW
4.0	DISTF	RIBUTION
5.0	PROC	EDURE
5.1	Gen	eral Procedures
5.1	1.1	Primary Soil Texture
5.1	1.2	Colour
5.1	1.3	Minor Constituents
5.1	1.4	Noticeable Odours
5.1	1.5	Noticeable Staining
5.1	1.6	Noticeable Free-Phase Product/Sheen
5.1	1.7	Moisture Content
5.1	1.8	Recording Soil Sample Descriptions in Field Notes
5.2	Gen	eral Considerations
5.3	Add	itional Considerations for Ontario Regulation 153/04 Phase Two ESA Compliance7
6.0	TRAIN	NING

7.0	MAINTENANCE OF SOP	7
8.0	REFERENCES	7
9.0	APPENDICES	7

1.0 VERSION HISTORY

Version	Date	Summary of Changes	Author
Original	November 26, 2010	N/A	FG
001	October 31, 2013	Streamlined SOP to focus only on soil sample logging/Added O. Reg. 153/04 compliance section	RLM
002	April 29, 2016	Updated Section 4.0	RLM
003	April 28, 2017	Removed reference to Pinchin West	RLM
004	January 3, 2018	Modified percentages of minor constituents in Section 5.1.3/Clarified when geotechnical terms can be used for soil logging in Section 5.2	RLM

2.0 SCOPE AND APPLICATION

This Standard Operating Procedure (SOP) presents the methods used to describe the physical characteristics of soil samples collected during site investigations.

The methods and equipment used for retrieving soil samples are provided in other SOPs (e.g., SOP-EDR007 – Borehole Drilling) and will not be repeated herein.

3.0 OVERVIEW

Not applicable.

4.0 **DISTRIBUTION**

This is an on-line document. Paper copies are valid only on the day they are printed. Refer to the author if you are in any doubt about the accuracy of this document.

This SOP will be distributed to all Pinchin staff and others as follows:

- Posted to the SOP section of the Environmental Due Diligence and Remediation (EDR)
 Practice Line on the Pinchin Orchard; and
- Distributed to senior staff at Le Groupe Gesfor Poirier and Pinchin LeBlanc for distribution as appropriate.

5.0 PROCEDURE

5.1 General Procedures

For each soil sample collected during a site investigation, the following information is to be recorded in the field log book or field forms in the order presented below:

- Depth;
- Primary soil texture;
- Colour;
- Minor constituents*;
- Noticeable odours;
- Noticeable staining;
- Noticeable free-phase product/sheen*; and
- Moisture content.

*These constituents only need to be noted if they are actually present in the sample.

5.1.1 Primary Soil Texture

The primary soil texture should be determined using the attached flow chart as a guide to help classify the soil.

5.1.2 Colour

Describe the primary colour of the soil sample (e.g., brown, grey, black, green, white, yellow, red). The relative lightness or darkness of the primary colour can be described using the adjectives "light" or "dark" as appropriate. Soil that exhibits different shades or tints is to be described by using two colours (e.g., brown-grey). If the soil sample contains spots of a different colour, this is to be described as "mottling" (e.g., grey with green mottling).

5.1.3 Minor Constituents

Note the presence of minor constituents in the soil that are "natural" materials (e.g., gravel, cobbles, sand, oxidation, etc.) or "man-made" materials (e.g., asphalt, brick, concrete, coal or glass fragments, coal ash, etc.). Gravel comprises particles between 5 millimetres (mm) and 75 mm in diameter. Cobbles comprise particles greater than 75 mm in diameter (approximately the size of a man's fist) and boulders are particles greater than 150 mm in diameter (approximately the size of man's head).

When the percentage of the minor constituents in the soil is between approximately 1 and 10%, the adjective used to describe the relative amount of the minor constituent is "trace" (e.g., silty sand with trace brick fragments).

When the percentage of minor constituents of soil is between approximately 10 and 20%, the adjective used to describe the relative amount of the minor constituent is "some" (e.g., silty sand with some concrete fragments).

When the percentage of the "natural" minor soil constituents is between approximately 20 and 35%, the minor soil type is described by adding a 'y' or 'ey' to the soil type (e.g., silty, sandy, clayey).

When the percentage of the "natural" minor soil constituents is also greater than 35%, the minor soil type is described by using "and" the soil type (e.g., sand and gravel, sand and silt).

When the percentage of the "man-made" minor soil constituents is between approximately 30 and 50%, describe the soil as per the normal procedure and add "with" the minor constituent type(s) (e.g., silty sand with coal ash and brick fragments).

5.1.4 Noticeable Odours

Field staff are not expected to directly smell soil samples to assess the presence/absence of odours.

If it is possible to identify the likely type of odour then this information should be recorded along with a comment on the severity of the odour (e.g., slight, strong, etc.). Identification of specific chemical compounds, such as petroleum hydrocarbons (PHCs) or solvents is acceptable; however, this identification should be referenced as "xxxx-like" (e.g., PHC-like, solvent-like, etc.). This principle also applies when describing staining and free-phase product.

If the odour cannot be readily identified, it should be described in the field notes as "unidentified odour". If no noticeable odours are observed, this needs to be recorded in the field notes as "no odour".

5.1.5 Noticeable Staining

Describe the colour and possible source of the staining (e.g., black PHC-like staining).

If no noticeable staining is observed, this needs to be recorded in the field notes as "no staining".

5.1.6 Noticeable Free-Phase Product/Sheen

Describe the colour, odour, possible composition and relative viscosity (if sufficient product is present to assess) of the product (e.g., dark brown, viscous, motor oil-like product). Identification of the composition of the product is acceptable but needs to be described as PHC-like, motor oil-like. Alternatively, the product can be described as "resembling" a substance (e.g., "resembling motor oil").

The presence of any observed iridescent sheen is to be recorded in the field notes. Note that the presence of an iridescent sheen by itself in the soil does not constitute the presence of free-phase product but may be an indicator that free-phase product is present within the vicinity of the borehole.

5.1.7 Moisture Content

Describe the moisture content of the soil sample using one of the following three terms:

- Dry no visible evidence of water and the soil is dry to the touch;
- Moist visible evidence of water but the soil is relatively dry to the touch. Do not use the term "damp" to describe this type of soil; and
- Wet visible evidence of water and the soil is wet to the touch. Free water is evident when sandy soil is squeezed. Do not use the term "saturated" to describe this type of soil.

5.1.8 Recording Soil Sample Descriptions in Field Notes

Recording the information in the field notes consistently in the above order will make it easier to prepare the borehole logs for the site investigation report.

Example soil sample descriptions are as follows:

- Sand, grey, trace gravel, PHC-like odours, free-phase PHC-like product, wet;
- Silty sand, brownish-grey, some gravel, trace asphalt and brick fragments, no odours or staining, moist; and
- Silty clay, brown, trace gravel, no odours or staining, moist to wet at 2.4 mbgs.

5.2 General Considerations

Where any physical properties change within a soil sample, the depth at which this transition takes place needs to be recorded. For example, for a soil sample collected from 1.8 to 2.4 metres below ground surface (mbgs), if the upper 0.3 metres has no odours but PHC-like odours are present below this depth then the field notes need to state "no odours from 1.8 to 2.1 mbgs, PHC-like odours from 2.1 to 2.4 mbgs".

Some soil samples will contain a thin seam of a different soil type, such as a sand seam within a silty clay. The depth interval of any such seam is to be recorded in the field notes, and the material comprising the seam should be described separately using the logging procedure outlined above.

Unless soil sampling is being completed as part of a combined environmental/geotechnical investigation and EDR staff logging the soil samples have the appropriate geotechnical training, avoid the use of geotechnical terms (e.g., stiff, dense, high plasticity, etc.) when logging soil samples. If any geotechnical terms are inadvertently included in the field notes by staff who have not had geotechnical training, they must not be included in the borehole logs provided in our report.

5.3 Additional Considerations for Ontario Regulation 153/04 Phase Two ESA Compliance

None. Following this SOP will be sufficient to comply with the Ontario Regulation 153/04 requirements for Phase Two ESAs with respect to field logging. Risk assessments completed in accordance with Ontario Regulation 153/04 will typically require soil samples to be submitted to a laboratory for full soil texture analysis, but this is beyond the scope of field logging.

6.0 TRAINING

The Practice Leader is responsible for identifying the training needs of EDR staff and ensuring that staff are trained and competent before undertaking work assignments.

<u>All trained personnel</u> are responsible for identifying coaching or re-training needs (if they are uncomfortable with work assignments that have been assigned).

The careful application of <u>*Health & Safety Training*</u> by each employee is an integral part of all activities and is assumed as part of this SOP.

7.0 MAINTENANCE OF SOP

1 Year.

8.0 REFERENCES

American Society for Testing and Materials, *ASTM D2487-11 - Standard Practice for Classification of* Soils for Engineering Purposes (United Soil Classification System), 2011.

Association of Professional Geoscientists of Ontario, *Guidance for Environmental Site Assessments* under Ontario Regulation 153/04 (as amended), April 2011.

9.0 APPENDICES

Appendix 1 Soil Texture by Feel Chart

I:\2018 SOP Updates\SOP - EDR019 - REV004 - Soil Sampling Logging.docx

Template: Master SOP Template - February 2014

APPENDIX I Soil Texture by Feel Chart

Key to Soil Texture by Feel

SOP – EDR023 – REV006 – LOW FLOW GROUNDWATER SAMPLING

Title:	Low Flow Groundwater Sampling
Practice:	EDR
First Effective Date:	July 08, 2011
Version:	006
Version Date:	January 3, 2018
Author:	Paresh Patel and Robert MacKenzie
Authorized by:	Robert MacKenzie
Signature:	Not won-76m

TABLE OF CONTENTS

1.0	VERS	SION HISTORY
2.0	SCOF	PE AND APPLICATION
3.0	OVEF	RVIEW
4.0	DIST	RIBUTION6
5.0	PROC	CEDURE
5.1	Equ	ipment and Supplies
5.2	1.1	Documents and Information Gathering
5.2	1.2	Extraction Devices and Tubing6
5.1	1.3	Extraction Devices
5.1	1.4	Tubing7
5.1	1.5	Groundwater Monitoring, Purging and Sampling7
5.2	Low	Plow Groundwater Sampling Procedures
5.3	Fiel	dwork Records
5.4	Add	itional Considerations for O. Reg. 153/04 Phase Two ESA Compliance
6.0	TRAI	NING
7.0	MAIN	TENANCE OF SOP

MEMBER OF

8.0	REFERENCES	16
9.0	APPENDICES	17

1.0 VERSION HISTORY

Version	Date	Summary of Changes	Author
Original	July 08, 2011	N/A	PDP
001	April 15, 2013	Streamlined background section/Provided step-by-step summary of field procedure/Added O. Reg. 153/04 compliance items	RLM
002	September 11, 2013	Added centrifugal submersible pump to list of pumps suitable for low flow sampling	RLM
003	January 26, 2015	Adjusted well development, sampling and field parameter measurement procedures to reflect Pinchin West practices.	RLM
004	April 29, 2016	Updated Section 4.0/Updated Section 5.3 to reflect current field documentation requirements and new document retention policy	RLM
005	April 28, 2017	Removed reference to Pinchin West/In Section 5.2, removed the requirement to complete a post-sampling water level and total purge volume, and added requirement to record pump intake depth at the time of sampling	RLM
006	January 3, 2018	Minor wording changes throughout	RLM

2.0 SCOPE AND APPLICATION

This Standard Operating Procedure (SOP) describes the standard procedures for collecting groundwater samples from monitoring wells using low flow (low stress) sampling techniques and provides a description of the equipment required and field procedures.

Low flow sampling provides an alternative to the conventional groundwater purge and sampling technique using inertial pumps, submersible pumps and/or bailers, and emphasizes the need to minimize hydraulic stress at the well-aquifer interface by maintaining low water level drawdown, and by using low pumping rates during purging and sampling. Rather than removing a specified number of well volumes or purging a well to dryness a specified number of times prior to sampling, purging is completed at a low pumping rate until first, a stable water level is achieved, and second, field parameters such as pH, temperature, dissolved oxygen (DO), oxidation-reduction potential (ORP), specific conductance and turbidity, which are monitored during purging, have stabilized indicating that representative formation groundwater is being

purged. It is important that water level and field parameter stabilization are achieved prior to groundwater sampling as this indicates that fresh formation water is being purged and not stagnant groundwater from within the well itself.

Low flow groundwater sampling methods work best for moderate to high yield wells (i.e., wells installed in permeable soils such as sand, silty sand and some silts). For low yield wells (e.g., wells installed in silty clay), low flow groundwater sampling may not be suitable and alternate purging and sampling procedures will be required (see SOP-EDR008 for low yield well sampling procedures).

Conventional sampling can result in sediment entrainment in samples which can result in "positive bias" (i.e., reported concentrations greater than actual groundwater concentrations). This is particularly an issue with petroleum hydrocarbons (PHCs) in the F3 and F4 fraction ranges and polycyclic aromatic hydrocarbons (PAHs) and low flow sampling as per this SOP is strongly recommended when sampling for these parameters unless the hybrid sampling method described in SOP-EDR008 is employed.

This SOP is based primarily on the procedures described in the United States Environmental Protection Agency Region 1 document *"Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells"*, revised January 19, 2010.

3.0 OVERVIEW

The low flow sampling technique can be implemented for any size of monitoring well that can accommodate a positive lift pump or tubing assembly. Note that low flow sampling can be conducted for bedrock monitoring wells without well screens (i.e., with an open interval below the well casing) but for simplicity the screen interval or open interval will be referred to collectively in this SOP as the "screen interval".

Advantages of the low flow sampling technique over conventional groundwater sampling techniques include:

- Minimal disturbance at the sampling point, reducing the potential for sediment to be entrained during the purging process which can result in positive bias (elevated and unrepresentative concentrations) of parameters such as heavy fraction range PHCs and PAHs;
- Reduced operator variability resulting in greater operator control;
- Reduced purge water volumes resulting in reduced investigation derived waste disposal costs; and
- Improved sample consistency resulting in more representative (unbiased) and reproducible sample results.

Disadvantages of the low flow sampling technique over conventional groundwater sampling techniques include:

- Purging and sampling typically requires more time than conventional sampling methods;
- Use of non-dedicated equipment (e.g., submersible pumps) that requires cleaning before initial use and between monitoring well locations; and
- Overall project costs for low flow groundwater sampling programs are typically higher than groundwater sampling programs completed using conventional sampling methods.

It is imperative that the monitoring wells to be sampled are properly developed prior to conducting low flow groundwater sampling. This often includes redevelopment of previously installed wells that have not been sampled for a prolonged period of time (i.e., more than one year). During well development or redevelopment, the hydraulic characteristics of each well should be assessed to provide guidance on the suitability of using the low flow groundwater sampling procedure. Well development procedures are provided in SOP-EDR017.

When groundwater conditions are known, sample the background monitoring wells (i.e., outside of the impacted groundwater area) and wells with low concentrations of contaminants of concern first prior to sampling wells with known impacts. Leave impacted wells to the last to minimize the potential for cross contamination.

In Ontario and Manitoba, or where otherwise specified by provincial guidance documents, a peristaltic pump is not to be used for the collection of groundwater samples for analysis of volatile parameters (i.e., volatile organic compounds (VOCs) and PHCs F1 Fraction). When sampling for volatile parameters using low flow groundwater sampling methods, a bladder pump or centrifugal pump (collectively referred to herein as "submersible pumps") must be used. A "hybrid" groundwater purging and sampling procedure using a peristaltic pump to undertake low flow groundwater sampling for non-volatile parameters as described in this SOP followed by conventional purging and sampling methods for volatile parameters is an acceptable alternative to using a bladder pump or centrifugal pump.

Peristaltic pumps cannot be used where the suction lift (i.e., vertical distance between the pump and ground level) is more than 8.5 metres (28 feet).

It is very important to maintain consistency in applying low flow groundwater sampling procedures to purging and sampling for each monitoring well and for each sampling event. Any deviation from the field procedures described in this SOP can induce variability in the analytical results.

Our primary objective is to obtain unbiased groundwater samples whose analytical results are representative of actual groundwater quality at the property being investigated.

4.0 **DISTRIBUTION**

This is an on-line document. Paper copies are valid only on the day they are printed. Refer to the author if you are in any doubt about the accuracy of this document.

This SOP will be distributed to all Pinchin staff and others as follows:

- Posted to the SOP section of the Environmental Due Diligence and Remediation (EDR) Practice Line on the Pinchin Orchard; and
- Distributed to senior staff at Le Groupe Gesfor Poirier and Pinchin LeBlanc for distribution as appropriate.

5.0 PROCEDURE

5.1 Equipment and Supplies

5.1.1 Documents and Information Gathering

The following documents and information are required to complete low flow groundwater sampling:

- A copy of the proposal or work plan;
- Monitoring well construction details;
- A copy of this SOP;
- Field data from the last sampling event (if available);
- Operation, maintenance and calibration manuals for the multi-parameter water quality meter;
- A site-specific Health and Safety Plan (as per the project requirements); and
- Client or site representative's contact details.

5.1.2 Extraction Devices and Tubing

This SOP will not discuss in detail the various pumps and tubing options that are available for completing low flow groundwater sampling. The following section provides some general guidelines for the use of this equipment and it is recommended that the equipment supplier be consulted when selecting the appropriate pump and tubing, taking into account site-specific parameters (e.g., well depth, well diameter, site accessibility) and the parameters that will be sampled.

5.1.3 Extraction Devices

For purging and sampling using the low flow sampling procedure, submersible pumps (e.g., centrifugal, bladder) and peristaltic pumps are the most commonly used extraction devices. Regardless of the type of extraction device used, the low flow sampling procedure requires precise control over the flow rate during

purging and sample collection. A battery-operated pump controller is required to operate submersible pumps and to control the extraction flow rate. Peristaltic pumps have built-in flow rate adjusters.

Submersible pumps with internal parts constructed of stainless-steel or Teflon are preferred. If the internal parts are constructed of other materials, adequate information must be provided by the equipment supplier to show that the substituted materials do not leach contaminants nor cause interference to the analytical procedures to be used. The use of any such substituted materials must be approved by the Project Manager prior to the field program.

If a bladder pump is selected for the collection of samples for volatile parameters analysis, it should be capable of delivering a water volume sufficient to fill a VOC sample vial in one pulse.

5.1.4 Tubing

Teflon, Teflon-lined polyethylene or polyethylene 1/4-inch interior diameter (ID) or 3/8-inch ID tubing is to be used to connect to the pump and the flow-through cell. In the winter time, the use of 3/8-inch ID tubing is recommended to avoid groundwater freezing in the tubing during severe cold weather conditions.

If the tubing is constructed of other materials (other than mentioned above), adequate information must be provided to show that the substitute materials do not leach contaminants nor cause interference with the analytical procedures. The use of any such substituted materials must be approved by the Project Manager prior to the field program.

Direct sunlight and hot ambient air temperatures may cause groundwater in the tubing to heat up and degas resulting in loss of volatile parameters. When sampling under these conditions, the length of the tubing between the top of the monitoring well and the flow-through cell should be kept as short as possible to minimize exposure to sunlight or ambient air and heating of the groundwater.

5.1.5 Groundwater Monitoring, Purging and Sampling

The following equipment is required to complete the low flow purging and sampling procedure described in this SOP:

- Well keys;
- Interface probe;
- Assorted tools (e.g., knife, screwdriver, etc.);
- Equipment cleaning reagents required as per SOP-EDR009 (e.g., distilled water, phosphate-free detergent, etc.);
- Multi-parameter water quality meter (including calibration solutions);
- Graduated cylinder, graduated measuring cup or graduated bucket;
- Stopwatch;

- Flow-through cell;
- Peristaltic pump, centrifugal pump or bladder pump;
- Tubing;
- Pails or drums for storing purge water;
- Paper towels or wipes;
- Calculator;
- Field forms (see Section 5.3) and/or field notebook (hereafter the "field notes");
- Waterproof and permanent markers;
- Disposable gloves and appropriate personal protective equipment based on site-specific conditions;
- Cooler and ice packs;
- Sample bottles and labels. Several extra sample bottles of each type should be available in case of breakage or other problems; and
- Laboratory Chain of Custody forms.

The following equipment may be used during well sampling, in addition to the above:

• Disposable field filtration units/filters (if appropriate).

5.2 Low Flow Groundwater Sampling Procedures

The following is the summary of the procedures to be followed for low flow groundwater sampling:

- 1. Develop the monitoring wells to be sampled (if required) prior to sampling by removing between three and five well volumes or by purging them to dryness between one and three times. Further details regarding well development are provided in SOP-EDR017. Well development is to be completed for all newly installed wells prior to low flow sampling and may be required for previously installed monitoring wells that have not been sampled in more than one year. Ideally, well development should occur at least one day prior to low flow sampling. At the discretion of the Project Manager, low flow sampling can occur on the same day as the well is developed but the well must be allowed to fully recover to its original static level prior to the start of purging;
- Decontaminate all non-dedicated monitoring and sampling equipment that will be used, including the interface probe, submersible pump (if used), water quality meter probes and flow-through cell in accordance with the procedures described in SOP-EDR009;

3. Calibrate the water quality meter used for field parameter measurement in accordance with the manufacturer's specifications. Wherever possible, arrange for the equipment rental company to calibrate the water quality meter and provide a calibration sheet that contains information such as calibration date and calibration measurements for each parameter. If the water quality meter is to be used for more than a one day, a calibration check shall be performed using standard calibration solutions at the start of each day at a minimum. If the calibration check shows deviations from the standard values that exceed the ranges provided in bullet 10 below, the instrument shall be calibrated prior to further use. A calibration check should also be performed during the course of purging and sampling if the parameter measurements suggest that calibration drift has occurred. Document all calibration activities in the field notes, including date and time of calibration/calibration check, calibration solutions used, probe readings and make, model and serial number of the water quality meter. Note that if the water quality meter manufacturer recommends more frequent calibration/calibration checks than specified above, the manufacturer's recommendations are to be followed. See SOP-EDR016 for additional procedures regarding water quality meter calibration.

Extra care must be taken when calibrating the multi-parameter probe to prevent crosscontamination. Specifically, following immersion of the probes into each calibration standard, all probes should be thoroughly rinsed in distilled or de-ionized water and the excess water shaken off or blotted dry with a lint-free wipe. Conductivity standards are much more sensitive to cross contamination/dilution than other standards. Besides being easily diluted, conductivity standards also affect other parameters (specifically DO), and the conductivity probe should always be the first probe calibrated. The following order for calibration of a multi-parameter probe is to be followed:

- Specific Conductance;
- pH;
- DO;
- Turbidity; and
- All other parameters (there is no recommended order for these parameters).
- 4. Review the well construction details provided in the well development forms, borehole logs or well construction summary table from a previous report. Determine the well depth, well stick up, length of the screen interval, and depth to the top of the screen interval. If the well depth is unavailable, measure it with the interface probe;

Measure the initial water level (i.e., static water level) from the reference point on the well (which should be marked at the top of the well casing) with an interface probe. If measurable free-phase product is present in the well, discuss this with the Project Manager before proceeding further. Using the known well depth, confirm that at least 0.6 metres of water is present within the well. If less than 0.6 metres of water is present, low flow sampling may not be appropriate and the Project Manager is to be contacted before proceeding further;

5. Following decontamination, slowly install the pump or tubing (for peristaltic pumps) to the appropriate depth within the well. Do not connect the pump discharge tubing to the flow-through cell at this time. If the water level in the well is above the top of the screen interval, the pump or tubing intake depth will be the mid-point of the screen interval. If the water level is below the top of the screen interval, the pump or tubing intake will be set at the mid-point of the wetted interval (i.e., the distance between the static water level and the bottom of the well) or 0.6 metres from the bottom of the well, whichever is a greater distance from the bottom of the well. Pumping from within 0.6 metres of the bottom of the well has a higher potential to entrain sediment from the bottom of the well and is not to be completed unless authorized by the Project Manager.

The pump intake depth may vary from that described above at the discretion of the Project Manager depending on the specific purpose of the groundwater sampling program. For example, if chlorinated solvents that are denser than water are being assessed, it may be desirable to position the pump intake as close to the bottom of the well as possible, or if PHC-related parameters which are lighter than water are being assessed, it may be preferable to position the pump intake as close to the water table as possible. Pump intake depth should be confirmed with the Project Manager prior to the field program;

6. Turn on the pump and discharge groundwater into a purge bucket. Purge initially at a flow rate of approximately 250 millilitres/minute (mL/min). Increase or decrease the flow rate until the water level in the well reaches a steady state condition (i.e., a stabilized water level). The goal is to purge at as high a pumping rate as the well will sustain and still maintain a stabilized water level; however, <u>purging rates should not exceed 500 mL/min during purging and sampling</u>. Also, it is important that during the early phase of purging, emphasis should be put on minimizing pumping stress (i.e., rapid fluctuations in pumping rates).

Whenever possible, purge at a pumping rate low enough to keep the total drawdown in the well to less than 10 centimetres although this may not be achievable for low to moderate yield wells. Once a steady state condition is achieved, the purge rate must be maintained constant and should not be changed. Determine the flow rate using a graduated bucket, graduated measuring cup or graduated cylinder and a stop watch. If the well is purged dry even after reducing the flow rate to the minimum practical purging rate of approximately 50 mL/min to 100 mL/min, then low flow sampling procedures will not work for the well and the sampling procedure described in SOP-EDR008 for sampling low yield wells is to be followed. During purging and sampling, it is important to keep the pump intake below the water level in the well at all times to avoid aeration of the groundwater;

- 7. If the visual appearance of the groundwater is highly turbid once a stabilized water level is achieved, continue to discharge purged water directly into the purge bucket until the groundwater clears, as highly turbid groundwater may foul the flow-through cell. Once the turbidity clears up, connect the flow-through cell to the pump discharge tubing. If the groundwater remains highly turbid after approximately 15 minutes of purging, contact the Project Manager to discuss whether sampling should occur. Further well development may be required to remove excess sediment from the monitoring well before sampling can proceed;
- 8. Confirm the volume of the flow-through cell excluding the volume of the water quality meter probes. If this information is not readily available, fill the cell with water with the water quality probes inserted and empty its contents into a graduated cylinder or measuring cup to determine the volume. After connecting the discharge tubing to the flow-through cell, continue purging until the flow-through cell is full and turn on the multiparameter meter. Record the initial field parameter readings in the field notes. At a minimum, the field parameters that are to be monitored are pH, specific conductance, temperature, DO and ORP. The monitoring of turbidity is also a minimum requirement in Ontario and Manitoba. Field parameter readings are to be obtained at a frequency of no less than once every 5 minutes. Obtaining field parameter readings at a spacing of greater than 5 minutes apart may be required if the volume of the flow-through cell is large or pumping occurs at a low rate (e.g., 50 or 100 mL/min). For example, if the flowthrough cell has a volume of 300 mL and the pumping rate is 50 mL/min, it will take 6 minutes for the volume of water equivalent to the flow-through cell volume to pass through the cell and field parameter readings should be taken 6 minutes apart. If the pumping rate for the same flow-through cell is 100 mL/min, although it will take only 3

minutes for the volume of water equivalent to the flow-through cell volume to pass through the cell, field parameter readings are to be taken at 5 minute intervals. Figure 1 shows a typical low flow groundwater sampling set up using a submersible pump. The set up when using a peristaltic pump is similar except that the only part of the extraction system in the well is tubing that is connected to the peristaltic pump at the ground surface (i.e., there is no pump mechanism within the well), and a second section of tubing connects the discharge of the peristaltic pump to the flow-through cell.

Figure 1: Low Flow Sampling Set Up Diagram

Reference: USEPA Region I EQASOP-GW 001, July 30, 1996, Revised January 19, 2010.

Air bubbles in the flow-through cell can result in inaccurate field parameter measurements, in particular for DO. If air bubbles appear in the flow-through cell, check that the discharge tubing is properly connected to the flow-through cell and check that the pump intake is located below the water table by confirming the pump intake depth and checking the water level in the well. If air bubbles persist in the flow-through cell, position the flow-through cell at a 45-degree angle with the ports facing upwards. This configuration should keep any gas bubbles entering the cell away from the multimeter probes and allow the air bubbles to exit the cell easily;

9. Regardless of the frequency of field parameter readings, purging is to be completed until field parameter stabilization is achieved, which occurs when the field parameter measurements for <u>all</u> of the parameters are within the following ranges for <u>three</u> <u>consecutive</u> sets of readings:

рН	±0.1 pH units
Specific Conductance	±3%
Temperature	±3%
DO	±10% for values greater than 0.5 milligrams per litres (mg/L), or three consecutive values less than 0.5 mg/L
ORP	±10 millivolts
Turbidity	±10% for values greater than 5 Nephelometric Turbidity Units (NTUs), or three consecutive values less than 5 NTU

- 10. Check the water level in the well during purging a minimum of once every 10 minutes to confirm that steady state conditions are being maintained. Although not mandatory, more frequent water level measurements can be made (e.g., at the time of each set of water quality parameters). Reduce the pumping rate if the water level measurements indicate that drawdown is occurring. Confirm the new pumping rate as per Step 7 and record it in the field notes;
- 11. Record the time of all water level and field parameter measurements in the field notes;
- 12. Should field parameter stabilization not occur within one hour of the start of purging, contact the Project Manager to discuss whether to continue purging to attempt to achieve field parameter stabilization or whether to proceed with groundwater sample collection. The Project Manager will consider the total volume of water purged to this point and may

deem it suitable to collect the groundwater sample if, for example, three or more well volumes in total have been purged despite the lack of field parameter stability. Note that achieving stabilization of some parameters is more important with respect to certain contaminant types. For example, the stabilization of DO readings is important for volatile parameter sampling because fluctuations in DO concentrations may indicate that the groundwater is being aerated during the purging process which could result in volatile loss from the groundwater samples;

- 13. Following field parameter stabilization, disconnect the tubing from the flow-through cell and collect the groundwater samples by filling the appropriate laboratory-supplied sample containers directly from the discharge tubing. <u>Note that it is important not to sample</u> <u>groundwater that has passed through the flow-through cell.</u> If pumping at a moderate to high pumping (i.e., > 200 mL/min), the pumping rate should be reduced to prevent overfilling or the splashing of preservatives out of the sample containers. The order of sample collection should be most volatile parameters to least volatile parameters as follows:
 - VOCs and PHCs F1 Fraction;
 - PHCs F2-F4 Fraction;
 - PAHs and Base/Neutral/Acid Extractables;
 - Metals and Inorganics; and
 - Polychlorinated Biphenyls and Organochlorine Pesticides.

Special Notes for Volatile Parameter Sampling

When collecting samples for volatile parameter analysis (i.e., VOCs and PHCs F1 Fraction), the tubing must be filled completely and must not contain air bubbles prior to sample collection. If this is observed, increase the pumping rate slightly prior to sample collection until the tubing is filled and/or there are no longer any air bubbles, and then collect the sample. When collecting the groundwater samples for volatile parameter analysis, the sample vials should be tilted to avoid agitation and bubbling to minimize the potential for volatilization.

Special Notes for Metals Sampling

Groundwater samples collected for metals analysis will require filtering prior to preservation if dissolved metals concentrations are sought. Depending on the type and diameter of the discharge tubing used, in-line filters can be used for field filtering. Disposable filtration kits (e.g., Nalgene 0.45 micron filters) can also be used for field filtering. When collecting samples in containers that are pre-charged with preservatives,

care must be taken not to overfill the containers as some of the preservative may be lost which will result in the sample not being properly preserved. Also, sample containers for metals analysis typically have a fill line marked on the container and the container must not be filled to above this line as this will cause dilution of the preservative and the sample may not be properly preserved.

If field filtering cannot be completed, then the groundwater samples are to be collected in sample containers that do not contain preservatives, and the analytical laboratory is to be instructed to filter and preserve the samples immediately upon receipt. The procedure and necessary equipment required to filter and preserve metals samples using the low flow methods should be discussed with the Project Manager prior to mobilization to the field; and

14. Record the pump intake depth at the time of sample collection. Remove the pump and/or tubing from the well and decontaminate the sampling equipment.

5.3 Fieldwork Records

The purging and sampling of a monitoring well using the low flow groundwater sampling procedure described in this SOP are to be documented through the completion in full of the following field forms located in the Pinchin Orchard:

- EDR-GW-Low Flow Sampling; and
- EDR-GW-Water Quality Parameters.

Any deviations from this SOP along with the rationale for these deviations must be recorded on the forms.

Upon completion of the sampling event, the field notes must be submitted to the Project Manager for review. The field notes must also be scanned and a copy of the scan placed in the project folder on the server.

5.4 Additional Considerations for O. Reg. 153/04 Phase Two ESA Compliance

When completing a Phase Two Environmental Assessment (ESA) in accordance with Ontario Regulation 153/04, the following must be undertaken:

 Calibration checks <u>must</u> be made for the water quality meter used for field parameter measurements at the frequency specified in Step 3 of Section 5.2. Records of the calibration checks must be kept and appended to the Phase Two ESA report;

- At least one field duplicate groundwater sample must be collected for every ten samples submitted for analysis. The frequency is one for one to 10 samples, two for 11 to 20 samples, etc. for <u>all</u> parameters analyzed. For example, even if only one groundwater sample is collected for PAHs analysis, a duplicate of this sample must be collected; and
- When sampling for VOCs, one trip blank sample must be submitted to the laboratory for VOCs analysis for <u>each submission</u> to the laboratory. In other words, if a groundwater sampling program lasts three days and samples are submitted to the laboratory at the end of each day, there must be a total of three trip blanks submitted with the samples (i.e., one per day of sampling). Note that analysis of trip blank samples for other volatile parameters (e.g., PHCs (F1 Fraction)) is not mandatory but can be completed at the discretion of the Qualified Person.

In addition, low flow groundwater sampling using a bladder pump or centrifugal pump should be completed whenever well yields are high enough to permit it for all Phase Two ESAs undertaken to support the filing of a Record of Site Condition. This will minimize potential issues the Ministry of the Environment and Climate Change may have regarding the representativeness of the groundwater analytical data.

6.0 TRAINING

The Practice Leader is responsible for identifying the training needs of EDR staff and ensuring that staff are trained and competent before undertaking work assignments.

<u>All trained personnel</u> are responsible for identifying coaching or re-training needs (if they are uncomfortable with work assignments that have been assigned).

The careful application of <u>*Health & Safety Training*</u> by each employee is an integral part of all activities and is assumed as part of this SOP.

7.0 MAINTENANCE OF SOP

1 Year.

8.0 REFERENCES

U.S. Environmental Protection Agency Region I, *Low Stress ('low flow') Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells,* EQASOP-GW 001, July 30, 1996, Revised January 19, 2010.

9.0 APPENDICES

None.

I:\2018 SOP Updates\SOP - EDR023 - REV006 - Low Flow Groundwater Sampling.docx

Template: Master SOP Template - February 2014

SOP - EDR025 - REV004 - QA/QC SAMPLING

Title:	QA/QC Sampling
Practice:	EDR
First Effective Date:	January 17, 2014
Version:	004
Version Date:	January 3, 2018
Author:	Robert MacKenzie
Authorized by:	Robert MacKenzie
Signature:	Nol w-75m

TABLE OF CONTENTS

1.0	VERS	ION HISTORY
2.0	SCOP	PE AND APPLICATION
3.0	OVER	2VIEW
4.0	DISTF	RIBUTION
5.0	PROC	EDURE
5.1	Equi	ipment and Supplies
5.2	QA/	QC Sampling Procedures
5.2	2.1	General Procedures for QA/QC Blank Sampling5
5.2	2.2	Trip Blanks
5.2	2.3	Field Blanks
5.2	2.4	Equipment Blanks
5.2	2.5	Evaluation of Blank Sample Results
5.2	2.6	General Procedures for QA/QC Duplicate Sampling
5.2	2.7	Field Duplicate Samples – Soil/Sediment
5.2	2.8	Field Duplicate Samples – Surface Water/Potable Water/Groundwater
5.2	2.9	Duplicate Sample Labelling9
5.2	2.10	Evaluation of Duplicate Sample Results

5.3	Fieldwork Records1	0
5.4	Additional Considerations for Ontario Regulation 153/04 Phase Two ESA Compliance1	1
6.0	TRAINING1	1
7.0	MAINTENANCE OF SOP 1	1
8.0	REFERENCES1	1
9.0	APPENDICES	2

Version	Date	Summary of Changes	Author
Original	January 17, 2014	N/A	RLM
001	June 26, 2014	Amended blind duplicate sampling requirements	RLM
002	April 29, 2016	Updated Section 4.0/Amended O.Reg. 153/04 trip blank requirements	RLM
003	April 28, 2017	Removed reference to Pinchin West	RLM
004	January 3, 2018	In Section 5.2.6, clarified order of regular investigative sample and duplicate sample collection	RLM

1.0 VERSION HISTORY

2.0 SCOPE AND APPLICATION

This Standard Operating Procedure (SOP) describes the standard procedures for collecting soil, water and sediment samples for quality assurance/quality control (QA/QC) purposes.

A QA/QC program is essentially a management system that ensures that quality standards are met within a stated level of confidence. The QC component of the program comprises daily activities in the field and laboratory that are used to control the quality of both the samples collected and the sample analytical data. The QA component of the program is made up of measures used to determine whether the QC activities are effective.

When completing a site investigation, one of our primary goals is to obtain analytical data that are representative of actual soil, water and/or sediment conditions at the site. The completion of a QA/QC program, consisting of the collection and analysis of various QA/QC samples, provides information for use in evaluating the accuracy of the analytical data used to assess the environmental quality of the site.

The type and number of samples comprising the QA/QC program will be determined by the Project Manager on a site-by-site basis, but will typically include at a minimum a trip blank when collecting water samples for volatile parameter analysis and duplicate soil, water or sediment samples. Other types of QA/QC samples may be collected (e.g., equipment or field blanks) to meet project-specific requirements at the discretion of the Project Manager or to meet regulatory requirements.

The QA/QC sampling requirements and procedures for indoor air, soil vapour and sorbent tube samples are described in SOP-EDR012, SOP-EDR018 and SOP-EDR027, respectively.

3.0 OVERVIEW

The types of samples collected for the QA/QC program during site investigations may include the following:

- Trip blanks;
- Field blanks;
- Equipment blanks; and
- Field duplicates.

Trip blanks are used to assess whether ambient air conditions may have resulted in positive bias of water samples collected for volatile parameter analysis during transportation of the sample containers to and from a project site. Note that the term "positive bias" means that reported sample concentrations are greater than actual in situ sample concentrations due to some form of "cross-contamination".

Field blanks are collected to assess whether ambient air conditions may have resulted in positive bias of samples collected at a project site for volatile parameter analysis at the time of sampling.

Equipment blanks are collected to assess the efficiency of non-dedicated monitoring/sampling equipment cleaning procedures.

Duplicate samples are collected to assess whether field sampling and laboratory analytical methods are suitable and reproducible.

The analytical results of the QA/QC samples are reviewed by the Project Manager to assess whether any data quality issues are evident which may affect the interpretation of the soil, water and/or sediment sample analytical data.

4.0 DISTRIBUTION

This is an on-line document. Paper copies are valid only on the day they are printed. Refer to the author if you are in any doubt about the accuracy of this document.

This SOP will be distributed to all Pinchin staff and others as follows:

- Posted to the SOP section of the Environmental Due Diligence and Remediation (EDR)
 Practice Line on the Pinchin Orchard; and
- Distributed to senior staff at Le Groupe Gesfor Poirier and Pinchin LeBlanc for distribution as appropriate.

5.0 PROCEDURE

5.1 Equipment and Supplies

The equipment/supplies required for QA/QC sample collection are the same as that used for regular investigative sampling, except for the following:

- Volatile organic compound (VOC)-free distilled water supplied by the analytical laboratory for use in the collection of field blanks and/or equipment blanks;
- Additional sample jars supplied by the analytical laboratory for the collection of field blanks, equipment blanks and field duplicates; and
- Trip blanks supplied by the analytical laboratory.

5.2 QA/QC Sampling Procedures

5.2.1 General Procedures for QA/QC Blank Sampling

The analytical laboratory that will be completing the analysis of the regular investigative samples and QA/QC samples for a project must supply the water used to collect field blanks and equipment blanks. Water provided by another analytical laboratory or store-bought distilled water must not be used.

5.2.2 Trip Blanks

A trip blank is a set of VOC sample vials filled by the analytical laboratory with VOC-free distilled water and shipped with the sample containers. A trip blank is to be stored with the sample containers provided by the analytical laboratory during travel to the project site, while on the project site, and during travel from the project site back to the analytical laboratory. The sample containers comprising a trip blank are not to be opened in the field.

For some projects, submissions of volatile parameter samples to the analytical laboratory over several days will be required. In this case, a trip blank sample should accompany each submission to the laboratory. If this situation is anticipated, the Project Manager must request that the analytical laboratory provide sufficient trip blanks so that a trip blank can accompany the submission of each set of samples to the laboratory.

Trip blanks are to be analyzed for the same volatile parameters (i.e., VOCs and/or petroleum hydrocarbons (PHCs) (F1 fraction)) as the regular investigative samples. For example, if the groundwater sampling program includes analysis of VOCs and PHCs (F1-F4 fractions), then the trip blank(s) require analysis of VOCs and PHCs (F1 fraction). If the groundwater sampling program only includes VOC analysis, then the trip blank(s) require analysis of VOCs only.

Unless specified by the Project Manager, trip blanks are not required for soil and sediment sampling, or for water sampling involving only non-volatile parameters. At the discretion of the Project Manager and to meet project-specific requirements, trip blanks for non-volatile parameters can be prepared and analyzed using the same principles as for volatile parameter trip blanks.

5.2.3 Field Blanks

A field blank is a set of VOC sample vials filled during a sampling event at a project site with VOC-free distilled water supplied by the analytical laboratory and submitted for analysis of volatile parameters (i.e., VOCs and/or PHCs (F1 fraction)).

Field blanks are to be collected at a sample location considered "worst case" with respect to ambient air conditions (e.g., adjacent to and downwind of the pump island of an active retail fuel outlet, inside an active on-the-premises dry cleaner, etc.). At project sites where there is no obvious "worst case" ambient air location, the field blank can be collected at a sampling location picked randomly. The field blank collection location and rationale for selecting it must be documented in the field notes.

If a groundwater sampling event at a project site occurs over more than one day, a field blank is to be collected for each day of sampling.

Some project sites may have an isolated area where the ambient air conditions are significantly poorer than the remainder of the site and a field blank collected from this area may not be representative of conditions elsewhere on the site. In this case, at the discretion of the Project Manager, the collection of two field blanks may be appropriate, with one field blank collected from the poor ambient air area and one field blank collected from a location outside of this area.

Unless specified by the Project Manager, field blanks are not required for soil and sediment sampling, or for water sampling involving only non-volatile parameters. At the discretion of the Project Manager and to meet project-specific requirements, field blanks for non-volatile parameters can be collected and analyzed using the same principles as for volatile parameter field blanks.

5.2.4 Equipment Blanks

An equipment blank is collected by pouring VOC-free distilled water supplied by the analytical laboratory either over or through non-dedicated sampling/monitoring equipment that has been cleaned following sampling/monitoring using the procedures outlined in SOP-EDR009. The resulting rinsate is then captured in sample containers appropriate for the intended analysis. Note that the surface over which the distilled water is poured must be the surface from which samples are collected from or that is in contact with the medium being monitored. For example, if an equipment blank is being collected from a split-spoon sampler, the distilled water must be poured through the interior of the sampler, and not the exterior of the sampler.

The Project Manager will be responsible for determining the sampling/monitoring equipment from which equipment blanks will be obtained, the number of equipment blanks and the parameters to be analyzed. Regarding the latter, the parameters analyzed for equipment blanks are typically the parameters of concern for a given project site.

5.2.5 Evaluation of Blank Sample Results

The Project Manager will evaluate the results of the blank sample analysis to assess whether these results show that bias may have been introduced to investigative samples collected during the field sampling activities. Judgement by the Project Manager will be required to assess whether the blank sample results have any effect on the interpretation of the investigative sample results. This is assessed on a case-by-case basis, but the following general principles can be applied:

- If all soil, groundwater and/or sediment samples collected for a site investigation meet the applicable environmental standards/criteria, the presence of detectable or elevated parameter concentrations in the blanks has no effect on the interpretation of the investigative sample results;
- If parameters have detectable or elevated concentrations in the blank samples but none of these parameters are present in the regular investigative samples at concentrations exceeding the applicable environmental standards/criteria, the blank sample results have no effect on the interpretation of the investigative sample results;
- If parameters have detectable or elevated parameter concentrations in the blank samples and one or more of these parameters are present in the regular investigative samples at concentrations exceeding the applicable environmental standards/criteria, then positive bias of the regular investigative samples may have occurred. The Project Manager will need to assess a number of variables, including the relative parameter concentrations in the blank and regular investigative samples, to determine whether the regular investigative sample data are considered representative and usable for assessing the environmental quality of the site. If the regular investigative sample data are questionable, then resampling may be required; and
- If the regular investigative samples have exceedances of the applicable environmental standards/criteria and the blank samples have non-detectable parameter concentrations, the blank sample results have no effect on the interpretation of the investigative sample results.

5.2.6 General Procedures for QA/QC Duplicate Sampling

Whenever possible, duplicate samples are to be collected from "worst case" sample locations. The reason for this is that Relative Percent Differences (RPDs) are calculated using the analytical results of the duplicate and regular investigative samples to evaluate the suitability and reproducibility of field sampling and laboratory analytical methods. However, RPDs for a given parameter can only be calculated if there are detectable concentrations in both samples, and "worst case" sample locations are the most likely to have detectable levels of parameters of concern. The calculation and evaluation of RPDs is discussed at the end of this section.

When filling sample containers, the order of collection is to fill the sample container for a particular parameter or parameters for the regular investigative sample first and then fill the sample container for the same parameter or parameters for the duplicate sample second. For example, if groundwater was being sampled for PAHs and metals and a duplicate sample was required, the order of filling the sample containers would regular investigative sample for PAHs, duplicate sample for PAHs, regular investigative sample for PAHs, duplicate sample for PAHs, regular investigative sample for PAHs, duplicate sample for PAHs, regular investigative sample for metals.

5.2.7 Field Duplicate Samples – Soil/Sediment

Soils/sediments are frequently heterogeneous because they are typically deposited in horizontal layers over time, causing both small scale and large scale grain size variations that can often result in significant variations in contaminant concentrations between layers. Because of this, it is important that duplicate soil/sediment samples be collected from the same vertical depths as the regular investigative samples in sample cores or at discrete sampling locations (e.g., grab samples).

When collecting a duplicate soil/sediment sample from a sampling device that provides a soil core (e.g., dual-tube sampler, split-spoon sampler), the soil core is to be split in half vertically (i.e., longitudinally). A portion of one half of the core is used for the regular investigative sample and a portion of the other half of the core is used for the duplicate sample. The portion of each core placed in sample jars for analysis must be obtained from the <u>same depth interval</u> within the cores.

When collecting a duplicate soil/sediment sample from a grab sample (e.g., excavation floor or sidewall), the field duplicate sample must be collected as close as possible to the regular investigative sample location at the sample depth and within the same soil layer.

There are no special procedures for collecting field duplicates of composite soil/sediment samples given that the soil/sediment is homogenized during the composite sample collection procedure.

A field duplicate soil/sediment sample must be collected at the same time as the regular investigative sample. Retroactively splitting a soil/sediment sample to obtain a field duplicate sample is not permitted.

5.2.8 Field Duplicate Samples – Surface Water/Potable Water/Groundwater

There are no special procedures for collecting surface water/potable water/groundwater field duplicate samples with the following exceptions:

- When collecting a duplicate water sample for metals analysis and field filtering is required, a new filter is to be used to collect the duplicate sample unless the groundwater has a low sediment content; and
- When collecting a duplicate surface water sample, the sample containers for the same parameter(s) should be immersed in the surface water body at the same location and at the same time whenever possible.

5.2.9 Duplicate Sample Labelling

The duplicate sample should have the term "DUP" in the sample identifier to distinguish it as a duplicate sample.

5.2.10 Evaluation of Duplicate Sample Results

Duplicate sample results are evaluated by calculating RPDs using the following equation:

RPDs are not calculated unless the parameter concentrations in both the regular investigative sample and duplicate sample are detectable concentrations above the corresponding practical quantitation limit (PQL) for the parameter, which is equal to five times the lowest laboratory reportable detection limit (RDL).

For example, if the RDL for a parameter is 0.1 parts per million (ppm), and the concentration in the regular investigative sample is 0.4 ppm and the concentration in the duplicate sample is 0.6 ppm, the RPD cannot be calculated because the concentration in the regular investigative sample (0.4 ppm) is less than the PQL of 0.5 ppm (5 times the RDL of 0.1 ppm).

Also, if the regular investigative sample concentration is 2 ppm and the duplicate sample concentration is <1 ppm, then the RPD cannot be calculated regardless of the PQL since detectable concentrations were not reported for both samples.

Calculated RPDs for the regular investigative and field duplicate samples are compared to established performance standards to evaluate the suitability and reproducibility of field sampling and laboratory analytical methods. In Ontario, the Ontario Ministry of the Environment and Climate Change (formerly the Ontario Ministry of the Environment) provides duplicate sample performance standards in the document *Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the*

Environmental Protection Act, dated March 9, 2004, amended as of July 1, 2011. Although these performance standards only strictly apply to laboratory duplicate samples, they are considered suitable for comparison to field duplicate samples. Other provinces provide their own similar guidance.

When calculated RPDs exceed the performance standards, the Project Manager will evaluate whether these results have any effect on the interpretation of the investigative sample results. This is judged on a case-by-case basis, but in many situations RPD values above the performance standards can be attributed to small scale heterogeneity inherent in soil samples or variations in the quantity of sediment in groundwater or surface water samples, and are not indicative of poor field sampling or laboratory procedures. The results of internal laboratory QA/QC sampling may provide additional information as to the precision of the data. Furthermore, if all soil, water and/or sediment samples collected for a site investigation meet the applicable environmental standards/criteria, the apparent lack of precision shown by elevated RPD values should not affect the interpretation of the investigative sample results.

Sometimes a regular investigative sample will meet the applicable environmental standards/criteria and its corresponding duplicate sample will fail the applicable environmental standards/criteria (or vice versa). In Ontario, it is permitted to average the parameter concentrations of two samples provided they are collected at the same time and from the same sample location and depth. The resulting average parameter concentrations are then compared with the applicable standards to determine whether the sample meets or fails the standards. This approach is not acceptable in all jurisdictions. In situations where averaging is not acceptable to the regulatory agency, the "worst case" sample result is to be used in assessing the environmental condition of the project site.

5.3 Fieldwork Records

The field notes must include the following information with respect to QA/QC samples:

- The date and time of sampling for all blank/duplicate samples;
- The sample location for field blanks and the rationale for selecting the field blank locations;
- The type of equipment from which a rinsate was collected for equipment blanks and the parameters to be analyzed; and
- The corresponding regular investigative sample location/sample interval for duplicate samples and the parameters to be analyzed.

5.4 Additional Considerations for Ontario Regulation 153/04 Phase Two ESA Compliance

When completing a Phase Two ESA in accordance with Ontario Regulation 153/04, the QA/QC sampling program must consist of the following as a minimum:

 At least one field duplicate soil, sediment or groundwater sample must be collected for every ten samples submitted for analysis. The frequency is one duplicate sample for one to 10 regular investigative samples, two duplicate samples for 11 to 20 samples, etc. for <u>all</u> parameters analyzed. For example, even if only one groundwater sample is collected for PAHs analysis, a duplicate of this sample must be collected.

When sampling for VOCs, one trip blank sample must be submitted to the laboratory for VOCs analysis for <u>each submission</u> to the laboratory. In other words, if a groundwater sampling program lasts three days and samples are submitted to the laboratory at the end of each day, there must be a total of three trip blanks submitted with the samples (i.e., one per day of sampling). Note that analysis of trip blank samples for other volatile parameters (e.g., PHCs (F1 Fraction)) is not mandatory but can be completed at the discretion of the Qualified Person.

6.0 TRAINING

The Practice Leader is responsible for identifying the training needs of EDR staff and ensuring that staff are trained and competent before undertaking work assignments.

<u>All trained personnel</u> are responsible for identifying coaching or re-training needs (if they are uncomfortable with work assignments that have been assigned).

The careful application of <u>*Health & Safety Training*</u> by each employee is an integral part of all activities and is assumed as part of this SOP.

7.0 MAINTENANCE OF SOP

1 Year.

8.0 REFERENCES

Association of Professional Geoscientists of Ontario, *Guidance for Environmental Site Assessments under Ontario Regulation 153/04 (as amended),* April 2011.

Ontario Ministry of the Environment and Climate Change, *Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act*, March 9, 2004, as amended as of July 1, 2011.

Water, Air and Climate Change Branch, Ministry of Water, Land and Air Protection, Province of British Columbia, *British Columbia Field Sampling Manual*, 2003.

9.0 APPENDICES

None.

I:\2018 SOP Updates\SOP - EDR025 - REV004 - QA QC Sampling.docx

Template: Master SOP Template - February 2014

APPENDIX C Borehole Logs

	Log of Borehole: MW19-01											
		-	Proje	ect #: <mark>2</mark> :	30989.001			Lo	ogged By: \	νM		
	1	P	INCHIN ^{Proje}	ect: Pha	ase Two Env	ironr	nental	Site Asses	sment			
			Cher	1t: 91 ⊟		ed Pa		ship				
		-	Loca		Arch 27, 20	ven 10	ue Eas	st, mississa	iuga, ON			
				Date. N	1arch 27, 20			۲۱ ۱۹				
								07				
Depth		Symbol	Description	Measured Depth (m)	Monitoring Well Details	Sampler #	Recovery (%)	Sample ID	Soil Vapour Concentration (ppm) (CGI/PID)	Laboratory Analysis		
ft n	n 0		Ground Surface	0.00	Tent I					00		
1 1 2			Clayey Silt Brown, some sand, moist, trace gravel.	0.76	Riser J	1	100	S1	15/1	Pesticides, Metals, EC, SAR, pH, GrainSize		
3 4 4	1		Silt Brown, some sand, trace orange oxidation, moist.		Bent		100	S2	5/1			
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2		Trace gravel, moist.	2.13				S3	50/1			
8 10 10	3		Brownish grey, some weathered bedrock fragments, damp. Inferred Weathered Shale Bedrock Grey, some gravel, wet.		Sand L	2	100 -	S4	10/1	Metals		
11 12 13	4			3.96	Screen Silica (
14 15 16			End of Borenole									
17 17 18 19 20	5 6		Sampler Refusal encountered at 3.05 mbgs on March 27, 2019. Monitoring well installed by augering to 3.96 mbgs on March 29, 2019. Groundwater measured at 2.35 mbgs on April 2, 2019.									
Co	ont	racto	r: Strata Drilling Group Inc.	inchin l	Ltd.		Grad	de Elevatio	o n: 171.10 r	namsl		
Dr	illiı	na M	ethod: Direct Push 2470 Mi	illtower	Court		Ton	of Casing	Flevation	171 94 mamel		
W	Well Casing Size: 2" Mississauga, ON L5N 7W5											

	Log of Borehole: MW19-02												
			Proj	ect #: 2	30989.001			Lo	gged By: \	νM			
		D	Proj	ect: Ph	ase Two Env	ironr	nental	Site Asses	sment				
	1	P		nt: 91 E	glinton Limite	ed Pa	artners	ship					
		-	Loca	ation: 1	31 Eglinton A	ven	ue Eas	st, Mississa	uga, ON				
			Drill	Date:	March 27, 20 ⁻	19		Pr	oject Mana	ger: MB			
			SUBSURFACE PROFILE					SA	MPLE				
Depth		Symbol	Description	Measured Depth (m)	Monitoring Well Details	Sampler #	Recovery (%)	Sample ID	Soil Vapour Concentration (ppm) (CGI/PID)	Laboratory Analysis			
ft n	n O	-	Ground Surface	0.00									
1-1 2	-		Sand and Gravel Brown, moist.	0.61				S1	25/2	OC Pesticides, Metals, EC, SAR, pH			
3-1- 4-1-	1		Brown, some gravel, some grey mottling, moist. Moist to wet.		Benton	1	100	S2	5/2				
5	2 Gravel Grey, shaley fragments, damp.						100	S3	10/2				
8-1- 9-1-	3		Silty Sand Brown, wet. Silt Grey, some bedrock fragments, moist to	2.74	and the second s	2	100	S4	25/2				
			wet.	3.66	Silica Se	3	40	S5	30/1				
			End of Borehole										
	4		Sampler Refusal encountered at 3.66 mbgs on March 27, 2019.										
14-			Groundwater measured at 2.19 mbgs on March 29, 2019.										
16 17 17	5												
18													
	6												
Co	onti	ractoi	T: Strata Drilling Group Inc. P 2470 M	inchin illtowei	∟ta. [.] Court		Gra	ae Elevatio	n: 169.49 r	namsi			
Dr	illir	ng Me	thod: Direct Push Mississau	iga. ON	L5N 7W5		Тор	of Casing	Elevation:	170.37 mamsl			
We	ell	Casin	g Size: 2"	, en			She	et: 1 of 1					

	Log of Borehole: MW19-03											
			Proj	ect #: 2	30989.001			Lo	gged By: \	ΛM		
	1	D		ect: Pha	ase Two Env	ironr	nental	I Site Asses	sment			
	1	P		nt: 91 E	glinton Limite	ed Pa	artner	ship				
		-	Loca	ation: 1	31 Eglinton A	ven	ue Ea	st, Mississa	uga, ON			
			Drill	Date: N	/larch 27, 20 ⁻	19		Pr	oject Mana	ager: MB		
			SUBSURFACE PROFILE					SA	MPLE			
Depth		Symbol	Description	Measured Depth (m)	Monitoring Well Details	Sampler #	Recovery (%)	Sample ID	Soil Vapour Concentration (ppm) (CGI/PID)	Laboratory Analysis		
	n 0		Ground Surface	0.00	मिन्म							
1 1 2			SIIT Brown, some sand and gravel, moist, trace clay.	0.76	Riser		100	S1	5/1	OC Pesticides		
3-1- 4-1-	1		Clayey Silt Brown with grey mottling, trace orange oxidation, moist to wet.	1.52	Bent		100	S2	5/1	Metals, pH		
5 6 1 7 1	2		Sand and Gravel Brown, some clay, wet.	2.13				S3	35/2	BTEX, PHCs, PAHs		
8-1 9-1 10-1	3		Bedrock Grey, trace silt, damp.		Sand 1	2	100	S4	0/1			
11-1- 12-1- 13-1				3.96	Screen Silica S							
14	4		End of Borehole									
16	5 6		Sampler Refusal encountered at 3.05 mbgs on March 27, 2019. Monitoring well installed by augering to 3.96 mbgs on March 28, 2019. Groundwater measured at 2.24 mbgs on April 2, 2019.									
Co	ont	racto	<i>r:</i> Strata Drilling Group Inc.	inchin l	Ltd.		Gra	de Elevatio	n: 169.10 r	mamsl		
Dr	illiı	ng Me	ethod: Direct Push 2470 M	illtower	Court		Ton	of Casing	Elevation	169.92 mamsl		
We	ell	Casii	ng Size: 2" Mississau	ıga, ON	L5N 7W5		She	et: 1 of 1				

	Log of Borehole: MW19-04											
		Proj	ect #: 2	30989.001			Lo	gged By: \	NM			
1	D	Proj	ect: Pha	ase Two Envi	ironr	nental	Site Asses	sment				
	P		nt: 91 E	glinton Limite	ed Pa	artner	ship					
	-	Loca	ation: 1	31 Eglinton A	ven	ue Ea	st, Mississa	uga, ON				
		Drill	Date: N	/larch 27, 20 ²	19		Pro	oject Mana	iger: MB			
		SUBSURFACE PROFILE					SA	MPLE				
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Sampler #	Recovery (%)	Sample ID	Soil Vapour Concentration (ppm) (CGI/PID)	Laboratory Analysis			
$0 \frac{\text{ft}}{1} 0$		Ground Surface	0.00	। जन्म								
1-1- 2-1-		Clay and Silt Brown, trace sand, moist. Clayey Silt Brown some sand trace red brick moist	0.46	Riser			S1	0/1	OC Pesticides, Cyanide, EC, SAR, pH			
3 - 1 4		brown, some sand, trace red brok, moist.	1.52	Bento	1	60	S2	0/1	Metals			
	H	Silty Clay Brownish grey, wet. Inferred Weathered Shale	1.83		2	100	S3	0/0	BTEX, PHCs, PAHs, pH			
9 10 3		Grey, some gravel, wet.	3.35	Screen								
11 12 13 13 14 14 15		End of Borehole										
16 17 18 19 20 6		Sampler Refusal encountered at 2.13 mbgs on March 27, 2019. Monitoring well installed by augering to 3.35 mbgs on March 28, 2019. Groundwater measured at 2.52 mbgs on April 2, 2019.										
Cont	ractor	r: Strata Drilling Group Inc.	inchin	Ltd.		Gra	de Elevatio	n: 169.26 r	namsl			
Drillin	na Ma	athod: Direct Push	illtower	Court		Tor	of Coning	Elovation	170 12 momel			
Well	Well Casing Size: 2" Mississauga, ON L5N 7W5											

	Log of Borehole: MW19-05												
				Proje	ect #: 2	30989.001			Lo	gged By: \	ΛM		
			NCHIN	Proje	e ct: Pha	ase Two Env	ironr	nental	Site Asses	sment			
				Clien	<i>t:</i> 91 E	glinton Limite	ed Pa	artner	ship				
	-			Loca	tion: 1	31 Eglinton A	ven	ue Ea	st, Mississa	uga, ON			
				Drill I	Date: N	1arch 27, 20 ⁻	19		Pr	oject Mana	ager: MB		
			SUBSURFACE PROF	ILE					SA	MPLE			
Depth		Symbol	Description		Measured Depth (m)	Monitoring Well Details	Sampler #	Recovery (%)	Sample ID	Soil Vapour Concentration (ppm) (CGI/PID)	Laboratory Analysis		
)	F	Ground Surface		0.00	मिन							
1 1 2			Brown, some sand and topsoil, trace bla mottling, moist. Brown, trace sand, some gravel and	ack		er	1	100	S1	25/1	BTEX, PHCs, PAHs, pH		
3 1 4 1 5			mottling.		1.52	Ris		100	S2	25/1			
5 	- 2 Silty Clay Grey, some weathered bedrock fragr damp.		nts,	2.13		2	60	S3	10/0				
8			Grey, weathered bedrock fragments, da	amp.	2.44								
9-			Inferred Weathered Shale Bedrock			→							
	3		Grey, wet.			Scr and							
					3.35	a S							
12			End of Borehole			Silio							
13 4													
14													
10 + 5 17 - 18 - 19 + 6 20 - 6	5		Sampler Refusal encountered at 2.44 m on March 27, 2019. Monitoring well installed by augering to 3 mbgs on March 27, 2019. Groundwater measured at 3.02 mbgs of April 2, 2019.	nbgs 3.35 n									
Cor	ntra	nctor	: Strata Drilling Group Inc.	Pi	nchin l	Ltd.	_	Gra	de Elevatio	n: 169.38 i	mamsl		
Dril	lind	g Me	thod: Direct Push	70 Mil	lltower	Court		Ton	of Casing	Elevation	170.37 mamsl		
Wel	" C	asin	g Size: 2"	issaug	ga, ON	L5N 7W5		She	et: 1 of 1				

	Log of Borehole: BH19-06												
	Project #: 230989.001 Logged By: WM												
	1	D		ect: Pha	ase Two Envi	ironr	nental	Site Asses	sment				
1	1	P	Clied	nt: 91 E	glinton Limite	ed Pa	artners	ship					
		-	Loca	ation: 1	31 Eglinton A	ven	ue Ea	st, Mississa	uga, ON				
	1		Drill	Date: N	/larch 27, 20 ⁻	19		Pro	oject Mana	ager: MB			
			SUBSURFACE PROFILE		I			SA	MPLE				
Depth	-	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Sampler #	Recovery (%)	Sample ID	Soil Vapour Concentration (ppm) (CGI/PID)	Laboratory Analysis			
	0		Ground Surface	0.00	.					00			
1 1 2			Brown, trace gravel and sand, moist. Some sand, some rock fragments, damp.		Installed		100	S1	0/0	Pesticides, Cyanide, EC, SAR, pH			
3 1 4 1 1 1	1			1.52	nitoring Well	1	100	S2	0/0	BTEX, PHCs, PAHs, GrainSize			
6 7	2		<i>Silty Clay</i> Grey, some weathered bedrock fragments, damp.	2.13	No Mo	2	40	S3	0/1				
			End of Borehole										
			Sampler Refusal encountered at 2.13 mbgs										
9-	_		on March 27, 2019.										
10 11 11	3												
12													
13	4												
15													
17	5												
18													
20-	6												
Co	ont	ractor	r: Strata Drilling Group Inc.	inchin l	Ltd.		Gra	de Elevatio	n: 169.44 ı	mamsl			
Dr	illii	ng Me	ethod: Direct Push 2470 M	illtower	Court		Ton	of Casing	Elevation	NA			
We	Well Casing Size: NA Mississauga, ON L5N 7W5												

Log of Borehole: BH19-07												
			Project #: 23	0989.001			L	ogged By: \	٧M			
1	D	INCLIN	Project: Phas	se Two Env	vironr	nental	Site Asse	ssment				
	P		Client: 91 Eg	linton Limit	ted Pa	artners	ship					
	-		Location: 13	1 Eglinton	Aven	ue Eas	st, Mississa	auga, ON				
			Drill Date: Ma	arch 27, 20)19		P	roject Mana	ger: MB			
		SUBSURFACE PROF	ILE				S	AMPLE				
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Sampler #	Recovery (%)	Sample ID	Soil Vapour Concentration (ppm) (CGI/PID)	Laboratory Analysis			
$\begin{bmatrix} ft \\ 0 \\ \pm 0 \end{bmatrix}$		Ground Surface	0.00	Ŧ								
1 1 2		Clayey Silt Brown, trace orange oxidation. Some gravel fragments, moist.		99	1	00	S1	0/1	BTEX, PHCs, PAHs, EC, SAR, pH			
3 1 4 4			1.52	No Monitoring Well Instal		00	S2	0/0				
6 	H H $=$	Silty Clay Brown, moist to wet. Silty Sand Brown trace gravel moist to wet	1.98				S3	50/1				
8 		Inferred Weathered Shale Bedrock Grey, some silt, damp.	3.05		2	100	S4	0/1				
		End of Borehole		Ŧ								
11		Sampler Refusal encountered at 3.0 mbgs on March 27, 2019.	05									
16 - 5 17 - 5												
18 19 19												
$ _{20} = 6$												
	racto	r: Strata Drilling Group Inc	Dinchin I	td		Grad	do Elovati	on: 160 41 r	namsl			
			70 Milltower (Court		Gid			namor			
Well	Drilling Method: Direct Push Direct Push Top of Casing Elevation: NA Mississauga, ON L5N 7W5 Sheet: 1 of 1											

	Log of Borehole: BH19-08												
			Proj	ect #: <mark>2</mark> 3	30989.001			Lo	gged By: \	ΛΜ			
	1	D		ect: Pha	ase Two Env	ironr	nental	Site Asses	sment				
	1	P	Clier	nt: 91 E	glinton Limite	ed Pa	artners	ship					
		-	Loca	ation: 1	31 Eglinton A	ven	ue Ea	st, <mark>Mississ</mark> a	uga, ON				
			Drill	Date: N	larch 27, 20	19		Pr	oject Mana	ager: MB			
			SUBSURFACE PROFILE					SA					
Danth		Symbol	Description	Measured Depth (m)	Monitoring Well Details	Sampler #	Recovery (%)	Sample ID	Soil Vapour Concentration (ppm) (CGI/PID)	Laboratory Analysis			
0	m - 0		Ground Surface	0.00	Ŧ					00			
1	-		Sandy Silt Brown, trace gravel, trace orange oxidation, moist.	0.61			100	S1	20/2	Pesticides, BTEX, PHCs, PAHs, EC, SAR, pH			
3	- 1 -		Brown, some sand, some bedrock fragments, moist.	1.52	ig Well Insta	1	100	S2	0/1	Metals			
5 6 7	Sand and Gravel Brown, moist.		Sand and Gravel Brown, moist.	2.29	No Monitorin	2	60	S3	0/1				
8	_	H H	Silty Clay Grey, some weathered bedrock, damp.	2.74	Ļ			S4	5/1				
10	- - 3		End of Borehole										
11-	-		Sampler Refusal encountered at 2.90 mbgs on March 27, 2019.										
13	- - 4												
14	-												
16	- - - 5												
17-	-												
19	- - 6												
(Cont	racto	r: Strata Drilling Group Inc.	inchin I	Ltd.		Gra	de Elevatio	ו ה: 169.48 ו	namsl			
	Drilling Method: Direct Push 2470 Milltower Court Top of Casing Elevation: NA Mississauga ON 15N 7W5												
V	Mississauga, ON L5N 7W5 Well Casing Size: NA												

APPENDIX D Field Instrument Calibration Records

ENVIRONMENTAL AND SAFETY INC. "Exceptional Customer Service!"

RENTALS, SALES, SERVICE, SUPPORT

9 - 170 AMBASSADOR DR., MISSISSAUGA, ONTARIO L5T 2H9 PHONE: (905) 670-1304 TOLL FREE: (888) 285-2324 E-MAIL: SALES@MAXIMENVIRONMENTAL.COM 9 - 148 COLONNADE RD., OTTAWA, ONTARIO K2E 7R4 PHONE: (613) 224-4747 TOLL FREE: (888) 285-2324 E-MAIL: SALES@MAXIMENVIRONMENTAL.COM

MAXIM ENVIRONMENTAL AND SAFETY INC.

Phone: (905)670-1304

170 AMBASSADOR DRIVE, UNIT # 9 MISSISSAUGA, ONTARIO L5T 2H9

CERTIFICATE OF CALIBRATION

The RKI Instruments Model EAGLE-2 as listed below has been inspected and calibrated following the Manufacturer's published specifications and methods.

Instrument Model: EAGLE-2 Serial Number: E29926

Date of Calibration: March 20, 2019

SENSOR	CALIBRATION GAS STANDARD	CALIBRATION GAS CONCENTRATION	READING PRIOR TO ADJUSTMENT	INSTRUMENT SPAN SETTING	ALARM LEVEL SETTINGS
Combustible	Hexane lot # 901366	15% LEL	15% LEL	15% LEL "Methane Eliminat	10 & 50% LEL ion" Mode
Combustible	Methane lot # 636904	50% LEL	<500 PPM	Verification Only "Methane Eliminat	ion" Mode
Combustible	Hexane lot # 901366	15% LEL	15% LEL	15% LEL "Methane Respon	10 & 50% LEL se Enabled" Mode
VOC	lsobutylene lot # 857738	100 PPM	100 PPM	100 PPM	400 & 1000 PPM

The calibration gas standard used is considered to be a certified standard and is traceable to the National Institute of Standards and Technology (NIST). Certificate of Analysis is available upon request.

The instrument indicated above is now certified to be operating within the Manufacturer's specifications. This does not preclude the requirement for regular maintenance and pre-use sensor response checks in order to ensure continued complete and accurate operating condition.

Certified:

APPENDIX E Well Records

\$20	ntario	Ministry and Clir	of the Envi	ironment	Well Ta	g No. (Place Sticker	andia	r Drint Rolnw)	S-2	339	75 W	ell F	Record
Measurem	ents recorde	d in: 🗌 N	letric	Imperial	A2	65478	Tag	#:A2654	78 lation	n 903 C	Dintario Wa Page	ter Re	sources Act
Well Own	ner's Infori	mation			L.				1		1 age		
First Name	k lidd	4 4	ast Name / C	Organizatio	n linita	1 Padaacek	10	E-mail Address] Well	Constructed
Mailing Add	dress (Street	Number/Nan	ne)	0700	Limite	A, Parmerse Municipality	"P	Province	Postal Code		Telephone	No. (inc	area code)
Well Loca	Icase K	d W, U	nit 8			Markham		ON	LJRO	T3			
Address of	Well Location	n (Street Nur	nber/Name)	6 5	-	Fownship			Lot	-	Concessio	1	
County/Dis	trict/Municipa	lity	en pa	10 0	(City/Town/Village				Provin	се	Posta	al Code
UTM Coordi	inates Zone	Fasting	No	orthing		MISSISSA	UG	A.		Ont	ario		
NAD	8317	6088	8664	329	469	אמחוטיףמו רומנו מות סנ		umber		Other			
Overburde General Co	en and Bedr	ock Materia	als/Abando	nment Se	aling Reco	ord (see instructions on	the bac	k of this form)	nal Deservitier			De	oth (<i>m/ft</i>)
BZAI	/	FILL			52-11		-	Gene	rai Description			From	
BAN	5	Citte			CUAY	16MACULL		DEA	K ISF-			2	10
614	5	HATE			0.01		-	DEN	ISE-			2	13
0. 1	0	ra de ce						1010			(0	
							_						
	_		American	0									
Depth Se	et at (m/ft)		Type of Sea	lant Used		Volume Placed	Af	ter test of well yield,	water was:	Dr	aw Down	F	Recovery
From	10	~	(Material an	d Type)		(m³/ft³)		Clear and sand fi Other, specify	ree	Time (min)	Water Leve (m/ft)	Time (min)	Water Level (m/ft)
1	2	Banch	270	-			lfp	pumping discontinue	ed, give reason:	Static Level			
2	13	SAIN	DNITE			-	-			1		1	
0		JAW	-				_ PL	ump intake set at (n	n/ft)	2		2	
Meth	nod of Cons	struction			Well Us	ie	PL	umping rate (I/min /	GPM)	3		3	
Cable To	ol	Diamond	Pul	blic	Comme	rcial 🗌 Not used	Di	uration of pumping		4		4	
Rotary (C	Conventional) Reverse)	Driving		mestic estock	Hunicip	al Dewaterin le H ionitoring	g	hrs +n	nin	5		5	
Boring	ission ,	Digging	Irrig	gation ustrial	Cooling	& Air Conditioning	Fir	nal water level end o	f pumping (m/ft)	10		10	
Hother, sp	pecify Auc	etre	Oth	ner, specify			lff	lowing give rate (I/n	nin / GPM)	15		15	
Inside	Open Hole C	DR Material	Wall	Depti	n (<i>m/ft</i>)	Status of Well	Re	ecommended pump	o depth (m/ft)	20		20	
Diameter (cm/in)	(Galvanized, Concrete, Pla	Fibreglass, astic, Steel)	Thickness (cm/in)	From	То	Replacement Wel			1 1 2	25		25	
2	DIAZ	STIC		¥	3	Recharge Well Dewatering Well	Re (I/r	ecommended pump nin / GPM)	o rate	30		30	
	/					Dewatering Weil Observation and/or	W	ell production (I/min	/ GPM)	40		40	
						Alteration	Di	sinfected?		50		50	
						Abandoned,		Yes No		60		60	
Outeide	Con	struction Re	ecord - Scre	en	1 (5)	Abandoned, Poor	Pi	ease provide a man	Map of W	ell Loc	ation	nack	
Diameter (cm/in)	(Plastic, Galva	erial inized, Steel)	Slot No.	From	To	Abandoned, other	, ' "	case provide a map		ii isu ucu		7	
2.1	Ne	SIC	10	3	13	specny			52214	010	ACHE		
	1					Other, specify			un	Y			
		Water Det	ails	1	ŀ	lole Diameter			(m	vi	7		
Water found	d at Depth K	ind of Water	: Fresh	Untested	Dep From	th (<i>m/ft</i>) Diameter To (<i>cm/in</i>)	r		Cri	,	/		
Water found	d at Depth K	ind of Water	: Fresh	Untested	0	13 6							
(m. Water found	/ft) Gas [d at Depth K	Other, special of Water	cify	Untested									
(m.	v/ft) Gas	Other, spe	cify										
Business M	Well	Contractor	r and Well	Technicia		tion							
STA	ATA De	Huch	Gros	2	-	2241							
Business Ac	ddress (Street	Number/Nar	me)		Mu	inicipality	Co	omments:					
Province	Pos	tal Code	Business	E-mail Add	iress /	1 alton							
ON Bus Tolonha	L.	148U	Une of Mall T	co/d/se	est Name	Fasul - con	We	ell owner's Date P ormation	ackage Delivere	d	Minis Audit No	try Us	e Only
965	TOYON (Inc. and	JOK	No	Connician (asi warne,	PRNE	pa de	kage V V	Y Y M M	DD	riadit 140.	21	9525
Well Technici	an's Licence No	5. Signature	of Technicia	n and/or Co	ontractor Da	te Submitted		Yes 2	19012	20			
0506E (2014/1	11)		all a		1	Ministry's Co	DV VQ	1814		5p	© Queen's	s Printer f	for Ontario, 2014
						annou y o ou	22						

V Untario and Climate Change /	Record
Measurements recorded in: Metric Imperial A265756 Regulation 903 Ontario Water R	esources Act
Well Owner's Information	
Hn: Mark Urddy 91 Eglinton Limited Partnership	ell Constructed Well Owner
Mailing Address (Street Number/Name) Municipality Province Postal Code Telephone No. (inc. area code)
Well Location	
Address of Well Location (Street Number/Name) 131 Egglinton Ave Gost	_
County/District/Municipality C City/Town/Village City/Town/Village Province Po	stal Code
UTM Coordinates Zone Easting Northing Municipal Plan and Sublot Number Other	
NAD 8 3 1460 8114 18 1474 7 Overburden and Bedrock Materials/Abandonment Sealing Record (see instructions on the back of this form)	
General Colour Most Common Material Other Materials General Description I Openeral Colour 1 0 1 From From 1	Depth (<i>m/ft</i>) n To
Brown Topsoil	21
Brown till 4	4'
Cred Shale	1 121
	10
	_
Annular Space Results of Well Yield Testing	
Depth Set at (m/t) Type of Sealant Used Volume Placed After test of well yield, water was: Draw Down From To (Material and Type) (m³/ft³) Clear and sand free Time Water Level Time	Recovery
O 0.5' Concrete (min) (m/t) (min) (m/t) (min) (m/ti) (m/ti	in) (m/ft)
U.S' G' Holeplug	
6 12 5 5 2 Pump intake set at (m/ft) 2	>
Pumping rate //min / GPMI 3 3	3
Method of Construction Well Use Implify fails (MM/) of My Cable Tool Diamond Public Commercial Not used	ł
Rotary (Conventional) Jetting Domestic Municipal Dewatering Duration of pumping Rotary (Reverse) Driving Livestock Test Hole Homitoring hrs +min 5 4	5
Boring Digging Irrigation Cooling & Air Conditioning Final water level end of pumping (m/ft) 10 1 Air percussion Air Conditioning Final water level end of pumping (m/ft) 10 1	0
Pettier, specify If flowing give rate (<i>Vmin / GPM</i>) 15 1	5
Construction Record - Casing Status or Well 20 2 Inside Open Hole OR Material Wall Depth (m/ft) Water Supply Recommended pump depth (m/ft) 20 2	0
(cm/in) Concrete, Plastic, Steel) (cm/in) From To Replacement Well 25 2	5
2 VC 0.12S 0 7 Recharge Well (<i>Imin / GPM</i>) 30 3	0
Image: Construction and/or Monitoring Hole Well production (l/min / GPM) 40 4	0
Alteration (Construction)	0
Construction Record - Screen Abandoned, Insufficient Supply Map of Well Location	·
Outside Material (Plastic Galvanized Steel) Slot No. Depth (<i>m/t</i>) Abandoned, other,	ack.
$\frac{(cm/n)}{2.25} \frac{10}{7} \frac{10}{10} $	
Water Details Hole Diameter	
Water found at Depth Kind of Water: Fresh Untested Depth (m/ft) Diameter (m/ft) Gas Other. specify From To (cm/in)	
Water found at Depth Kind of Water: Fresh Untested O 12 6	
Water found at Depth Kind of Water: Fresh Untested	
(m/ft) Gas Other, specify	
Business Name of Well Contractor Well Contractor Well Contractor Well Contractor's Licence No.	
Strata Soil Sampling 7 2 4 1 Business Address (Street Number/Name) Municipality Comments:	;
165 Sheilds Court Markham. Province Postal Code Business E-mail Address	
ON L3R8V2 WRecords@stratasoil.com Wellowner's Date Package Delivered Ministry	Jse Only
Bus. Telephone No. (inc. area code) Name of Well Technician (Last Name, First Name) package delivered YYYYMMDD Audit No. Z3	10394
Well Technician's Licence No. Signature of Technician and/or Contractor Date Submitted	
OSOBE (2014/11) Ministry's Copy Main Main <th< td=""><td>er for Ontario, 2014</td></th<>	er for Ontario, 2014

Don	tario Ministry	of the Envir	onment	Well Ta	g No. (Pla	ace Sticker a	nd/or Print Belo	S-2:	3399	s · We	ell F	Record
Measurement	ts recorded in:	Metric III	nperial	A2	654	74	ag#:A2	65474	1 903 0	Page	er Res	of
Well Owne	r's Information									Tuge_		
First Name	(1)	ast Name / C	rganization		10		E-mail Add	Iress			Well	Constructed
Mailing Addres	ss (Street Number/Nar	<u>91 Egli</u>	nton A	Limitel	A Part	nership	Province	Postal Code	1-	Felenhone N	by W	ell Owner
1 Steeld	ase Road 1	N. Unit	8		Markh	am	DN	LJRO	TZ		10. (110.	
Well Locati	on (O) (I)			-1-								
Address of We	EGLIN T	nber/Name)	EE	- 1	Township			Lot		Concession		
County/Distric	ct/Municipality			C	City/Town/V	/illage			Provin	се	Posta	I Code
UTM Coordinat	tes Zone Fasting	No	thing		Municipal P	SISSA	MGA .		Onta	ario		
NAD 8	13 1760R	7394	8291	135	-		ot number		Other			
Overburden	and Bedrock Materi	als/Abandor	iment Sea	ling Reco	rd (see inst	tructions on the	back of this form,					
General Colo	ur Most Comn	non Material		Oth	er Materia	ls		General Description			Dep From	oth (<i>m/ft</i>) To
BPN	FILL	-		SA	200/0	mart	6	LOOSE			0	2
BAN	5107	r		C	Loty			DENSE			2	10
GAY	SILA	τE						DENSE			10	13
		_										
		Annular	Space		1			Results of We	ell Yiel	d Testing		
Depth Set a From	at (<i>m/ft</i>) To	Type of Seal (Material and	ant Used Type)		Volum (r	ne Placed m ³ /ft ³)	After test of wel	l yield, water was: sand free	Dra	Water Level	R	Recovery Water Level
0	7 BENT	ENTE.					Other, spe	cify	(min)	(m/ft)	(min)	(m/ft)
2	13 5000						If pumping disc	ontinued, give reason:	Static Level			
U	(2)10100	-							1		1	
							Pump intake se	et at (m/ft)	2		2	
							Pumping rate /	Umin / GPM)	3	-	3	
Method	d of Construction	C Pub	ic	Well Us	reial F	Notwood	i unping rate (annari Gring	4	25	4	
Rotary (Con	nventional)		iestic	Municip	al [Dewatering	Duration of pur	mping	E		F	
Boring	verse) Driving	Live	stock	est Ho	le & Air Condi		Final water leve	l end of pumping (m/ft)	5		S	-
Air percussi	ion M. Con		strial		de 7 in Oonal	uorning	T mai mator toro	rend of partping (nery	10		10	
Lifether, spec.	ity Anoon	_ Othe	er, specify		1 01 1	C 111 11	If flowing give r	ate (I/min / GPM)	15		15	
Inside	Open Hole OR Material	Wall	ng Depth	(<i>m/ft</i>)	Statu:	Supply	Recommended	d pump depth (m/ft)	20		20	
Diameter ((cm/in)	(Galvanized, Fibreglass, Concrete, Plastic, Steel)	Thickness (cm/in)	From	То	Repla	eement Well		- point apparting	25		25	
9	MINSTU		23	8	Recha	tole arge Well	Recommended	d pump rate	30		30	
0	raditic		7/	-		tering Well	1		40		40	
				-	Monito	vation and/or oring Hole	Well production	n (I/min / GPM)	50		50	
	-				Altera (Cons	tion truction)	Disinfected?		00		00	
					Abanc	loned, cient Supply	Yes I	No	60		60	
Outside	Construction R	ecord - Scree	n Depth	(<i>m/ft</i>)	Abanc Water	loned, Poor Quality	Please provide	Map of We a map below following	instruction	ation ons on the ba	ack.	
Diameter (cm/in) (F	Plastic, Galvanized, Steel)	Slot No.	From	То	Abanc	loned, other,	and a second second	12CA	Na			
21	PLASTIC	10	3	13	speci	у		SECAR	en	2000		
0.1	pullipic	10	1	()	Other,	specify		04	Z	/		
/	Madan Dat	otta						(
Water found a	at Depth Kind of Water	: Fresh	Untested	Dep	th (<i>m/ft</i>)	Diameter		1 pm	ろ)		
(m/ft)	Gas Other, spe	cify		From	To	(cm/in)		C	/			
Water found a	at Depth Kind of Water	: Fresh	Untested	0	0	0						
Water found a	at Depth Kind of Water	r: Fresh	Untested									
(m/ft)	Gas Other, spe	cify				1.2.2.						
Pupinser M	Well Contracto	r and Well 1	echniciar	n Informa	tion							
Contra		and	*	We	an Contractor	S Licence No.						
Business Addr	ress (Street Number/Na	me)		Mu	inicipality	/ //	Comments:					
165 51	Hicas a	27.		K	ranke	tram						
Province	Postal Code	Business	E-mail Addr	less	61-		Well owner's	Date Package Delivere	d	Miniet	ry He	e Only
Bus.Telephone	No. (inc. area code) Na	me of Well Te	echnician (L	ast Name,	First Name)	information package	v ly ly ly ly ly ly ly		Audit No.Z	21	9523
2057	649304	folla	BCH	Ele 1	Sul	E.	delivered	Date Work Completed	U.U.		- 1	0020
	s Licence No. Signature	of Technician	and/or Cor	atractor Da	te-Submitteo			ha 19 x 2	29	Decelored		
0506E (2014/11)		LE		1	Mini	stry's Con	v	7+61/102		© Queen's	Printer fo	or Ontario, 2014

Ministry's Copy

© Queen's Printer for Ontario, 2014

£3-	Ministr	v of the Enviro	nment [Woll Ta	a No /Dia	on Cticker	and/or Drint Dalaw	1		1AZ		
0+ Onta	ario and Cli	mate Change	/	1 1			ag#:A2654	180 ation	n 903 C	VV Intario Wat	er Res	sources A
Measurements	recorded in:	Metricfm	perial	11 d	65 70			1		Page_		_ of
First Name	simormation	Last Name / Or	ganization				E-mail Address				Well	Constructe
n', Mark	Ciddy (Street Number/Na	91 Egli.	nton	A Lin	nited, F	artners	Rip	Postal Cada		Tolonhana A	by W	ell Owner
1 Steelcon	se Rd. W.	Unit 8			Markh	am	ON	L3RO	TL3		10. (Inc.	area code)
Nell Location	1 Location (Street Nu	mber/Name)			Township			llat		Canada		
131 E	GLINTON	IANE	E.		rownanip			Lot		Concession		
County/District/N	Municipality			(City/Town/Vi	llage	mil A		Provin	ce	Posta	l Code
JTM Coordinates	Zone Easting	CC2 North	ing CI	171	Municipal PI	an and Subl	lot Number		Other	4110		
NAD 8 3 Overburden ar	B C F 6 40	als/Abandon	nent Seal	ing Reco	ord (see instr	ructions on th	e hack of this form)					
General Colour	Most Com	non Material		Oth	ner Materials	6	Gene	eral Description	ni l		Dep From	oth (<i>m/ft</i>)
BPN	FILL	-	-	SAN	2/Gr	NET	L	vosé-	-		0	2
BRN	5112			CC	AY		De	NSE.			2	8
SRY	SIALE	5					De	NSE-			8	11
			_									1
												-
												-
			_									-
		Annular St	oace					Results of We	ell Yiel	d Testina		
Depth Set at (<i>m/ft)</i> To	Type of Sealar (Material and	nt Used		Volum	e Placed	After test of well yield,	water was:	Dra	aw Down	F	Recovery
0 1	7 25	TONITE	-		111	111	Other, specify	Tee	(min)	(<i>m/ft</i>)	(min)	(<i>m/ft</i>)
2 11	I SAA	AD					If pumping discontinue	ed, give reason:	Static			
	0111	2							1		1	
							Pump intake set at ()	n/tt)	2		2	
Method	of Construction			Well Us	se		Pumping rate (I/min /	GPM)	3		3	
Cable Tool	Diamono	d Domo) [ercial	Not used	Duration of pumping		4		4	
Rotary (Revers	se) Driving	Livest	ock	Test Ho		Monitoring	hrs +	nin	5		5	
_ Boring Air percussion		Irrigat	ion L trial	_ Cooling	& Air Conditi	oning	Final water level end o	of pumping (m/ft)	10		10	
Other, specify	Aucor	_ Other	, specify				If flowing give rate (I/	min / GPM)	15		15	
Inside Op	ben Hole OR Material	Wall	Depth ((m/ft)	Water :	Supply	Recommended pum	o depth (m/ft)	20		20	
(<i>cm/in</i>) Cor	alvanized, Fibreglass, ncrete, Plastic, Steel)	Thickness (cm/in)	From	То	Replac	ement Well ole	2		25		25	
21	WESTIC	1	+3	3	Rechar	rge Well	Recommended pum (I/min / GPM)	o rate	30		30	
/					Observ	ation and/or	Well production (I/min	n / GPM)	40	_	40	
					Alterati	on	Disinfected?		50		50	
						ned,	Yes No	_	60		60	
0.111	Construction R	ecord - Screen			Insuffic	ient Supply oned, Poor	Discontraction	Map of W	ell Loc	ation		
Diameter (Plas	Material stic, Galvanized, Steel)	Slot No.	Depth (m/ft) To	Abando	Quality oned, other,	Please provide a map		Instruction	ons on the b	аск.	
2.1 5	71143711-	10	3	11	specify			iee,	AZ	TACE	tes	
or p	unnue	70	-	11	Other,	specify		p	N	7		
	Water De	tails		ŀ	lole Diame	ter		~	/	1		
Vator found at 1	Depth Kind of Wate	r: EFresh	Untested	Dep From	th (<i>m/ft)</i> To	Diameter (cm/in)		1 m	14	-/		
valer round at l	Gas Other, spe	ecity r:	Untested	0	11	6		C	/	/		
(<i>m/ft</i>) (<i>m/ft</i>) (<i>m/ft</i>)	Depth Kind of Wate											
Vater found at I (<i>m/ft</i>) [Vater found at I (<i>m/ft</i>) [Depth Kind of Wate	ecify	DIST. CONT			-						
Vater found at I (<i>m/ft</i>) [Vater found at I (<i>m/ft</i>) [Vater found at I (<i>m/ft</i>) [Depth Kind of Wate Gas Other, spe Depth Kind of Wate Gas Other, spe	ecify er:	Untested -									
Vater found at [(<i>m/ft</i>) [Vater found at [(<i>m/ft</i>) [Vater found at [(<i>m/ft</i>) [Depth Kind of Wate Gas Other, spe Depth Kind of Wate Gas Other, spe Well Contractor	ecify r: Fresh ecify or and Well Te	Untested echnician	Informa	tion							
Vater found at I (<i>m/ft</i>) [Vater found at I (<i>m/ft</i>) [Vater found at I (<i>m/ft</i>) [usiness Name o	Depth Kind of Wate Gas Other, spe Depth Kind of Wate Gas Other, spe Well Contractor Mell Contractor	ecify er: Fresh ecify or and Well Te	Untested echnician	Informa We	tion ell Contractor's 2 2 1	s Licence No.						
Vater found at [(m/ft) [Vater found at I (m/ft) [Vater found at I (m/ft) [usiness Name of the second second at I (m/ft) [Depth Kind of Wate Gas Other, spe Depth Kind of Wate Gas Other, spe Well Contractor Well Contractor A DYLICCA S (Street Number/Na	ecify r: □ Fresh □ ecify for and Well Te A Cron ame	Untested echnician	Informa We	tion Il Contractor's 2 2 4 unicipality	Licence No.	Comments:					
(m/ft) [Vater found at I (m/ft) (m/ft) [Vater found at I (m/ft) (m/ft) [usiness Name of the second seco	Depth Kind of Wate Gas Other, spe Depth Kind of Wate Gas Other, spe Well Contractor Well Contractor Mell Contractor Mell Contractor Mell Contractor Mell Contractor Mell Contractor Mell Contractor Postal Code	ecify	echnician	Informa We Mu	tion Ell Contractor's 2 2 2 unicipality MMCL	Elicence No.	Comments:					
Vater found at I (<i>m/ft</i>) [Vater found at I (<i>m/ft</i>) [Vater found at I (<i>m/ft</i>) [Usiness Name of S-2024 of Usiness Address	Depth Kind of Wate Gas Other, spe Depth Kind of Wate Gas Other, spe Well Contractor Well Contractor Well Contractor Well Contractor Well Contractor Postal Code Postal Code	ecify r: Fresh ecify or and Well Te M Crow ame) Business E 2 UV C	-mail Addre	Informa We Mu Sss SS SS	tion 2 2 2 Inicipality MARLI Contractor's	Elicence No.	Comments:	ackage Delivere	d	Minist	try Use	e Only
Vater found at I (m/ft) [Vater found at I (m/ft) [Vater found at I (m/ft) [usiness Name of Same of the second usiness Address (Same of the second same of	Depth Kind of Wate Gas Other, species Depth Kind of Wate Gas Other, species Well Contractor Well Contractor Well Contractor Contractor Postal Code Postal Code National Postal Code National Nati	ecify	-mail Addre	Informa We Ass Sess Sess Sess Sess Sess	tion Ell Contractor's 2 2 2 unicipality <i>MMCLI</i> <i>First</i> Name) <i>First</i> Name)	s Licence No. 4-1 4-1 5-6, 1-0 12	Comments: Well owner's Date F Information package delivered	'ackage Delivere	d D D	Minist Audit No Z	ry Usa 21	• only 9522
Vater found at I (m/ft) [Vater found at I (m/ft) [Vater found at I (m/ft) [Usiness Name (Susiness Address Susiness Addres	Depth Kind of Wate Gas Other, spo Depth Kind of Wate Gas Other, spo Well Contractor Well Contractor Well Contractor S (Street Number/Na Postal Code Postal Code Na Postal Code Na S (inc. area code) Na S	ecify	-mail Addre	Informa We And Ass S S S S S S S S S S S S S S S S S S	tion El Contractor's 2 2 4 2 2 4 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	Elicence No. 4-1 6000 50, l-Cl 12E.	Comments: Well owner's Date F Information package delivered Yes Date V	Package Delivere		Minist Audit No Z	try Use	• only 9522

leasurements re	corded in:	Metric 🖓	Imperial	APO	0)917 10	19#:A2654	-77 ^{Junuton}	11 303 0	Page	ter Kes	of
Vell Owner's I irst Name	Information	Last Name /	Organizatio	on		E-mail Addres	SS				
1 Mark L	iddy	91 Egli	inton	Limited	d, Partnershi	ip				J Well by W	Construct ell Owner
Steel cape	Read U	J. Unit	8		Municipality Markham	Province	Postal Code	72	Telephone I	No. (inc.	. area code
/ell Location							USKU	13	•		
i31 ELC	INTON	hber/Name			Township		Lot		Concession	1	
ounty/District/Mu	unicipality				City/Town/Village			Provin	ice	Posta	l Code
TM Coordinates	Zone Easting	a a /I N	logthing		Municipal Plan and Sub	olot Number		Onta	ario		
NAD 83	14608	936 g	4029	412	and the state of						
General Colour	Most Comr	non Materia	l l	Ot	her Materials	Generation G	eneral Description	1		Dep	oth (<i>m/ft</i>)
BAN,	FIL	il		SA	NO/GRAJEC		LOOSE.		- 1 0	0	J
BRN	510	F		C	Loty	i	DENSE-			2	8
GAY	STAT	ale-			,	6	DENSE.			8	11
		Annula	r Space				Results of We	ell Yiel	d Testing		
Depth Set at (m/n From To	(t)	Type of Sea (Material ar	alant Used nd Type)		Volume Placed (m³/ft³)	After test of well yie	eld, water was: nd free	Dra Time	aw Down Water Leve	R Time	Recovery Water Le
02	BEN	TINTE	Ēr			Other, specify	Y	(min) Static	(m/ft)	(min)	(m/ft)
211	SA	ND				If pumping disconti	inued, give reason:	Level			
	01	1				Pump intake set a	at (m/ft)	1		1	
							at (mony	2	-	2	
Method of											
	Construction			Well U	se	Pumping rate (I/m	in / GPM)	3		3	
] Cable Tool] Rotary (Convention	Construction		ublic omestic	Well Us	se ercial Dot used	Pumping rate (I/m Duration of pumpi	in / GPM) ing	3		4	
Cable Tool Rotary (Conventi Rotary (Reverse)	Construction		ublic omestic vestock	Well Us	se ercial Not used bal Dewatering ble Monitoring	Pumping rate (l/m Duration of pumpi hrs +	in / GPM) ing min ad of pumping (m/#)	3 4 5		3 4 5	
Cable Tool Rotary (Conventi Rotary (Reverse) Boring Air percussion	Construction		ublic omestic vestock igation dustrial	Well Us Comme Municip Test Ho Cooling	se International	Pumping rate (l/m Duration of pumpi hrs + Final water level er	in / GPM) ing min nd of pumping (m/īt)	3 4 5 10		3 4 5 10	
Cable Tool Rotary (Conventi Rotary (Reverse) Boring Air percussion	Construction Diamono onal) Jetting Dirving Digging Awb M Construction R	d Pu Dc Liv Irri Ott ecord - Cas	ublic primestic vestock igation dustrial her, specify sing	Well Us	se arcial Not used bal Dewatering le Monitoring & Air Conditioning Status of Well	Pumping rate (l/m Duration of pumpi hrs + Final water level er	in / GPM) ing min nd of pumping (m/īt) e (Vmin / GPM)	3 4 5 10 15		3 4 5 10 15	
Cable Tool Rotary (Conventi Rotary (Reverse) Boring Air percussion Other, specify Inside Open Diameter (Caby	Construction Diamono onal) Jetting Digging Digging Construction R Hole OR Material anized Eibrenlass	d Pu Dc Liv Liv Inn Ot ecord - Cas Wall	iblic omestic vestock igation dustrial her, <i>specify</i> sing Dept	Weil U:	se ercial Dewatering ble Monitoring & Air Conditioning Status of Well Water Supply	Pumping rate (l/m Duration of pumpi hrs + Final water level er If flowing give rate	in / GPM) ing min nd of pumping (m/ft) e (l/min / GPM) ump depth (m/ft)	3 4 5 10 15 20		3 4 5 10 15 20	
Cable Tool Rotary (Conventi Rotary (Reverse) Boring Air percussion Pether, specify Inside Diameter (cm/in)	Construction	d Pu Doc Liv Liv Ini no Ot ecord - Cas Wall Thickness (<i>cm/in</i>)	ublic pomestic vestock igation dustrial her, <i>specify</i> sing Dept From	Well Us Comme Municip Test He Cooling h (m/ft) To	se ercial Not used bal Dewatering ble Monitoring & Air Conditioning Status of Well Water Supply Replacement Well Hest Hole	Pumping rate (l/m Duration of pumpi hrs + Final water level er If flowing give rate Recommended pu	in / GPM) ing min nd of pumping (m/ft) e (l/min / GPM) ump depth (m/ft) ump rate	3 4 5 10 15 20 25		3 4 5 10 15 20 25	
Cable Tool Rotary (Conventi Rotary (Reverse) Boring Air percussion Other, specify Inside Diameter (Calva (Convin) Q	Construction	d Pu Doc Liv Irri Irri Ott ecord - Cas Wall Thickness (cm/in)	ublic ormestic vestock igation dustrial her, <i>specify</i> sing Dept From UP3	Well U: Comme Municip Test He Cooling h (m/ft) To Z	se arcial Not used hal Dewatering he Monitoring k Air Conditioning Status of Well Water Supply Replacement Well Replacement Well Recharge Well Dewatering Well	Pumping rate (l/m Duration of pumpi hrs + Final water level er If flowing give rate Recommended pu (l/min / GPM)	in / GPM) ing min nd of pumping (m/ft) e (Vmin / GPM) ump depth (m/ft) ump rate	3 4 5 10 15 20 25 30		3 4 5 10 15 20 25 30	
Cable Tool Rotary (Conventi Rotary (Reverse) Boring Air percussion Other, specify Inside Diameter (Calva (Convention) Q	Construction	d Pu Dc Liv Irri Ot ecord - Cas Wall Thickness (cm/in)	ublic prmestic vestock igation dustrial her, specify sing Dept From H 3	Well Us Comme Municip Test Ho Cooling h (m/ft) To 3	se arcial Not used hal Dewatering ble Monitoring & Air Conditioning Status of Well Water Supply Replacement Well Test Hole Recharge Well Dewatering Well Observation and/or Monitoring Hole	Pumping rate (l/m Duration of pumpi hrs + Final water level er If flowing give rate Recommended pu (l/min / GPM) Well production (l/	in / GPM) ing min nd of pumping (m/ft) e (Vmin / GPM) ump depth (m/ft) ump rate /min / GPM)	3 4 5 10 15 20 25 30 40		3 4 5 10 15 20 25 30 40	
Cable Tool Rotary (Conventi Rotary (Reverse) Boring Air percussion Jether, specify Inside Diameter (cm/in) Q	Construction	d Pu Dc Liv Liv Inri Ot ecord - Cas Wall Thickness (cm/in)	ublic vestock igation dustrial her, specify sing Dept From J 3	Well Us	se arcial Not used bal Dewatering ble Monitoring & Air Conditioning Status of Well Water Supply Replacement Well Test Hole Recharge Well Dewatering Well Observation and/or Monitoring Hole Alteration (Construction)	Pumping rate (l/m Duration of pumpi hrs + Final water level er If flowing give rate Recommended pu (l/min / GPM) Well production (l/ Disinfected?	in / GPM) ing min hd of pumping (m/ft) e (Vmin / GPM) ump depth (m/ft) ump rate Vmin / GPM)	3 4 5 10 15 20 25 30 40 50		3 4 5 10 15 20 25 30 40 50	
Cable Tool Rotary (Conventi Rotary (Reverse) Boring Air percussion Open Diameter (cm/in) Q	Construction	d Pu Doc Liv Liv Ini ot ecord - Cas Wall Thickness (cm/in)	ublic prmestic vestock igation dustrial her, <i>specify</i> sing Dept From H-3	Well U: Comme Municip Test Ho Cooling h (m/ft) To 3	se arcial Not used al Dewatering Arc Conditioning Status of Well Water Supply Replacement Well Dewatering Well Dewatering Well Observation and/or Monitoring Hole Alteration (Construction) Abandoned, Insufficient Supply	Pumping rate (l/m Duration of pumpi hrs + Final water level er If flowing give rate Recommended pu (l/min / GPM) Well production (l/ Disinfected?	in / GPM) ing min nd of pumping (m/ft) e (//min / GPM) ump depth (m/ft) ump rate /min / GPM)	3 4 5 10 15 20 25 30 40 50 60		3 4 5 10 15 20 25 30 40 50 60	
Cable Tool Rotary (Conventi Rotary (Reverse) Boring Air percussion Cher, specify Inside Diameter (Calva Concr 2 0 0 0 0 0 0 0 0 0 0 0 0 0	Construction	ecord - Scre	iblic ormestic vestock igation dustrial her, specify sing Dept From J-3	Well U: Comme Municip Test Ho Cooling h (m/ft) To 3 h (m/ft)	se arcial Attraction Attraction Attraction Attraction Attraction Attraction Attraction Construction Attraction	Pumping rate (l/m Duration of pumpi hrs + Final water level er If flowing give rate Recommended pu (l/min / GPM) Well production (l/ Disinfected? Yes No	in / GPM) ing min nd of pumping (m/ft) e (Vmin / GPM) ump depth (m/ft) ump rate /min / GPM) Map of Wo nap below following	3 4 5 10 15 20 25 30 40 50 60 ell Loc	ation ons on the b	3 4 5 10 15 20 25 30 40 50 60	
Cable Tool Rotary (Conventi Rotary (Reverse) Boring Air percussion Cher, specify Inside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) (Plastic	Construction	ecord - Cas Wall Thickness (cm/in)	blic prestic vestock igation dustrial her, specify sing Dept From Dept From	Well U: Comme Municip Test Hc Cooling h (m/ft) To J h (m/ft) To J To	se arcial Not used hal Dewatering ble Monitoring & Air Conditioning & Air Conditioning & Air Conditioning & Air Conditioning Water Supply Reptacement Well Dewatering Well Dewatering Well Dewatering Well Dewatering Well Observation and/or Monitoring Hole Alteration (Construction) Abandoned, Poor Water Quality Abandoned, other, specify	Pumping rate (l/m Duration of pumpi hrs + Final water level er If flowing give rate Recommended pu (l/min / GPM) Well production (l/ Disinfected? Yes No	in / GPM) ing min d of pumping (m/ft) e (Vmin / GPM) ump depth (m/ft) ump rate (min / GPM) Map of We hap below following	3 4 5 10 15 20 25 30 40 50 60 ell Loc instructor	ation ons on the b	3 4 5 10 15 20 25 30 40 50 60 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
Cable Tool Rotary (Conventi Rotary (Reverse) Boring Air percussion Pather, specify Canver (cm/in) Outside Diameter (cm/in) Qutside Diameter (cm/in) Qutside	Construction	ecord - Scre	iblic vestock igation dustrial her, specify sing Dept From J 3 een Dept From J 3	Well U: Comme Municip Test Ho Cooling (m/ft) To 3 h (m/ft) To 1	Se arcial Not used hal Dewatering ble Monitoring & Air Conditioning & Air Supply Replacement Well Dewatering Well Abardoned, Poor Water Quality Abandoned, other, specify Otherwatering	Pumping rate (l/m Duration of pumpi hrs + Final water level er If flowing give rate Recommended pu (l/min / GPM) Well production (l/ Disinfected?	in / GPM) ing min d of pumping (m/ft) e (Vmin / GPM) ump depth (m/ft) ump rate (min / GPM) Map of We hap below following SEE	3 4 5 10 15 20 25 30 40 50 60 ell Locc instruction	ation ons on the b	3 4 5 10 15 20 25 30 40 50 60	>
Cable Tool Rotary (Conventi Rotary (Reverse) Boring Air percussion Outher, specify Inside Open Outside Diameter (cm/in) Clusside Diameter (Cn/in) Clusside Diameter (Cn/in) (Plastic	Construction	ecord - Scre Slot No.	iblic prestic vestock igation dustrial her, specify Sing Dept From U-3 Peen Dept From J-3	Well U: Comme Municip Test Ho Cooling h (m/ft) To 3 h (m/ft) To 1 Y No To 1 To 1 To 1 To 1 To 1 To	se arcial Not used al Dewatering Arc Conditioning Status of Well Water Supply Replacement Well Dewatering Well Dewatering Well Dewatering Well Observation and/or Monitoring Hole Alteration (Construction) Abandoned, Poor Water Quality Abandoned, other, specify Other, specify	Pumping rate (l/m Duration of pumpi hrs + Final water level er If flowing give rate Recommended pu (l/min / GPM) Well production (l/ Disinfected? Yes No Please provide a m	in / GPM) ingmin d of pumping (m/ft) e (//min / GPM) ump depth (m/ft) ump rate //min / GPM) Map of Wo hap below following SEE	3 4 5 10 15 20 25 30 40 50 60 60 ell Loc instruction A C	ation ons on the b	3 4 5 10 15 20 25 30 40 50 60 ack.	>
Cable Tool Rotary (Conventi Rotary (Reverse) Boring Air percussion Content, specify Inside Diameter (cm/in) Outside Diameter (cm/in) Qutside Qu	Construction	ecord - Scre Slot No.	blic prestic vestock igation dustrial her, specify sing Dept From Dept From Comparison Dept From	Well U: Comme Municip Test Ho Cooling h (m/ft) To A h (m/ft) To Image: A construction of the test of the test of test o	se arcial Attraction Attraction Attraction Attraction Attraction Attraction Attraction (Construction) (Construct	Pumping rate (l/m Duration of pumpi hrs + Final water level er If flowing give rate Recommended pu (l/min / GPM) Well production (l/ Disinfected? Yes No	in / GPM) ing min d of pumping (m/ft) e (Vmin / GPM) ump depth (m/ft) ump rate (min / GPM) Map of We hap below following SEE	3 4 5 10 15 20 25 30 40 50 60 60 60 60 60	ation ons on the b	3 4 5 10 15 20 25 30 40 50 60 ack.	>
Cable Tool Rotary (Conventi Rotary (Reverse) Boring Air percussion Cher, specify Inside Diameter (cm/in) Outside Diameter (cm/in) Qutside (cm/in) Qutside (cm/in) Qutside (cm/in) Qutside (cm/in) (cm/in) Qutside (cm/in) (cm/in) (cm/in) (cm/in) (cm/in) (cm/in) (cm/in)	Construction Diamono Diamono Digging Construction R Hole OR Material anized, Fibreglass, rete, Plastic, Steel) Construction R Material , Galvanized, Steel) Water Def pth Kind of Water Sas Other, spe	ecord - Cas Wall Thickness (cm/in) ecord - Scre Slot No.	blic prestock igation dustrial her, specify sing Dept From J 3 Dept From Dept From Output	Well U: Comme Municip Test Hc Cooling h (m/ft) To A h (m/ft) To J I I Dep From	se arcial Not used hal Dewatering he Monitoring & Air Conditioning & Aer Supply & Reptacement Well & Recharge Well & Dewatering Well & Abardoned, Insufficient Supply & Abandoned, Poor & Water Quality & Abandoned, other, specify & Other, specify & Other, specify & Iole Diameter & To (cm/in)	Pumping rate (l/m Duration of pumpi hrs + Final water level er If flowing give rate Recommended pu (l/min / GPM) Well production (l/ Disinfected? Yes No Please provide a m	in / GPM) ingmin nd of pumping (m/ft) e (Vmin / GPM) ump depth (m/ft) ump rate (min / GPM) Map of We hap below following SEE,	3 4 5 10 15 20 25 30 40 50 60 60 60 60 60 60 60 7 50 60 60 7 50 60 60 7 50 60 60 7 50 60 60	ation ons on the b TACC B	3 4 5 10 15 20 25 30 40 50 60	>
Cable Tool Rotary (Conventi Rotary (Reverse) Boring Air percussion Jether, specify Jether, specify Contract Outside Diameter (cm/in) Outside Diameter (cm/in) (Plastic 1 1 2 1 2 1 1 2 1 (m/ft) 0 ater found at De	Construction	ecord - Scre Slot No.	blic prestic vestock igation dustrial her, specify Sing Dept From J 3 een Dept From J 3	Well U: Comme Municip Test Ho Cooling h (m/ft) To A h (m/ft) To A Dep From I	se arcial Not used al Dewatering Arc Conditioning Status of Well Water Supply Replacement Well Dewatering Well Dewatering Well Dewatering Well Dewatering Well Dewatering Well Dewatering Well Alteration (Construction) Abandoned, nother, specify Hole Diameter th (m/ft) Diameter th (m/ft) C	Pumping rate (l/m Duration of pumpi hrs + Final water level er If flowing give rate Recommended pu (l/min / GPM) Well production (l/ Disinfected? Yes No Please provide a m	in / GPM) ingmin d of pumping (m/ft) e (l/min / GPM) ump depth (m/ft) ump rate (min / GPM) Map of W hap below following SEE ,	3 4 5 10 15 20 25 30 40 50 60 60 ell Loc instruction A C	ation ons on the b TACC B	3 4 5 10 15 20 25 30 40 50 60	>
Cable Tool Rotary (Conventi Rotary (Reverse) Boring Air percussion Outer, specify Inside Open Diameter (Galvz (cm/in) Concr Outside (Plastic Diameter (Plastic Outside (Plastic Diameter (m/ft) (cm/in) Cater found at De (m/ft) Cater found at De (m/ft) Cater found at De (m/ft) Cater found at De	Construction	Image: Constraint of the second of the se	blic vestock igation dustrial her, specify sing Dept From Dept From Comparison Dept From Comparison Dept From Comparison	Well U: Comme Municip Test Ho Cooling h (m/ft) To A h (m/ft) To A Dep From Cooling	se arcial Not used aal Dewatering A Air Conditioning Status of Well Water Supply Replacement Well Dewatering Well Dewatering Well Dewatering Well Dewatering Well Dewatering Well Dewatering Well Alteration (Construction) Abandoned, Poor Water Quality Abandoned, other, specify to ther, specify Iole Diameter To (cm/in) C	Pumping rate (l/m Duration of pumpi hrs + Final water level er If flowing give rate Recommended pu (l/min / GPM) Well production (l/ Disinfected? Yes No Please provide a m	in / GPM) ing min nd of pumping (m/ft) e (Vmin / GPM) ump depth (m/ft) ump rate (min / GPM) Map of Wo nap below following SEE, M	3 4 5 10 15 20 25 30 40 50 60 60 60 ell Loc Ment	$\frac{ation}{7ACC}$	3 4 5 10 15 20 25 30 40 50 60	>
Cable Tool Rotary (Conventi Rotary (Reverse) Boring Air percussion Inside Open Diameter (Galvz (cm/in) Concr 2 0 Outside Plastic Diameter (Plastic 2 1 Outside 0 Diameter (m/ft) Cater found at De (m/ft) (ater found at De (m/ft) (ater found at De 0 (m/ft) 0	Construction Diamono Diamono Diamono Diamono Digging Construction R Hole OR Material anized, Fibreglass, rete, Plastic, Steel) Construction R Material Gas Other, spec pth Kind of Wate Gas Other, spec Construction	Image: constraint of the second of the se	blic prestic vestock igation dustrial her, specify sing Dept From Dept From Comparison Dept From Comparison Dept From Comparison Com	Well U: Comme Municip Test Ho Cooling Image: Cooling h (m/ft) To J h (m/ft) To J Image: Cooling h (m/ft) To J Image: Cooling	se arcial Not used hal Dewatering be Monitoring se Air Conditioning Status of Well Water Supply Replacement Well Bewatering Well Dewatering Well Alteration (Construction) Abandoned, poor Water Quality Abandoned, other, specify Other, specify	Pumping rate (l/m Duration of pumpi hrs + Final water level er If flowing give rate Recommended pu (l/min / GPM) Well production (l/ Disinfected? Yes No Please provide a m	in / GPM) ing min d of pumping (m/ft) e (Vmin / GPM) ump depth (m/ft) ump rate (min / GPM) Map of We hap below following SEE,	3 4 5 10 15 20 25 30 40 50 60 60 60 60 60 7 7 7	ation ons on the b TACC P 5)	3 4 5 10 15 20 25 30 40 50 60	>
Cable Tool Rotary (Conventi Rotary (Reverse) Boring Air percussion Pather, specify Inside Open Diameter (Carlin) Coutside Diameter (cm/in) Pather found at De (m/ft) Cater found at De (m/ft)	Construction	ecord - Cas Wall Thickness (cm/in) ecord - Scre Slot No. (0 tails r: Fresh ecify r: Fresh ecify r: Fresh ecify r: Fresh	blic prestic vestock igation dustrial her, specify sing Dept From J 3 een Dept From J 3 Untestec Untestec Technicia	Well U: Comme Municip Test Ho Cooling Cooling h (m/ft) To A h (m/ft) To A A A A A A A A A A A A A	se arcial Not used bal Dewatering ble Monitoring & Air Conditioning Status of Well Water Supply Reptacement Well Dewatering Well Dewatering Well Dewatering Well Dewatering Well Dewatering Well Abandoned, Poor Water Quality Abandoned, Poor Water Quality Abandoned, other, specify Other, specify Hole Diameter th (m/ft) Diameter To (cm/in) Kenter Contractor's Licence Monitoring Contractor's Licence Monitoring Not contractor's Licence Monitoring Status of Well Monitoring Hole Contractor's Licence Monitoring Monitoring Hole Contractor's Licence Monitoring Monitoring Hole Status of Well Dewatering Well Monitoring Hole Contractor's Licence Monitoring Monitoring Hole Status of Well Dewatering Well Dewatering Well Contractor's Licence Monitoring Monitoring Hole Status of Well Monitoring Hole Contractor's Licence Monitoring Status of Well Status of Well Dewatering Well Construction Construction Contractor's Licence Monitoring Hole Status of	Pumping rate (l/m Duration of pumpi hrs + Final water level er If flowing give rate Recommended pu (l/min / GPM) Well production (l/ Disinfected? Yes No Please provide a m	in / GPM) ing min d of pumping (m/ft) e (Vmin / GPM) ump depth (m/ft) ump rate (min / GPM) Map of We hap below following SEE,	3 4 5 10 15 20 25 30 40 50 60 60 60 60 60 60 60 7 7	ation ons on the b TACC B	3 4 5 10 15 20 25 30 40 50 60	>
Cable Tool Rotary (Conventi Rotary (Reverse) Boring Air percussion Diameter (Galva (Conventi Diameter (Cm/in) Coutside Diameter (Cm/in) Plastic Quitside Diameter (Cm/in) Plastic Value Air percussion Plastic Outside Diameter (Cm/in) Plastic Coutside Diameter (Cm/in) Plastic Coutside Internet (Cm/in) Clater found at De (m/ft) Cater found for (m/ft) Cater four (m/ft) Cater four (m/f	Construction	ecord - Car Wall Thickness (cm/in) ecord - Scre Slot No. (0 tails r: Fresh poly r: Fresh poly r: Fresh poly r: Fresh poly r: Fresh	blic vestock igation dustrial her, specify sing Dept From Dept From Outestee Untestee Untestee Technicia	Well U: Comme Municip Test Ho Cooling Cooling h (m/ft) To A h (m/ft) To A A Dep From A A Dep From A VV	se arcial Be Be Be Be Be Be Be Be Be B	Pumping rate (l/m Duration of pumpi hrs + Final water level er If flowing give rate Recommended pu (l/min / GPM) Well production (l/ Disinfected? Yes No Please provide a m	in / GPM) ing min hd of pumping (m/ft) e (Vmin / GPM) ump depth (m/ft) ump rate (min / GPM) Map of Wo hap below following SEE, CAM	3 4 5 10 15 20 25 30 40 50 60 60 60 ell Loc Markov	ation ons on the b TACC P	3 4 5 10 15 20 25 30 40 50 60	>
Cable Tool Rotary (Conventi Rotary (Reverse) Boring Air percussion Inside Open Diameter (Galvz (cm/in) Concr 2 0 Outside Plastic Diameter (Plastic 2 0 2 0 isiness Name of N 0 rater found at De (m/ft) (m/ft) 0 isiness Name of N 1 Siness Address (Margare) 1	Construction	Image: Constraint of the second of	blic vestock igation dustrial her, specify sing Dept From Dept From Comparison Dept From Comparison Comparison Dept From Comparison	Well U: Comme Municip Test Ho Cooling Cooling h (m/ft) To A h (m/ft) To A A A A A A A A A A A A A	se arcial Dewatering be Monitoring Status of Well Status of Well Water Supply Replacement Well Recharge Well Dewatering Well Dewater Quality	Pumping rate (l/m Duration of pumpi hrs + Final water level er If flowing give rate Recommended pu (l/min / GPM) Well production (l/ Disinfected? Yes No Please provide a m	in / GPM) ing min nd of pumping (m/ft) e (Vmin / GPM) ump depth (m/ft) ump rate (min / GPM) Map of Wo hap below following SEE, M	3 4 5 10 15 20 25 30 40 50 60 60 60 60 60	ation ons on the b TACC P 5)	3 4 5 10 15 20 25 30 40 50 60	2
Cable Tool Rotary (Conventi Rotary (Reverse) Boring Air percussion Particle Open Diameter (Carlin) Coutside Diameter (Carlin) Outside Diameter (Carlin) Particle Outside Diameter (Carlin) (Plastic Outside Diameter (Carlin) (Plastic Outside Diameter (Carlin) (Plastic Outside Diameter (Carlin) (Plastic (Plastic Cater found at De (m/ft) O 'ater found at De (m/ft) O 'ater found at De (m/ft) O 'siness Name of V 'There y 'siness Address (Ovince Y	Construction	ecord - Cas Wall Thickness (cm/in) ecord - Cas Wall Thickness (cm/in) ecord - Scree Slot No. (0 tails r: _ Fresh ecify r: _ Fresh ecify pr and Well Conce parand Well	blic prestic vestock igation dustrial her, specify sing Dept From J 3 een Dept From J 3 Untestec Untestec Technicia s E-mail Add	Well Us Comme Municip Test Ho Cooling Cooling h (m/ft) To h (m/ft) H	se arcial Bewatering Be Status of Well Beyatering Bewatering KAir Conditioning Status of Well Beyater Supply Replacement Well Bewatering Well Dewatering Well Alteration Abandoned, Poor Water Quality Abandoned, other, specify Dother, specify Hole Diameter th (m/ft) Diameter th (m/ft) Contractor's Licence No. Diameter th (m/ft) Contractor's Licence No. Contractor's Li	Pumping rate (l/m Duration of pumpi hrs + Final water level er If flowing give rate Recommended pu (l/min / GPM) Well production (l/ Disinfected? Yes No Please provide a m	in / GPM) ing min d of pumping (m/ft) e (Vmin / GPM) ump depth (m/ft) ump rate (min / GPM) Map of We hap below following SEE,	3 4 5 10 15 20 25 30 40 50 60 60 60 60 60 60	ation ons on the b TACC B	3 4 5 10 15 20 25 30 40 50 60	>
Cable Tool Rotary (Conventi Rotary (Reverse) Boring Air percussion Diameter (Calva) Concr 2 Diameter (Can/in) Concr 2 Outside Diameter (Can/in) Plastic Outside Diameter (Cm/in) (Plastic 1 1 Outside Diameter (Cm/in) (Plastic 1 0 iater found at De (m/ft) (m/ft) 0 'ater found at De (m/ft) (ater found at De (m/ft) (b) TAA (ater found at De (m/ft) (b) (b) (c) (c) (c) (c) (c) (c) </td <td>Construction</td> <td>ecord - Cas Wall Thickness (cm/in) ecord - Cas Wall Thickness (cm/in) ecord - Scre Slot No. (0 tails r: Fresh ecify r: Fresh ecify r: Fresh ecify grand Well Catal confy</td> <td>blic vestock igation dustrial her, specify sing Dept From Dept From Outestee Untestee Untestee Technicia s E-mail Add</td> <td>Well U: Comme Municip Test Ho Cooling Cooling h (m/ft) To A h (m/ft) To A A Dep From A A Dep From A A A A A A A A A A A A A</td> <td>se arcial Dewatering be Monitoring Status of Well Status of Well Water Supply Replacement Well Recharge Well Dewatering Uel Dewatering Well Dewatering Dewa</td> <td>Pumping rate (l/m Duration of pumpi hrs + Final water level er If flowing give rate Recommended pu (l/min / GPM) Well production (l/ Disinfected? Yes No Please provide a m Please provide a m</td> <td>in / GPM) ing min nd of pumping (m/ft) iump depth (m/ft) iump rate (min / GPM) Map of Wo hap below following SEE, CAM</td> <td>3 4 5 10 15 20 25 30 40 50 60 60 60 60 60 8 40 50 60 8 40 50 60 8 40 50 60 8 40 50 60 8 40 50 8 40 50 8 40 8 50 8 40 8 50 8 5</td> <td>ation ons on the b TACC B B)</td> <td>3 4 5 10 15 20 25 30 40 50 60</td> <td></td>	Construction	ecord - Cas Wall Thickness (cm/in) ecord - Cas Wall Thickness (cm/in) ecord - Scre Slot No. (0 tails r: Fresh ecify r: Fresh ecify r: Fresh ecify grand Well Catal confy	blic vestock igation dustrial her, specify sing Dept From Dept From Outestee Untestee Untestee Technicia s E-mail Add	Well U: Comme Municip Test Ho Cooling Cooling h (m/ft) To A h (m/ft) To A A Dep From A A Dep From A A A A A A A A A A A A A	se arcial Dewatering be Monitoring Status of Well Status of Well Water Supply Replacement Well Recharge Well Dewatering Uel Dewatering Well Dewatering Dewa	Pumping rate (l/m Duration of pumpi hrs + Final water level er If flowing give rate Recommended pu (l/min / GPM) Well production (l/ Disinfected? Yes No Please provide a m Please provide a m	in / GPM) ing min nd of pumping (m/ft) iump depth (m/ft) iump rate (min / GPM) Map of Wo hap below following SEE, CAM	3 4 5 10 15 20 25 30 40 50 60 60 60 60 60 8 40 50 60 8 40 50 60 8 40 50 60 8 40 50 60 8 40 50 8 40 50 8 40 8 50 8 40 8 50 8 5	ation ons on the b TACC B B)	3 4 5 10 15 20 25 30 40 50 60	
Cable Tool Rotary (Conventi Rotary (Reverse) Boring Air percussion Air percussion Inside Open Diameter (Galvz (cm/in) Concr 2 0 Outside (Plastic Diameter (m/ft) (cm/in) (Plastic 2 0 'ater found at De (m/ft) (ater found at De (m/ft) (ater found at De (m/ft) (ater found at De 0 'ater found at De 0 (m/ft) 0 'ater found at De 0 (m/ft) 0 'ater found at De 0 (m/ft) 0 'siness Name of W 0 S.Telephone No. (0 OUS 0 OUS 0 'siness Address 0	Construction Diamono Diaging Construction R Construction R Hole OR Material anized, Fibreglass, rete, Plastic, Steel) Construction R Material Galvanized, Steel) Water Def pth Kind of Water Sas Other, spe Pth Kind of Water Sas Other	ecord - Cas Wall Thickness (cm/in) ecord - Cas Wall Thickness (cm/in) ecord - Cas Slot No. Contemport Slot No. Contemport Fr: Fresh ecify r: Fresh ecify r: Fresh ecify or and Well Contemport Eusiness Contemport Contemport Contemport Eusiness Contemport	blic prestic vestock igation dustrial her, specify sing Dept From Dept From Comparison Untestec Untestec Untestec Comparison Comparis	Well U: Comme Municip Fest Ho Cooling h (m/ft) To h (m/ft) To h (m/ft) To f Per From f Municip From f Municip Per From f Municip From f Municip From f Municip From f Municip From f Municip From f Municip From f Municip From f Municip From f Municip From f Municip From f Municip From f Municip From f Municip From f Municip From f Municip From f Municip From f Municip F f f f f f f f f f f f f f f f f f f	se arcial Dewatering be Monitoring Status of Well Status of Well Water Supply Replacement Well Recharge Well Dewatering Well Dewater Dewater Quality Abandoned, other, specify Diameter th (m/ft) Diameter th Contractor's Licence No. Dewatering Dewatering Well Dewatering Dewatering Contractor's Licence No. Dematering Contractor's Licence No.	Pumping rate (l/m) Duration of pumping hrs + Final water level er If flowing give rate Recommended put Recommended put Well production (l/min / GPM) Vell production (l/min / GPM) Please provide a m Please provide a m Vell owner's information package delivered	in / GPM) ing min d of pumping (m/ft) e (Vmin / GPM) ump depth (m/ft) ump rate (min / GPM) Map of We hap below following SEE, Cut	3 4 5 10 15 20 25 30 40 50 60 60 60 60 60 60 7 7 7 7 7 7 7	ation ons on the b TACC B D D D D D D D D D D D D D D D D D D	3 4 5 10 15 20 25 30 40 50 60 60	e Only 952

Ontario	Ministry of the Env and Climate Chan	ironment Well Tag	g No. (Place Sticker al	nd/or Print Below)	Regulation	903 Ontario	Well R	ecord
Measurements recorde	ed in: 🗌 Metric 📑	Imperial	4265725	>	S-233	95 Pa	ge	of
Well Owner's Inform	Last Name /	Organization		E-mail Address			T	-
Hn: Mark Liddy	91 Egt	inton Limited	Partnership	E mai Address			by We	Constructed ell Owner
Mailing Address (Street)	Number/Name)	it a h	Iunicipality	Province	Postal Code	Telepho	ne No. (inc.	area code)
Well Location	Noda te, ter	rd s 1	(arenarr)		LJRD	<u>T</u>] <u>3</u>		
Address of Well Location	(Street Number/Name)	NO ET	ownship		Lot	Conces	sion	
County/District/Municipal	lity	TVC I	ity/Town/Village			Province	Postal	Code
UTM Coordinates Zone	Fasting	orthing	221 221 Main Plan and Subla	augar		Ontario		TIL
NAD 8 3 7	60189364	829418	iunicipal Fian and Subio			Other		
Overburden and Bedr	ock Materials/Aband	onment Sealing Reco	rd (see instructions on the	e back of this form)				
	Most Common Materia	Oth	er Materials	Gene	ral Description		From	
Brown	op por 1						0	2
Drown .	+1.11						2'	41
GIEV	SIN						15,	11
Grein	Shale						21	11/
Gieg .							6	14-
								-
	Annula	Space			Results of We	ell Yield Testin	ng	
Depth Set at (<i>m/ft</i>) From To	Type of Se (Material a	alant Used ng Type)	Volume Placed (m³/ft³)	After test of well yield,	water was: ree	Draw Dow	n Re	ecovery Water Level
0 0.5	Concre	le		Other, specify		(min) (m/fi) (min)	(m/ft)
6.51 817'	Holeple	. Q.		If pumping discontinue	d, give reason:	Level		
71 111	Sand					1	1	
	Jana			Pump intake set at (m/	(ft)	2	2	-
Method of Cons	struction	Well Us	9	Pumping rate (Vmin / G	iPM)	3	3	
Cable Tool		blic Commer	cial 🗌 Not used	Duration of numping		4	4	
Rotary (Conventional)	Jetting Driving Liv	mestic Municipa estock Test Hole	Dewatering	hrs +n	nin	5	5	
Air percussion		gation Cooling &	& Air Conditioning	Final water level end o	f pumping (m/ft)	10	10	
Other, specify Dere	ect Push Dot	ner, specify		If flowing give rate (1/mi	n/GPM)	15	15	
Cons	struction Record - Cas	ing	Status of Well			20	20	
Diameter (Galvanized,	Fibreglass, Thickness	From To	Replacement Well	Recommended pump	depth (m/ft)	25	25	
24 B1	10 0 1264	0 81	Recharge Well	Recommended pump	rate	30	30	
2 00	C 1.10		Dewatering Well			40	40	
			Monitoring Hole	Well production (I/min /	GPM)	50	50	
			(Construction)	Disinfected?		60	60	
Cons	struction Record - Sci	een	Abandoned, Insufficient Supply		Man of We	all Location		
Outside Mate	erial Slot No.	Depth (m/ft)	Water Quality	Please provide a map	below following	ng instructions of	on the back	
(cm/in) (Plastic, Galva	anized, Steel)	From To	Abandoned, other, specify					
2:259 Pr	10 10	8' 1('						
				-		1	1 -	
Water found at Double 10	Water Details	H	ole Diameter		20	$- \rho$	aff	
(m/ft) Gas	Other, specify		To (cm/in)			6	1	
Water found at Depth Ki	ind of Water: Fresh		11 24		Λ , Γ			
(<i>m/ft</i>) Gas	Other, specify	Untested			MIL	ND		
(<i>m/ft</i>)	Other, specify				1 0			
Wel	I Contractor and Well	Technician Informati	on					
Strata Soil S	ampling	Wel	Contractor's Licence No.	• _ C				
Business Address (Street	t Number/Name)	Mu	nicipality	Comments:				
165 Sherlds	tal Code Business	E-mail Address	arkham.					
DN II.	3 R 8 V 2 WRA	cords@strata	soil. com	Well owner's Date Pa	ackage Delivere	d Mi	nistry Use	Only
Bus. Telephone No. (inc. and	ea code) Name of Well	echnician (Last Name, I	First Name)	package	YYMM	D D Audit No	». Z311	0393
Vell Technician's Licence N	9 1 9 Va 9. Signature of Technicia	n and/or Contractor Dat	e Submitted	Yes Date W	/ork Completed			
3833	for a	delle 2	0190327	□ No 26	19032	Receive	d	
0506E (2014/11)			Ministry's Copy			© Que	en's Printer for	r Ontario, 2014

~

APPENDIX F Field Measured Parameters

WATER Q	UALITY	PARA	METERS
---------	--------	------	--------

PINCHIN

230989.001 **Field Technician**

WM

Site Location	131	Eg	linton	Ave.	E.
Date	Mar	ch	28.20	19	

9

Time	Water Level (mbtoc)	Pumping Rate (mL/min)	Total Purge Volume (litres)	рН (pH units)	Specific Cond (mS/cm) (µS/cm)	Temp (°C)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Comments (e.g., sheen, odour, free-phase product, sediment content, clarity, colour, etc.)	
9:26	3.08						[
9:27	3.08	150	0.15	1 1			1.1				
9:28	3.09	150									
9:29	3.09	150	0.5			(
9:30	3.09	150		f = -1							
9:31	3.09	150								flow through filling.	
9:32	3.09	150	LL	900 m 1			17.00			the state of the s	
9:35	3.09	ŧſ	1.5	7.28	0.907	5.55	2.43	293	85.5	flow through filled clear no	sheen
9:38	3.09	U.	2	7.29	0.92	5.45	0.60	289	QQ 82.2	is	or odours
9:41	3.10		2.5	7.32	0:91	5.40	0.15	273	66.8	il	
9:44	3.16	L)	3	7.4.5	0.91	5.35	0.00	252	58.59.	0 11	
9:47	3.16	U.	3.5	7.52	Canfi 4	5.37	6.00	237	56.4	LI	
9:50	3.16	ĸ	4	7.53	0.909	5.40	0.00	225	51.9	()	
9:53	3.17	U	4.5	7.54	0.911	5.46	0.00	217	54.1	vt	
									I II	Good to sample	
										@ 10:00 am.	
				-							

APPENDIX G Residue Management

Your Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINTON AVE Your C.O.C. #: 709705-03-01

Attention: Michael Birch

Pinchin Ltd 2470 Milltower Crt Mississauga, ON CANADA L5N 7W5

> Report Date: 2019/04/03 Report #: R5655466 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B980786 Received: 2019/03/28, 14:02

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Cyanide (WAD) in Leachates	1	N/A	2019/04/02	CAM SOP-00457	OMOE 3015 m
Fluoride by ISE in Leachates	1	2019/04/02	2019/04/02	CAM SOP-00449	SM 23 4500-F- C m
Mercury (TCLP Leachable) (mg/L)	1	N/A	2019/04/03	CAM SOP-00453	EPA 7470A m
Total Metals in TCLP Leachate by ICPMS	1	2019/04/02	2019/04/03	CAM SOP-00447	EPA 6020B m
Nitrate(NO3) + Nitrite(NO2) in Leachate	1	N/A	2019/04/03	CAM SOP-00440	SM 23 4500-NO3I/NO2B
PAH Compounds in Leachate by GC/MS (SIM)	1	2019/04/02	2019/04/03	CAM SOP-00318	EPA 8270D m
Polychlorinated Biphenyl in Leachate	1	2019/04/02	2019/04/02	CAM SOP-00309	EPA 8082A m
TCLP - % Solids	1	2019/04/01	2019/04/02	CAM SOP-00401	EPA 1311 Update I m
TCLP - Extraction Fluid	1	N/A	2019/04/02	CAM SOP-00401	EPA 1311 Update I m
TCLP - Initial and final pH	1	N/A	2019/04/02	CAM SOP-00401	EPA 1311 Update I m
TCLP Zero Headspace Extraction	1	2019/04/01	2019/04/02	CAM SOP-00430	EPA 1311 m
VOCs in ZHE Leachates	1	2019/04/02	2019/04/02	CAM SOP-00228	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Page 1 of 13

Your Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINTON AVE Your C.O.C. #: 709705-03-01

Attention: Michael Birch

Pinchin Ltd 2470 Milltower Crt Mississauga, ON CANADA L5N 7W5

> Report Date: 2019/04/03 Report #: R5655466 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B980786 Received: 2019/03/28, 14:02

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Antonella Brasil, Senior Project Manager Email: ABrasil@maxxam.ca Phone# (905)817-5817

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Report Date: 2019/04/03

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINTON AVE Sampler Initials: WM

O.REG 558 TCLP BENZO(A)PYRENE

Maxxam ID		JHR495	JHR495							
Sampling Data		2019/03/27	2019/03/27							
Samping Date		13:50	13:50							
COC Number		709705-03-01	709705-03-01							
	UNITS	TCLP	TCLP Lab-Dup	RDL	QC Batch					
Polyaromatic Hydrocarbons										
Leachable Benzo(a)pyrene	ug/L	<0.10	<0.10	0.10	6049847					
Surrogate Recovery (%)										
Leachable D10-Anthracene	%	126	120		6049847					
Leachable D14-Terphenyl (FS)	%	95	88		6049847					
Leachable D8-Acenaphthylene	%	120	112		6049847					
RDL = Reportable Detection Lim	it									
QC Batch = Quality Control Batc	h									
Lab-Dup = Laboratory Initiated [Duplicat	e								

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINTON AVE Sampler Initials: WM

O.REG 558 TCLP INORGANICS PACKAGE (SOIL)

Maxxam ID		JHR495		
Sampling Data		2019/03/27		
		13:50		
COC Number		709705-03-01		
	UNITS	TCLP	RDL	QC Batch
Inorganics				
Leachable Fluoride (F-)	mg/L	0.22	0.10	6048837
Leachable WAD Cyanide (Free)	mg/L	<0.010	0.010	6048839
Leachable Nitrite (N)	mg/L	<0.10	0.10	6048841
Leachable Nitrate (N)	mg/L	<1.0	1.0	6048841
Leachable Nitrate + Nitrite (N)	mg/L	<1.0	1.0	6048841
Metals				
Leachable Mercury (Hg)	mg/L	<0.0010	0.0010	6048714
Leachable Arsenic (As)	mg/L	<0.2	0.2	6048676
Leachable Barium (Ba)	mg/L	0.3	0.2	6048676
Leachable Boron (B)	mg/L	0.1	0.1	6048676
Leachable Cadmium (Cd)	mg/L	<0.05	0.05	6048676
Leachable Chromium (Cr)	mg/L	<0.1	0.1	6048676
Leachable Lead (Pb)	mg/L	<0.1	0.1	6048676
Leachable Selenium (Se)	mg/L	<0.1	0.1	6048676
Leachable Silver (Ag)	mg/L	<0.01	0.01	6048676
Leachable Uranium (U)	mg/L	<0.01	0.01	6048676
RDL = Reportable Detection Limi	t			
QC Batch = Quality Control Batch	ו			

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINTON AVE Sampler Initials: WM

O.REG 558 TCLP LEACHATE PREPARATION (SOIL)

Maxxam ID		JHR495						
Compling Data		2019/03/27						
Sampling Date		13:50						
COC Number		709705-03-01						
	UNITS	TCLP	RDL	QC Batch				
Inorganics								
Final pH	рН	6.05		6046839				
Initial pH	рН	8.93		6046839				
TCLP - % Solids	%	100	0.2	6046833				
TCLP Extraction Fluid	N/A	FLUID 1		6046838				
RDL = Reportable Detection L	imit							
QC Batch = Quality Control Ba	atch							

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINTON AVE Sampler Initials: WM

O.REG 558 TCLP PCBS (SOIL)

Maxxam ID		JHR495		
Sampling Data		2019/03/27		
Sampling Date		13:50		
COC Number		709705-03-01		
	UNITS	TCLP	RDL	QC Batch
PCBs				
Leachable Aroclor 1016	ug/L	<3.0	3.0	6049374
Leachable Aroclor 1221	ug/L	<3.0	3.0	6049374
Leachable Aroclor 1242	ug/L	<3.0	3.0	6049374
Leachable Aroclor 1248	ug/L	<3.0	3.0	6049374
Leachable Aroclor 1254	ug/L	<3.0	3.0	6049374
Leachable Aroclor 1260	ug/L	<3.0	3.0	6049374
Leachable Total PCB	ug/L	<3.0	3.0	6049374
Surrogate Recovery (%)				
Leachable Decachlorobiphenyl	%	101		6049374
RDL = Reportable Detection Lim	it			
QC Batch = Quality Control Batc	h			

Report Date: 2019/04/03

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINTON AVE Sampler Initials: WM

O.REG 558 TCLP VOLATILE ORGANICS HS (SOIL)

Maxxam ID		JHR495		
Sampling Data		2019/03/27		
		13:50		
COC Number		709705-03-01		
	UNITS	TCLP	RDL	QC Batch
Charge/Prep Analysis				
Amount Extracted (Wet Weight) (g)	N/A	25	N/A	6046750
Volatile Organics				
Leachable Benzene	mg/L	<0.020	0.020	6048258
Leachable Carbon Tetrachloride	mg/L	<0.020	0.020	6048258
Leachable Chlorobenzene	mg/L	<0.020	0.020	6048258
Leachable Chloroform	mg/L	<0.020	0.020	6048258
Leachable 1,2-Dichlorobenzene	mg/L	<0.050	0.050	6048258
Leachable 1,4-Dichlorobenzene	mg/L	<0.050	0.050	6048258
Leachable 1,2-Dichloroethane	mg/L	<0.050	0.050	6048258
Leachable 1,1-Dichloroethylene	mg/L	<0.020	0.020	6048258
Leachable Methylene Chloride(Dichloromethane)	mg/L	<0.20	0.20	6048258
Leachable Methyl Ethyl Ketone (2-Butanone)	mg/L	<1.0	1.0	6048258
Leachable Tetrachloroethylene	mg/L	<0.020	0.020	6048258
Leachable Trichloroethylene	mg/L	<0.020	0.020	6048258
Leachable Vinyl Chloride	mg/L	<0.020	0.020	6048258
Surrogate Recovery (%)				
Leachable 4-Bromofluorobenzene	%	90		6048258
Leachable D4-1,2-Dichloroethane	%	103		6048258
Leachable D8-Toluene	%	101		6048258
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				
N/A = Not Applicable				

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINTON AVE Sampler Initials: WM

TEST SUMMARY

Maxxam ID: JHR495 Sample ID: TCLP Matrix: Soil					Collected: 2019/03/27 Shipped: Received: 2019/03/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Cyanide (WAD) in Leachates	SKAL/CN	6048839	N/A	2019/04/02	Xuanhong Qiu
Fluoride by ISE in Leachates	ISE	6048837	2019/04/02	2019/04/02	Surinder Rai
Mercury (TCLP Leachable) (mg/L)	CV/AA	6048714	N/A	2019/04/03	Medhat Nasr
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	6048676	2019/04/02	2019/04/03	Arefa Dabhad
Nitrate(NO3) + Nitrite(NO2) in Leachate	LACH	6048841	N/A	2019/04/03	Chandra Nandlal
PAH Compounds in Leachate by GC/MS (SIM)	GC/MS	6049847	2019/04/02	2019/04/03	Mitesh Raj
Polychlorinated Biphenyl in Leachate	GC/ECD	6049374	2019/04/02	2019/04/02	Svitlana Shaula
TCLP - % Solids	BAL	6046833	2019/04/01	2019/04/02	Jian (Ken) Wang
TCLP - Extraction Fluid		6046838	N/A	2019/04/02	Jian (Ken) Wang
TCLP - Initial and final pH	PH	6046839	N/A	2019/04/02	Jian (Ken) Wang
TCLP Zero Headspace Extraction		6046750	2019/04/01	2019/04/02	Walt Wang
VOCs in ZHE Leachates	GC/MS	6048258	2019/04/02	2019/04/02	Juan Pangilinan
Maxxam ID: IHR495 Dun					Collected: 2019/03/27

Sample ID: Matrix:	TCLP Soil		Shipped: Received:	2019/03/28			
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PAH Compounds in Leach	nate by GC/MS (SIM)	GC/MS	6049847	2019/04/02	2019/04/03	Mitesh Raj	

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINTON AVE Sampler Initials: WM

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 0.3°C

Cooler custody seal was present and intact.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINTON AVE Sampler Initials: WM

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		Leachate Blank	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
6048258	Leachable 4-Bromofluorobenzene	2019/04/02	95	70 - 130	96	70 - 130	91	%				
6048258	Leachable D4-1,2-Dichloroethane	2019/04/02	98	70 - 130	100	70 - 130	99	%				
6048258	Leachable D8-Toluene	2019/04/02	107	70 - 130	106	70 - 130	101	%				
6049374	Leachable Decachlorobiphenyl	2019/04/02	99	30 - 130	101	30 - 130	100	%				
6049847	Leachable D10-Anthracene	2019/04/03	119	50 - 130	109	50 - 130	113	%				
6049847	Leachable D14-Terphenyl (FS)	2019/04/03	88	50 - 130	85	50 - 130	85	%				
6049847	Leachable D8-Acenaphthylene	2019/04/03	115	50 - 130	106	50 - 130	104	%				
6048258	Leachable 1,1-Dichloroethylene	2019/04/02	96	70 - 130	97	70 - 130	<0.020	mg/L	NC	30		
6048258	Leachable 1,2-Dichlorobenzene	2019/04/02	98	70 - 130	99	70 - 130	<0.050	mg/L	NC	30		
6048258	Leachable 1,2-Dichloroethane	2019/04/02	95	70 - 130	97	70 - 130	<0.050	mg/L	NC	30		
6048258	Leachable 1,4-Dichlorobenzene	2019/04/02	99	70 - 130	100	70 - 130	<0.050	mg/L	NC	30		
6048258	Leachable Benzene	2019/04/02	95	70 - 130	96	70 - 130	<0.020	mg/L	NC	30		
6048258	Leachable Carbon Tetrachloride	2019/04/02	92	70 - 130	92	70 - 130	<0.020	mg/L	NC	30		
6048258	Leachable Chlorobenzene	2019/04/02	94	70 - 130	95	70 - 130	<0.020	mg/L	NC	30		
6048258	Leachable Chloroform	2019/04/02	96	70 - 130	97	70 - 130	<0.020	mg/L	NC	30		
6048258	Leachable Methyl Ethyl Ketone (2-Butanone)	2019/04/02	102	60 - 140	107	60 - 140	<1.0	mg/L	NC	30		
6048258	Leachable Methylene Chloride (Dichloromethane)	2019/04/02	94	70 - 130	96	70 - 130	<0.20	mg/L	NC	30		
6048258	Leachable Tetrachloroethylene	2019/04/02	95	70 - 130	95	70 - 130	<0.020	mg/L	NC	30		
6048258	Leachable Trichloroethylene	2019/04/02	91	70 - 130	91	70 - 130	<0.020	mg/L	NC	30		
6048258	Leachable Vinyl Chloride	2019/04/02	101	70 - 130	103	70 - 130	<0.020	mg/L	NC	30		
6048676	Leachable Arsenic (As)	2019/04/03	99	80 - 120	98	80 - 120	<0.2	mg/L	NC	35	<0.2	mg/L
6048676	Leachable Barium (Ba)	2019/04/03	NC	80 - 120	99	80 - 120	<0.2	mg/L	NC	35	<0.2	mg/L
6048676	Leachable Boron (B)	2019/04/03	96	80 - 120	99	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
6048676	Leachable Cadmium (Cd)	2019/04/03	100	80 - 120	99	80 - 120	<0.05	mg/L	NC	35	<0.05	mg/L
6048676	Leachable Chromium (Cr)	2019/04/03	98	80 - 120	98	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
6048676	Leachable Lead (Pb)	2019/04/03	94	80 - 120	96	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
6048676	Leachable Selenium (Se)	2019/04/03	100	80 - 120	101	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
6048676	Leachable Silver (Ag)	2019/04/03	98	80 - 120	97	80 - 120	<0.01	mg/L	NC	35	<0.01	mg/L
6048676	Leachable Uranium (U)	2019/04/03	92	80 - 120	95	80 - 120	<0.01	mg/L	NC	35	<0.01	mg/L
6048714	Leachable Mercury (Hg)	2019/04/03	112	75 - 125	93	80 - 120	<0.0010	mg/L	NC	25	<0.0010	mg/L
6048837	Leachable Fluoride (F-)	2019/04/02	90	80 - 120	98	80 - 120	<0.10	mg/L	NC	25	<0.10	mg/L

QUALITY ASSURANCE REPORT(CONT'D)

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINTON AVE Sampler Initials: WM

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		Leachate Blank	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
6048839	Leachable WAD Cyanide (Free)	2019/04/02	115	80 - 120	98	80 - 120	<0.0020	mg/L	NC	20	<0.010	mg/L
6048841	Leachable Nitrate (N)	2019/04/03	106	80 - 120	104	80 - 120	<1.0	mg/L	NC	25	<1.0	mg/L
6048841	Leachable Nitrate + Nitrite (N)	2019/04/03	107	80 - 120	104	80 - 120	<1.0	mg/L	NC	25	<1.0	mg/L
6048841	Leachable Nitrite (N)	2019/04/03	113	80 - 120	107	80 - 120	<0.10	mg/L	NC	25	<0.10	mg/L
6049374	Leachable Aroclor 1016	2019/04/02					<3.0	ug/L	NC	40		
6049374	Leachable Aroclor 1221	2019/04/02					<3.0	ug/L	NC	40		
6049374	Leachable Aroclor 1242	2019/04/02					<3.0	ug/L	NC	40		
6049374	Leachable Aroclor 1248	2019/04/02					<3.0	ug/L	NC	40		
6049374	Leachable Aroclor 1254	2019/04/02					<3.0	ug/L	NC	40		
6049374	Leachable Aroclor 1260	2019/04/02	99	30 - 130	103	30 - 130	<3.0	ug/L	NC	40		
6049374	Leachable Total PCB	2019/04/02	99	30 - 130	103	30 - 130	<3.0	ug/L	NC	40		
6049847	Leachable Benzo(a)pyrene	2019/04/03	104	50 - 130	99	50 - 130	<0.10	ug/L	NC	40		
Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.												
Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.												

Leachate Blank: A blank matrix containing all reagents used in the leaching procedure. Used to determine any process contamination.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINTON AVE Sampler Initials: WM

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	IN	VOICE TO:				REPO	RT TO:						PROJEC	TINFORM	ATION:			Laborator	y Use Only:
any Name	#3103 Pinchin L	.td		Company I	Name			-			Quotation	#	A709	27				Maxxam Job #: Bottle Order	
ion	Accounts Payabl	e		Attention.	Michael	Birch (raig	Lelly			P.O.#				-				
55.	2470 Milltower C	t		Address.			0				Project		2309	89.001	-	221		2223	70970
	Mississauga ON	L5N 7W5	202 0001	-		_			_		Project Na	me:	-4	hase	inc	ESA		COC #:	Project Ma
	(905) 363-0678	Fax: (905	5) 363-0681	Tel:	mhirché	Dolachin con	Fax	inchin or			Site #:		_13	E	Slinte	n Aver	E. INNI		Antonella
05 050	ap@pincini.com			Email	monune	gpinchin.con	, cakeliy@p	L.e	2011	ANA	Sampled E	AVESTED	(PI FAGE	DI ((G	m	carry wie	F	Tumaround Time	(TAT) Required
UE REG	SUBMITTED C	IN THE MAXXAM DRIN	INTENDED FOR NKING WATER C	HUMAN CC HAIN OF C	USTODY	MUST BE		N.		3	10101010	2013110	In schoe	DE OF LOF	hay		42.2	Please provide advance	e notice for rush projects
Regulati	ion 153 (2011)	Ott	her Regulations		Special Inc	tructions	cle):	Ja	2	Se	0.00	Q		DOIDS	1.10		Regular (S	tandard) TAT:	
e1	Res/Park Medium		Sanitary Sawar Bylay		apecial ins	andenons	S or	0	A S	3	TRO	yd lie		ocarl	Soil)		(will be applied	d if Rush TAT is not specified	locts
e2 [Ind/Comm Coarse	Reg 558	Storm Sewer Bylaw				Cr / Cr	A	Met	AV	FU	in Se	~	Hydr	des		Please note: \$	Standard TAT for certain tests	such as BOD and Dioxins/Fu
e3 [Agri/Other For RS	C MISA Mu	inicipality	_			d (b)	2,8	十二	JP	12	muin	(Sarl	uma	sstice		days - contact	your Project Manager for del	als.
e		PWQO					tere als /	SE	C	Fa	etals	Chrar	AHS	etrol	DC P		Job Specific	Rush TAT (if applies to e	ntire submission)
		Other					d Fil	F	EF-	100		lent (1531	153 5	153		Rush Confirm	ation Number	Tana Regulad
-	Include Criteria	on Certificate of Analy	sis (Y/N)?	-			Fiel	1 E	ST.	autro	Į	evex	Beg	Reg (Inc	Reg		# of Bottles		(call lab for #)
Sampl	e Barcode Label	Sample (Location) Iden	tification Dat	e Sampled	Time Sampled	Matrix		\$	34	ů.	3	Ŧ	Ö	0.8	Ö				Conviente
		TTIP	10	12/11	12.60	Cail		1	-	1	1						7		
		1111	14	101011	13.30	Juli		-		-				-		-	1		
								1.1											
													1					-	
				_															
								1.11					1	1	-				
										L					-				
																	-		
							-	-	-								-	28-1	Aar-19 14:02
											1 1	1.1						Antonalla	D
-							-	-			-		-	-		-	-	Antonena	Brasil
																		B980	786
	1				1				1										100
				_	1.000													CA2 EI	VV-800
											1					1.1	1		
	5	>														-	-		
1	RELINGUISHED BY IS	gnature/Print)	Date: (YY/MM/DI	D) Tim	nti	RECEIVED	BY: (Signature	(Print)	1	Date: (YY/	MM/DD)	TCC T	ime	# jars	used and submitted	Time Canada	Labora	itory Use Only	ustody Seal Vec
1	clary 1	BU Martyulo	19/3/28	5 14.	ortau	N- 10	the i	uRIN	10 5	201410	427	14	.02	-		Time Sensitive	Temperat	ure (*C) on Recei	Present V
	1		1		U				20	019/0	3128	-	_			THE REAL PROPERTY AND INCOME.	11/0/	010	Intact

Maxxam Analytics International Corporation o/a Maxxam Analytics

APPENDIX H Laboratory Certificates of Analysis

Your Project #: 230989.001 Site Location: PHASE TWO ESA /131 EGLINTON AVE. Your C.O.C. #: 710775-01-01

Attention: Michael Birch

Pinchin Ltd 2470 Milltower Crt Mississauga, ON CANADA L5N 7W5

> Report Date: 2019/04/08 Report #: R5661962 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B981984 Received: 2019/03/29. 12:11

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum	2	N/A	2019/04/04	CAM SOP-00301	EPA 8270D m
1,3-Dichloropropene Sum	1	N/A	2019/04/03		EPA 8260C m
Chloride by Automated Colourimetry	2	N/A	2019/04/02	CAM SOP-00463	SM 4500-Cl E m
Chromium (VI) in Water	2	N/A	2019/04/02	CAM SOP-00436	EPA 7199 m
Free (WAD) Cyanide	1	N/A	2019/04/01	CAM SOP-00457	OMOE E3015 m
Free (WAD) Cyanide	1	N/A	2019/04/02	CAM SOP-00457	OMOE E3015 m
Petroleum Hydro. CCME F1 & BTEX in Water	2	N/A	2019/04/03	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1)	2	2019/04/03	2019/04/04	CAM SOP-00316	CCME PHC-CWS m
Dissolved Metals by ICPMS	2	N/A	2019/04/03	CAM SOP-00447	EPA 6020B m
Total Ammonia-N	2	N/A	2019/04/03	CAM SOP-00441	EPA GS I-2522-90 m
Nitrate (NO3) and Nitrite (NO2) in Water (2)	2	N/A	2019/04/02	CAM SOP-00440	SM 23 4500-NO3I/NO2B
OC Pesticides (Selected) & PCB (3)	2	2019/04/01	2019/04/02	CAM SOP-00307	EPA 8081A/8082B m
OC Pesticides Summed Parameters	2	N/A	2019/04/02	CAM SOP-00307	EPA 8081A/8082B m
PAH Compounds in Water by GC/MS (SIM)	2	2019/04/03	2019/04/04	CAM SOP-00318	EPA 8270D m
рН	2	2019/04/01	2019/04/02	CAM SOP-00413	SM 4500H+ B m
Volatile Organic Compounds in Water	1	N/A	2019/04/02	CAM SOP-00228	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope

Page 1 of 22

Your Project #: 230989.001 Site Location: PHASE TWO ESA /131 EGLINTON AVE. Your C.O.C. #: 710775-01-01

Attention: Michael Birch

Pinchin Ltd 2470 Milltower Crt Mississauga, ON CANADA L5N 7W5

> Report Date: 2019/04/08 Report #: R5661962 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B981984 Received: 2019/03/29, 12:11

dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

(3) Chlordane (Total) = Alpha Chlordane + Gamma Chlordane

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Antonella Brasil, Senior Project Manager Email: ABrasil@maxxam.ca Phone# (905)817-5817

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 22

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA /131 EGLINTON AVE. Sampler Initials: WM

RESULTS OF ANALYSES OF WATER

Maxxam ID		JHY078		JHY079		
Sampling Data		2019/03/28		2019/03/28		
Sampling Date		10:00		10:00		
COC Number		710775-01-01		710775-01-01		
	UNITS	MW19-02	QC Batch	DUP19-02 GW	RDL	QC Batch
Inorganics						
Total Ammonia-N	mg/L	<0.050	6049391	<0.050	0.050	6049257
рН	рН	7.39	6047346	7.33		6047346
WAD Cyanide (Free)	ug/L	<1	6046824	<1	1	6048539
Dissolved Chloride (Cl-)	mg/L	36	6047314	35	1.0	6047314
Nitrite (N)	mg/L	<0.010	6047135	<0.010	0.010	6047135
Nitrate (N)	mg/L	1.23	6047135	1.24	0.10	6047135
Nitrate + Nitrite (N)	mg/L	1.23	6047135	1.24	0.10	6047135
RDL = Reportable Detection L	imit					
QC Batch = Quality Control Ba	atch					

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA /131 EGLINTON AVE. Sampler Initials: WM

Maxxam ID JHY079 JHY078 2019/03/28 2019/03/28 Sampling Date 10:00 10:00 COC Number 710775-01-01 710775-01-01 UNITS MW19-02 DUP19-02 GW RDL QC Batch Metals Chromium (VI) ug/L < 0.50 < 0.50 0.50 6046786 Dissolved Antimony (Sb) 6045957 ug/L <0.50 <0.50 0.50 Dissolved Arsenic (As) 6045957 ug/L <1.0 <1.0 1.0 Dissolved Barium (Ba) 45 2.0 ug/L 45 6045957 Dissolved Beryllium (Be) <0.50 0.50 6045957 ug/L < 0.50 Dissolved Boron (B) ug/L 19 19 10 6045957 Dissolved Cadmium (Cd) <0.10 0.10 6045957 ug/L < 0.10 Dissolved Chromium (Cr) ug/L <5.0 <5.0 5.0 6045957 Dissolved Cobalt (Co) ug/L <0.50 0.50 6045957 < 0.50 Dissolved Copper (Cu) ug/L 1.2 1.2 1.0 6045957 Dissolved Lead (Pb) ug/L <0.50 <0.50 0.50 6045957 Dissolved Molybdenum (Mo) ug/L <0.50 <0.50 0.50 6045957 Dissolved Nickel (Ni) 6045957 ug/L <1.0 <1.0 1.0 Dissolved Selenium (Se) <2.0 ug/L <2.0 2.0 6045957 Dissolved Silver (Ag) 6045957 ug/L < 0.10 < 0.10 0.10 Dissolved Sodium (Na) ug/L 17000 17000 100 6045957 Dissolved Thallium (TI) ug/L < 0.050 < 0.050 0.050 6045957 Dissolved Uranium (U) ug/L 1.0 0.99 0.10 6045957 Dissolved Vanadium (V) <0.50 0.50 ug/L <0.50 6045957 Dissolved Zinc (Zn) <5.0 <5.0 5.0 6045957 ug/L RDL = Reportable Detection Limit QC Batch = Quality Control Batch

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA /131 EGLINTON AVE. Sampler Initials: WM

O.REG 153 OC PESTICIDES (WATER)

Maxxam ID		JHY078	JHY079		
Sampling Date		2019/03/28	2019/03/28		
		10:00	10:00		
COC Number		710775-01-01	710775-01-01		
	UNITS	MW19-02	DUP19-02 GW	RDL	QC Batch
Calculated Parameters					
Chlordane (Total)	ug/L	<0.005	<0.005	0.005	6044820
o,p-DDD + p,p-DDD	ug/L	<0.005	<0.005	0.005	6044820
o,p-DDE + p,p-DDE	ug/L	<0.005	<0.005	0.005	6044820
o,p-DDT + p,p-DDT	ug/L	<0.005	<0.005	0.005	6044820
Total Endosulfan	ug/L	<0.005	<0.005	0.005	6044820
Total PCB	ug/L	<0.05	<0.05	0.05	6044820
Pesticides & Herbicides					
Aldrin	ug/L	<0.005	<0.005	0.005	6046761
Dieldrin	ug/L	<0.005	<0.005	0.005	6046761
a-Chlordane	ug/L	<0.005	<0.005	0.005	6046761
g-Chlordane	ug/L	<0.005	<0.005	0.005	6046761
o,p-DDD	ug/L	<0.005	<0.005	0.005	6046761
p,p-DDD	ug/L	<0.005	<0.005	0.005	6046761
o,p-DDE	ug/L	<0.005	<0.005	0.005	6046761
p,p-DDE	ug/L	<0.005	<0.005	0.005	6046761
o,p-DDT	ug/L	<0.005	<0.005	0.005	6046761
p,p-DDT	ug/L	<0.005	<0.005	0.005	6046761
Lindane	ug/L	<0.003	<0.003	0.003	6046761
Endosulfan I (alpha)	ug/L	<0.005	<0.005	0.005	6046761
Endosulfan II (beta)	ug/L	<0.005	<0.005	0.005	6046761
Endrin	ug/L	<0.005	<0.005	0.005	6046761
Heptachlor	ug/L	<0.005	<0.005	0.005	6046761
Heptachlor epoxide	ug/L	<0.005	<0.005	0.005	6046761
Hexachlorobenzene	ug/L	<0.005	<0.005	0.005	6046761
Hexachlorobutadiene	ug/L	<0.009	<0.009	0.009	6046761
Hexachloroethane	ug/L	<0.01	<0.01	0.01	6046761
Methoxychlor	ug/L	<0.01	<0.01	0.01	6046761
Aroclor 1242	ug/L	<0.05	<0.05	0.05	6046761
Aroclor 1248	ug/L	<0.05	<0.05	0.05	6046761
Aroclor 1254	ug/L	<0.05	<0.05	0.05	6046761
Aroclor 1260	ug/L	<0.05	<0.05	0.05	6046761
RDL = Reportable Detection Lir	nit				
QC Batch = Quality Control Bat	ch				

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA /131 EGLINTON AVE. Sampler Initials: WM

O.REG 153 OC PESTICIDES (WATER)

Maxxam ID		JHY078	JHY079						
Sampling Date		2019/03/28	2019/03/28						
Sampling Date		10:00	10:00						
COC Number		710775-01-01	710775-01-01						
	UNITS	MW19-02	DUP19-02 GW	RDL	QC Batch				
Surrogate Recovery (%)									
2,4,5,6-Tetrachloro-m-xylene	%	84	81		6046761				
Decachlorobiphenyl	%	120	115		6046761				
RDL = Reportable Detection Limit									
QC Batch = Quality Control Bat	ch								

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA /131 EGLINTON AVE. Sampler Initials: WM

O.REG 153 PAHS (WATER)

Maxxam ID		JHY078	JHY079		
formaling Data		2019/03/28	2019/03/28		
		10:00	10:00		
COC Number		710775-01-01	710775-01-01		
	UNITS	MW19-02	DUP19-02 GW	RDL	QC Batch
Calculated Parameters					
Methylnaphthalene, 2-(1-)	ug/L	<0.071	<0.071	0.071	6044385
Polyaromatic Hydrocarbons	-				
Acenaphthene	ug/L	<0.050	<0.050	0.050	6051392
Acenaphthylene	ug/L	<0.050	<0.050	0.050	6051392
Anthracene	ug/L	<0.050	<0.050	0.050	6051392
Benzo(a)anthracene	ug/L	<0.050	<0.050	0.050	6051392
Benzo(a)pyrene	ug/L	<0.010	<0.010	0.010	6051392
Benzo(b/j)fluoranthene	ug/L	<0.050	<0.050	0.050	6051392
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	0.050	6051392
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	0.050	6051392
Chrysene	ug/L	<0.050	<0.050	0.050	6051392
Dibenz(a,h)anthracene	ug/L	<0.050	<0.050	0.050	6051392
Fluoranthene	ug/L	<0.050	<0.050	0.050	6051392
Fluorene	ug/L	<0.050	<0.050	0.050	6051392
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	0.050	6051392
1-Methylnaphthalene	ug/L	<0.050	<0.050	0.050	6051392
2-Methylnaphthalene	ug/L	<0.050	<0.050	0.050	6051392
Naphthalene	ug/L	<0.050	<0.050	0.050	6051392
Phenanthrene	ug/L	<0.030	<0.030	0.030	6051392
Pyrene	ug/L	<0.050	<0.050	0.050	6051392
Surrogate Recovery (%)					
D10-Anthracene	%	119	101		6051392
D14-Terphenyl (FS)	%	86	74		6051392
D8-Acenaphthylene	%	112	94		6051392
RDL = Reportable Detection L	imit				
QC Batch = Quality Control Ba	atch				

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA /131 EGLINTON AVE. Sampler Initials: WM

O.REG 153 PHCS, BTEX/F1-F4 (WATER)

Maxxam ID		JHY078			JHY078			JHY079				
Compling Date		2019/03/28			2019/03/28			2019/03/28				
Sampling Date		10:00			10:00			10:00				
COC Number		710775-01-01			710775-01-01			710775-01-01				
	UNITS	MW19-02	RDL	QC Batch	MW19-02 Lab-Dup	RDL	QC Batch	DUP19-02 GW	RDL	QC Batch		
BTEX & F1 Hydrocarbons												
Benzene	ug/L	<0.20	0.20	6050062	<0.20	0.20	6050062	<0.20	0.20	6050062		
Toluene	ug/L	<0.20	0.20	6050062	<0.20	0.20	6050062	<0.20	0.20	6050062		
Ethylbenzene	ug/L	<0.20	0.20	6050062	<0.20	0.20	6050062	<0.20	0.20	6050062		
o-Xylene	ug/L	<0.20	0.20	6050062	<0.20	0.20	6050062	<0.20	0.20	6050062		
p+m-Xylene	ug/L	<0.40	0.40	6050062	<0.40	0.40	6050062	<0.40	0.40	6050062		
Total Xylenes	ug/L	<0.40	0.40	6050062	<0.40	0.40	6050062	<0.40	0.40	6050062		
F1 (C6-C10)	ug/L	<25	25	6050062	<25	25	6050062	<25	25	6050062		
F1 (C6-C10) - BTEX	ug/L	<25	25	6050062	<25	25	6050062	<25	25	6050062		
F2-F4 Hydrocarbons		•			•							
F2 (C10-C16 Hydrocarbons)	ug/L	<100	100	6051394				<100	100	6051394		
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	6051394				<200	200	6051394		
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	6051394				<200	200	6051394		
Reached Baseline at C50	ug/L	Yes		6051394				Yes		6051394		
Surrogate Recovery (%)												
1,4-Difluorobenzene	%	110		6050062	109		6050062	109		6050062		
4-Bromofluorobenzene	%	98		6050062	97		6050062	97		6050062		
D10-Ethylbenzene	%	92		6050062	91		6050062	91		6050062		
D4-1,2-Dichloroethane	%	96		6050062	95		6050062	94		6050062		
o-Terphenyl	%	115		6051394				113		6051394		
RDL = Reportable Detection L QC Batch = Quality Control Ba	.imit atch											

Lab-Dup = Laboratory Initiated Duplicate

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA /131 EGLINTON AVE. Sampler Initials: WM

O.REG 153 VOCS BY HS (WATER)

Maxxam ID		JHY080		
Sampling Date		2019/03/28		
COC Number		710775-01-01		
	UNITS	F1 TRIP BLANK	RDL	QC Batch
Calculated Parameters				
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	0.50	6044229
Volatile Organics				
Acetone (2-Propanone)	ug/L	<10	10	6046899
Benzene	ug/L	<0.20	0.20	6046899
Bromodichloromethane	ug/L	<0.50	0.50	6046899
Bromoform	ug/L	<1.0	1.0	6046899
Bromomethane	ug/L	<0.50	0.50	6046899
Carbon Tetrachloride	ug/L	<0.20	0.20	6046899
Chlorobenzene	ug/L	<0.20	0.20	6046899
Chloroform	ug/L	<0.20	0.20	6046899
Dibromochloromethane	ug/L	<0.50	0.50	6046899
1,2-Dichlorobenzene	ug/L	<0.50	0.50	6046899
1,3-Dichlorobenzene	ug/L	<0.50	0.50	6046899
1,4-Dichlorobenzene	ug/L	<0.50	0.50	6046899
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	1.0	6046899
1,1-Dichloroethane	ug/L	<0.20	0.20	6046899
1,2-Dichloroethane	ug/L	<0.50	0.50	6046899
1,1-Dichloroethylene	ug/L	<0.20	0.20	6046899
cis-1,2-Dichloroethylene	ug/L	<0.50	0.50	6046899
trans-1,2-Dichloroethylene	ug/L	<0.50	0.50	6046899
1,2-Dichloropropane	ug/L	<0.20	0.20	6046899
cis-1,3-Dichloropropene	ug/L	<0.30	0.30	6046899
trans-1,3-Dichloropropene	ug/L	<0.40	0.40	6046899
Ethylbenzene	ug/L	<0.20	0.20	6046899
Ethylene Dibromide	ug/L	<0.20	0.20	6046899
Hexane	ug/L	<1.0	1.0	6046899
Methylene Chloride(Dichloromethane)	ug/L	<2.0	2.0	6046899
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	10	6046899
Methyl Isobutyl Ketone	ug/L	<5.0	5.0	6046899
Methyl t-butyl ether (MTBE)	ug/L	<0.50	0.50	6046899
Styrene	ug/L	<0.50	0.50	6046899
RDL = Reportable Detection Limit QC Batch = Quality Control Batch				

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA /131 EGLINTON AVE. Sampler Initials: WM

O.REG 153 VOCS BY HS (WATER)

Maxxam ID		JHY080		
Sampling Date		2019/03/28		
COC Number		710775-01-01		
	UNITS	F1 TRIP BLANK	RDL	QC Batch
1,1,1,2-Tetrachloroethane	ug/L	<0.50	0.50	6046899
1,1,2,2-Tetrachloroethane	ug/L	<0.50	0.50	6046899
Tetrachloroethylene	ug/L	<0.20	0.20	6046899
Toluene	ug/L	<0.20	0.20	6046899
1,1,1-Trichloroethane	ug/L	<0.20	0.20	6046899
1,1,2-Trichloroethane	ug/L	<0.50	0.50	6046899
Trichloroethylene	ug/L	<0.20	0.20	6046899
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	0.50	6046899
Vinyl Chloride	ug/L	<0.20	0.20	6046899
p+m-Xylene	ug/L	<0.20	0.20	6046899
o-Xylene	ug/L	<0.20	0.20	6046899
Total Xylenes	ug/L	<0.20	0.20	6046899
Surrogate Recovery (%)				
4-Bromofluorobenzene	%	89		6046899
D4-1,2-Dichloroethane	%	106		6046899
D8-Toluene	%	100		6046899
RDL = Reportable Detection Limit QC Batch = Quality Control Batch				

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA /131 EGLINTON AVE. Sampler Initials: WM

Collected: 2019/03/28

Collected: 2019/03/28

Received: 2019/03/29

Shipped:

TEST SUMMARY

Maxxam ID:	JHY078
Sample ID:	MW19-02
Matrix:	Water

Sample ID: MW1 Matrix: Water	9-02 r				Shipped: Received: 2019/03/29
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6044385	N/A	2019/04/04	Automated Statchk
Chloride by Automated Colourime	etry KONE	6047314	N/A	2019/04/02	Deonarine Ramnarine
Chromium (VI) in Water	IC	6046786	N/A	2019/04/02	Lang Le
Free (WAD) Cyanide	SKAL/CN	6046824	N/A	2019/04/01	Xuanhong Qiu
Petroleum Hydro. CCME F1 & BTE	EX in Water HSGC/MSFD	6050062	N/A	2019/04/03	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in	Water GC/FID	6051394	2019/04/03	2019/04/04	Prabhjot Gulati
Dissolved Metals by ICPMS	ICP/MS	6045957	N/A	2019/04/03	Thao Nguyen
Total Ammonia-N	LACH/NH4	6049391	N/A	2019/04/03	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) ir	n Water LACH	6047135	N/A	2019/04/02	Chandra Nandlal
OC Pesticides (Selected) & PCB	GC/ECD	6046761	2019/04/01	2019/04/02	Li Peng
OC Pesticides Summed Paramete	rs CALC	6044820	N/A	2019/04/02	Automated Statchk
PAH Compounds in Water by GC/	'MS (SIM) GC/MS	6051392	2019/04/03	2019/04/04	Mitesh Raj
рН	AT	6047346	2019/04/01	2019/04/02	Gnana Thomas

Maxxam ID: Sample ID: Matrix:	JHY078 Dup MW19-02 Water					Collected: Shipped: Received:	2019/03/28 2019/03/29
ost Description		Instrumentation	Patch	Extracted	Data Analyzad	Analyst	

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	6050062	N/A	2019/04/03	Georgeta Rusu

Maxxam ID: JHY079 Sample ID: DUP19-02 GW Matrix: Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6044385	N/A	2019/04/04	Automated Statchk
Chloride by Automated Colourimetry	KONE	6047314	N/A	2019/04/02	Deonarine Ramnarine
Chromium (VI) in Water	IC	6046786	N/A	2019/04/02	Lang Le
Free (WAD) Cyanide	SKAL/CN	6048539	N/A	2019/04/02	Xuanhong Qiu
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	6050062	N/A	2019/04/03	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6051394	2019/04/03	2019/04/04	Prabhjot Gulati
Dissolved Metals by ICPMS	ICP/MS	6045957	N/A	2019/04/03	Thao Nguyen
Total Ammonia-N	LACH/NH4	6049257	N/A	2019/04/03	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	6047135	N/A	2019/04/02	Chandra Nandlal
OC Pesticides (Selected) & PCB	GC/ECD	6046761	2019/04/01	2019/04/02	Li Peng
OC Pesticides Summed Parameters	CALC	6044820	N/A	2019/04/02	Automated Statchk
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6051392	2019/04/03	2019/04/04	Mitesh Raj
рН	AT	6047346	2019/04/01	2019/04/02	Gnana Thomas

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA /131 EGLINTON AVE. Sampler Initials: WM

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	JHY080 F1 TRIP BLANK Water					Collected: 2019/03/28 Shipped: Received: 2019/03/29
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	ו	CALC	6044229	N/A	2019/04/03	Automated Statchk
Volatile Organic Compour	nds in Water	GC/MS	6046899	N/A	2019/04/02	Juan Pangilinan

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA /131 EGLINTON AVE. Sampler Initials: WM

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 5.7°C

Cooler custody seal was present and intact .

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

			Matrix	Spike	SPIKED BLANK		Method E	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6046761	2,4,5,6-Tetrachloro-m-xylene	2019/04/02	81	50 - 130	74	50 - 130	73	%		
6046761	Decachlorobiphenyl	2019/04/02	117	50 - 130	107	50 - 130	128	%		
6046899	4-Bromofluorobenzene	2019/04/02	93	70 - 130	94	70 - 130	89	%		
6046899	D4-1,2-Dichloroethane	2019/04/02	106	70 - 130	99	70 - 130	102	%		
6046899	D8-Toluene	2019/04/02	107	70 - 130	108	70 - 130	100	%		
6050062	1,4-Difluorobenzene	2019/04/02	112	70 - 130	108	70 - 130	106	%		
6050062	4-Bromofluorobenzene	2019/04/02	96	70 - 130	98	70 - 130	97	%		
6050062	D10-Ethylbenzene	2019/04/02	85	70 - 130	94	70 - 130	86	%		
6050062	D4-1,2-Dichloroethane	2019/04/02	97	70 - 130	98	70 - 130	97	%		
6051392	D10-Anthracene	2019/04/03	113	50 - 130	109	50 - 130	118	%		
6051392	D14-Terphenyl (FS)	2019/04/03	84	50 - 130	81	50 - 130	89	%		
6051392	D8-Acenaphthylene	2019/04/03	104	50 - 130	98	50 - 130	103	%		
6051394	o-Terphenyl	2019/04/04	118	60 - 130	118	60 - 130	109	%		
6045957	Dissolved Antimony (Sb)	2019/04/02	106	80 - 120	102	80 - 120	<0.50	ug/L		
6045957	Dissolved Arsenic (As)	2019/04/02	99	80 - 120	97	80 - 120	<1.0	ug/L		
6045957	Dissolved Barium (Ba)	2019/04/02	102	80 - 120	103	80 - 120	<2.0	ug/L		
6045957	Dissolved Beryllium (Be)	2019/04/02	104	80 - 120	103	80 - 120	<0.50	ug/L		
6045957	Dissolved Boron (B)	2019/04/02	102	80 - 120	102	80 - 120	<10	ug/L		
6045957	Dissolved Cadmium (Cd)	2019/04/02	101	80 - 120	100	80 - 120	<0.10	ug/L		
6045957	Dissolved Chromium (Cr)	2019/04/02	97	80 - 120	98	80 - 120	<5.0	ug/L		
6045957	Dissolved Cobalt (Co)	2019/04/02	94	80 - 120	97	80 - 120	<0.50	ug/L		
6045957	Dissolved Copper (Cu)	2019/04/02	100	80 - 120	101	80 - 120	<1.0	ug/L		
6045957	Dissolved Lead (Pb)	2019/04/02	93	80 - 120	95	80 - 120	<0.50	ug/L	NC	20
6045957	Dissolved Molybdenum (Mo)	2019/04/02	107	80 - 120	104	80 - 120	<0.50	ug/L		
6045957	Dissolved Nickel (Ni)	2019/04/02	92	80 - 120	95	80 - 120	<1.0	ug/L		
6045957	Dissolved Selenium (Se)	2019/04/02	97	80 - 120	102	80 - 120	<2.0	ug/L		
6045957	Dissolved Silver (Ag)	2019/04/02	59 (1)	80 - 120	99	80 - 120	<0.10	ug/L		
6045957	Dissolved Sodium (Na)	2019/04/02	NC	80 - 120	96	80 - 120	<100	ug/L		
6045957	Dissolved Thallium (TI)	2019/04/02	94	80 - 120	95	80 - 120	<0.050	ug/L		
6045957	Dissolved Uranium (U)	2019/04/02	97	80 - 120	96	80 - 120	<0.10	ug/L		
6045957	Dissolved Vanadium (V)	2019/04/02	101	80 - 120	99	80 - 120	<0.50	ug/L		
6045957	Dissolved Zinc (Zn)	2019/04/02	95	80 - 120	96	80 - 120	<5.0	ug/L		

QUALITY ASSURANCE REPORT(CONT'D)

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6046761	a-Chlordane	2019/04/02	95	50 - 130	97	50 - 130	<0.005	ug/L		
6046761	Aldrin	2019/04/02	71	50 - 130	70	50 - 130	<0.005	ug/L		
6046761	Aroclor 1242	2019/04/02					<0.05	ug/L	200 (1)	30
6046761	Aroclor 1248	2019/04/02					<0.05	ug/L		
6046761	Aroclor 1254	2019/04/02					<0.05	ug/L		
6046761	Aroclor 1260	2019/04/02					<0.05	ug/L		
6046761	Dieldrin	2019/04/02	111	50 - 130	103	50 - 130	<0.005	ug/L		
6046761	Endosulfan I (alpha)	2019/04/02	93	50 - 130	82	50 - 130	<0.005	ug/L		
6046761	Endosulfan II (beta)	2019/04/02	103	50 - 130	108	50 - 130	<0.005	ug/L		
6046761	Endrin	2019/04/02	96	50 - 130	97	50 - 130	<0.005	ug/L		
6046761	g-Chlordane	2019/04/02	100	50 - 130	91	50 - 130	<0.005	ug/L		
6046761	Heptachlor epoxide	2019/04/02	90	50 - 130	92	50 - 130	<0.005	ug/L		
6046761	Heptachlor	2019/04/02	83	50 - 130	79	50 - 130	<0.005	ug/L		
6046761	Hexachlorobenzene	2019/04/02	96	50 - 130	92	50 - 130	<0.005	ug/L		
6046761	Hexachlorobutadiene	2019/04/02	79	50 - 130	76	50 - 130	<0.009	ug/L		
6046761	Hexachloroethane	2019/04/02	74	50 - 130	68	50 - 130	<0.01	ug/L		
6046761	Lindane	2019/04/02	101	50 - 130	98	50 - 130	<0.003	ug/L	NC	30
6046761	Methoxychlor	2019/04/02	116	50 - 130	114	50 - 130	<0.01	ug/L		
6046761	o,p-DDD	2019/04/02	108	50 - 130	108	50 - 130	<0.005	ug/L		
6046761	o,p-DDE	2019/04/02	97	50 - 130	97	50 - 130	<0.005	ug/L		
6046761	o,p-DDT	2019/04/02	92	50 - 130	96	50 - 130	<0.005	ug/L		
6046761	p,p-DDD	2019/04/02	99	50 - 130	102	50 - 130	<0.005	ug/L		
6046761	p,p-DDE	2019/04/02	95	50 - 130	85	50 - 130	<0.005	ug/L		
6046761	p,p-DDT	2019/04/02	97	50 - 130	96	50 - 130	<0.005	ug/L		
6046786	Chromium (VI)	2019/04/02	99	80 - 120	101	80 - 120	<0.50	ug/L	4.4	20
6046824	WAD Cyanide (Free)	2019/04/01	106	80 - 120	97	80 - 120	<1	ug/L	14	20
6046899	1,1,1,2-Tetrachloroethane	2019/04/02	96	70 - 130	97	70 - 130	<0.50	ug/L		
6046899	1,1,1-Trichloroethane	2019/04/02	93	70 - 130	96	70 - 130	<0.20	ug/L	NC	30
6046899	1,1,2,2-Tetrachloroethane	2019/04/02	112	70 - 130	104	70 - 130	<0.50	ug/L		
6046899	1,1,2-Trichloroethane	2019/04/02	110	70 - 130	105	70 - 130	<0.50	ug/L	NC	30
6046899	1,1-Dichloroethane	2019/04/02	104	70 - 130	105	70 - 130	<0.20	ug/L	NC	30
6046899	1,1-Dichloroethylene	2019/04/02	99	70 - 130	101	70 - 130	<0.20	ug/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

			Matrix Spike		SPIKED	BLANK	Method E	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6046899	1,2-Dichlorobenzene	2019/04/02	98	70 - 130	99	70 - 130	<0.50	ug/L		
6046899	1,2-Dichloroethane	2019/04/02	103	70 - 130	97	70 - 130	<0.50	ug/L		
6046899	1,2-Dichloropropane	2019/04/02	105	70 - 130	103	70 - 130	<0.20	ug/L		
6046899	1,3-Dichlorobenzene	2019/04/02	96	70 - 130	100	70 - 130	<0.50	ug/L		
6046899	1,4-Dichlorobenzene	2019/04/02	97	70 - 130	101	70 - 130	<0.50	ug/L		
6046899	Acetone (2-Propanone)	2019/04/02	113	60 - 140	101	60 - 140	<10	ug/L		
6046899	Benzene	2019/04/02	98	70 - 130	98	70 - 130	<0.20	ug/L		
6046899	Bromodichloromethane	2019/04/02	98	70 - 130	96	70 - 130	<0.50	ug/L		
6046899	Bromoform	2019/04/02	98	70 - 130	94	70 - 130	<1.0	ug/L		
6046899	Bromomethane	2019/04/02	98	60 - 140	98	60 - 140	<0.50	ug/L		
6046899	Carbon Tetrachloride	2019/04/02	90	70 - 130	94	70 - 130	<0.20	ug/L		
6046899	Chlorobenzene	2019/04/02	95	70 - 130	96	70 - 130	<0.20	ug/L		
6046899	Chloroform	2019/04/02	100	70 - 130	99	70 - 130	<0.20	ug/L		
6046899	cis-1,2-Dichloroethylene	2019/04/02	99	70 - 130	98	70 - 130	<0.50	ug/L	NC	30
6046899	cis-1,3-Dichloropropene	2019/04/02	87	70 - 130	86	70 - 130	<0.30	ug/L		
6046899	Dibromochloromethane	2019/04/02	100	70 - 130	97	70 - 130	<0.50	ug/L		
6046899	Dichlorodifluoromethane (FREON 12)	2019/04/02	94	60 - 140	85	60 - 140	<1.0	ug/L		
6046899	Ethylbenzene	2019/04/02	93	70 - 130	98	70 - 130	<0.20	ug/L	NC	30
6046899	Ethylene Dibromide	2019/04/02	104	70 - 130	98	70 - 130	<0.20	ug/L		
6046899	Hexane	2019/04/02	103	70 - 130	106	70 - 130	<1.0	ug/L		
6046899	Methyl Ethyl Ketone (2-Butanone)	2019/04/02	118	60 - 140	103	60 - 140	<10	ug/L		
6046899	Methyl Isobutyl Ketone	2019/04/02	115	70 - 130	103	70 - 130	<5.0	ug/L		
6046899	Methyl t-butyl ether (MTBE)	2019/04/02	95	70 - 130	94	70 - 130	<0.50	ug/L		
6046899	Methylene Chloride(Dichloromethane)	2019/04/02	101	70 - 130	98	70 - 130	<2.0	ug/L		
6046899	o-Xylene	2019/04/02	90	70 - 130	97	70 - 130	<0.20	ug/L		
6046899	p+m-Xylene	2019/04/02	92	70 - 130	97	70 - 130	<0.20	ug/L		
6046899	Styrene	2019/04/02	94	70 - 130	100	70 - 130	<0.50	ug/L		
6046899	Tetrachloroethylene	2019/04/02	93	70 - 130	98	70 - 130	<0.20	ug/L	NC	30
6046899	Toluene	2019/04/02	95	70 - 130	98	70 - 130	<0.20	ug/L		
6046899	Total Xylenes	2019/04/02					<0.20	ug/L		
6046899	trans-1,2-Dichloroethylene	2019/04/02	97	70 - 130	99	70 - 130	<0.50	ug/L		
6046899	trans-1,3-Dichloropropene	2019/04/02	94	70 - 130	91	70 - 130	<0.40	ug/L		

QUALITY ASSURANCE REPORT(CONT'D)

			Matrix	Spike	SPIKED BLANK		Method E	Blank	RPD		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	
6046899	Trichloroethylene	2019/04/02	90	70 - 130	92	70 - 130	<0.20	ug/L	NC	30	
6046899	Trichlorofluoromethane (FREON 11)	2019/04/02	94	70 - 130	96	70 - 130	<0.50	ug/L			
6046899	Vinyl Chloride	2019/04/02	108	70 - 130	106	70 - 130	<0.20	ug/L	NC	30	
6047135	Nitrate (N)	2019/04/02	NC	80 - 120	103	80 - 120	<0.10	mg/L	0.26	20	
6047135	Nitrite (N)	2019/04/02	101	80 - 120	103	80 - 120	<0.010	mg/L	7.0	20	
6047314	Dissolved Chloride (Cl-)	2019/04/02	NC	80 - 120	103	80 - 120	<1.0	mg/L	0.23	20	
6047346	pH	2019/04/02			100	98 - 103			0.40	N/A	
6048539	WAD Cyanide (Free)	2019/04/02	110	80 - 120	97	80 - 120	<1	ug/L	NC	20	
6049257	Total Ammonia-N	2019/04/03	94	75 - 125	97	80 - 120	<0.050	mg/L	NC	20	
6049391	Total Ammonia-N	2019/04/03	92	75 - 125	97	80 - 120	<0.050	mg/L	5.9	20	
6050062	Benzene	2019/04/03	105	70 - 130	110	70 - 130	<0.20	ug/L	NC	30	
6050062	Ethylbenzene	2019/04/03	100	70 - 130	105	70 - 130	<0.20	ug/L	NC	30	
6050062	F1 (C6-C10) - BTEX	2019/04/03					<25	ug/L	NC	30	
6050062	F1 (C6-C10)	2019/04/03	110	70 - 130	106	70 - 130	<25	ug/L	NC	30	
6050062	o-Xylene	2019/04/03	96	70 - 130	102	70 - 130	<0.20	ug/L	NC	30	
6050062	p+m-Xylene	2019/04/03	101	70 - 130	105	70 - 130	<0.40	ug/L	NC	30	
6050062	Toluene	2019/04/03	104	70 - 130	109	70 - 130	<0.20	ug/L	NC	30	
6050062	Total Xylenes	2019/04/03					<0.40	ug/L	NC	30	
6051392	1-Methylnaphthalene	2019/04/04	112	50 - 130	96	50 - 130	<0.050	ug/L	2.1	30	
6051392	2-Methylnaphthalene	2019/04/04	99	50 - 130	85	50 - 130	<0.050	ug/L	2.1	30	
6051392	Acenaphthene	2019/04/04	96	50 - 130	86	50 - 130	<0.050	ug/L	NC	30	
6051392	Acenaphthylene	2019/04/04	99	50 - 130	88	50 - 130	<0.050	ug/L	NC	30	
6051392	Anthracene	2019/04/04	90	50 - 130	83	50 - 130	<0.050	ug/L	NC	30	
6051392	Benzo(a)anthracene	2019/04/04	105	50 - 130	97	50 - 130	<0.050	ug/L	NC	30	
6051392	Benzo(a)pyrene	2019/04/04	99	50 - 130	92	50 - 130	<0.010	ug/L	NC	30	
6051392	Benzo(b/j)fluoranthene	2019/04/04	103	50 - 130	96	50 - 130	<0.050	ug/L	NC	30	
6051392	Benzo(g,h,i)perylene	2019/04/04	99	50 - 130	91	50 - 130	<0.050	ug/L	NC	30	
6051392	Benzo(k)fluoranthene	2019/04/04	100	50 - 130	85	50 - 130	<0.050	ug/L	NC	30	
6051392	Chrysene	2019/04/04	101	50 - 130	92	50 - 130	<0.050	ug/L	NC	30	
6051392	Dibenz(a,h)anthracene	2019/04/04	91	50 - 130	85	50 - 130	<0.050	ug/L	NC	30	
6051392	Fluoranthene	2019/04/04	85	50 - 130	79	50 - 130	<0.050	ug/L	NC	30	
6051392	Fluorene	2019/04/04	99	50 - 130	88	50 - 130	<0.050	ug/L	NC	30	

QUALITY ASSURANCE REPORT(CONT'D)

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA /131 EGLINTON AVE. Sampler Initials: WM

			Matrix Spike		SPIKED	BLANK	Method B	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6051392	Indeno(1,2,3-cd)pyrene	2019/04/04	103	50 - 130	96	50 - 130	<0.050	ug/L	NC	30
6051392	Naphthalene	2019/04/04	93	50 - 130	75	50 - 130	<0.050	ug/L	2.0	30
6051392	Phenanthrene	2019/04/04	99	50 - 130	91	50 - 130	<0.030	ug/L	NC	30
6051392	Pyrene	2019/04/04	87	50 - 130	81	50 - 130	<0.050	ug/L	NC	30
6051394	F2 (C10-C16 Hydrocarbons)	2019/04/04	109	50 - 130	103	60 - 130	<100	ug/L	0.62	30
6051394	F3 (C16-C34 Hydrocarbons)	2019/04/04	121	50 - 130	115	60 - 130	<200	ug/L	NC	30
6051394	F4 (C34-C50 Hydrocarbons)	2019/04/04	118	50 - 130	113	60 - 130	<200	ug/L	NC	30

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA /131 EGLINTON AVE. Sampler Initials: WM

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

		INVOICE TO:				REPOR	RT TO:						PROJE	CT INFORM	ATION:			Laboratory Use Only:			
pany Name:	#3103 Pinchin	Ltd		Company	Name:						Quotation	#	A709	27					Maxxam Job #:	Bottle Order	
tion: ess:	Accounts Payat 2470 Milltower (Die Crt		Attention: Address:	Mi	he Birch.	Craig	Kelly			P.O.#		2309	89.001			-	-		710775	
	Mississauga ON	L5N 7W5									Project Na	ame:	Ph	ase -	TWO	ESA			COC #: Project Ma		
l:	(905) 363-0678 ap@pinchin.com	Fax: (905) 363-	0681	Tel: Email	Mia	ich @ Dinc	Fax:	cl	ully@	pinchi'r	Site #. Signal	By:	131	Eglian	ton A	lie E Tarty	niw	N ALLAN	C#710775-01-01	Antonella Bre	
IOE REG	ULATED DRINKIN SUBMITTED	IG WATER OR WATER INTEN	DED FOR HI	UMAN CO	ONSUMPTIO	MUST BE			-	AN	ALYSIS RE	QUESTED	(PLEASE	BE SPECIF	IC)	_			Turnaround Time (TAT) F	Required:	
Regulati	00 153 (2011)	Other Ren	WATER ON		031001	la su su	e):			12.11				à		1.51		Regular	Please provide advance notice f (Standard) TAT:	or rush projects	
let [Res/Park Media		Source Bulan	-	Special	nstructions	a a	2		Vater		2) in		urime				(will be appl	lied if Rush TAT is not specified):		
ble 2 C	Ind/Comm Coars	C Reg 558. Storm S SC MISA Municipality	ewer Bylaw				(please	STEXF1-		ticides (V		litrite (NO		ted Color	ater		ICPMS	Standard Tr Please note days - conta	AT = 5-7 Working days for most lests • Standard TAT for certain lests such as I set your Project Manager for defails.	BOD and Dioxins/Furans	
le		Dother				_	Filtered letals / h	3 PHCs, E	3 PAHs	3 OC Pes		03) and h	nonia-N	y Automa	(N) in W	0) Cyanid	Metals by	Job Speci Date Requir	ific Rush TAT (if applies to entire sub redTi	mission) me Required:	
	Include Criter	ia on Certificate of Analysis (Y/M	1)?				bield M	g 15	9 15	15 JS		N) al	Amin	d ebr	mium	(WAE	panio	Rush Confi	mation Number:	call lab for #1	
Sample	e Barcode Label	Sample (Location) Identification	Date S	ampled	Time Sampled	Matrix		O.Re	O Re	O.Re	H	Wate	Total	Chlor	Chro	Free	Disso	# of Bottles	Comm	tents	
		MW19-02	19/2	3/28	10:00	Groundwar	er v	1	-	-	1	-	1	1	1	1	-	1)			
		DUP19-02 GW	"		10:00	u	~	1	1	1	/	-	1	/	-	1	-	11		-	
		FI Trip Blank	19/3	28	NIA	N/A		~										1	CTrip Blanch	analys	
					100										1.1						
			-						1				101								
					-													1	20 Mer-19	12:11	
								1											Antonella Brasil		
			1						A										B981984	0	
	1								1		-			-	-	-			CA2 ENV-11	,00	
		\frown	-					-			-			-				-			
• 6	RELINQUISHED BY	Intel Peter		T		DECENTER			-				-								
	14.11	19/	3/78	11:2		Mal 7 - V	: (Signature/F	nnt)	0	ula	(M/DD)	Ti	me	# jars	used and ubmitted	Tima P.	osilius	Labor	atory Use Only	ant Var	
-/	print.	P	1000	1.1.30	Sun	A Derlin	110m	assatio	mk [2019/0	2309	12:0	0	-		nime Si	n canive	Tempera	ture (°C) on Recei		
OTHERV	WISE AGREED TO IN WI	RITING, WORK SUBMITTED ON THIS C	HAIN OF CUSTO	DY IS SUB	JECT TO MAXXA	M'S STANDARD TER	MS AND CON	DITIONS. S	IGNING O	F THIS CHA	IN OF CUS	TODY DOC	UMENTIS	1	10000	-	-15 V	11	1 S I I I I I I I I I I I I I I I I I I	Alles Manuel Malles	

Maxxam Analytics International Corporation o/a Maxxam Analytics

Pinchin Ltd Client Project #: 230989.001 Project name: PHASE TWO ESA /131 EGLINTON AVE. Client ID: MW19-02

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Reference Spectrum

13

TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline: C6 - C12	Diesel: C10-C24	Jet Fuels: C6 - C16
Varsol: C8 - C12	Fuel Oils: C6 - C32	Creosote: C10 - C26
Kerosene: C8 - C16	Motor Oils: C16 - C50	Asphalt: C18 - C50 +

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Pinchin Ltd Client Project #: 230989.001 Project name: PHASE TWO ESA /131 EGLINTON AVE. Client ID: DUP19-02 GW

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Reference Spectrum

13

TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline: C6 - C12	Diesel: C10-C24	Jet Fuels: C6 - C16
Varsol: C8 - C12	Fuel Oils: 66 - 632	Creosote: C10 - C26
Kerosene: C8 - C16	Motor Dils: C16 - C50	Asphalt: C18 - C50+

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISS. Your C.O.C. #: 711195-02-01

Attention: Michael Birch

Pinchin Ltd 2470 Milltower Crt Mississauga, ON CANADA L5N 7W5

> Report Date: 2019/04/11 Report #: R5667028 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B986440 Received: 2019/04/03. 10:20

Sample Matrix: Water

Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum	3	N/A	2019/04/08	CAM SOP-00301	EPA 8270D m
Chloride by Automated Colourimetry	3	N/A	2019/04/05	CAM SOP-00463	SM 4500-Cl E m
Chromium (VI) in Water	3	N/A	2019/04/05	CAM SOP-00436	EPA 7199 m
Free (WAD) Cyanide	3	N/A	2019/04/05	CAM SOP-00457	OMOE E3015 m
Petroleum Hydro. CCME F1 & BTEX in Water	5	N/A	2019/04/05	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1)	2	2019/04/05	2019/04/05	CAM SOP-00316	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1)	2	2019/04/05	2019/04/06	CAM SOP-00316	CCME PHC-CWS m
Mercury	3	2019/04/05	2019/04/08	CAM SOP-00453	EPA 7470A m
Dissolved Metals by ICPMS	3	N/A	2019/04/08	CAM SOP-00447	EPA 6020B m
Total Ammonia-N	4	N/A	2019/04/08	CAM SOP-00441	EPA GS I-2522-90 m
Nitrate (NO3) and Nitrite (NO2) in Water (2)	2	N/A	2019/04/08	CAM SOP-00440	SM 23 4500-NO3I/NO2B
OC Pesticides (Selected) & PCB (3)	3	2019/04/04	2019/04/05	CAM SOP-00307	EPA 8081A/8082B m
OC Pesticides Summed Parameters	3	N/A	2019/04/05	CAM SOP-00307	EPA 8081A/8082B m
PAH Compounds in Water by GC/MS (SIM)	3	2019/04/05	2019/04/06	CAM SOP-00318	EPA 8270D m
рН	4	2019/04/04	2019/04/05	CAM SOP-00413	SM 4500H+ B m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Your Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISS. Your C.O.C. #: 711195-02-01

Attention: Michael Birch

Pinchin Ltd 2470 Milltower Crt Mississauga, ON CANADA L5N 7W5

> Report Date: 2019/04/11 Report #: R5667028 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B986440 Received: 2019/04/03. 10:20

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

(3) Chlordane (Total) = Alpha Chlordane + Gamma Chlordane

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Antonella Brasil, Senior Project Manager Email: ABrasil@maxxam.ca Phone# (905)817-5817

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISS. Sampler Initials: AV

RESULTS OF ANALYSES OF WATER

Maxxam ID		JIW636			JIW637	JIW638			JIW638		
Compling Data		2019/04/02			2019/04/02	2019/04/02			2019/04/02		
Sampling Date		14:10			14:20	14:24			14:24		
COC Number		711195-02-01			711195-02-01	711195-02-01			711195-02-01		
	UNITS	MW19-01	RDL	QC Batch	MW19-03	MW19-04	RDL	QC Batch	MW19-04 Lab-Dup	QC Batch	
Inorganics											
Total Ammonia-N	mg/L	0.062	0.050	6055528	0.084	0.073	0.050	6055528			
рН	рН	7.40		6054467	7.64	7.56		6054467	7.56	6054467	
Nitrite (N)	mg/L	<0.010	0.010	6055603							
Nitrate (N)	mg/L	4.73	0.10	6055603							
Nitrate + Nitrite (N)	mg/L	4.73	0.10	6055603							
RDL = Reportable Detectior	n Limit	-		•							
QC Batch = Quality Control	Batch										

Lab-Dup = Laboratory Initiated Duplicate

Maxxam ID		JIW640						
Sampling Date		2019/04/02						
COC Number		711195-02-01						
	UNITS	DUP-02	RDL	QC Batch				
Inorganics								
Total Ammonia-N	mg/L	<0.050	0.050	6055528				
рН	рН	7.39		6054467				
Nitrite (N)	mg/L	<0.010	0.010	6055603				
Nitrate (N)	mg/L	4.63	0.10	6055603				
Nitrate + Nitrite (N)	mg/L	4.63	0.10	6055603				
RDL = Reportable Detection	on Limit							
QC Batch = Quality Contro	l Batch							

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISS. Sampler Initials: AV

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		JIW641		
Sampling Date				
COC Number		711195-02-01		
	UNITS	TRIP BLANK	RDL	QC Batch
BTEX & F1 Hydrocarbons				
Benzene	ug/L	<0.20	0.20	6054016
Toluene	ug/L	<0.20	0.20	6054016
Ethylbenzene	ug/L	<0.20	0.20	6054016
o-Xylene	ug/L	<0.20	0.20	6054016
p+m-Xylene	ug/L	<0.40	0.40	6054016
Total Xylenes	ug/L	<0.40	0.40	6054016
F1 (C6-C10)	ug/L	<25	25	6054016
F1 (C6-C10) - BTEX	ug/L	<25	25	6054016
Surrogate Recovery (%)				
1,4-Difluorobenzene	%	99		6054016
4-Bromofluorobenzene	%	97		6054016
D10-Ethylbenzene	%	98		6054016
D4-1,2-Dichloroethane	%	101		6054016
RDL = Reportable Detection L	imit			
QC Batch = Quality Control Ba	atch			

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISS. Sampler Initials: AV

O.REG 153 METALS & INORGANICS PKG (WTR)

Maxxam ID		JIW636			JIW636			JIW638		
Sampling Date		2019/04/02			2019/04/02			2019/04/02		
Sampling Date		14:10			14:10			14:24		
COC Number		711195-02-01			711195-02-01			711195-02-01		
	UNITS	MW19-01	RDL	QC Batch	MW19-01 Lab-Dup	RDL	QC Batch	MW19-04	RDL	QC Batch
Inorganics										
WAD Cyanide (Free)	ug/L	<1	1	6055375				<1	1	6055375
Dissolved Chloride (Cl-)	mg/L	10	1.0	6054149				310	4.0	6054007
Metals										
Chromium (VI)	ug/L	<0.50	0.50	6053955				<0.50	0.50	6053955
Mercury (Hg)	ug/L	<0.1	0.1	6055550				<0.1	0.1	6055550
Dissolved Antimony (Sb)	ug/L	<0.50	0.50	6056190	<0.50	0.50	6056190	<0.50	0.50	6056190
Dissolved Arsenic (As)	ug/L	<1.0	1.0	6056190	<1.0	1.0	6056190	1.0	1.0	6056190
Dissolved Barium (Ba)	ug/L	65	2.0	6056190	66	2.0	6056190	55	2.0	6056190
Dissolved Beryllium (Be)	ug/L	<0.50	0.50	6056190	<0.50	0.50	6056190	<0.50	0.50	6056190
Dissolved Boron (B)	ug/L	130	10	6056190	130	10	6056190	83	10	6056190
Dissolved Cadmium (Cd)	ug/L	<0.10	0.10	6056190	<0.10	0.10	6056190	<0.10	0.10	6056190
Dissolved Chromium (Cr)	ug/L	<5.0	5.0	6056190	<5.0	5.0	6056190	<5.0	5.0	6056190
Dissolved Cobalt (Co)	ug/L	<0.50	0.50	6056190	<0.50	0.50	6056190	<0.50	0.50	6056190
Dissolved Copper (Cu)	ug/L	<1.0	1.0	6056190	<1.0	1.0	6056190	6.5	1.0	6056190
Dissolved Lead (Pb)	ug/L	<0.50	0.50	6056190	<0.50	0.50	6056190	<0.50	0.50	6056190
Dissolved Molybdenum (Mo)	ug/L	<0.50	0.50	6056190	<0.50	0.50	6056190	1.7	0.50	6056190
Dissolved Nickel (Ni)	ug/L	<1.0	1.0	6056190	<1.0	1.0	6056190	<1.0	1.0	6056190
Dissolved Selenium (Se)	ug/L	<2.0	2.0	6056190	<2.0	2.0	6056190	<2.0	2.0	6056190
Dissolved Silver (Ag)	ug/L	<0.10	0.10	6056190	<0.10	0.10	6056190	<0.10	0.10	6056190
Dissolved Sodium (Na)	ug/L	7700	100	6056190	7700	100	6056190	120000	100	6056190
Dissolved Thallium (Tl)	ug/L	<0.050	0.050	6056190	<0.050	0.050	6056190	<0.050	0.050	6056190
Dissolved Uranium (U)	ug/L	1.4	0.10	6056190	1.4	0.10	6056190	7.9	0.10	6056190
Dissolved Vanadium (V)	ug/L	<0.50	0.50	6056190	<0.50	0.50	6056190	1.5	0.50	6056190
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	6056190	<5.0	5.0	6056190	<5.0	5.0	6056190
RDL = Reportable Detection Li	mit									

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISS. Sampler Initials: AV

O.REG 153 METALS & INORGANICS PKG (WTR)

Maxxam ID		JIW640		
Sampling Date		2019/04/02		
COC Number		711195-02-01		
	UNITS	DUP-02	RDL	QC Batch
Inorganics				
WAD Cyanide (Free)	ug/L	<1	1	6055375
Dissolved Chloride (Cl-)	mg/L	10	1.0	6054007
Metals	•			
Chromium (VI)	ug/L	<0.50	0.50	6053955
Mercury (Hg)	ug/L	<0.1	0.1	6055550
Dissolved Antimony (Sb)	ug/L	<0.50	0.50	6056190
Dissolved Arsenic (As)	ug/L	<1.0	1.0	6056190
Dissolved Barium (Ba)	ug/L	67	2.0	6056190
Dissolved Beryllium (Be)	ug/L	<0.50	0.50	6056190
Dissolved Boron (B)	ug/L	140	10	6056190
Dissolved Cadmium (Cd)	ug/L	<0.10	0.10	6056190
Dissolved Chromium (Cr)	ug/L	<5.0	5.0	6056190
Dissolved Cobalt (Co)	ug/L	<0.50	0.50	6056190
Dissolved Copper (Cu)	ug/L	<1.0	1.0	6056190
Dissolved Lead (Pb)	ug/L	<0.50	0.50	6056190
Dissolved Molybdenum (Mo)	ug/L	<0.50	0.50	6056190
Dissolved Nickel (Ni)	ug/L	<1.0	1.0	6056190
Dissolved Selenium (Se)	ug/L	<2.0	2.0	6056190
Dissolved Silver (Ag)	ug/L	<0.10	0.10	6056190
Dissolved Sodium (Na)	ug/L	8100	100	6056190
Dissolved Thallium (Tl)	ug/L	<0.050	0.050	6056190
Dissolved Uranium (U)	ug/L	1.3	0.10	6056190
Dissolved Vanadium (V)	ug/L	<0.50	0.50	6056190
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	6056190
RDL = Reportable Detection Li	mit			
QC Batch = Quality Control Bat	tch			

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISS. Sampler Initials: AV

O.REG 153 OC PESTICIDES (WATER)

Maxxam ID		JIW636	JIW638	JIW640			JIW640		
Sampling Date		2019/04/02 14:10	2019/04/02 14:24	2019/04/02			2019/04/02		
COC Number		711195-02-01	711195-02-01	711195-02-01			711195-02-01		
	UNITS	MW19-01	MW19-04	DUP-02	RDL	QC Batch	DUP-02 Lab-Dup	RDL	QC Batch
Calculated Parameters									
Chlordane (Total)	ug/L	<0.005	<0.005	<0.005	0.005	6051719			
o,p-DDD + p,p-DDD	ug/L	<0.005	<0.005	<0.005	0.005	6051719			
o,p-DDE + p,p-DDE	ug/L	<0.005	<0.005	<0.005	0.005	6051719			
o,p-DDT + p,p-DDT	ug/L	<0.005	<0.005	<0.005	0.005	6051719			
Total Endosulfan	ug/L	<0.005	<0.005	<0.005	0.005	6051719			
Total PCB	ug/L	<0.05	<0.05	<0.05	0.05	6051719			
Pesticides & Herbicides		•	•	•					
Aldrin	ug/L	<0.005	<0.005	<0.005	0.005	6053064	<0.005	0.005	6053064
Dieldrin	ug/L	<0.005	<0.005	<0.005	0.005	6053064	<0.005	0.005	6053064
a-Chlordane	ug/L	<0.005	<0.005	<0.005	0.005	6053064	<0.005	0.005	6053064
g-Chlordane	ug/L	<0.005	<0.005	<0.005	0.005	6053064	<0.005	0.005	6053064
o,p-DDD	ug/L	<0.005	<0.005	<0.005	0.005	6053064	<0.005	0.005	6053064
p,p-DDD	ug/L	<0.005	<0.005	<0.005	0.005	6053064	<0.005	0.005	6053064
o,p-DDE	ug/L	<0.005	<0.005	<0.005	0.005	6053064	<0.005	0.005	6053064
p,p-DDE	ug/L	<0.005	<0.005	<0.005	0.005	6053064	<0.005	0.005	6053064
o,p-DDT	ug/L	<0.005	<0.005	<0.005	0.005	6053064	<0.005	0.005	6053064
p,p-DDT	ug/L	<0.005	<0.005	<0.005	0.005	6053064	<0.005	0.005	6053064
Lindane	ug/L	<0.003	<0.003	<0.003	0.003	6053064	<0.003	0.003	6053064
Endosulfan I (alpha)	ug/L	<0.005	<0.005	<0.005	0.005	6053064	<0.005	0.005	6053064
Endosulfan II (beta)	ug/L	<0.005	<0.005	<0.005	0.005	6053064	<0.005	0.005	6053064
Endrin	ug/L	<0.005	<0.005	<0.005	0.005	6053064	<0.005	0.005	6053064
Heptachlor	ug/L	<0.005	<0.005	<0.005	0.005	6053064	<0.005	0.005	6053064
Heptachlor epoxide	ug/L	<0.005	<0.005	<0.005	0.005	6053064	<0.005	0.005	6053064
Hexachlorobenzene	ug/L	<0.005	<0.005	<0.005	0.005	6053064	<0.005	0.005	6053064
Hexachlorobutadiene	ug/L	<0.009	<0.009	<0.009	0.009	6053064	<0.009	0.009	6053064
Hexachloroethane	ug/L	<0.01	<0.01	<0.01	0.01	6053064	<0.01	0.01	6053064
Methoxychlor	ug/L	<0.01	<0.01	<0.01	0.01	6053064	<0.01	0.01	6053064
Aroclor 1242	ug/L	<0.05	<0.05	<0.05	0.05	6053064	<0.05	0.05	6053064
Aroclor 1248	ug/L	<0.05	<0.05	<0.05	0.05	6053064	<0.05	0.05	6053064
Aroclor 1254	ug/L	<0.05	<0.05	<0.05	0.05	6053064	<0.05	0.05	6053064
RDL = Reportable Detection Li	mit								

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISS. Sampler Initials: AV

O.REG 153 OC PESTICIDES (WATER)

Maxxam ID		JIW636	JIW638	JIW640			JIW640				
Sampling Date		2019/04/02 14:10	2019/04/02 14:24	2019/04/02			2019/04/02				
COC Number		711195-02-01	711195-02-01	711195-02-01			711195-02-01				
	UNITS	MW19-01	MW19-04	DUP-02	RDL	QC Batch	DUP-02 Lab-Dup	RDL	QC Batch		
Aroclor 1260	ug/L	<0.05	<0.05	<0.05	0.05	6053064	<0.05	0.05	6053064		
Surrogate Recovery (%)		•	•								
2,4,5,6-Tetrachloro-m-xylene	%	70	69	64		6053064	73		6053064		
Decachlorobiphenyl	%	112	113	105		6053064	124		6053064		
RDL = Reportable Detection Limit											
QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplicate											

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISS. Sampler Initials: AV

O.REG 153 PAHS (WATER)

Maxxam ID		JIW637	JIW638	JIW640		
Sampling Date		2019/04/02 14:20	2019/04/02 14:24	2019/04/02		
COC Number		711195-02-01	711195-02-01	711195-02-01		
	UNITS	MW19-03	MW19-04	DUP-02	RDL	QC Batch
Calculated Parameters						
Methylnaphthalene, 2-(1-)	ug/L	<0.071	<0.071	<0.071	0.071	6051177
Polyaromatic Hydrocarbons	•				•	
Acenaphthene	ug/L	<0.050	<0.050	<0.050	0.050	6055729
Acenaphthylene	ug/L	<0.050	<0.050	<0.050	0.050	6055729
Anthracene	ug/L	<0.050	<0.050	<0.050	0.050	6055729
Benzo(a)anthracene	ug/L	<0.050	<0.050	<0.050	0.050	6055729
Benzo(a)pyrene	ug/L	<0.010	<0.010	<0.010	0.010	6055729
Benzo(b/j)fluoranthene	ug/L	<0.050	<0.050	<0.050	0.050	6055729
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	<0.050	0.050	6055729
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	<0.050	0.050	6055729
Chrysene	ug/L	<0.050	<0.050	<0.050	0.050	6055729
Dibenz(a,h)anthracene	ug/L	<0.050	<0.050	<0.050	0.050	6055729
Fluoranthene	ug/L	<0.050	<0.050	<0.050	0.050	6055729
Fluorene	ug/L	<0.050	<0.050	<0.050	0.050	6055729
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	<0.050	0.050	6055729
1-Methylnaphthalene	ug/L	<0.050	<0.050	<0.050	0.050	6055729
2-Methylnaphthalene	ug/L	<0.050	<0.050	<0.050	0.050	6055729
Naphthalene	ug/L	<0.050	<0.050	<0.050	0.050	6055729
Phenanthrene	ug/L	<0.030	<0.030	<0.030	0.030	6055729
Pyrene	ug/L	<0.050	<0.050	<0.050	0.050	6055729
Surrogate Recovery (%)						
D10-Anthracene	%	116	113	112		6055729
D14-Terphenyl (FS)	%	105	106	99		6055729
D8-Acenaphthylene	%	103	105	101		6055729
RDL = Reportable Detection L	imit					
QC Batch = Quality Control Ba	atch					

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISS. Sampler Initials: AV

O.REG 153 PHCS, BTEX/F1-F4 (WATER)

Maxxam ID		JIW637	JIW638	JIW639	JIW640		
Sampling Date		2019/04/02 14:20	2019/04/02 14:24	2019/04/02 14:50	2019/04/02		
COC Number		711195-02-01	711195-02-01	711195-02-01	711195-02-01	ĺ	
	UNITS	MW19-03	MW19-04	MW19-05	DUP-02	RDL	QC Batch
BTEX & F1 Hydrocarbons							
Benzene	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	6054016
Toluene	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	6054016
Ethylbenzene	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	6054016
o-Xylene	ug/L	<0.20	<0.20	<0.20	<0.20	0.20	6054016
p+m-Xylene	ug/L	<0.40	<0.40	<0.40	<0.40	0.40	6054016
Total Xylenes	ug/L	<0.40	<0.40	<0.40	<0.40	0.40	6054016
F1 (C6-C10)	ug/L	<25	<25	<25	<25	25	6054016
F1 (C6-C10) - BTEX	ug/L	<25	<25	<25	<25	25	6054016
F2-F4 Hydrocarbons		· · · · · ·		· · · · · · · · · · · · · · · · · · ·			
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	<100	<100	100	6055714
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	<200	<200	200	6055714
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	<200	<200	200	6055714
Reached Baseline at C50	ug/L	Yes	Yes	Yes	Yes		6055714
Surrogate Recovery (%)				•			
1,4-Difluorobenzene	%	100	101	97	101		6054016
4-Bromofluorobenzene	%	98	99	101	98		6054016
D10-Ethylbenzene	%	98	100	94	100		6054016
D4-1,2-Dichloroethane	%	100	101	104	101		6054016
o-Terphenyl	%	109	112	109	110		6055714
RDL = Reportable Detection L	imit						

QC Batch = Quality Control Batch

Test Description

Mercury

рΗ

Chromium (VI) in Water Free (WAD) Cyanide

Dissolved Metals by ICPMS Total Ammonia-N

OC Pesticides (Selected) & PCB

OC Pesticides Summed Parameters

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISS. Sampler Initials: AV

Collected: 2019/04/02

Chandra Nandlal

Automated Statchk

Li Peng

Surinder Rai

TEST SUMMARY

Maxxam ID:	JIW636
Sample ID:	MW19-01
Matrix:	Water

Chloride by Automated Colourimetry

Nitrate (NO3) and Nitrite (NO2) in Water

				Shipped: Received: 2019/04/03
Instrumentation	Batch	Extracted	Date Analyzed	Analyst
KONE	6054149	N/A	2019/04/05	Deonarine Ramnarine
IC	6053955	N/A	2019/04/05	Lang Le
SKAL/CN	6055375	N/A	2019/04/05	Xuanhong Qiu
CV/AA	6055550	2019/04/05	2019/04/08	Medhat Nasr
ICP/MS	6056190	N/A	2019/04/08	Thao Nguyen
LACH/NH4	6055528	N/A	2019/04/08	Chandra Nandlal

2019/04/08

2019/04/05

2019/04/05

2019/04/05

Maxxam ID: Sample ID: Matrix:	JIW636 Dup MW19-01 Water					Collected: Shipped: Received:	2019/04/02 2019/04/03
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Dissolved Metals by ICPM	IS	ICP/MS	6056190	N/A	2019/04/08	Thao Nguy	/en

6055603

6053064

6051719

6054467

LACH

CALC

AT

GC/ECD

N/A

N/A

2019/04/04

2019/04/04

Maxxam ID: JIW637 Sample ID: MW19-03 Matrix: Water					Collected: 2019/04/02 Shipped: Received: 2019/04/03	
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum	CALC	6051177	N/A	2019/04/08	Automated Statchk	
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	6054016	N/A	2019/04/05	Joe Paino	
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6055714	2019/04/05	2019/04/05	Prabhjot Gulati	
Total Ammonia-N	LACH/NH4	6055528	N/A	2019/04/08	Chandra Nandlal	
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6055729	2019/04/05	2019/04/06	Mitesh Raj	
рН	AT	6054467	2019/04/04	2019/04/05	Surinder Rai	

Maxxam ID: JIW638 Sample ID: MW19-04 Matrix: Water					Collected: 2019/04/02 Shipped: Received: 2019/04/03
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6051177	N/A	2019/04/08	Automated Statchk
Chloride by Automated Colourimetry	KONE	6054007	N/A	2019/04/05	Deonarine Ramnarine
Chromium (VI) in Water	IC	6053955	N/A	2019/04/05	Lang Le
Free (WAD) Cyanide	SKAL/CN	6055375	N/A	2019/04/05	Xuanhong Qiu
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	6054016	N/A	2019/04/05	Joe Paino
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6055714	2019/04/05	2019/04/05	Prabhjot Gulati
Mercury	CV/AA	6055550	2019/04/05	2019/04/08	Medhat Nasr
Dissolved Metals by ICPMS	ICP/MS	6056190	N/A	2019/04/08	Thao Nguyen
Total Ammonia-N	LACH/NH4	6055528	N/A	2019/04/08	Chandra Nandlal
OC Pesticides (Selected) & PCB	GC/ECD	6053064	2019/04/04	2019/04/05	Li Peng

Page 11 of 24

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISS. Sampler Initials: AV

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	JIW638 MW19-04 Water					Collected: Shipped: Received:	2019/04/02 2019/04/03
Test Description		Instrumentation	Batch	Extracted	Date Analvzed	Analyst	
OC Pesticides Summed Pa	arameters	CALC	6051719	N/A	2019/04/05	Automate	d Statchk
PAH Compounds in Wate	r by GC/MS (SIM)	GC/MS	6055729	2019/04/05	2019/04/06	Mitesh Ra	i
рН		AT	6054467	2019/04/04	2019/04/05	Surinder R	ai
- Fe							
Maxxam ID: Sample ID: Matrix:	JIW638 Dup MW19-04 Water					Collected: Shipped: Received:	2019/04/02 2019/04/03
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
pH		AT	6054467	2019/04/04	2019/04/05	Surinder R	ai
Maxxam ID: Sample ID: Matrix:	JIW639 MW19-05 Water					Collected: Shipped: Received:	2019/04/02 2019/04/03
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME I	F1 & BTEX in Water	HSGC/MSFD	6054016	N/A	2019/04/05	Joe Paino	
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	6055714	2019/04/05	2019/04/06	Prabhjot G	iulati
Maxxam ID: Sample ID: Matrix:	JIW640 DUP-02 Water					Collected: Shipped: Received:	2019/04/02 2019/04/03
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	6051177	N/A	2019/04/08	Automate	d Statchk
Chloride by Automated C	olourimetry	KONE	6054007	N/A	2019/04/05	Deonarine	Ramnarine
Chromium (VI) in Water		IC	6053955	N/A	2019/04/05	Lang Le	
Free (WAD) Cyanide		SKAL/CN	6055375	N/A	2019/04/05	Xuanhong	Qiu
Petroleum Hydro. CCME I	F1 & BTEX in Water	HSGC/MSFD	6054016	N/A	2019/04/05	Joe Paino	
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	6055714	2019/04/05	2019/04/06	Prabhjot G	iulati
Mercury		CV/AA	6055550	2019/04/05	2019/04/08	Medhat N	asr
Dissolved Metals by ICPN	IS	ICP/MS	6056190	N/A	2019/04/08	Thao Nguy	/en
Total Ammonia-N		LACH/NH4	6055528	N/A	2019/04/08	Chandra N	landlal
Nitrate (NO3) and Nitrite	(NO2) in Water	LACH	6055603	N/A	2019/04/08	Chandra N	landlal
OC Pesticides (Selected) &	& PCB	GC/ECD	6053064	2019/04/04	2019/04/05	Li Peng	
OC Pesticides Summed Pa	arameters	CALC	6051719	N/A	2019/04/05	Automate	d Statchk
PAH Compounds in Wate	r by GC/MS (SIM)	GC/MS	6055729	2019/04/05	2019/04/06	Mitesh Ra	j
рН		AT	6054467	2019/04/04	2019/04/05	Surinder R	ai
Maxxam ID: Sample ID: Matrix:	JIW640 Dup DUP-02 Water					Collected: Shipped: Received:	2019/04/02 2019/04/03
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
OC Pesticides (Selected) &	& PCB	GC/ECD	6053064	2019/04/04	2019/04/05	Li Peng	

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISS. Sampler Initials: AV

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	JIW641 TRIP BLANK Water					Collected: Shipped: Received:	2019/04/03
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Water	HSGC/MSFD	6054016	N/A	2019/04/05	Joe Paino	

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISS. Sampler Initials: AV

GENERAL COMMENTS

Each te	emperature is the	average of up to t	ree cooler temperatures taken	at receipt		
	Package 1	3.7°C]			
Cooler	custody seal was p	present and intact				
The fol All of tl All of tl All con All 500	lowing sediment on the 250mL plastic G the 120mL plastic b tainers for Cyanide mL amber glass bo	omments apply to eneral bottles con ottles for NH4LOV analysis containe ttle for PCB analy	sample MW19-04, DUP-02 tained visible sediment. / analysis contained visible sedi d trace sediment. sis contained visible sediment	ment.		
The fol All 100 All 40m	lowing sediment co mL amber glass bo nL vials for F1BTEX	omments apply to ottles for F2-F4 an analysis containe	sample MW19-04, MW19-05, I Iysis contained visible sediment I visible sediment in all the sam	OUP-02 , which was included in the e ples.	xtraction.	
Result	s relate only to the	e items tested.				

QUALITY ASSURANCE REPORT

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISS. Sampler Initials: AV

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6053064	2,4,5,6-Tetrachloro-m-xylene	2019/04/05	56	50 - 130	68	50 - 130	63	%		
6053064	Decachlorobiphenyl	2019/04/05	103	50 - 130	125	50 - 130	113	%		
6054016	1,4-Difluorobenzene	2019/04/04	100	70 - 130	99	70 - 130	100	%		
6054016	4-Bromofluorobenzene	2019/04/04	102	70 - 130	101	70 - 130	99	%		
6054016	D10-Ethylbenzene	2019/04/04	94	70 - 130	94	70 - 130	96	%		
6054016	D4-1,2-Dichloroethane	2019/04/04	101	70 - 130	100	70 - 130	101	%		
6055714	o-Terphenyl	2019/04/05	116	60 - 130	116	60 - 130	111	%		
6055729	D10-Anthracene	2019/04/05	115	50 - 130	112	50 - 130	114	%		
6055729	D14-Terphenyl (FS)	2019/04/05	106	50 - 130	106	50 - 130	106	%		
6055729	D8-Acenaphthylene	2019/04/05	109	50 - 130	99	50 - 130	101	%		
6053064	a-Chlordane	2019/04/05	82	50 - 130	104	50 - 130	<0.005	ug/L	NC	30
6053064	Aldrin	2019/04/05	70	50 - 130	80	50 - 130	<0.005	ug/L	NC	30
6053064	Aroclor 1242	2019/04/05					<0.05	ug/L	NC	30
6053064	Aroclor 1248	2019/04/05					<0.05	ug/L	NC	30
6053064	Aroclor 1254	2019/04/05					<0.05	ug/L	NC	30
6053064	Aroclor 1260	2019/04/05					<0.05	ug/L	NC	30
6053064	Dieldrin	2019/04/05	91	50 - 130	118	50 - 130	<0.005	ug/L	NC	30
6053064	Endosulfan I (alpha)	2019/04/05	72	50 - 130	97	50 - 130	<0.005	ug/L	NC	30
6053064	Endosulfan II (beta)	2019/04/05	79	50 - 130	108	50 - 130	<0.005	ug/L	NC	30
6053064	Endrin	2019/04/05	71	50 - 130	91	50 - 130	<0.005	ug/L	NC	30
6053064	g-Chlordane	2019/04/05	79	50 - 130	98	50 - 130	<0.005	ug/L	NC	30
6053064	Heptachlor epoxide	2019/04/05	75	50 - 130	98	50 - 130	<0.005	ug/L	NC	30
6053064	Heptachlor	2019/04/05	72	50 - 130	84	50 - 130	<0.005	ug/L	NC	30
6053064	Hexachlorobenzene	2019/04/05	77	50 - 130	92	50 - 130	<0.005	ug/L	NC	30
6053064	Hexachlorobutadiene	2019/04/05	70	50 - 130	80	50 - 130	<0.009	ug/L	NC	30
6053064	Hexachloroethane	2019/04/05	59	50 - 130	71	50 - 130	<0.01	ug/L	NC	30
6053064	Lindane	2019/04/05	69	50 - 130	90	50 - 130	<0.003	ug/L	NC	30
6053064	Methoxychlor	2019/04/05	79	50 - 130	106	50 - 130	<0.01	ug/L	NC	30
6053064	o,p-DDD	2019/04/05	87	50 - 130	112	50 - 130	<0.005	ug/L	NC	30
6053064	o,p-DDE	2019/04/05	84	50 - 130	103	50 - 130	<0.005	ug/L	NC	30
6053064	o,p-DDT	2019/04/05	74	50 - 130	94	50 - 130	< 0.005	ug/L	NC	30
6053064	p,p-DDD	2019/04/05	84	50 - 130	109	50 - 130	<0.005	ug/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISS. Sampler Initials: AV

				Spike	SPIKED	BLANK	Method I	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6053064	p,p-DDE	2019/04/05	82	50 - 130	101	50 - 130	<0.005	ug/L	NC	30
6053064	p,p-DDT	2019/04/05	76	50 - 130	94	50 - 130	<0.005	ug/L	NC	30
6053955	Chromium (VI)	2019/04/05	100	80 - 120	100	80 - 120	<0.50	ug/L	NC	20
6054007	Dissolved Chloride (Cl-)	2019/04/05	NC	80 - 120	104	80 - 120	<1.0	mg/L	0.36	20
6054016	Benzene	2019/04/04	91	70 - 130	91	70 - 130	<0.20	ug/L	NC	30
6054016	Ethylbenzene	2019/04/04	96	70 - 130	96	70 - 130	<0.20	ug/L	NC	30
6054016	F1 (C6-C10) - BTEX	2019/04/04					<25	ug/L	NC	30
6054016	F1 (C6-C10)	2019/04/04	98	70 - 130	104	70 - 130	<25	ug/L	NC	30
6054016	o-Xylene	2019/04/04	94	70 - 130	97	70 - 130	<0.20	ug/L	NC	30
6054016	p+m-Xylene	2019/04/04	99	70 - 130	98	70 - 130	<0.40	ug/L	NC	30
6054016	Toluene	2019/04/04	96	70 - 130	95	70 - 130	<0.20	ug/L	NC	30
6054016	Total Xylenes	2019/04/04					<0.40	ug/L	NC	30
6054149	Dissolved Chloride (Cl-)	2019/04/05	NC	80 - 120	105	80 - 120	<1.0	mg/L	0.73	20
6054467	pH	2019/04/05			102	98 - 103			0.0040	N/A
6055375	WAD Cyanide (Free)	2019/04/05	93	80 - 120	104	80 - 120	<1	ug/L	NC	20
6055528	Total Ammonia-N	2019/04/08	99	75 - 125	100	80 - 120	<0.050	mg/L	0.58	20
6055550	Mercury (Hg)	2019/04/08	98	75 - 125	94	80 - 120	<0.1	ug/L	NC	20
6055603	Nitrate (N)	2019/04/08	84	80 - 120	101	80 - 120	<0.10	mg/L	0.76	20
6055603	Nitrite (N)	2019/04/08	99	80 - 120	104	80 - 120	<0.010	mg/L	14	20
6055714	F2 (C10-C16 Hydrocarbons)	2019/04/06	NC	50 - 130	123	60 - 130	<100	ug/L	NC	30
6055714	F3 (C16-C34 Hydrocarbons)	2019/04/06	NC	50 - 130	120	60 - 130	<200	ug/L	NC	30
6055714	F4 (C34-C50 Hydrocarbons)	2019/04/06	117	50 - 130	118	60 - 130	<200	ug/L	NC	30
6055729	1-Methylnaphthalene	2019/04/05	117	50 - 130	95	50 - 130	<0.050	ug/L	NC	30
6055729	2-Methylnaphthalene	2019/04/05	112	50 - 130	85	50 - 130	<0.050	ug/L	NC	30
6055729	Acenaphthene	2019/04/05	88	50 - 130	86	50 - 130	<0.050	ug/L	NC	30
6055729	Acenaphthylene	2019/04/05	87	50 - 130	86	50 - 130	<0.050	ug/L	NC	30
6055729	Anthracene	2019/04/05	78	50 - 130	75	50 - 130	<0.050	ug/L	NC	30
6055729	Benzo(a)anthracene	2019/04/05	94	50 - 130	90	50 - 130	<0.050	ug/L	NC	30
6055729	Benzo(a)pyrene	2019/04/05	88	50 - 130	85	50 - 130	<0.010	ug/L	NC	30
6055729	Benzo(b/j)fluoranthene	2019/04/05	85	50 - 130	83	50 - 130	<0.050	ug/L	NC	30
6055729	Benzo(g,h,i)perylene	2019/04/05	81	50 - 130	82	50 - 130	<0.050	ug/L	NC	30
6055729	Benzo(k)fluoranthene	2019/04/05	79	50 - 130	79	50 - 130	<0.050	ug/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISS. Sampler Initials: AV

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6055729	Chrysene	2019/04/05	93	50 - 130	89	50 - 130	<0.050	ug/L	NC	30
6055729	Dibenz(a,h)anthracene	2019/04/05	76	50 - 130	76	50 - 130	<0.050	ug/L	NC	30
6055729	Fluoranthene	2019/04/05	93	50 - 130	89	50 - 130	<0.050	ug/L	NC	30
6055729	Fluorene	2019/04/05	88	50 - 130	86	50 - 130	<0.050	ug/L	NC	30
6055729	Indeno(1,2,3-cd)pyrene	2019/04/05	87	50 - 130	86	50 - 130	<0.050	ug/L	NC	30
6055729	Naphthalene	2019/04/05	110	50 - 130	81	50 - 130	<0.050	ug/L	NC	30
6055729	Phenanthrene	2019/04/05	91	50 - 130	88	50 - 130	<0.030	ug/L	NC	30
6055729	Pyrene	2019/04/05	92	50 - 130	89	50 - 130	<0.050	ug/L	NC	30
6056190	Dissolved Antimony (Sb)	2019/04/08	103	80 - 120	100	80 - 120	<0.50	ug/L	NC	20
6056190	Dissolved Arsenic (As)	2019/04/08	102	80 - 120	100	80 - 120	<1.0	ug/L	NC	20
6056190	Dissolved Barium (Ba)	2019/04/08	96	80 - 120	96	80 - 120	<2.0	ug/L	1.1	20
6056190	Dissolved Beryllium (Be)	2019/04/08	100	80 - 120	99	80 - 120	<0.50	ug/L	NC	20
6056190	Dissolved Boron (B)	2019/04/08	99	80 - 120	97	80 - 120	<10	ug/L	0.14	20
6056190	Dissolved Cadmium (Cd)	2019/04/08	101	80 - 120	100	80 - 120	<0.10	ug/L	NC	20
6056190	Dissolved Chromium (Cr)	2019/04/08	99	80 - 120	98	80 - 120	<5.0	ug/L	NC	20
6056190	Dissolved Cobalt (Co)	2019/04/08	97	80 - 120	98	80 - 120	<0.50	ug/L	NC	20
6056190	Dissolved Copper (Cu)	2019/04/08	99	80 - 120	98	80 - 120	<1.0	ug/L	NC	20
6056190	Dissolved Lead (Pb)	2019/04/08	96	80 - 120	95	80 - 120	<0.50	ug/L	NC	20
6056190	Dissolved Molybdenum (Mo)	2019/04/08	105	80 - 120	101	80 - 120	<0.50	ug/L	NC	20
6056190	Dissolved Nickel (Ni)	2019/04/08	95	80 - 120	97	80 - 120	<1.0	ug/L	NC	20
6056190	Dissolved Selenium (Se)	2019/04/08	101	80 - 120	99	80 - 120	<2.0	ug/L	NC	20
6056190	Dissolved Silver (Ag)	2019/04/08	99	80 - 120	98	80 - 120	<0.10	ug/L	NC	20
6056190	Dissolved Sodium (Na)	2019/04/08	97	80 - 120	95	80 - 120	<100	ug/L	0.44	20
6056190	Dissolved Thallium (TI)	2019/04/08	97	80 - 120	95	80 - 120	<0.050	ug/L	NC	20
6056190	Dissolved Uranium (U)	2019/04/08	100	80 - 120	97	80 - 120	<0.10	ug/L	1.9	20
6056190	Dissolved Vanadium (V)	2019/04/08	102	80 - 120	100	80 - 120	<0.50	ug/L	NC	20

QUALITY ASSURANCE REPORT(CONT'D)

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISS. Sampler Initials: AV

			Matrix	Spike	SPIKED I	BLANK	Method B	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6056190	Dissolved Zinc (Zn)	2019/04/08	97	80 - 120	98	80 - 120	<5.0	ug/L	NC	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISS. Sampler Initials: AV

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	*	INVOICE TO:					REPO	RT TO:				1		PROJEC	TINFOR	MATION:			Laboratory Use	Only: ,
omnan	Name #3103 Pinchi	n Ltd		Com	pany Name		· · ·					Quotation	#	A709	27				Maxxam Job #:	Bottle Order #:
Itention	Accounts Pays	able		Atter	ntion:	Michae	Birch , U	Jill Me	stya	w		P.0.#					-	_		
ddress	2470 Milltower	Crt ,		Addr	'ess.						-	Project		2309	9.001	1			COC #:	711195 Project Manager:
	(905) 363-067	B 5 (90)	5) 363-0681	Tal				Eav				Project N	eme	131 E	glinton	Ave. Eas	st, Miss.	T.U.		Assessed Barrel
ai mail:	ap@pinchin.co	m rac <u>ces</u>		Ema	il:	mbirch	@pinchin.com	Wmar	tynin	ORN	chin.r.	Sampled	By -	A	.v			11.2	C#711195-02-01	Antonena Brasu
MO	REGULATED DRINK	NG WATER OR WATER	INTENDED P	FOR HUMA	N CONSU	IMPTION	MUST BE			, ,	A.	ALYSIS RE	QUESTED	PLEASE	BE SPECI	FIC)	-		Turnaround Time (TAT) I	Required or such projects
21123	SUBMITTE	D ON THE MAXXAM DRI	NKING WATE	ER CHAIN	OF CUSTO	YDC		(e)					1.5	11	24	-140	Q.	Regular	(Standard) TAT:	or real to closes
1	tegulation 153 (2011)	Ot	ther Regulations	5	-	Special In	structions	di cito	Vater				1.F4	02) IN	Na B	12	ate	(will be app	lied if Rush TAT is hot specified)	5
Table	2 Ind/Comm Coa	irse Reg 558	Sanitary Sewer Storm Sewer B	ylaw		RSC		Cr	V) sep				42 ST	Ite (N	Cr+6	2.	11	Please not	AT = 5-7 working days for most lesis. b) Standard TAT for certain tests such as	BOD and Dioxins/Furans are
Table	3 Agri/Other X For	RSC MISA M	unicipality				22	d) pe	estic		-		s by t	tiN p	als &	53	51	days - cont	act your Project Manager for details.	mission
lable	-	D Other				Anory	515	atals	00 1		-e)uo	PAH	NOC	03) ar	3 Metu	5×	24	Date Requ	redT	me Required
	Include Crit	eria on Certificate of Analy	sis (Y/N)?	_	-			Ma	g 153		Amm	g 153	g 153	E (NC	152 als H	.P.a.	DH.	Rush Cont	imiation Number	call lab for #)
1	Sample Barcode Label	Sample (Location) Ide	ntification	Date Sampl	ed Time	Sampled	Matrix	LL.	O Re	Ha	Tota	0 Re	0.Re	Wate	O Re (Met	00	OP	# of Bottle	9 Comr	nents
				Hpul 2	2.		1-1	V	V	1	1	-		v.	X			2	meecury op hove	N, Secled, tell
+		MW19-01		2-10	1 4	.10	GW	1	~	X	X	-	1-	~		-		0	to ich plaice F	Wreed
1		MW19- 0	3		2	.20	GW	NIA		×	X	X				X	X	7		
		MW19- c	24		2	40	Gw	Y	X	X	X	X			X	X	X	13		
			-5		2	150	612	Y								X	X	5	trace sodured	
-		Provid	02	1	-		~	1			1.1				N.	1	~	12		
		DUP - a	22	~		/	GW	1	X	X	X	X		X	X	X	X	1)		
T									1		12								03-Apr-19	10:20
+										-	-	-	-						Antonella Brasil	
											1		_						_ 	1941
*																			B986440	0
-										-	-	-	-	-		-		-	KVG ENV-14	21
P.														1100						
-	* RELINQUISHED BY	(Signature/Print)	Date: (YY/I	MM/DD)	Time	1	RECEIVED	3Y: (Signature/	Print)		Date: (Y	Y/MM/DD)	T	ime	# jar	s used and submitted		Labo	oratory Use Only	Seal Van I
A	bhistok Uya.	s/ Aller	1/20 Joen	4		00	~	trul	Ved	2	10,91	04/03	10	20	_		Time Sensi	Tempe	rature ("C) on Recei Preser	
	,		19104	103 (0.00	1			PUTIONS	E.CO.VIII			ETODY DO	NUMERIT IS	-	and the second	No. of Lot		Intac	Vhite: Marza Vellow

Maxxam Analytics International Corporation of a Maxxam Analytics

.

Pinchin Ltd Client Project #: 230989.001 Project name: 131 EGLINTON AVE. EAST, MISS. Client ID: MW19-03

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Reference Spectrum

TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline: C6 - C12	Diesel: C10-C24	Jet Fuels: C6 - C16
Varsol: C8 - C12	Fuel Oils: C6 - C32	Creosote: C10 - C26
Kerosene: C8 - C16	Motor Dils: C16 - C50	Asphalt: C18 - C50+

Pinchin Ltd Client Project #: 230989.001 Project name: 131 EGLINTON AVE. EAST, MISS. Client ID: MW19-04

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Reference Spectrum

TYPICAL PRODUCT CARBON NUMBER RANGES

Diesel: C10-C24	Jet Fuels: C6 - C16
Fuel Oils: C6 - C32	Creosote: C10 - C26
Motor Oils: C16 - C50	Asphalt: C18 - C50 +
	Diesel: C10-C24 Fuel Oils: C6 - C32 Motor Oils: C16 - C50

Pinchin Ltd Client Project #: 230989.001 Project name: 131 EGLINTON AVE. EAST, MISS. Client ID: MW19-05

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Reference Spectrum

13

TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline: C6 - C12	Diesel: C10-C24	Jet Fuels: C6 - C16		
Varsol: C8 - C12	Fuel Oils: 66 - 632	Creosote: C10 - C26		
Kerosene: C8 - C16	rosene: C8 - C16 Motor Oils: C16 - C50			

Pinchin Ltd Client Project #: 230989.001 Project name: 131 EGLINTON AVE. EAST, MISS. Client ID: DUP-02

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Reference Spectrum

03

TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline: C6 - C12	Diesel: C10-C24	Jet Fuels: C6 - C16
Varsol: C8 - C12	Fuel Dils: 66 - 632	Creosote: C10 - C26
Kerosene: C8 - C16	Motor Dils: C16 - C50	Asphalt: C18 - C50 +

Your Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISSISSAUGA Your C.O.C. #: 711893-01-01

Attention: Michael Birch

Pinchin Ltd 2470 Milltower Crt Mississauga, ON CANADA L5N 7W5

> Report Date: 2019/04/11 Report #: R5667112 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B989881 Received: 2019/04/05. 15:05

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum	1	N/A	2019/04/10	CAM SOP-00301	EPA 8270D m
Chloride by Automated Colourimetry	1	N/A	2019/04/08	CAM SOP-00463	SM 4500-Cl E m
Chromium (VI) in Water	1	N/A	2019/04/08	CAM SOP-00436	EPA 7199 m
Free (WAD) Cyanide	1	N/A	2019/04/08	CAM SOP-00457	OMOE E3015 m
Mercury	1	2019/04/09	2019/04/09	CAM SOP-00453	EPA 7470A m
Dissolved Metals by ICPMS	1	N/A	2019/04/09	CAM SOP-00447	EPA 6020B m
OC Pesticides (Selected) & PCB (1)	1	2019/04/08	2019/04/10	CAM SOP-00307	EPA 8081A/8082B m
OC Pesticides Summed Parameters	1	N/A	2019/04/08	CAM SOP-00307	EPA 8081A/8082B m
PAH Compounds in Water by GC/MS (SIM)	1	2019/04/09	2019/04/10	CAM SOP-00318	EPA 8270D m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Chlordane (Total) = Alpha Chlordane + Gamma Chlordane

Your Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISSISSAUGA Your C.O.C. #: 711893-01-01

Attention: Michael Birch

Pinchin Ltd 2470 Milltower Crt Mississauga, ON CANADA L5N 7W5

> Report Date: 2019/04/11 Report #: R5667112 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B989881 Received: 2019/04/05, 15:05

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Antonella Brasil, Senior Project Manager Email: ABrasil@maxxam.ca Phone# (905)817-5817

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISSISSAUGA Sampler Initials: JP

O.REG 153 METALS & INORGANICS PKG (WTR)

Maxxam ID		JJO651			JJO651		
Sampling Data		2019/04/05			2019/04/05		
		11:30			11:30		
COC Number		711893-01-01			711893-01-01		
	UNITS	MW19-05	RDL	QC Batch	MW19-05 Lab-Dup	RDL	QC Batch
Inorganics							
WAD Cyanide (Free)	ug/L	<1	1	6058475			
Dissolved Chloride (Cl-)	mg/L	450	5.0	6057622			
Metals							
Chromium (VI)	ug/L	<0.50	0.50	6055697			
Mercury (Hg)	ug/L	<0.1	0.1	6060635			
Dissolved Antimony (Sb)	ug/L	1.7	0.50	6057731	1.6	0.50	6057731
Dissolved Arsenic (As)	ug/L	1.4	1.0	6057731	1.6	1.0	6057731
Dissolved Barium (Ba)	ug/L	110	2.0	6057731	110	2.0	6057731
Dissolved Beryllium (Be)	ug/L	<0.50	0.50	6057731	<0.50	0.50	6057731
Dissolved Boron (B)	ug/L	68	10	6057731	66	10	6057731
Dissolved Cadmium (Cd)	ug/L	<0.10	0.10	6057731	<0.10	0.10	6057731
Dissolved Chromium (Cr)	ug/L	<5.0	5.0	6057731	<5.0	5.0	6057731
Dissolved Cobalt (Co)	ug/L	1.2	0.50	6057731	1.1	0.50	6057731
Dissolved Copper (Cu)	ug/L	2.5	1.0	6057731	2.3	1.0	6057731
Dissolved Lead (Pb)	ug/L	<0.50	0.50	6057731	<0.50	0.50	6057731
Dissolved Molybdenum (Mo)	ug/L	3.7	0.50	6057731	3.7	0.50	6057731
Dissolved Nickel (Ni)	ug/L	2.0	1.0	6057731	1.8	1.0	6057731
Dissolved Selenium (Se)	ug/L	<2.0	2.0	6057731	<2.0	2.0	6057731
Dissolved Silver (Ag)	ug/L	<0.10	0.10	6057731	<0.10	0.10	6057731
Dissolved Sodium (Na)	ug/L	170000	100	6057731	170000	100	6057731
Dissolved Thallium (Tl)	ug/L	<0.050	0.050	6057731	<0.050	0.050	6057731
Dissolved Uranium (U)	ug/L	6.4	0.10	6057731	6.5	0.10	6057731
Dissolved Vanadium (V)	ug/L	0.63	0.50	6057731	<0.50	0.50	6057731
Dissolved Zinc (Zn)	ug/L	6.0	5.0	6057731	6.2	5.0	6057731
RDL = Reportable Detection Li	nit						
Lab-Dun = Laboratory Initiated	.ui Dunlica	ato					
	Duplica	iii.					

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISSISSAUGA Sampler Initials: JP

O.REG 153 OC PESTICIDES (WATER)

Maxxam ID		JJO651		
Sampling Date		2019/04/05		
		11:30		
COC Number		711893-01-01		
	UNITS	MW19-05	RDL	QC Batch
Calculated Parameters				
Chlordane (Total)	ug/L	<0.005	0.005	6055738
o,p-DDD + p,p-DDD	ug/L	<0.005	0.005	6055738
o,p-DDE + p,p-DDE	ug/L	<0.005	0.005	6055738
o,p-DDT + p,p-DDT	ug/L	<0.005	0.005	6055738
Total Endosulfan	ug/L	<0.005	0.005	6055738
Total PCB	ug/L	<0.05	0.05	6055738
Pesticides & Herbicides				
Aldrin	ug/L	<0.005	0.005	6059443
Dieldrin	ug/L	<0.005	0.005	6059443
a-Chlordane	ug/L	<0.005	0.005	6059443
g-Chlordane	ug/L	<0.005	0.005	6059443
o,p-DDD	ug/L	<0.005	0.005	6059443
p,p-DDD	ug/L	<0.005	0.005	6059443
o,p-DDE	ug/L	<0.005	0.005	6059443
p,p-DDE	ug/L	<0.005	0.005	6059443
o,p-DDT	ug/L	<0.005	0.005	6059443
p,p-DDT	ug/L	<0.005	0.005	6059443
Lindane	ug/L	<0.003	0.003	6059443
Endosulfan I (alpha)	ug/L	<0.005	0.005	6059443
Endosulfan II (beta)	ug/L	<0.005	0.005	6059443
Endrin	ug/L	<0.005	0.005	6059443
Heptachlor	ug/L	<0.005	0.005	6059443
Heptachlor epoxide	ug/L	<0.005	0.005	6059443
Hexachlorobenzene	ug/L	<0.005	0.005	6059443
Hexachlorobutadiene	ug/L	<0.009	0.009	6059443
Hexachloroethane	ug/L	<0.01	0.01	6059443
Methoxychlor	ug/L	<0.01	0.01	6059443
Aroclor 1242	ug/L	<0.05	0.05	6059443
Aroclor 1248	ug/L	<0.05	0.05	6059443
Aroclor 1254	ug/L	<0.05	0.05	6059443
Aroclor 1260	ug/L	<0.05	0.05	6059443
RDL = Reportable Detection I QC Batch = Quality Control B	Limit atch			

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISSISSAUGA Sampler Initials: JP

O.REG 153 OC PESTICIDES (WATER)

Maxxam ID		JJO651		
Sampling Date		2019/04/05		
		11:30		
COC Number		711893-01-01		
	UNITS	MW19-05	RDL	QC Batch
Surrogate Recovery (%)				
Surrogate Recovery (%) 2,4,5,6-Tetrachloro-m-xylene	%	53		6059443
Surrogate Recovery (%) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl	% %	53 109		6059443 6059443
Surrogate Recovery (%) 2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl RDL = Reportable Detection Lir	% % nit	53 109		6059443 6059443

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISSISSAUGA Sampler Initials: JP

O.REG 153 PAHS (WATER)

Maxxam ID		JJO651		
Sampling Data		2019/04/05		
Sampling Date		11:30		
COC Number		711893-01-01		
	UNITS	MW19-05	RDL	QC Batch
Calculated Parameters				
Methylnaphthalene, 2-(1-)	ug/L	<0.071	0.071	6056320
Polyaromatic Hydrocarbons			-	
Acenaphthene	ug/L	<0.050	0.050	6061367
Acenaphthylene	ug/L	<0.050	0.050	6061367
Anthracene	ug/L	<0.050	0.050	6061367
Benzo(a)anthracene	ug/L	<0.050	0.050	6061367
Benzo(a)pyrene	ug/L	<0.010	0.010	6061367
Benzo(b/j)fluoranthene	ug/L	<0.050	0.050	6061367
Benzo(g,h,i)perylene	ug/L	<0.050	0.050	6061367
Benzo(k)fluoranthene	ug/L	<0.050	0.050	6061367
Chrysene	ug/L	<0.050	0.050	6061367
Dibenz(a,h)anthracene	ug/L	<0.050	0.050	6061367
Fluoranthene	ug/L	<0.050	0.050	6061367
Fluorene	ug/L	<0.050	0.050	6061367
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	0.050	6061367
1-Methylnaphthalene	ug/L	<0.050	0.050	6061367
2-Methylnaphthalene	ug/L	<0.050	0.050	6061367
Naphthalene	ug/L	<0.050	0.050	6061367
Phenanthrene	ug/L	<0.030	0.030	6061367
Pyrene	ug/L	<0.050	0.050	6061367
Surrogate Recovery (%)				
D10-Anthracene	%	118		6061367
D14-Terphenyl (FS)	%	105		6061367
D8-Acenaphthylene	%	108		6061367
RDL = Reportable Detection L	imit			
QC Batch = Quality Control Ba	atch			

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISSISSAUGA Sampler Initials: JP

TEST SUMMARY

Maxxam ID: JJO651 Sample ID: MW19-05 Matrix: Water					Collected: 2019/04/05 Shipped: Received: 2019/04/05
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6056320	N/A	2019/04/10	Automated Statchk
Chloride by Automated Colourimetry	KONE	6057622	N/A	2019/04/08	Deonarine Ramnarine
Chromium (VI) in Water	IC	6055697	N/A	2019/04/08	Lang Le
Free (WAD) Cyanide	SKAL/CN	6058475	N/A	2019/04/08	Xuanhong Qiu
Mercury	CV/AA	6060635	2019/04/09	2019/04/09	Ron Morrison
Dissolved Metals by ICPMS	ICP/MS	6057731	N/A	2019/04/09	Thao Nguyen
OC Pesticides (Selected) & PCB	GC/ECD	6059443	2019/04/08	2019/04/10	Li Peng
OC Pesticides Summed Parameters	CALC	6055738	N/A	2019/04/08	Automated Statchk
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6061367	2019/04/09	2019/04/10	Mitesh Raj
Maxxam ID: JJO651 Dup					Collected: 2019/04/05

Sample ID: MW19-0 Matrix: Water	5				Shipped: Received: 2019/04/05	
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Dissolved Metals by ICPMS	ICP/MS	6057731	N/A	2019/04/09	Thao Nguyen	

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISSISSAUGA Sampler Initials: JP

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 3.7°C

Cooler custody seal was present and intact.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISSISSAUGA Sampler Initials: JP

			Matrix	Spike	SPIKED BLANK		Method E	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6059443	2,4,5,6-Tetrachloro-m-xylene	2019/04/10	51	50 - 130	56	50 - 130	79	%		
6059443	Decachlorobiphenyl	2019/04/10	123	50 - 130	119	50 - 130	99	%		
6061367	D10-Anthracene	2019/04/10	121	50 - 130	123	50 - 130	123	%		
6061367	D14-Terphenyl (FS)	2019/04/10	114	50 - 130	119	50 - 130	123	%		
6061367	D8-Acenaphthylene	2019/04/10	109	50 - 130	111	50 - 130	110	%		
6055697	Chromium (VI)	2019/04/08	99	80 - 120	100	80 - 120	<0.50	ug/L	NC	20
6057622	Dissolved Chloride (Cl-)	2019/04/08	NC	80 - 120	102	80 - 120	<1.0	mg/L	1.2	20
6057731	Dissolved Antimony (Sb)	2019/04/09	108	80 - 120	101	80 - 120	<0.50	ug/L	6.4	20
6057731	Dissolved Arsenic (As)	2019/04/09	101	80 - 120	97	80 - 120	<1.0	ug/L	11	20
6057731	Dissolved Barium (Ba)	2019/04/09	99	80 - 120	97	80 - 120	<2.0	ug/L	1.0	20
6057731	Dissolved Beryllium (Be)	2019/04/09	101	80 - 120	98	80 - 120	<0.50	ug/L	NC	20
6057731	Dissolved Boron (B)	2019/04/09	98	80 - 120	99	80 - 120	<10	ug/L	2.2	20
6057731	Dissolved Cadmium (Cd)	2019/04/09	102	80 - 120	100	80 - 120	<0.10	ug/L	NC	20
6057731	Dissolved Chromium (Cr)	2019/04/09	100	80 - 120	98	80 - 120	<5.0	ug/L	NC	20
6057731	Dissolved Cobalt (Co)	2019/04/09	98	80 - 120	97	80 - 120	<0.50	ug/L	4.4	20
6057731	Dissolved Copper (Cu)	2019/04/09	100	80 - 120	98	80 - 120	<1.0	ug/L	7.8	20
6057731	Dissolved Lead (Pb)	2019/04/09	92	80 - 120	94	80 - 120	<0.50	ug/L	NC	20
6057731	Dissolved Molybdenum (Mo)	2019/04/09	110	80 - 120	103	80 - 120	<0.50	ug/L	0.48	20
6057731	Dissolved Nickel (Ni)	2019/04/09	96	80 - 120	98	80 - 120	<1.0	ug/L	6.6	20
6057731	Dissolved Selenium (Se)	2019/04/09	104	80 - 120	102	80 - 120	<2.0	ug/L	NC	20
6057731	Dissolved Silver (Ag)	2019/04/09	101	80 - 120	100	80 - 120	<0.10	ug/L	NC	20
6057731	Dissolved Sodium (Na)	2019/04/09	NC	80 - 120	94	80 - 120	<100	ug/L	0.83	20
6057731	Dissolved Thallium (TI)	2019/04/09	92	80 - 120	94	80 - 120	<0.050	ug/L	NC	20
6057731	Dissolved Uranium (U)	2019/04/09	99	80 - 120	98	80 - 120	<0.10	ug/L	1.5	20
6057731	Dissolved Vanadium (V)	2019/04/09	102	80 - 120	98	80 - 120	<0.50	ug/L	NC	20
6057731	Dissolved Zinc (Zn)	2019/04/09	96	80 - 120	98	80 - 120	<5.0	ug/L	3.4	20
6058475	WAD Cyanide (Free)	2019/04/08	103	80 - 120	104	80 - 120	<1	ug/L	0	20
6059443	a-Chlordane	2019/04/10	88	50 - 130	86	50 - 130	<0.005	ug/L	9.0	30
6059443	Aldrin	2019/04/10	70	50 - 130	63	50 - 130	<0.005	ug/L	9.4	30
6059443	Aroclor 1242	2019/04/10					<0.05	ug/L		
6059443	Aroclor 1248	2019/04/10					<0.05	ug/L		
6059443	Aroclor 1254	2019/04/10					<0.05	ug/L		

QUALITY ASSURANCE REPORT(CONT'D)

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISSISSAUGA Sampler Initials: JP

			Matrix Spike		SPIKED	BLANK	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6059443	Aroclor 1260	2019/04/10					<0.05	ug/L		
6059443	Dieldrin	2019/04/10	101	50 - 130	103	50 - 130	<0.005	ug/L	8.9	30
6059443	Endosulfan I (alpha)	2019/04/10	80	50 - 130	90	50 - 130	<0.005	ug/L	0.81	30
6059443	Endosulfan II (beta)	2019/04/10	93	50 - 130	96	50 - 130	<0.005	ug/L	7.5	30
6059443	Endrin	2019/04/10	86	50 - 130	85	50 - 130	<0.005	ug/L	8.8	30
6059443	g-Chlordane	2019/04/10	83	50 - 130	86	50 - 130	<0.005	ug/L	9.3	30
6059443	Heptachlor epoxide	2019/04/10	78	50 - 130	78	50 - 130	<0.005	ug/L	8.5	30
6059443	Heptachlor	2019/04/10	86	50 - 130	63	50 - 130	<0.005	ug/L	22	30
6059443	Hexachlorobenzene	2019/04/10	81	50 - 130	81	50 - 130	<0.005	ug/L	9.5	30
6059443	Hexachlorobutadiene	2019/04/10	84	50 - 130	66	50 - 130	<0.009	ug/L	10	30
6059443	Hexachloroethane	2019/04/10	77	50 - 130	62	50 - 130	<0.01	ug/L	4.9	30
6059443	Lindane	2019/04/10	86	50 - 130	84	50 - 130	<0.003	ug/L	9.6	30
6059443	Methoxychlor	2019/04/10	128	50 - 130	99	50 - 130	<0.01	ug/L	12	30
6059443	o,p-DDD	2019/04/10	103	50 - 130	102	50 - 130	<0.005	ug/L	7.8	30
6059443	o,p-DDE	2019/04/10	90	50 - 130	88	50 - 130	<0.005	ug/L	9.1	30
6059443	o,p-DDT	2019/04/10	95	50 - 130	82	50 - 130	<0.005	ug/L	13	30
6059443	p,p-DDD	2019/04/10	93	50 - 130	91	50 - 130	<0.005	ug/L	6.6	30
6059443	p,p-DDE	2019/04/10	96	50 - 130	99	50 - 130	<0.005	ug/L	0.060	30
6059443	p,p-DDT	2019/04/10	109	50 - 130	84	50 - 130	<0.005	ug/L	13	30
6060635	Mercury (Hg)	2019/04/09	99	75 - 125	99	80 - 120	<0.1	ug/L	NC	20
6061367	1-Methylnaphthalene	2019/04/10	101	50 - 130	105	50 - 130	<0.050	ug/L	NC	30
6061367	2-Methylnaphthalene	2019/04/10	92	50 - 130	96	50 - 130	<0.050	ug/L	NC	30
6061367	Acenaphthene	2019/04/10	88	50 - 130	91	50 - 130	<0.050	ug/L	NC	30
6061367	Acenaphthylene	2019/04/10	89	50 - 130	92	50 - 130	<0.050	ug/L	NC	30
6061367	Anthracene	2019/04/10	88	50 - 130	91	50 - 130	<0.050	ug/L	NC	30
6061367	Benzo(a)anthracene	2019/04/10	88	50 - 130	93	50 - 130	<0.050	ug/L	NC	30
6061367	Benzo(a)pyrene	2019/04/10	81	50 - 130	86	50 - 130	<0.010	ug/L	NC	30
6061367	Benzo(b/j)fluoranthene	2019/04/10	77	50 - 130	82	50 - 130	<0.050	ug/L	NC	30
6061367	Benzo(g,h,i)perylene	2019/04/10	70	50 - 130	77	50 - 130	<0.050	ug/L	NC	30
6061367	Benzo(k)fluoranthene	2019/04/10	73	50 - 130	78	50 - 130	<0.050	ug/L	NC	30
6061367	Chrysene	2019/04/10	84	50 - 130	88	50 - 130	<0.050	ug/L	NC	30
6061367	Dibenz(a,h)anthracene	2019/04/10	71	50 - 130	78	50 - 130	<0.050	ug/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISSISSAUGA Sampler Initials: JP

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6061367	Fluoranthene	2019/04/10	91	50 - 130	94	50 - 130	<0.050	ug/L	NC	30
6061367	Fluorene	2019/04/10	87	50 - 130	89	50 - 130	<0.050	ug/L	NC	30
6061367	Indeno(1,2,3-cd)pyrene	2019/04/10	77	50 - 130	85	50 - 130	<0.050	ug/L	NC	30
6061367	Naphthalene	2019/04/10	87	50 - 130	90	50 - 130	<0.050	ug/L	NC	30
6061367	Phenanthrene	2019/04/10	88	50 - 130	90	50 - 130	<0.030	ug/L	NC	30
6061367	Pyrene	2019/04/10	90	50 - 130	93	50 - 130	<0.050	ug/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Pinchin Ltd Client Project #: 230989.001 Site Location: 131 EGLINTON AVE. EAST, MISSISSAUGA Sampler Initials: JP

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Service Specialist

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

None 9103 Produit # Milling on Link Owner Arrows Cite (Link) Arrows Cite (Link) <th></th> <th>11</th> <th>NOICE TO:</th> <th></th> <th></th> <th>REPO</th> <th>ORT TO:</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>PROJEC</th> <th>T INFORMATION:</th> <th></th> <th></th> <th>Laboratory Use</th> <th>Only:</th>		11	NOICE TO:			REPO	ORT TO:						PROJEC	T INFORMATION:			Laboratory Use	Only:
Image: Market Payable Answin Mildgate Birth Juny Back Pole Mild Status Pole Mild Status 2007 Massissaga ON LSP W/S Fax (605) 553-063 Fax (605) 553-063 Fax (706) 553-063 Fax Fax (706) 553-063 Fax Fax (706) 553-063 Fax Fax <td< td=""><td>bany Name</td><td>#3103 Pinchin I</td><td>Ltd</td><td>Сопра</td><td>ny Name:</td><td></td><td></td><td></td><td></td><td></td><td>Quotation #</td><td>54</td><td>A7092</td><td>27</td><td>5.00</td><td></td><td>Maxxam Job #:</td><td>Bottle Order #</td></td<>	bany Name	#3103 Pinchin I	Ltd	Сопра	ny Name:						Quotation #	54	A7092	27	5.00		Maxxam Job #:	Bottle Order #
Set APRIL Millioner Ch Anders Trail Project	ion	Accounts Payab	e	Attenti	m Mich	nel Birch) Jun	ny Pa	NK		P.O. #:						Sec. Sec.	L HEREIGHTERE
Maintaining of ML W/Ws Ymm Code // Maintaining Project Name Interfere Inter	55;	2470 Milltower C	rt	Addres	s			t			Project		23098	9.001		-		711893
Instrumentation The Instrumentation		Mississauga ON	L5N 7W5 (005) 262 0	691					_		Project Nam	ne.	1.21 1	- 01 1-	The	-	COC #:	Project Manage
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>		ap@pinchin.com	Fax: (903) 503-0	Tel.	mbirl @	ninchine	Fax four	USAN	ell's a	, dan	Site #		101	to an among the	K FORTUNO	4 1000	C#711893-01-01	Antonella Bras
Submitted Doint The MAXAM DRIVENDS WATER CHAIN DF CUSTOPY Require (Status) Require (Status) <threquire (st<="" td=""><td>FREC</td><td></td><td>WATER OR WATER INTEND</td><td>ED FOR HUMAN</td><td>CONSUMPTION</td><td>MUSTRE</td><td>m, crow</td><td>rectiv</td><td>10AMI</td><td>AN</td><td>ALYSIS REQ</td><td>UESTED (</td><td>PLEASE</td><td>E SPECIFIC)</td><td></td><td>-</td><td>Turnaround Time (TAT) R</td><td>equired:</td></threquire>	FREC		WATER OR WATER INTEND	ED FOR HUMAN	CONSUMPTION	MUSTRE	m, crow	rectiv	10AMI	AN	ALYSIS REQ	UESTED (PLEASE	E SPECIFIC)		-	Turnaround Time (TAT) R	equired:
Regulation Special Instructions Special Instructions Page 4 Regulatories		SUBMITTED	ON THE MAXXAM DRINKING V	VATER CHAIN OF	CUSTODY	TWOOT DE	u	(Please provide advance notice for	or rush projects
1 Charlen and Charle	Regula	ion 153 (2011)	Other Regul	ations	Special I	nstructions	rcle)		er)	Pkg				10.11		Regular (Standard) TAT:	
2 With Commendation Bits States	1	Res/Park Mediur	n/Fine CCME Sanitary S	Sewer Bylaw	1.1.1		2 Sec		(Wal	anics						Standard TA	AT = 5-7 Working days for most tests	
3	2	Ind/Comm Coarse	Reg 558. Storm Ser	Bylaw	RSC	-	g / C		cides	Inorg						Please note	Standard TAT for certain tests such as E	30D and Diaxins/Furans
Include Criteria on Certificate of Analysis (YMN7_D) Imme Samples Matrix Imme Samples Imme Samples Matrix Imme Samples Imme Sample	3 L	Agrillater La or RS	MISA Municipality		Anal	ISIS	Ped (2	Pesti	als &						Job Space	fic Rush TAT (If applies to entire sub-	mission)
Include Citeria on Certificate of Analysis (VM07_L) Sample Barcode Libel Sample (Location) Identification Date Sample Time Sample I Matrix Bar Sample I Matrix Bar Sample I Matrix Real Continuation Number	-		Other		Print and	1.1	etals	B PAI-	3 00	3 Met						Date Requir	edTr	ne Required:
Sample Baroole Label Sample (Location) Identification Date Sample di Trime Sample di Matrix IL B </td <td></td> <td>Include Criteri</td> <td>a on Certificate of Analysis (Y/N)</td> <td>17 N</td> <td></td> <td></td> <td>blai</td> <td>9 15:</td> <td>g 15</td> <td>9 15</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Rush Confi</td> <td>mation Number:(o</td> <td>call lab for #)</td>		Include Criteri	a on Certificate of Analysis (Y/N)	17 N			blai	9 15:	g 15	9 15						Rush Confi	mation Number:(o	call lab for #)
MWI9-05 April 519 [I:30Am GW Yes V 9 trace & dediment Image: State of the	Samp	le Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix	- u.	O Re	O Re	O.Re (WW)						# of Bottles	Comm	ients
IMIN (PP ()S) M(II (-1)) (I-SOMIN GRU Tes V V M(II (-1))			Maulia DE	Andsis	11-7 AA	8.11	Var	1	1/	./						0		
* RELINQUISHED BY: (Signaturoliprint) Date: (YY/MMIOD) Time RECEIVED BY: (Signaturoliprint) Date: (YY/MMIOD) Time Bar used and not an other standing * RELINQUISHED BY: (Signaturoliprint) Date: (YY/MMIOD) Time Bar used and not an other standing Time Standing			101017-05	Hur 21	11-SOAM	GW	tes	V	V	V			_			4	trace sectiment	
'RELINQUISHED BY: (Signaturelifyint) Date: (YYMMDD) Time RECEIVED by: (Signaturelifyint) Time Received by: (Signaturelifyint) Date: (YYMMDD) Time																		
'RELINQUISHED BY: (Signature/Print) Date: (YY/MMDD) Time RECEIVED BY: (Signature/Print) Date: (YY/MMDD) Time # jars used and in the sensitive Time Sensitive Ti	_											-	-					
' RELINQUISHED BY: (Signature/Print) Date: (YYMM0D) Time Figure used and not sphanitize I and a sector of the sector of t																		
'RELINQUISHED BY: (Signaturo/Print) Date: (YY/MMDD) Time Figuraturo/Print) Time Figuraturo/Print) Date: (YY/MMDD) Time Figuraturo/Print) Time Figuraturo/Print) Date: (YY/MMDD) Time Figuraturo/Print)				-	1		-			-								
Control in the intervalue in				_														
Control of the second of																		
Control in the sensitive transactor in the sensitive	_					1												
Control in the second sec																		
Control of the second of	_				-				-				-			+	la la companya de la	
Antonella Brasil Antonella Brasil Antonella Brasil Ilili Ilili Ilili Ilili B989881 B989881 B989881 DSG ENV-748 'RELINQUISHED BY: (Signaturo/Print) Date: (YY/MM/DD) Time # jars used and not softwinited Time Sensitive Tamperature (*CL on Receit Custody Seal Yes						1										1	05-Apr-10 15.0	
Custody Seal Ves				_	-				-	-			-			+	Antonella Desa'	
RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time RECEIVED BY: (Signature/Print) Date: (YY/MM/DD) Time RECEIVED BY: (Signature/Print) Date: (YY/MM/DD) Time Received and receiv																NH.	I IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIII	
Custody Seal Ves						-										1	B989881	
				-														
'RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time # jars used and not solumitted Laboratory Use Only Image: Application of the second s									1-11							DS	G ENV-748	
RELINGUISHED BT: (signature/i/mit) Date: (TY/MM/DD) Time # jars used and Laboratory Use Only Laboratory Use Only Time # jars used and Laboratory Use Only Time						DEGEN			_					1.0		- Int	Lange Hare Only	
Temperature (PC) on Receiption (VI) (2010/09) (2010/09) (2010/09)	-	RELINQUISHED BY: (S	Ignature//rint) Date:	04/05 2	-Man III	RECEIVED	BT: (Signature/	Print)	1	Date: (YY/	ww/DD)	Tin	ne	# jars used and not submitted	Time Sensitive	Labo	Custody S	Seal Yes
Present V		LAC	Schound land (20	100 2	-up K.V.	h	y was cal	UNSUEN	V	01710	(10)	12:0	2	()	THE PERMIT	Temper	12 /u Present	V,

Maxxam Analytics International Corporation o/a Maxxam Analytics

Your Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Your C.O.C. #: 709705-01-01

Attention: Michael Birch

Pinchin Ltd 2470 Milltower Crt Mississauga, ON CANADA L5N 7W5

Report Date: 2019/04/16 Report #: R5673351 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B980920 Received: 2019/03/28, 14:02

Sample Matrix: Soil # Samples Received: 20

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum	7	N/A	2019/04/03	CAM SOP-00301	EPA 8270D m
Methylnaphthalene Sum	1	N/A	2019/04/09	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	2	2019/04/08	2019/04/08	CAM SOP-00408	R153 Ana. Prot. 2011
Free (WAD) Cyanide	6	2019/03/29	2019/04/01	CAM SOP-00457	OMOE E3015 m
Free (WAD) Cyanide	2	2019/04/05	2019/04/08	CAM SOP-00457	OMOE E3015 m
Conductivity	7	2019/04/03	2019/04/03	CAM SOP-00414	OMOE E3530 v1 m
Conductivity	1	2019/04/08	2019/04/08	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	8	2019/04/02	2019/04/03	CAM SOP-00436	EPA 3060/7199 m
Hexavalent Chromium in Soil by IC (1)	2	2019/04/09	2019/04/09	CAM SOP-00436	EPA 3060/7199 m
Petroleum Hydro. CCME F1 & BTEX in Soil (2)	7	N/A	2019/04/01	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydro. CCME F1 & BTEX in Soil (2)	1	N/A	2019/04/05	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (3)	7	2019/04/02	2019/04/03	CAM SOP-00316	CCME CWS m
Petroleum Hydrocarbons F2-F4 in Soil (3)	1	2019/04/08	2019/04/09	CAM SOP-00316	CCME CWS m
Strong Acid Leachable Metals by ICPMS	8	2019/04/01	2019/04/01	CAM SOP-00447	EPA 6020B m
Strong Acid Leachable Metals by ICPMS	2	2019/04/08	2019/04/08	CAM SOP-00447	EPA 6020B m
Moisture	18	N/A	2019/03/29	CAM SOP-00445	Carter 2nd ed 51.2 m
OC Pesticides (Selected) & PCB (4)	7	2019/03/29	2019/03/30	CAM SOP-00307	SW846 8081, 8082
OC Pesticides (Selected) & PCB (4)	2	2019/04/08	2019/04/08	CAM SOP-00307	SW846 8081, 8082
OC Pesticides Summed Parameters	7	N/A	2019/03/30	CAM SOP-00307	EPA 8081/8082 m
OC Pesticides Summed Parameters	2	N/A	2019/04/08	CAM SOP-00307	EPA 8081/8082 m
PAH Compounds in Soil by GC/MS (SIM)	7	2019/04/02	2019/04/03	CAM SOP-00318	EPA 8270D m
PAH Compounds in Soil by GC/MS (SIM)	1	2019/04/08	2019/04/09	CAM SOP-00318	EPA 8270D m
pH CaCl2 EXTRACT	10	2019/04/02	2019/04/02	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	7	N/A	2019/04/03	CAM SOP-00102	EPA 6010C
Sodium Adsorption Ratio (SAR)	1	N/A	2019/04/09	CAM SOP-00102	EPA 6010C

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless

Your Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Your C.O.C. #: 709705-01-01

Attention: Michael Birch

Pinchin Ltd 2470 Milltower Crt Mississauga, ON CANADA L5N 7W5

> Report Date: 2019/04/16 Report #: R5673351 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B980920 Received: 2019/03/28. 14:02

indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Soils are reported on a dry weight basis unless otherwise specified.

(2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated.
(3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

(4) Chlordane (Total) = Alpha Chlordane + Gamma Chlordane

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Antonella Brasil, Senior Project Manager Email: ABrasil@maxxam.ca Phone# (905)817-5817

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

O.REG 153 METALS & INORGANICS PKG (SOIL)

Maxxam ID		JHS261			JHS264		
Sampling Date		2019/03/27			2019/03/27		
		09:00			13:45		
COC Number		709705-01-01			709705-01-01		
	UNITS	MW19-05 S1	RDL	QC Batch	BH19-07 S1	RDL	QC Batch
Calculated Parameters							
Sodium Adsorption Ratio	N/A	2.2		6055328			
Inorganics			-		-		
Conductivity	mS/cm	0.51	0.002	6058242			
WAD Cyanide (Free)	ug/g	0.02	0.01	6056479	0.01	0.01	6056479
Chromium (VI)	ug/g	<0.2	0.2	6060088	<0.2	0.2	6060088
Metals			-		-		
Hot Water Ext. Boron (B)	ug/g	1.3	0.050	6058338	0.82	0.050	6058338
Acid Extractable Antimony (Sb)	ug/g	0.28	0.20	6058365	<0.20	0.20	6058365
Acid Extractable Arsenic (As)	ug/g	8.5	1.0	6058365	11	1.0	6058365
Acid Extractable Barium (Ba)	ug/g	150	0.50	6058365	410	0.50	6058365
Acid Extractable Beryllium (Be)	ug/g	0.92	0.20	6058365	1.2	0.20	6058365
Acid Extractable Boron (B)	ug/g	8.4	5.0	6058365	8.3	5.0	6058365
Acid Extractable Cadmium (Cd)	ug/g	0.26	0.10	6058365	0.59	0.10	6058365
Acid Extractable Chromium (Cr)	ug/g	23	1.0	6058365	33	1.0	6058365
Acid Extractable Cobalt (Co)	ug/g	11	0.10	6058365	18	0.10	6058365
Acid Extractable Copper (Cu)	ug/g	32	0.50	6058365	45	0.50	6058365
Acid Extractable Lead (Pb)	ug/g	18	1.0	6058365	11	1.0	6058365
Acid Extractable Molybdenum (Mo)	ug/g	0.77	0.50	6058365	0.74	0.50	6058365
Acid Extractable Nickel (Ni)	ug/g	20	0.50	6058365	27	0.50	6058365
Acid Extractable Selenium (Se)	ug/g	0.58	0.50	6058365	1.0	0.50	6058365
Acid Extractable Silver (Ag)	ug/g	<0.20	0.20	6058365	<0.20	0.20	6058365
Acid Extractable Thallium (Tl)	ug/g	0.15	0.050	6058365	0.21	0.050	6058365
Acid Extractable Uranium (U)	ug/g	1.1	0.050	6058365	1.0	0.050	6058365
Acid Extractable Vanadium (V)	ug/g	36	5.0	6058365	46	5.0	6058365
Acid Extractable Zinc (Zn)	ug/g	71	5.0	6058365	72	5.0	6058365
Acid Extractable Mercury (Hg)	ug/g	0.056	0.050	6058365	0.071	0.050	6058365
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

O.REG 153 OC PESTICIDES (SOIL)

Maxxam ID		JHS252	JHS254			JHS255	JHS258		
Sampling Date		2019/03/27	2019/03/27			2019/03/27	2019/03/27		
		10:30	11:30			12:40	13:10		
COC Number		709705-01-01	709705-01-01			709705-01-01	709705-01-01		
	UNITS	MW19-01 S1	MW19-02 S1	RDL	QC Batch	MW19-03 S1	MW19-04 S1	RDL	QC Batch
Inorganics									
Moisture	%					28	20	1.0	6043752
Calculated Parameters									
Chlordane (Total)	ug/g	<0.0020	<0.0020	0.0020	6042953	<0.020	<0.020	0.020	6042953
o,p-DDD + p,p-DDD	ug/g	<0.0020	<0.0020	0.0020	6042953	<0.020	<0.020	0.020	6042953
o,p-DDE + p,p-DDE	ug/g	0.0071	<0.0020	0.0020	6042953	<0.020	<0.020	0.020	6042953
o,p-DDT + p,p-DDT	ug/g	0.0028	<0.0020	0.0020	6042953	<0.020	<0.020	0.020	6042953
Total Endosulfan	ug/g	<0.0020	<0.0020	0.0020	6042953	<0.020	<0.020	0.020	6042953
Total PCB	ug/g	<0.015	<0.015	0.015	6042953	<0.15	<0.15	0.15	6042953
Pesticides & Herbicides									
Aldrin	ug/g	<0.0020	<0.0020	0.0020	6044017	<0.020	<0.020	0.020	6044017
a-Chlordane	ug/g	<0.0020	<0.0020	0.0020	6044017	<0.020	<0.020	0.020	6044017
g-Chlordane	ug/g	<0.0020	<0.0020	0.0020	6044017	<0.020	<0.020	0.020	6044017
o,p-DDD	ug/g	<0.0020	<0.0020	0.0020	6044017	<0.020	<0.020	0.020	6044017
p,p-DDD	ug/g	<0.0020	<0.0020	0.0020	6044017	<0.020	<0.020	0.020	6044017
o,p-DDE	ug/g	<0.0020	<0.0020	0.0020	6044017	<0.020	<0.020	0.020	6044017
p,p-DDE	ug/g	0.0071	<0.0020	0.0020	6044017	<0.020	<0.020	0.020	6044017
o,p-DDT	ug/g	<0.0020	<0.0020	0.0020	6044017	<0.020	<0.020	0.020	6044017
p,p-DDT	ug/g	0.0028	<0.0020	0.0020	6044017	<0.020	<0.020	0.020	6044017
Dieldrin	ug/g	<0.0020	<0.0020	0.0020	6044017	<0.020	<0.020	0.020	6044017
Lindane	ug/g	<0.0020	<0.0020	0.0020	6044017	<0.020	<0.020	0.020	6044017
Endosulfan I (alpha)	ug/g	<0.0020	<0.0020	0.0020	6044017	<0.020	<0.020	0.020	6044017
Endosulfan II (beta)	ug/g	<0.0020	<0.0020	0.0020	6044017	<0.020	<0.020	0.020	6044017
Endrin	ug/g	<0.0020	<0.0020	0.0020	6044017	<0.020	<0.020	0.020	6044017
Heptachlor	ug/g	<0.0020	<0.0020	0.0020	6044017	<0.020	<0.020	0.020	6044017
Heptachlor epoxide	ug/g	<0.0020	<0.0020	0.0020	6044017	<0.020	<0.020	0.020	6044017
Hexachlorobenzene	ug/g	<0.0020	<0.0020	0.0020	6044017	<0.020	<0.020	0.020	6044017
Hexachlorobutadiene	ug/g	<0.0020	<0.0020	0.0020	6044017	<0.020	<0.020	0.020	6044017
Hexachloroethane	ug/g	<0.0020	<0.0020	0.0020	6044017	<0.020	<0.020	0.020	6044017
Methoxychlor	ug/g	<0.0050	<0.0050	0.0050	6044017	<0.050	<0.050	0.050	6044017
Aroclor 1242	ug/g	<0.015	<0.015	0.015	6044017	<0.15	<0.15	0.15	6044017
Aroclor 1248	ug/g	<0.015	<0.015	0.015	6044017	<0.15	<0.15	0.15	6044017
RDL = Reportable Detection Li	nit								

QC Batch = Quality Control Batch

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

Maxxam ID		JHS252	JHS254			JHS255	JHS258		
Compling Data		2019/03/27	2019/03/27			2019/03/27	2019/03/27		
		10:30	11:30			12:40	13:10		
COC Number		709705-01-01	709705-01-01			709705-01-01	709705-01-01		
	UNITS	MW19-01 S1	MW19-02 S1	RDL	QC Batch	MW19-03 S1	MW19-04 S1	RDL	QC Batch
Aroclor 1254	ug/g	<0.015	<0.015	0.015	6044017	<0.15	<0.15	0.15	6044017
Aroclor 1260	ug/g	<0.015	<0.015	0.015	6044017	<0.15	<0.15	0.15	6044017
Surrogate Recovery (%)	•								,
2,4,5,6-Tetrachloro-m-xylene	%	93	83		6044017	106	97		6044017
Decachlorobiphenyl	%	116	97		6044017	108	92		6044017
RDL = Reportable Detection Limit									
QC Batch = Quality Control Bat	ch								

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

O.REG 153 OC PESTICIDES (SOIL)

Maxxam ID		JHS261			JHS262			JHS264		
Sampling Date		2019/03/27			2019/03/27			2019/03/27		
Sampling Date		09:00			13:30			13:45		
COC Number		709705-01-01			709705-01-01			709705-01-01		
	UNITS	MW19-05 S1	RDL	QC Batch	BH19-06 S1	RDL	QC Batch	BH19-07 S1	RDL	QC Batch
Inorganics										
Moisture	%				17	1.0	6043752			
Calculated Parameters	•					-				
Chlordane (Total)	ug/g	<0.0020	0.0020	6055768	<0.0020	0.0020	6042953	<0.0020	0.0020	6055768
o,p-DDD + p,p-DDD	ug/g	0.0022	0.0020	6055768	<0.0020	0.0020	6042953	0.0038	0.0020	6055768
o,p-DDE + p,p-DDE	ug/g	0.053	0.010	6055768	<0.0020	0.0020	6042953	0.034	0.010	6055768
o,p-DDT + p,p-DDT	ug/g	<0.0020	0.0020	6055768	<0.0020	0.0020	6042953	0.0079	0.0020	6055768
Total Endosulfan	ug/g	<0.0020	0.0020	6055768	<0.0020	0.0020	6042953	<0.0020	0.0020	6055768
Total PCB	ug/g	<0.020	0.020	6055768	<0.015	0.015	6042953	<0.015	0.015	6055768
Pesticides & Herbicides	•									
Aldrin	ug/g	<0.0020	0.0020	6058218	<0.0020	0.0020	6044017	<0.0020	0.0020	6058218
a-Chlordane	ug/g	<0.0020	0.0020	6058218	<0.0020	0.0020	6044017	<0.0020	0.0020	6058218
g-Chlordane	ug/g	<0.0020	0.0020	6058218	<0.0020	0.0020	6044017	<0.0020	0.0020	6058218
o,p-DDD	ug/g	<0.0020	0.0020	6058218	<0.0020	0.0020	6044017	<0.0020	0.0020	6058218
p,p-DDD	ug/g	0.0022	0.0020	6058218	<0.0020	0.0020	6044017	0.0038	0.0020	6058218
o,p-DDE	ug/g	<0.0020	0.0020	6058218	<0.0020	0.0020	6044017	<0.0020	0.0020	6058218
p,p-DDE	ug/g	0.053	0.010	6058218	<0.0020	0.0020	6044017	0.034	0.010	6058218
o,p-DDT	ug/g	<0.0020	0.0020	6058218	<0.0020	0.0020	6044017	<0.0020	0.0020	6058218
p,p-DDT	ug/g	<0.0020	0.0020	6058218	<0.0020	0.0020	6044017	0.0079	0.0020	6058218
Dieldrin	ug/g	<0.0020	0.0020	6058218	<0.0020	0.0020	6044017	<0.0020	0.0020	6058218
Lindane	ug/g	<0.0020	0.0020	6058218	<0.0020	0.0020	6044017	<0.0020	0.0020	6058218
Endosulfan I (alpha)	ug/g	<0.0020	0.0020	6058218	<0.0020	0.0020	6044017	<0.0020	0.0020	6058218
Endosulfan II (beta)	ug/g	<0.0020	0.0020	6058218	<0.0020	0.0020	6044017	<0.0020	0.0020	6058218
Endrin	ug/g	<0.0020	0.0020	6058218	<0.0020	0.0020	6044017	<0.0020	0.0020	6058218
Heptachlor	ug/g	<0.0020	0.0020	6058218	<0.0020	0.0020	6044017	<0.0020	0.0020	6058218
Heptachlor epoxide	ug/g	<0.0020	0.0020	6058218	<0.0020	0.0020	6044017	<0.0020	0.0020	6058218
Hexachlorobenzene	ug/g	<0.0020	0.0020	6058218	<0.0020	0.0020	6044017	<0.0020	0.0020	6058218
Hexachlorobutadiene	ug/g	<0.0020	0.0020	6058218	<0.0020	0.0020	6044017	<0.0020	0.0020	6058218
Hexachloroethane	ug/g	<0.0020	0.0020	6058218	<0.0020	0.0020	6044017	<0.0020	0.0020	6058218
Methoxychlor	ug/g	<0.0050	0.0050	6058218	<0.0050	0.0050	6044017	<0.0050	0.0050	6058218
Aroclor 1242	ug/g	<0.020	0.020	6058218	<0.015	0.015	6044017	<0.015	0.015	6058218
Aroclor 1248	ug/g	<0.015	0.015	6058218	<0.015	0.015	6044017	<0.015	0.015	6058218
RDL = Reportable Detection Lir	nit									

QC Batch = Quality Control Batch

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

Maxxam ID		JHS261			JHS262			JHS264			
Sampling Data		2019/03/27			2019/03/27			2019/03/27			
Sampling Date		09:00			13:30			13:45			
COC Number		709705-01-01			709705-01-01			709705-01-01			
	UNITS	MW19-05 S1	RDL	QC Batch	BH19-06 S1	RDL	QC Batch	BH19-07 S1	RDL	QC Batch	
Aroclor 1254	ug/g	<0.015	0.015	6058218	<0.015	0.015	6044017	<0.015	0.015	6058218	
Aroclor 1260	ug/g	<0.015	0.015	6058218	<0.015	0.015	6044017	<0.015	0.015	6058218	
Surrogate Recovery (%)										•	
2,4,5,6-Tetrachloro-m-xylene	%	71		6058218	85		6044017	76		6058218	
Decachlorobiphenyl	%	96		6058218	104		6044017	110		6058218	
RDL = Reportable Detection Lir	RDL = Reportable Detection Limit										
QC Batch = Quality Control Bat	:ch										

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

Maxxam ID		JHS265			JHS270		
Sampling Date		2019/03/27			2019/03/27		
		11:10			13:30		
COC Number		709705-01-01			709705-01-01		
	UNITS	BH19-08 S1	RDL	QC Batch	DUP19-06	RDL	QC Batch
Inorganics							
Moisture	%	16	1.0	6044034	19	1.0	6043752
Calculated Parameters							
Chlordane (Total)	ug/g	<0.020	0.020	6042953	<0.0020	0.0020	6042953
o,p-DDD + p,p-DDD	ug/g	<0.020	0.020	6042953	<0.0020	0.0020	6042953
o,p-DDE + p,p-DDE	ug/g	<0.020	0.020	6042953	0.0038	0.0020	6042953
o,p-DDT + p,p-DDT	ug/g	<0.020	0.020	6042953	<0.0020	0.0020	6042953
Total Endosulfan	ug/g	<0.020	0.020	6042953	<0.0020	0.0020	6042953
Total PCB	ug/g	<0.15	0.15	6042953	<0.015	0.015	6042953
Pesticides & Herbicides	•		-			-	
Aldrin	ug/g	<0.020	0.020	6044017	<0.0020	0.0020	6044017
a-Chlordane	ug/g	<0.020	0.020	6044017	<0.0020	0.0020	6044017
g-Chlordane	ug/g	<0.020	0.020	6044017	<0.0020	0.0020	6044017
o,p-DDD	ug/g	<0.020	0.020	6044017	<0.0020	0.0020	6044017
p,p-DDD	ug/g	<0.020	0.020	6044017	<0.0020	0.0020	6044017
o,p-DDE	ug/g	<0.020	0.020	6044017	<0.0020	0.0020	6044017
p,p-DDE	ug/g	<0.020	0.020	6044017	0.0038	0.0020	6044017
o,p-DDT	ug/g	<0.020	0.020	6044017	<0.0020	0.0020	6044017
p,p-DDT	ug/g	<0.020	0.020	6044017	<0.0020	0.0020	6044017
Dieldrin	ug/g	<0.020	0.020	6044017	<0.0020	0.0020	6044017
Lindane	ug/g	<0.020	0.020	6044017	<0.0020	0.0020	6044017
Endosulfan I (alpha)	ug/g	<0.020	0.020	6044017	<0.0020	0.0020	6044017
Endosulfan II (beta)	ug/g	<0.020	0.020	6044017	<0.0020	0.0020	6044017
Endrin	ug/g	<0.020	0.020	6044017	<0.0020	0.0020	6044017
Heptachlor	ug/g	<0.020	0.020	6044017	<0.0020	0.0020	6044017
Heptachlor epoxide	ug/g	<0.020	0.020	6044017	<0.0020	0.0020	6044017
Hexachlorobenzene	ug/g	<0.020	0.020	6044017	<0.0020	0.0020	6044017
Hexachlorobutadiene	ug/g	<0.020	0.020	6044017	<0.0020	0.0020	6044017
Hexachloroethane	ug/g	<0.020	0.020	6044017	<0.0020	0.0020	6044017
Methoxychlor	ug/g	<0.050	0.050	6044017	<0.0050	0.0050	6044017
Aroclor 1242	ug/g	<0.15	0.15	6044017	<0.015	0.015	6044017
Aroclor 1248	ug/g	<0.15	0.15	6044017	<0.015	0.015	6044017
RDL = Reportable Detection Lir	nit						
QC Batch = Quality Control Bat	ch						

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

Maxxam ID		JHS265			JHS270			
Sampling Data		2019/03/27			2019/03/27			
Sampling Date		11:10			13:30			
COC Number		709705-01-01			709705-01-01			
	UNITS	BH19-08 S1	RDL	QC Batch	DUP19-06	RDL	QC Batch	
Aroclor 1254	ug/g	<0.15	0.15	6044017	<0.015	0.015	6044017	
Aroclor 1260	ug/g	<0.15	0.15	6044017	<0.015	0.015	6044017	
Surrogate Recovery (%)			,					
2,4,5,6-Tetrachloro-m-xylene	%	111		6044017	89		6044017	
Decachlorobiphenyl	%	104		6044017	114		6044017	
RDL = Reportable Detection Limit								
QC Batch = Quality Control Bat	ch							

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

O.REG 153 PAHS (SOIL)

Maxxam ID		JHS254		JHS257	JHS260			JHS261			
Sampling Data		2019/03/27		2019/03/27	2019/03/27			2019/03/27			
Sampling Date		11:30		12:50	13:20			09:00			
COC Number		709705-01-01		709705-01-01	709705-01-01			709705-01-01			
	UNITS	MW19-02 S1	QC Batch	MW19-03 S3	MW19-04 S3	RDL	QC Batch	MW19-05 S1	RDL	QC Batch	
Inorganics											
Moisture	%							16	1.0	6044034	
Calculated Parameters	•			•		•					
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	6055278	<0.0071	<0.0071	0.0071	6042896	<0.0071	0.0071	6042896	
Polyaromatic Hydrocarbons											
Acenaphthene	ug/g	<0.0050	6058330	<0.0050	<0.0050	0.0050	6049061	<0.0050	0.0050	6049061	
Acenaphthylene	ug/g	<0.0050	6058330	<0.0050	<0.0050	0.0050	6049061	<0.0050	0.0050	6049061	
Anthracene	ug/g	<0.0050	6058330	<0.0050	<0.0050	0.0050	6049061	<0.0050	0.0050	6049061	
Benzo(a)anthracene	ug/g	<0.0050	6058330	<0.0050	<0.0050	0.0050	6049061	<0.0050	0.0050	6049061	
Benzo(a)pyrene	ug/g	<0.0050	6058330	<0.0050	<0.0050	0.0050	6049061	<0.0050	0.0050	6049061	
Benzo(b/j)fluoranthene	ug/g	<0.0050	6058330	<0.0050	<0.0050	0.0050	6049061	<0.0050	0.0050	6049061	
Benzo(g,h,i)perylene	ug/g	<0.0050	6058330	<0.0050	<0.0050	0.0050	6049061	<0.0050	0.0050	6049061	
Benzo(k)fluoranthene	ug/g	<0.0050	6058330	<0.0050	<0.0050	0.0050	6049061	<0.0050	0.0050	6049061	
Chrysene	ug/g	<0.0050	6058330	<0.0050	<0.0050	0.0050	6049061	<0.0050	0.0050	6049061	
Dibenz(a,h)anthracene	ug/g	<0.0050	6058330	<0.0050	<0.0050	0.0050	6049061	<0.0050	0.0050	6049061	
Fluoranthene	ug/g	<0.0050	6058330	<0.0050	<0.0050	0.0050	6049061	<0.0050	0.0050	6049061	
Fluorene	ug/g	<0.0050	6058330	<0.0050	<0.0050	0.0050	6049061	<0.0050	0.0050	6049061	
Indeno(1,2,3-cd)pyrene	ug/g	<0.0050	6058330	<0.0050	<0.0050	0.0050	6049061	<0.0050	0.0050	6049061	
1-Methylnaphthalene	ug/g	<0.0050	6058330	<0.0050	<0.0050	0.0050	6049061	<0.0050	0.0050	6049061	
2-Methylnaphthalene	ug/g	<0.0050	6058330	<0.0050	<0.0050	0.0050	6049061	<0.0050	0.0050	6049061	
Naphthalene	ug/g	<0.0050	6058330	<0.0050	<0.0050	0.0050	6049061	<0.0050	0.0050	6049061	
Phenanthrene	ug/g	<0.0050	6058330	<0.0050	<0.0050	0.0050	6049061	<0.0050	0.0050	6049061	
Pyrene	ug/g	<0.0050	6058330	<0.0050	<0.0050	0.0050	6049061	<0.0050	0.0050	6049061	
Surrogate Recovery (%)											
D10-Anthracene	%	87	6058330	93	96		6049061	96		6049061	
D14-Terphenyl (FS)	%	74	6058330	97	101		6049061	107		6049061	
D8-Acenaphthylene	%	73	6058330	96	94		6049061	95		6049061	
RDL = Reportable Detection L	imit										
QC Batch = Quality Control Ba	atch										

Report Date: 2019/04/16

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

O.REG 153 PAHS (SOIL)

Maxxam ID		JHS263	JHS264	JHS265	JHS268		
Sampling Data		2019/03/27	2019/03/27	2019/03/27	2019/03/27		
Sampling Date		13:35	13:45	11:10	12:50		
COC Number		709705-01-01	709705-01-01	709705-01-01	709705-01-01		
	UNITS	BH19-06 S2	BH19-07 S1	BH19-08 S1	DUP19-03	RDL	QC Batch
Calculated Parameters							
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	<0.0071	<0.0071	<0.0071	0.0071	6042896
Polyaromatic Hydrocarbons							
Acenaphthene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6049061
Acenaphthylene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6049061
Anthracene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6049061
Benzo(a)anthracene	ug/g	<0.0050	0.0098	<0.0050	<0.0050	0.0050	6049061
Benzo(a)pyrene	ug/g	<0.0050	0.013	<0.0050	<0.0050	0.0050	6049061
Benzo(b/j)fluoranthene	ug/g	<0.0050	0.021	<0.0050	<0.0050	0.0050	6049061
Benzo(g,h,i)perylene	ug/g	<0.0050	0.015	<0.0050	<0.0050	0.0050	6049061
Benzo(k)fluoranthene	ug/g	<0.0050	0.0066	<0.0050	<0.0050	0.0050	6049061
Chrysene	ug/g	<0.0050	0.012	<0.0050	<0.0050	0.0050	6049061
Dibenz(a,h)anthracene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6049061
Fluoranthene	ug/g	<0.0050	0.024	<0.0050	<0.0050	0.0050	6049061
Fluorene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6049061
Indeno(1,2,3-cd)pyrene	ug/g	<0.0050	0.012	<0.0050	<0.0050	0.0050	6049061
1-Methylnaphthalene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6049061
2-Methylnaphthalene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6049061
Naphthalene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6049061
Phenanthrene	ug/g	<0.0050	0.0087	<0.0050	<0.0050	0.0050	6049061
Pyrene	ug/g	<0.0050	0.025	<0.0050	<0.0050	0.0050	6049061
Surrogate Recovery (%)							
D10-Anthracene	%	95	94	91	93		6049061
D14-Terphenyl (FS)	%	104	108	101	112		6049061
D8-Acenaphthylene	%	90	96	96	101		6049061
RDL = Reportable Detection L	imit						
QC Batch = Quality Control Ba	atch						

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

O.REG 153 PETROLEUM HYDROCARBONS (SOIL)

					1	1			1	1	· · · · · ·
Maxxam ID		JHS254			JHS254			JHS257	JHS260		
Sampling Date		2019/03/27			2019/03/27			2019/03/27	2019/03/27		ļ
Sampling Sate		11:30		ļ	11:30			12:50	13:20		ļ
COC Number		709705-01-01			709705-01-01			709705-01-01	709705-01-01		
	UNITS	MW19-02 S1	RDL	QC Batch	MW19-02 S1 Lab-Dup	RDL	QC Batch	MW19-03 S3	MW19-04 S3	RDL	QC Batch
Inorganics											
Moisture	%							11	17	1.0	6044034
BTEX & F1 Hydrocarbons	·	·									
Benzene	ug/g	<0.020	0.020	6056409	<0.020	0.020	6056409	<0.020	<0.020	0.020	6045547
Toluene	ug/g	<0.020	0.020	6056409	<0.020	0.020	6056409	<0.020	<0.020	0.020	6045547
Ethylbenzene	ug/g	<0.020	0.020	6056409	<0.020	0.020	6056409	<0.020	<0.020	0.020	6045547
o-Xylene	ug/g	<0.020	0.020	6056409	<0.020	0.020	6056409	<0.020	<0.020	0.020	6045547
p+m-Xylene	ug/g	<0.040	0.040	6056409	<0.040	0.040	6056409	<0.040	<0.040	0.040	6045547
Total Xylenes	ug/g	<0.040	0.040	6056409	<0.040	0.040	6056409	<0.040	<0.040	0.040	6045547
F1 (C6-C10)	ug/g	<10	10	6056409	<10	10	6056409	<10	<10	10	6045547
F1 (C6-C10) - BTEX	ug/g	<10	10	6056409	<10	10	6056409	<10	<10	10	6045547
F2-F4 Hydrocarbons	·										
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	6058321				17	<10	10	6049040
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	6058321				<50	<50	50	6049040
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	6058321				<50	<50	50	6049040
Reached Baseline at C50	ug/g	Yes		6058321				Yes	Yes		6049040
Surrogate Recovery (%)		•		, <u> </u>		•				•	, <u> </u>
1,4-Difluorobenzene	%	98		6056409	118		6056409	97	98		6045547
4-Bromofluorobenzene	%	104		6056409	119		6056409	95	94		6045547
D10-Ethylbenzene	%	87		6056409	85		6056409	109	122		6045547
D4-1,2-Dichloroethane	%	95		6056409	129		6056409	97	98		6045547
o-Terphenyl	%	106		6058321				91	95		6049040
RDL = Reportable Detection L	imit		_			-				-	
QC Batch = Quality Control Ba	atch										
Lab-Dup = Laboratory Initiate	d Duplie	cate									

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

O.REG 153 PETROLEUM HYDROCARBONS (SOIL)

Maxxam ID		JHS261			JHS263	JHS264			JHS265		
Sampling Data		2019/03/27			2019/03/27	2019/03/27			2019/03/27		
Sampling Date		09:00			13:35	13:45			11:10		
COC Number		709705-01-01			709705-01-01	709705-01-01			709705-01-01		
	UNITS	MW19-05 S1	RDL	QC Batch	BH19-06 S2	BH19-07 S1	RDL	QC Batch	BH19-08 S1	RDL	QC Batch
Inorganics											
Moisture	%				14	17	1.0	6044034			
BTEX & F1 Hydrocarbons		•			•	•					
Benzene	ug/g	<0.020	0.020	6045547	<0.020	<0.020	0.020	6045547	<0.020	0.020	6045547
Toluene	ug/g	<0.020	0.020	6045547	<0.020	<0.020	0.020	6045547	<0.020	0.020	6045547
Ethylbenzene	ug/g	<0.020	0.020	6045547	<0.020	<0.020	0.020	6045547	<0.020	0.020	6045547
o-Xylene	ug/g	<0.020	0.020	6045547	<0.020	<0.020	0.020	6045547	<0.020	0.020	6045547
p+m-Xylene	ug/g	<0.040	0.040	6045547	<0.040	<0.040	0.040	6045547	<0.040	0.040	6045547
Total Xylenes	ug/g	<0.040	0.040	6045547	<0.040	<0.040	0.040	6045547	<0.040	0.040	6045547
F1 (C6-C10)	ug/g	<10	10	6045547	<10	<10	10	6045547	<10	10	6045547
F1 (C6-C10) - BTEX	ug/g	<10	10	6045547	<10	<10	10	6045547	<10	10	6045547
F2-F4 Hydrocarbons											
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	6049040	<10	<10	10	6049040	<10	10	6049040
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	6049040	<50	<50	50	6049040	<50	50	6049040
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	6049040	<50	<50	50	6049040	<50	50	6049040
Reached Baseline at C50	ug/g	Yes		6049040	Yes	Yes		6049040	Yes		6049040
Surrogate Recovery (%)											
1,4-Difluorobenzene	%	96		6045547	96	97		6045547	96		6045547
4-Bromofluorobenzene	%	95		6045547	95	96		6045547	94		6045547
D10-Ethylbenzene	%	108		6045547	113	108		6045547	111		6045547
D4-1,2-Dichloroethane	%	98		6045547	98	99		6045547	99		6045547
o-Terphenyl	%	93		6049040	93	91		6049040	93		6049040
RDL = Reportable Detection L QC Batch = Quality Control B	.imit atch										

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

O.REG 153 PETROLEUM HYDROCARBONS (SOIL)

Maxxam ID		JHS268		
Sampling Data		2019/03/27		
Sampling Date		12:50		
COC Number		709705-01-01		
	UNITS	DUP19-03	RDL	QC Batch
Inorganics				
Moisture	%	14	1.0	6044034
BTEX & F1 Hydrocarbons				
Benzene	ug/g	<0.020	0.020	6045547
Toluene	ug/g	<0.020	0.020	6045547
Ethylbenzene	ug/g	<0.020	0.020	6045547
o-Xylene	ug/g	<0.020	0.020	6045547
p+m-Xylene	ug/g	<0.040	0.040	6045547
Total Xylenes	ug/g	<0.040	0.040	6045547
F1 (C6-C10)	ug/g	<10	10	6045547
F1 (C6-C10) - BTEX	ug/g	<10	10	6045547
F2-F4 Hydrocarbons				
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	6049040
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	6049040
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	6049040
Reached Baseline at C50	ug/g	Yes		6049040
Surrogate Recovery (%)				
1,4-Difluorobenzene	%	97		6045547
4-Bromofluorobenzene	%	95		6045547
D10-Ethylbenzene	%	120		6045547
D4-1,2-Dichloroethane	%	98		6045547
o-Terphenyl	%	95		6049040
RDL = Reportable Detection L	.imit			
QC Batch = Quality Control Ba	atch			

Report Date: 2019/04/16

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

RESULTS OF ANALYSES OF SOIL

Maxxam ID		JHS252			JHS253			JHS254		
Sampling Date		2019/03/27			2019/03/27			2019/03/27		
Samping Date		10:30			10:40			11:30		
COC Number		709705-01-01			709705-01-01			709705-01-01		
	UNITS	MW19-01 S1	RDL	QC Batch	MW19-01 S3	RDL	QC Batch	MW19-02 S1	RDL	QC Batch
Calculated Parameters										
Sodium Adsorption Ratio	N/A	0.19		6042344				0.32		6042344
Inorganics										
Conductivity	mS/cm	0.25	0.002	6050594				0.43	0.002	6050594
Moisture	%	18	1.0	6043752	11	1.0	6043752	12	1.0	6043752
Available (CaCl2) pH	рН	7.49		6047028				7.67		6047028
WAD Cyanide (Free)	ug/g	0.03	0.01	6043968				0.02	0.01	6043968
RDL = Reportable Detection L	imit									
QC Batch = Quality Control Ba	itch									
Maxxam ID		JHS256			JHS258			JHS259		
Sampling Data		2019/03/27			2019/03/27			2019/03/27		
Sampling Date		12:45			13:10			13:15		
COC Number		709705-01-01			709705-01-01			709705-01-01		
	UNITS	MW19-03 S2	RDL	QC Batch	MW19-04 S1	RDL	QC Batch	MW19-04 S2	RDL	QC Batch
Calculated Parameters										
Sodium Adsorption Ratio	N/A				0.95		6042344			
Inorganics										
Conductivity	mS/cm				0.25	0.002	6050594			
Moisture	%	16	1.0	6043752				20	1.0	6043752
Available (CaCl2) pH	рН	7.68		6047028	7.29		6047028			
WAD Cyanide (Free)	ug/g	<0.01	0.01	6043968	0.05	0.01	6043968			
RDL = Reportable Detection I	imit									
QC Batch = Quality Control B	atch									

RESULTS OF ANALYSES OF SOIL

Maxxam ID		JHS260	JHS261			JHS262				JHS262			
Sampling Data		2019/03/27	2019/03/27			2019/03/27				2019/03/27			
Sampling Date		13:20	09:00			13:30				13:30			
COC Number		709705-01-02	L 709705-01-0	1		709705-01-01				709705-01-01			
	UNITS	MW19-04 S3	MW19-05 S	L QC	Batch	BH19-06 S1	RDL	QC	Batch	BH19-06 S1 Lab-Dup	RDL	QC	Batch
Calculated Parameters													
Sodium Adsorption Ratio	N/A					0.74		604	12344				
Inorganics	-	•	+	•	·			•					
Conductivity	mS/cm					0.46	0.002	605	50594	0.46	0.002	605	50594
Available (CaCl2) pH	pН	7.77	7.22	604	17028	7.71		604	47028				
WAD Cyanide (Free)	ug/g					<0.01	0.01	604	13968				
RDL = Reportable Detection	Limit												
QC Batch = Quality Control	Batch												
Lab-Dup = Laboratory Initia	ted Duplic	ate											
Maxxam ID		JHS264	JHS265			JHS26	6			JHS267			
ampling Date		2019/03/27	2019/03/27			2019/03	/27			2019/03/2	27		
		13:45	11:10			11:15	5			10:40			
COC Number	•	709705-01-01	709705-01-01			709705-0	1-01			709705-01	-01		
	UNITS	BH19-07 S1	BH19-08 S1	RDL	QC Ba	tch BH19-08	S2	RDL	QC Bat	ch DUP19-0	1 RC	DL C	እር Batcl
Calculated Parameters													
odium Adsorption Ratio	N/A	0.53	0.28		60423	344							
norganics		•						÷		·			
Conductivity	mS/cm	0.34	0.14	0.002	60505	594							
Noisture	%					11		1.0	604375	52 13	1.	0 6	6043752
Available (CaCl2) pH	рН	7.28	7.67		60470)28							
VAD Cyanide (Free)	ug/g					<0.01		0.01	604396	58			
RDL = Reportable Detection Li	mit					·				·	•		
QC Batch = Quality Control Ba	tch												

Report Date: 2019/04/16

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

RESULTS OF ANALYSES OF SOIL

Maxxam ID		JHS269		JHS271		
Sampling Date		2019/03/27		2019/03/27		
		09:00		13:45		
COC Number		709705-01-01		709705-01-01		
	UNITS	DUP19-05	QC Batch	DUP19-07	RDL	QC Batch
Calculated Parameters						
Sodium Adsorption Ratio	N/A			0.61		6042344
Inorganics						
Conductivity	mS/cm			0.37	0.002	6050594
Available (CaCl2) pH	рН	7.51	6047028			
RDL = Reportable Detection L	imit					
QC Batch = Quality Control Ba	itch					

Report Date: 2019/04/16

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		JHS252	JHS253			JHS253		
Sampling Date		2019/03/27	2019/03/27			2019/03/27		
		10:30	10:40			10:40		
COC Number		709705-01-01	709705-01-01			709705-01-01		
	UNITS	MW19-01 S1	MW19-01 S3	RDL	QC Batch	MW19-01 S3 Lab-Dup	RDL	QC Batch
Inorganics								
Chromium (VI)	ug/g	<0.2	<0.2	0.2	6048403			
Metals								
Acid Extractable Antimony (Sb)	ug/g	0.35	<0.20	0.20	6046357	<0.20	0.20	6046357
Acid Extractable Arsenic (As)	ug/g	6.1	5.5	1.0	6046357	5.6	1.0	6046357
Acid Extractable Barium (Ba)	ug/g	75	57	0.50	6046357	56	0.50	6046357
Acid Extractable Beryllium (Be)	ug/g	0.74	0.69	0.20	6046357	0.71	0.20	6046357
Acid Extractable Boron (B)	ug/g	7.9	10	5.0	6046357	9.9	5.0	6046357
Acid Extractable Cadmium (Cd)	ug/g	0.36	<0.10	0.10	6046357	<0.10	0.10	6046357
Acid Extractable Chromium (Cr)	ug/g	21	18	1.0	6046357	19	1.0	6046357
Acid Extractable Cobalt (Co)	ug/g	10	11	0.10	6046357	11	0.10	6046357
Acid Extractable Copper (Cu)	ug/g	40	36	0.50	6046357	35	0.50	6046357
Acid Extractable Lead (Pb)	ug/g	30	8.7	1.0	6046357	8.8	1.0	6046357
Acid Extractable Molybdenum (Mo)	ug/g	0.53	<0.50	0.50	6046357	<0.50	0.50	6046357
Acid Extractable Nickel (Ni)	ug/g	19	22	0.50	6046357	23	0.50	6046357
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	0.50	6046357	<0.50	0.50	6046357
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	0.20	6046357	<0.20	0.20	6046357
Acid Extractable Thallium (Tl)	ug/g	0.14	0.14	0.050	6046357	0.14	0.050	6046357
Acid Extractable Uranium (U)	ug/g	0.59	0.46	0.050	6046357	0.45	0.050	6046357
Acid Extractable Vanadium (V)	ug/g	30	26	5.0	6046357	26	5.0	6046357
Acid Extractable Zinc (Zn)	ug/g	68	53	5.0	6046357	53	5.0	6046357
Acid Extractable Mercury (Hg)	ug/g	<0.050	<0.050	0.050	6046357	<0.050	0.050	6046357
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								
Lab-Dup = Laboratory Initiated Duplic	cate							

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		JHS254	JHS256	JHS259	JHS262	JHS266		
Sampling Data		2019/03/27	2019/03/27	2019/03/27	2019/03/27	2019/03/27		
		11:30	12:45	13:15	13:30	11:15		
COC Number		709705-01-01	709705-01-01	709705-01-01	709705-01-01	709705-01-01		
	UNITS	MW19-02 S1	MW19-03 S2	MW19-04 S2	BH19-06 S1	BH19-08 S2	RDL	QC Batch
Inorganics								
Chromium (VI)	ug/g	<0.2	<0.2	<0.2	<0.2	<0.2	0.2	6048403
Metals								
Acid Extractable Antimony (Sb)	ug/g	0.22	0.28	<0.20	<0.20	<0.20	0.20	6046357
Acid Extractable Arsenic (As)	ug/g	6.5	11	4.1	5.5	3.7	1.0	6046357
Acid Extractable Barium (Ba)	ug/g	130	99	130	120	64	0.50	6046357
Acid Extractable Beryllium (Be)	ug/g	0.74	0.74	0.80	0.88	0.61	0.20	6046357
Acid Extractable Boron (B)	ug/g	9.0	8.2	8.2	9.5	9.0	5.0	6046357
Acid Extractable Cadmium (Cd)	ug/g	0.77	0.19	0.21	0.13	<0.10	0.10	6046357
Acid Extractable Chromium (Cr)	ug/g	20	23	26	27	17	1.0	6046357
Acid Extractable Cobalt (Co)	ug/g	9.8	14	11	12	10	0.10	6046357
Acid Extractable Copper (Cu)	ug/g	38	39	23	34	37	0.50	6046357
Acid Extractable Lead (Pb)	ug/g	38	16	9.7	9.4	6.3	1.0	6046357
Acid Extractable Molybdenum (Mo)	ug/g	0.64	<0.50	<0.50	0.51	<0.50	0.50	6046357
Acid Extractable Nickel (Ni)	ug/g	21	29	19	27	21	0.50	6046357
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6046357
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6046357
Acid Extractable Thallium (Tl)	ug/g	0.13	0.13	0.15	0.17	0.14	0.050	6046357
Acid Extractable Uranium (U)	ug/g	0.61	0.50	0.75	0.87	0.48	0.050	6046357
Acid Extractable Vanadium (V)	ug/g	30	34	35	39	25	5.0	6046357
Acid Extractable Zinc (Zn)	ug/g	78	57	100	58	43	5.0	6046357
Acid Extractable Mercury (Hg)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	6046357
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

Report Date: 2019/04/16

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		JHS267		
Sampling Data		2019/03/27		
		10:40		
COC Number		709705-01-01		
	UNITS	DUP19-01	RDL	QC Batch
Inorganics				
Chromium (VI)	ug/g	<0.2	0.2	6048403
Metals				
Acid Extractable Antimony (Sb)	ug/g	0.37	0.20	6046357
Acid Extractable Arsenic (As)	ug/g	10	1.0	6046357
Acid Extractable Barium (Ba)	ug/g	61	0.50	6046357
Acid Extractable Beryllium (Be)	ug/g	0.76	0.20	6046357
Acid Extractable Boron (B)	ug/g	11	5.0	6046357
Acid Extractable Cadmium (Cd)	ug/g	<0.10	0.10	6046357
Acid Extractable Chromium (Cr)	ug/g	19	1.0	6046357
Acid Extractable Cobalt (Co)	ug/g	13	0.10	6046357
Acid Extractable Copper (Cu)	ug/g	53	0.50	6046357
Acid Extractable Lead (Pb)	ug/g	10	1.0	6046357
Acid Extractable Molybdenum (Mo)	ug/g	0.57	0.50	6046357
Acid Extractable Nickel (Ni)	ug/g	26	0.50	6046357
Acid Extractable Selenium (Se)	ug/g	<0.50	0.50	6046357
Acid Extractable Silver (Ag)	ug/g	<0.20	0.20	6046357
Acid Extractable Thallium (Tl)	ug/g	0.13	0.050	6046357
Acid Extractable Uranium (U)	ug/g	0.52	0.050	6046357
Acid Extractable Vanadium (V)	ug/g	27	5.0	6046357
Acid Extractable Zinc (Zn)	ug/g	57	5.0	6046357
Acid Extractable Mercury (Hg)	ug/g	<0.050	0.050	6046357
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

TEST SUMMARY

Maxxam ID:	JHS252
Sample ID:	MW19-01 S1
Matrix:	Soil

2019/03/27
2019/03/28

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Free (WAD) Cyanide	TECH	6043968	2019/03/29	2019/04/01	Barbara Kalbasi Esfahani
Conductivity	AT	6050594	2019/04/03	2019/04/03	Kazzandra Adeva
Hexavalent Chromium in Soil by IC	IC/SPEC	6048403	2019/04/02	2019/04/03	Sally Norouz
Strong Acid Leachable Metals by ICPMS	ICP/MS	6046357	2019/04/01	2019/04/01	Daniel Teclu
Moisture	BAL	6043752	N/A	2019/03/29	Min Yang
OC Pesticides (Selected) & PCB	GC/ECD	6044017	2019/03/29	2019/03/30	Li Peng
OC Pesticides Summed Parameters	CALC	6042953	N/A	2019/03/30	Automated Statchk
pH CaCl2 EXTRACT	AT	6047028	2019/04/02	2019/04/02	Gnana Thomas
Sodium Adsorption Ratio (SAR)	CALC/MET	6042344	N/A	2019/04/03	Automated Statchk

Maxxam ID:	JHS253
Sample ID:	MW19-01 S3
Matrix:	Soil

Collected:	2019/03/27
Shipped: Received:	2019/03/28

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hexavalent Chromium in Soil by IC	IC/SPEC	6048403	2019/04/02	2019/04/03	Sally Norouz
Strong Acid Leachable Metals by ICPMS	ICP/MS	6046357	2019/04/01	2019/04/01	Daniel Teclu
Moisture	BAL	6043752	N/A	2019/03/29	Min Yang

Maxxam ID: JH Sample ID: M Matrix: So	IS253 Dup IW19-01 S3 pil					Collected: Shipped: Received:	2019/03/27 2019/03/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Metals	s by ICPMS	ICP/MS	6046357	2019/04/01	2019/04/01	Daniel Tecl	u

Maxxam ID:	JHS254
Sample ID:	MW19-02 S1
Matrix:	Soil

Collected: 2019/03/27 Shipped: Received: 2019/03/28

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6055278	N/A	2019/04/09	Automated Statchk
Free (WAD) Cyanide	TECH	6043968	2019/03/29	2019/04/01	Barbara Kalbasi Esfahani
Conductivity	AT	6050594	2019/04/03	2019/04/03	Kazzandra Adeva
Hexavalent Chromium in Soil by IC	IC/SPEC	6048403	2019/04/02	2019/04/03	Sally Norouz
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6056409	N/A	2019/04/05	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6058321	2019/04/08	2019/04/09	Prabhjot Gulati
Strong Acid Leachable Metals by ICPMS	ICP/MS	6046357	2019/04/01	2019/04/01	Daniel Teclu
Moisture	BAL	6043752	N/A	2019/03/29	Min Yang
OC Pesticides (Selected) & PCB	GC/ECD	6044017	2019/03/29	2019/03/30	Li Peng
OC Pesticides Summed Parameters	CALC	6042953	N/A	2019/03/30	Automated Statchk
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6058330	2019/04/08	2019/04/09	Mitesh Raj
pH CaCl2 EXTRACT	AT	6047028	2019/04/02	2019/04/02	Gnana Thomas
Sodium Adsorption Ratio (SAR)	CALC/MET	6042344	N/A	2019/04/03	Automated Statchk

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

TEST SUMMARY

Maxxam ID: JHS254 Dup Sample ID: MW19-02 S1 Matrix: Soil					Collected: 2019/03/27 Shipped: Received: 2019/03/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6056409	N/A	2019/04/05	Georgeta Rusu
Maxxam ID: JHS255 Sample ID: MW19-03 S1 Matrix: Soil					Collected: 2019/03/27 Shipped: Received: 2019/03/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	6043752	N/A	2019/03/29	Min Yang
OC Pesticides (Selected) & PCB	GC/ECD	6044017	2019/03/29	2019/03/30	Li Peng
OC Pesticides Summed Parameters	CALC	6042953	N/A	2019/03/30	Automated Statchk
Maxxam ID: JHS256 Sample ID: MW19-03 S2 Matrix: Soil					Collected: 2019/03/27 Shipped: Received: 2019/03/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Free (WAD) Cyanide	TECH	6043968	2019/03/29	2019/04/01	Barbara Kalbasi Esfahani
Hexavalent Chromium in Soil by IC	IC/SPEC	6048403	2019/04/02	2019/04/03	Sally Norouz
Strong Acid Leachable Metals by ICPMS	ICP/MS	6046357	2019/04/01	2019/04/01	Daniel Teclu
Moisture	BAL	6043752	N/A	2019/03/29	Min Yang
pH CaCl2 EXTRACT	AT	6047028	2019/04/02	2019/04/02	Gnana Thomas
Maxxam ID: JHS257 Sample ID: MW19-03 S3 Matrix: Soil					Collected: 2019/03/27 Shipped: Received: 2019/03/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6042896	N/A	2019/04/03	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6045547	N/A	2019/04/01	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6049040	2019/04/02	2019/04/03	Prabhjot Gulati
Moisture	BAL	6044034	N/A	2019/03/29	Min Yang
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6049061	2019/04/02	2019/04/03	Mitesh Raj
Maxxam ID: JHS258 Sample ID: MW19-04 S1 Matrix: Soil					Collected: 2019/03/27 Shipped: Received: 2019/03/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Free (WAD) Cyanide	TECH	6043968	2019/03/29	2019/04/01	Barbara Kalbasi Esfahani
Conductivity	AT	6050594	2019/04/03	2019/04/03	Kazzandra Adeva
Moisture	BAL	6043752	N/A	2019/03/29	Min Yang
OC Pesticides (Selected) & PCB	GC/ECD	6044017	2019/03/29	2019/03/30	Li Peng
OC Pesticides Summed Parameters	CALC	6042953	N/A	2019/03/30	Automated Statchk
pH CaCl2 EXTRACT	AT	6047028	2019/04/02	2019/04/02	Gnana Thomas
Sodium Adsorption Ratio (SAR)	CALC/MET	6042344	N/A	2019/04/03	Automated Statchk

Page 22 of 44

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Test Description

Moisture

Hexavalent Chromium in Soil by IC Strong Acid Leachable Metals by ICPMS Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

TEST SUMMARY

6043752

N/A

BAL

Maxxam ID:	JHS259
Sample ID:	MW19-04 S2
Matrix:	Soil

				Shipped: Received:	2019/03/28
Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
IC/SPEC	6048403	2019/04/02	2019/04/03	Sally Norou	Z
ICP/MS	6046357	2019/04/01	2019/04/01	Daniel Tecl	u

2019/03/29

Maxxam ID:	JHS260
Sample ID:	MW19-04 S3
Matrix:	Soil

Collected:	2019/03/27
Shipped:	
Received:	2019/03/28

Min Yang

Collected: 2019/03/27

T	Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
ſ	Methylnaphthalene Sum	CALC	6042896	N/A	2019/04/03	Automated Statchk
F	Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6045547	N/A	2019/04/01	Lincoln Ramdahin
F	Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6049040	2019/04/02	2019/04/03	Prabhjot Gulati
١	Moisture	BAL	6044034	N/A	2019/03/29	Min Yang
F	PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6049061	2019/04/02	2019/04/03	Mitesh Raj
F	pH CaCl2 EXTRACT	AT	6047028	2019/04/02	2019/04/02	Gnana Thomas

Maxxam ID:	JHS261
Sample ID:	MW19-05 S1
Matrix:	Soil

Collected:	2019/03/27
Shipped:	
Received:	2019/03/28

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6042896	N/A	2019/04/03	Automated Statchk
Hot Water Extractable Boron	ICP	6058338	2019/04/08	2019/04/08	Suban Kanapathippllai
Free (WAD) Cyanide	TECH	6056479	2019/04/05	2019/04/08	Barbara Kalbasi Esfahani
Conductivity	AT	6058242	2019/04/08	2019/04/08	Kazzandra Adeva
Hexavalent Chromium in Soil by IC	IC/SPEC	6060088	2019/04/09	2019/04/09	Sally Norouz
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6045547	N/A	2019/04/01	Lincoln Ramdahin
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6049040	2019/04/02	2019/04/03	Prabhjot Gulati
Strong Acid Leachable Metals by ICPMS	ICP/MS	6058365	2019/04/08	2019/04/08	Daniel Teclu
Moisture	BAL	6044034	N/A	2019/03/29	Min Yang
OC Pesticides (Selected) & PCB	GC/ECD	6058218	2019/04/08	2019/04/08	Li Peng
OC Pesticides Summed Parameters	CALC	6055768	N/A	2019/04/08	Automated Statchk
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6049061	2019/04/02	2019/04/03	Mitesh Raj
pH CaCl2 EXTRACT	AT	6047028	2019/04/02	2019/04/02	Gnana Thomas
Sodium Adsorption Ratio (SAR)	CALC/MET	6055328	N/A	2019/04/09	Automated Statchk

Maxxam ID: Sample ID: Matrix:	JHS262 BH19-06 S1 Soil					Collected: Shipped: Received:	2019/03/27 2019/03/28	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst		
Free (WAD) Cyanide		TECH	6043968	2019/03/29	2019/04/01	Barbara Ka	Ilbasi Esfahani	
Conductivity		AT	6050594	2019/04/03	2019/04/03	Kazzandra	Adeva	
Hexavalent Chromium in	Soil by IC	IC/SPEC	6048403	2019/04/02	2019/04/03	Sally Noro	uz	
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	6046357	2019/04/01	2019/04/01	Daniel Tec	lu	

Page 23 of 44

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

TEST SUMMARY

Maxxam ID: Sample ID: Matrixi	JHS262 BH19-06 S1 Soil					Collected: Shipped:	2019/03/27
iviatrix:	5011					Received:	2019/03/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	6043752	N/A	2019/03/29	Min Yang	
OC Pesticides (Selected) &	& PCB	GC/ECD	6044017	2019/03/29	2019/03/30	Li Peng	
OC Pesticides Summed Pa	arameters	CALC	6042953	N/A	2019/03/30	Automated	d Statchk
pH CaCl2 EXTRACT		AT	6047028	2019/04/02	2019/04/02	Gnana Tho	omas
Sodium Adsorption Ratio	(SAR)	CALC/MET	6042344	N/A	2019/04/03	Automated	d Statchk
Maxxam ID:	JHS262 Dup					Collected:	2019/03/27
Sample ID:	BH19-06 S1					Shipped:	
Matrix:	Soil					Received:	2019/03/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Conductivity		AT	6050594	2019/04/03	2019/04/03	Kazzandra	Adeva
Maxxam ID:	JHS263					Collected:	2019/03/27
Sample ID:	BH19-06 S2					Shipped:	2010/02/28
iviatrix:	5011					Received:	2019/03/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	6042896	N/A	2019/04/03	Automated	d Statchk
Petroleum Hydro. CCME	F1 & BTEX in Soil	HSGC/MSFD	6045547	N/A	2019/04/01	Lincoln Ra	mdahin
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	6049040	2019/04/02	2019/04/03	Prabhjot G	iulati
Moisture		BAL	6044034	N/A	2019/03/29	Min Yang	
PAH Compounds in Soil b	y GC/MS (SIM)	GC/MS	6049061	2019/04/02	2019/04/03	Mitesh Raj	
Maxxam ID: Sample ID: Matrix:	JHS264 BH19-07 S1 Soil					Collected: Shipped: Received:	2019/03/27 2019/03/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	6042896	N/A	2019/04/03	Automated	d Statchk
Hot Water Extractable Bo	ron	ICP	6058338	2019/04/08	2019/04/08	Suban Kan	apathippllai
Free (WAD) Cyanide		TECH	6056479	2019/04/05	2019/04/08	Barbara Ka	ilbasi Esfahani
Conductivity		AT	6050594	2019/04/03	2019/04/03	Kazzandra	Adeva
Hexavalent Chromium in	Soil by IC	IC/SPEC	6060088	2019/04/09	2019/04/09	Sally Noro	uz
Petroleum Hydro. CCME	F1 & BTEX in Soil	HSGC/MSFD	6045547	N/A	2019/04/01	Lincoln Ra	mdahin
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	6049040	2019/04/02	2019/04/03	Prabhjot G	ulati
Strong Acid Leachable Me	etals by ICPMS	ICP/MS	6058365	2019/04/08	2019/04/08	Daniel Tec	lu
Moisture		BAL	6044034	N/A	2019/03/29	Min Yang	
OC Pesticides (Selected) &	& PCB	GC/ECD	6058218	2019/04/08	2019/04/08	Li Peng	
OC Pesticides Summed Pa	arameters	CALC	6055768	N/A	2019/04/08	Automated	d Statchk
PAH Compounds in Soil b	y GC/MS (SIM)	GC/MS	6049061	2019/04/02	2019/04/03	Mitesh Raj	
pH CaCl2 EXTRACT		AT	6047028	2019/04/02	2019/04/02	Gnana Tho	omas
Sodium Adsorption Ratio	(SAR)	CALC/MET	6042344	N/A	2019/04/03	Automated	d Statchk

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

Shipped:

Collected: 2019/03/27

TEST SUMMARY

Maxxam ID:	JHS265
Sample ID:	BH19-08 S1
Matrix:	Soil

Matrix: Soil					Received: 2019/03/28	
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum	CALC	6042896	N/A	2019/04/03	Automated Statchk	
Conductivity	AT	6050594	2019/04/03	2019/04/03	Kazzandra Adeva	
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6045547	N/A	2019/04/01	Lincoln Ramdahin	
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6049040	2019/04/02	2019/04/03	Prabhjot Gulati	
Moisture	BAL	6044034	N/A	2019/03/29	Min Yang	
OC Pesticides (Selected) & PCB	GC/ECD	6044017	2019/03/29	2019/03/30	Li Peng	
OC Pesticides Summed Parameters	CALC	6042953	N/A	2019/03/30	Automated Statchk	
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6049061	2019/04/02	2019/04/03	Mitesh Raj	
pH CaCl2 EXTRACT	AT	6047028	2019/04/02	2019/04/02	Gnana Thomas	
Sodium Adsorption Ratio (SAR)	CALC/MET	6042344	N/A	2019/04/03	Automated Statchk	

Maxxam ID:	JHS266
Sample ID:	BH19-08 S2
Matrix:	Soil

Collected:	2019/03/27
Shipped:	
Received:	2019/03/28

Collected: 2019/03/27 Shipped: Received: 2019/03/28

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Free (WAD) Cyanide	TECH	6043968	2019/03/29	2019/04/01	Barbara Kalbasi Esfahani
Hexavalent Chromium in Soil by IC	IC/SPEC	6048403	2019/04/02	2019/04/03	Sally Norouz
Strong Acid Leachable Metals by ICPMS	ICP/MS	6046357	2019/04/01	2019/04/01	Daniel Teclu
Moisture	BAL	6043752	N/A	2019/03/29	Min Yang

Maxxam ID:	JHS267
Sample ID:	DUP19-01
Matrix:	Soil
Matrix:	Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hexavalent Chromium in Soil by IC	IC/SPEC	6048403	2019/04/02	2019/04/03	Sally Norouz
Strong Acid Leachable Metals by ICPMS	ICP/MS	6046357	2019/04/01	2019/04/01	Daniel Teclu
Moisture	BAL	6043752	N/A	2019/03/29	Min Yang

Maxxam ID: JHS268 Sample ID: DUP19-03 Matrix: Soil					Collected: 2019/03/27 Shipped: Received: 2019/03/28	
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum	CALC	6042896	N/A	2019/04/03	Automated Statchk	
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6045547	N/A	2019/04/01	Lincoln Ramdahin	
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6049040	2019/04/02	2019/04/03	Prabhjot Gulati	
Moisture	BAL	6044034	N/A	2019/03/29	Min Yang	
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6049061	2019/04/02	2019/04/03	Mitesh Raj	

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

TEST SUMMARY

Maxxam ID: Sample ID:	JHS269 DUP19-05					Collected: Shipped:	2019/03/27
Matrix:	Soil					Received:	2019/03/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
pH CaCl2 EXTRACT		AT	6047028	2019/04/02	2019/04/02	Gnana Tho	omas
Maxxam ID: Sample ID: Matrix:	JHS270 DUP19-06 Soil					Collected: Shipped: Received:	2019/03/27 2019/03/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	6043752	N/A	2019/03/29	Min Yang	
OC Pesticides (Selected)	& PCB	GC/ECD	6044017	2019/03/29	2019/03/30	Li Peng	
OC Pesticides Summed P	arameters	CALC	6042953	N/A	2019/03/30	Automated	d Statchk
Maxxam ID: Sample ID:	JHS271 DUP19-07					Collected: Shipped:	2019/03/27
Matrix:	Soil					Received:	2019/03/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Conductivity		AT	6050594	2019/04/03	2019/04/03	Kazzandra	Adeva

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

GENERAL COMMENTS

Each to	emperature is the ave	rage of up to th	ree cooler temperatures taken at receipt
	Package 1	1.3°C	1

Cooler custody seal was present and intact.

OC Pesticide Analysis: Due to the sample matrix, some samples required dilution. Detection limits were adjusted accordingly. BTEX & F1 Analysis: Samples were extracted on "2019-04-05."

Revised Report (2019/04/12): Additional analyses included as per client request.

Revised Report (2019/04/16): Sieve, Graph and Testure included for samples MW19-01 S1 and BH19-06 S2, as per client request.

Sample JHS252 [MW19-01 S1] : SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Sample JHS265 [BH19-08 S1] : SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	כ
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6044017	2,4,5,6-Tetrachloro-m-xylene	2019/03/30	97	50 - 130	77	50 - 130	78	%		
6044017	Decachlorobiphenyl	2019/03/30	130	50 - 130	111	50 - 130	119	%		
6045547	1,4-Difluorobenzene	2019/04/01	97	60 - 140	98	60 - 140	97	%		
6045547	4-Bromofluorobenzene	2019/04/01	96	60 - 140	98	60 - 140	97	%		
6045547	D10-Ethylbenzene	2019/04/01	133	60 - 140	100	60 - 140	110	%		
6045547	D4-1,2-Dichloroethane	2019/04/01	98	60 - 140	101	60 - 140	99	%		
6049040	o-Terphenyl	2019/04/02	101	60 - 130	92	60 - 130	94	%		
6049061	D10-Anthracene	2019/04/03	94	50 - 130	96	50 - 130	91	%		
6049061	D14-Terphenyl (FS)	2019/04/03	97	50 - 130	99	50 - 130	100	%		
6049061	D8-Acenaphthylene	2019/04/03	92	50 - 130	98	50 - 130	94	%		
6056409	1,4-Difluorobenzene	2019/04/05	126	60 - 140	108	60 - 140	98	%		
6056409	4-Bromofluorobenzene	2019/04/05	104	60 - 140	87	60 - 140	109	%		
6056409	D10-Ethylbenzene	2019/04/05	90	60 - 140	76	60 - 140	95	%		
6056409	D4-1,2-Dichloroethane	2019/04/05	121	60 - 140	97	60 - 140	104	%		
6058218	2,4,5,6-Tetrachloro-m-xylene	2019/04/08	72	50 - 130	82	50 - 130	72	%		
6058218	Decachlorobiphenyl	2019/04/08	116	50 - 130	128	50 - 130	120	%		
6058321	o-Terphenyl	2019/04/09	99	60 - 130	100	60 - 130	115	%		
6058330	D10-Anthracene	2019/04/09	84	50 - 130	89	50 - 130	90	%		
6058330	D14-Terphenyl (FS)	2019/04/09	66	50 - 130	74	50 - 130	79	%		
6058330	D8-Acenaphthylene	2019/04/09	74	50 - 130	81	50 - 130	76	%		
6043752	Moisture	2019/03/29							1.1	20
6043968	WAD Cyanide (Free)	2019/04/01	109	75 - 125	104	80 - 120	<0.01	ug/g	26	35
6044017	a-Chlordane	2019/04/02	107	50 - 130	84	50 - 130	<0.0020	ug/g	NC	40
6044017	Aldrin	2019/04/02	93	50 - 130	77	50 - 130	<0.0020	ug/g	NC	40
6044017	Aroclor 1242	2019/04/02					<0.015	ug/g	NC	40
6044017	Aroclor 1248	2019/04/02					<0.015	ug/g	NC	40
6044017	Aroclor 1254	2019/04/02					<0.015	ug/g	7.3	40
6044017	Aroclor 1260	2019/04/02					<0.015	ug/g	NC	40
6044017	Dieldrin	2019/04/02	112	50 - 130	96	50 - 130	<0.0020	ug/g	NC	40
6044017	Endosulfan I (alpha)	2019/04/02	82	50 - 130	84	50 - 130	<0.0020	ug/g	NC	40
6044017	Endosulfan II (beta)	2019/04/02	102	50 - 130	85	50 - 130	<0.0020	ug/g	NC	40
6044017	Endrin	2019/04/02	99	50 - 130	82	50 - 130	<0.0020	ug/g	NC	40

QUALITY ASSURANCE REPORT(CONT'D)

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6044017	g-Chlordane	2019/04/02	100	50 - 130	79	50 - 130	<0.0020	ug/g	NC	40
6044017	Heptachlor epoxide	2019/04/02	98	50 - 130	79	50 - 130	<0.0020	ug/g	NC	40
6044017	Heptachlor	2019/04/02	74	50 - 130	70	50 - 130	<0.0020	ug/g	NC	40
6044017	Hexachlorobenzene	2019/04/02	106	50 - 130	75	50 - 130	<0.0020	ug/g	NC	40
6044017	Hexachlorobutadiene	2019/03/30	89	50 - 130	85	50 - 130	<0.0020	ug/g		
6044017	Hexachloroethane	2019/03/30	69	50 - 130	69	50 - 130	<0.0020	ug/g		
6044017	Lindane	2019/04/02	97	50 - 130	76	50 - 130	<0.0020	ug/g	NC	40
6044017	Methoxychlor	2019/04/02	109	50 - 130	88	50 - 130	<0.0050	ug/g	NC	40
6044017	o,p-DDD	2019/04/02	121	50 - 130	98	50 - 130	<0.0020	ug/g	NC	40
6044017	o,p-DDE	2019/04/02	117	50 - 130	97	50 - 130	<0.0020	ug/g	NC	40
6044017	o,p-DDT	2019/04/02	118	50 - 130	90	50 - 130	<0.0020	ug/g	NC	40
6044017	p,p-DDD	2019/04/02	116	50 - 130	96	50 - 130	<0.0020	ug/g	NC	40
6044017	p,p-DDE	2019/04/02	102	50 - 130	102	50 - 130	<0.0020	ug/g	NC	40
6044017	p,p-DDT	2019/04/02	112	50 - 130	79	50 - 130	<0.0020	ug/g	NC	40
6044034	Moisture	2019/03/29							3.9	20
6045547	Benzene	2019/04/01	122	60 - 140	101	60 - 140	<0.020	ug/g	NC	50
6045547	Ethylbenzene	2019/04/01	133	60 - 140	102	60 - 140	<0.020	ug/g	NC	50
6045547	F1 (C6-C10) - BTEX	2019/04/01					<10	ug/g	NC	30
6045547	F1 (C6-C10)	2019/04/01	121	60 - 140	97	80 - 120	<10	ug/g	NC	30
6045547	o-Xylene	2019/04/01	131	60 - 140	99	60 - 140	<0.020	ug/g	NC	50
6045547	p+m-Xylene	2019/04/01	129	60 - 140	99	60 - 140	<0.040	ug/g	NC	50
6045547	Toluene	2019/04/01	131	60 - 140	103	60 - 140	<0.020	ug/g	NC	50
6045547	Total Xylenes	2019/04/01					<0.040	ug/g	NC	50
6046357	Acid Extractable Antimony (Sb)	2019/04/01	92	75 - 125	98	80 - 120	<0.20	ug/g	NC	30
6046357	Acid Extractable Arsenic (As)	2019/04/01	102	75 - 125	101	80 - 120	<1.0	ug/g	1.9	30
6046357	Acid Extractable Barium (Ba)	2019/04/01	NC	75 - 125	103	80 - 120	<0.50	ug/g	1.8	30
6046357	Acid Extractable Beryllium (Be)	2019/04/01	104	75 - 125	97	80 - 120	<0.20	ug/g	3.3	30
6046357	Acid Extractable Boron (B)	2019/04/01	101	75 - 125	99	80 - 120	<5.0	ug/g	3.9	30
6046357	Acid Extractable Cadmium (Cd)	2019/04/01	102	75 - 125	97	80 - 120	<0.10	ug/g	NC	30
6046357	Acid Extractable Chromium (Cr)	2019/04/01	105	75 - 125	102	80 - 120	<1.0	ug/g	1.6	30
6046357	Acid Extractable Cobalt (Co)	2019/04/01	102	75 - 125	101	80 - 120	<0.10	ug/g	3.2	30
6046357	Acid Extractable Copper (Cu)	2019/04/01	NC	75 - 125	99	80 - 120	<0.50	ug/g	2.4	30

QUALITY ASSURANCE REPORT(CONT'D)

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPE)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6046357	Acid Extractable Lead (Pb)	2019/04/01	101	75 - 125	100	80 - 120	<1.0	ug/g	2.2	30
6046357	Acid Extractable Mercury (Hg)	2019/04/01	92	75 - 125	85	80 - 120	<0.050	ug/g	NC	30
6046357	Acid Extractable Molybdenum (Mo)	2019/04/01	101	75 - 125	99	80 - 120	<0.50	ug/g	NC	30
6046357	Acid Extractable Nickel (Ni)	2019/04/01	101	75 - 125	98	80 - 120	<0.50	ug/g	1.5	30
6046357	Acid Extractable Selenium (Se)	2019/04/01	106	75 - 125	102	80 - 120	<0.50	ug/g	NC	30
6046357	Acid Extractable Silver (Ag)	2019/04/01	100	75 - 125	97	80 - 120	<0.20	ug/g	NC	30
6046357	Acid Extractable Thallium (TI)	2019/04/01	100	75 - 125	98	80 - 120	<0.050	ug/g	3.8	30
6046357	Acid Extractable Uranium (U)	2019/04/01	99	75 - 125	97	80 - 120	<0.050	ug/g	1.7	30
6046357	Acid Extractable Vanadium (V)	2019/04/01	NC	75 - 125	102	80 - 120	<5.0	ug/g	0.044	30
6046357	Acid Extractable Zinc (Zn)	2019/04/01	NC	75 - 125	106	80 - 120	<5.0	ug/g	0.37	30
6047028	Available (CaCl2) pH	2019/04/02			100	97 - 103			1.1	N/A
6048403	Chromium (VI)	2019/04/03	63 (2)	70 - 130	88	80 - 120	<0.2	ug/g	NC	35
6049040	F2 (C10-C16 Hydrocarbons)	2019/04/02	94	50 - 130	84	80 - 120	<10	ug/g	NC	30
6049040	F3 (C16-C34 Hydrocarbons)	2019/04/02	100	50 - 130	88	80 - 120	<50	ug/g	NC	30
6049040	F4 (C34-C50 Hydrocarbons)	2019/04/02	109	50 - 130	95	80 - 120	<50	ug/g	NC	30
6049061	1-Methylnaphthalene	2019/04/03	104	50 - 130	111	50 - 130	<0.0050	ug/g	NC	40
6049061	2-Methylnaphthalene	2019/04/03	96	50 - 130	99	50 - 130	<0.0050	ug/g	NC	40
6049061	Acenaphthene	2019/04/03	95	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
6049061	Acenaphthylene	2019/04/03	95	50 - 130	93	50 - 130	<0.0050	ug/g	NC	40
6049061	Anthracene	2019/04/03	79	50 - 130	78	50 - 130	<0.0050	ug/g	NC	40
6049061	Benzo(a)anthracene	2019/04/03	102	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
6049061	Benzo(a)pyrene	2019/04/03	99	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
6049061	Benzo(b/j)fluoranthene	2019/04/03	98	50 - 130	100	50 - 130	<0.0050	ug/g	NC	40
6049061	Benzo(g,h,i)perylene	2019/04/03	101	50 - 130	100	50 - 130	<0.0050	ug/g	NC	40
6049061	Benzo(k)fluoranthene	2019/04/03	96	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40
6049061	Chrysene	2019/04/03	97	50 - 130	97	50 - 130	<0.0050	ug/g	NC	40
6049061	Dibenz(a,h)anthracene	2019/04/03	107	50 - 130	102	50 - 130	<0.0050	ug/g	NC	40
6049061	Fluoranthene	2019/04/03	100	50 - 130	101	50 - 130	<0.0050	ug/g	NC	40
6049061	Fluorene	2019/04/03	100	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
6049061	Indeno(1,2,3-cd)pyrene	2019/04/03	105	50 - 130	105	50 - 130	<0.0050	ug/g	NC	40
6049061	Naphthalene	2019/04/03	87	50 - 130	90	50 - 130	<0.0050	ug/g	NC	40
6049061	Phenanthrene	2019/04/03	91	50 - 130	91	50 - 130	<0.0050	ug/g	NC	40

QUALITY ASSURANCE REPORT(CONT'D)

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6049061	Pyrene	2019/04/03	98	50 - 130	97	50 - 130	<0.0050	ug/g	NC	40
6050594	Conductivity	2019/04/03			102	90 - 110	<0.002	mS/cm	0.65	10
6056409	Benzene	2019/04/05	107	60 - 140	83	60 - 140	<0.020	ug/g	NC	50
6056409	Ethylbenzene	2019/04/05	86	60 - 140	85	60 - 140	<0.020	ug/g	NC	50
6056409	F1 (C6-C10) - BTEX	2019/04/05					<10	ug/g	NC	30
6056409	F1 (C6-C10)	2019/04/05	75	60 - 140	98	80 - 120	<10	ug/g	NC	30
6056409	o-Xylene	2019/04/05	90	60 - 140	71	60 - 140	<0.020	ug/g	NC	50
6056409	p+m-Xylene	2019/04/05	91	60 - 140	70	60 - 140	<0.040	ug/g	NC	50
6056409	Toluene	2019/04/05	102	60 - 140	86	60 - 140	<0.020	ug/g	NC	50
6056409	Total Xylenes	2019/04/05					<0.040	ug/g	NC	50
6056479	WAD Cyanide (Free)	2019/04/08	99	75 - 125	96	80 - 120	<0.01	ug/g	NC	35
6058218	a-Chlordane	2019/04/08	89	50 - 130	84	50 - 130	<0.0020	ug/g	NC	40
6058218	Aldrin	2019/04/08	72	50 - 130	78	50 - 130	<0.0020	ug/g	NC	40
6058218	Aroclor 1242	2019/04/08					<0.015	ug/g	NC	40
6058218	Aroclor 1248	2019/04/08					<0.015	ug/g	NC	40
6058218	Aroclor 1254	2019/04/08					<0.015	ug/g	NC	40
6058218	Aroclor 1260	2019/04/08					<0.015	ug/g	NC	40
6058218	Dieldrin	2019/04/08	96	50 - 130	93	50 - 130	<0.0020	ug/g	NC	40
6058218	Endosulfan I (alpha)	2019/04/08	88	50 - 130	81	50 - 130	<0.0020	ug/g	NC	40
6058218	Endosulfan II (beta)	2019/04/08	97	50 - 130	88	50 - 130	<0.0020	ug/g	NC	40
6058218	Endrin	2019/04/08	83	50 - 130	80	50 - 130	<0.0020	ug/g	NC	40
6058218	g-Chlordane	2019/04/08	80	50 - 130	77	50 - 130	<0.0020	ug/g	NC	40
6058218	Heptachlor epoxide	2019/04/08	74	50 - 130	73	50 - 130	<0.0020	ug/g	NC	40
6058218	Heptachlor	2019/04/08	85	50 - 130	97	50 - 130	<0.0020	ug/g	NC	40
6058218	Hexachlorobenzene	2019/04/08	90	50 - 130	98	50 - 130	<0.0020	ug/g	NC	40
6058218	Hexachlorobutadiene	2019/04/08	66	50 - 130	96	50 - 130	<0.0020	ug/g	NC	40
6058218	Hexachloroethane	2019/04/08	52	50 - 130	85	50 - 130	<0.0020	ug/g	NC	40
6058218	Lindane	2019/04/08	79	50 - 130	78	50 - 130	<0.0020	ug/g	NC	40
6058218	Methoxychlor	2019/04/08	119	50 - 130	117	50 - 130	<0.0050	ug/g	NC	40
6058218	o,p-DDD	2019/04/08	105	50 - 130	98	50 - 130	<0.0020	ug/g	NC	40
6058218	o,p-DDE	2019/04/08	86	50 - 130	97	50 - 130	<0.0020	ug/g	NC	40
6058218	o,p-DDT	2019/04/08	99	50 - 130	107	50 - 130	<0.0020	ug/g	NC	40

QUALITY ASSURANCE REPORT(CONT'D)

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6058218	p,p-DDD	2019/04/08	87	50 - 130	86	50 - 130	<0.0020	ug/g	NC	40
6058218	p,p-DDE	2019/04/08	115	50 - 130	118	50 - 130	<0.0020	ug/g	NC	40
6058218	p,p-DDT	2019/04/08	112	50 - 130	110	50 - 130	<0.0020	ug/g	NC	40
6058242	Conductivity	2019/04/08			104	90 - 110	<0.002	mS/cm	3.7	10
6058321	F2 (C10-C16 Hydrocarbons)	2019/04/09	95	50 - 130	94	80 - 120	<10	ug/g	NC	30
6058321	F3 (C16-C34 Hydrocarbons)	2019/04/09	94	50 - 130	93	80 - 120	<50	ug/g	NC	30
6058321	F4 (C34-C50 Hydrocarbons)	2019/04/09	97	50 - 130	96	80 - 120	<50	ug/g	NC	30
6058330	1-Methylnaphthalene	2019/04/09	89	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
6058330	2-Methylnaphthalene	2019/04/09	80	50 - 130	83	50 - 130	<0.0050	ug/g	NC	40
6058330	Acenaphthene	2019/04/09	75	50 - 130	80	50 - 130	<0.0050	ug/g	NC	40
6058330	Acenaphthylene	2019/04/09	74	50 - 130	78	50 - 130	<0.0050	ug/g	NC	40
6058330	Anthracene	2019/04/09	69	50 - 130	73	50 - 130	<0.0050	ug/g	NC	40
6058330	Benzo(a)anthracene	2019/04/09	83	50 - 130	86	50 - 130	<0.0050	ug/g	NC	40
6058330	Benzo(a)pyrene	2019/04/09	83	50 - 130	87	50 - 130	<0.0050	ug/g	NC	40
6058330	Benzo(b/j)fluoranthene	2019/04/09	89	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
6058330	Benzo(g,h,i)perylene	2019/04/09	58	50 - 130	60	50 - 130	<0.0050	ug/g	NC	40
6058330	Benzo(k)fluoranthene	2019/04/09	87	50 - 130	89	50 - 130	<0.0050	ug/g	NC	40
6058330	Chrysene	2019/04/09	84	50 - 130	88	50 - 130	<0.0050	ug/g	NC	40
6058330	Dibenz(a,h)anthracene	2019/04/09	64	50 - 130	64	50 - 130	<0.0050	ug/g	NC	40
6058330	Fluoranthene	2019/04/09	69	50 - 130	72	50 - 130	<0.0050	ug/g	NC	40
6058330	Fluorene	2019/04/09	79	50 - 130	79	50 - 130	<0.0050	ug/g	NC	40
6058330	Indeno(1,2,3-cd)pyrene	2019/04/09	73	50 - 130	70	50 - 130	<0.0050	ug/g	NC	40
6058330	Naphthalene	2019/04/09	76	50 - 130	81	50 - 130	<0.0050	ug/g	NC	40
6058330	Phenanthrene	2019/04/09	77	50 - 130	78	50 - 130	<0.0050	ug/g	NC	40
6058330	Pyrene	2019/04/09	69	50 - 130	73	50 - 130	<0.0050	ug/g	NC	40
6058338	Hot Water Ext. Boron (B)	2019/04/08	103	75 - 125	99	75 - 125	<0.050	ug/g	14	40
6058365	Acid Extractable Antimony (Sb)	2019/04/09	95	75 - 125	102	80 - 120	<0.20	ug/g	24	30
6058365	Acid Extractable Arsenic (As)	2019/04/09	NC	75 - 125	98	80 - 120	<1.0	ug/g	1.2	30
6058365	Acid Extractable Barium (Ba)	2019/04/09	97	75 - 125	96	80 - 120	<0.50	ug/g	0.036	30
6058365	Acid Extractable Beryllium (Be)	2019/04/09	98	75 - 125	99	80 - 120	<0.20	ug/g	NC	30
6058365	Acid Extractable Boron (B)	2019/04/09	97	75 - 125	99	80 - 120	<5.0	ug/g	NC	30
6058365	Acid Extractable Cadmium (Cd)	2019/04/09	101	75 - 125	100	80 - 120	<0.10	ug/g	9.1	30

Page 32 of 44

QUALITY ASSURANCE REPORT(CONT'D)

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPE)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6058365	Acid Extractable Chromium (Cr)	2019/04/09	NC	75 - 125	98	80 - 120	<1.0	ug/g	0.93	30
6058365	Acid Extractable Cobalt (Co)	2019/04/09	97	75 - 125	99	80 - 120	<0.10	ug/g	2.9	30
6058365	Acid Extractable Copper (Cu)	2019/04/09	NC	75 - 125	98	80 - 120	<0.50	ug/g	6.2	30
6058365	Acid Extractable Lead (Pb)	2019/04/09	102	75 - 125	100	80 - 120	<1.0	ug/g	2.0	30
6058365	Acid Extractable Mercury (Hg)	2019/04/09	92	75 - 125	99	80 - 120	<0.050	ug/g	NC	30
6058365	Acid Extractable Molybdenum (Mo)	2019/04/09	101	75 - 125	101	80 - 120	<0.50	ug/g	NC	30
6058365	Acid Extractable Nickel (Ni)	2019/04/09	NC	75 - 125	100	80 - 120	<0.50	ug/g	3.8	30
6058365	Acid Extractable Selenium (Se)	2019/04/09	102	75 - 125	101	80 - 120	<0.50	ug/g	NC	30
6058365	Acid Extractable Silver (Ag)	2019/04/09	98	75 - 125	100	80 - 120	<0.20	ug/g	NC	30
6058365	Acid Extractable Thallium (TI)	2019/04/09	97	75 - 125	98	80 - 120	<0.050	ug/g	8.7	30
6058365	Acid Extractable Uranium (U)	2019/04/09	99	75 - 125	95	80 - 120	<0.050	ug/g	3.4	30
6058365	Acid Extractable Vanadium (V)	2019/04/09	NC	75 - 125	98	80 - 120	<5.0	ug/g	1.8	30
6058365	Acid Extractable Zinc (Zn)	2019/04/09	NC	75 - 125	100	80 - 120	<5.0	ug/g	5.5	30
6060088	Chromium (VI)	2019/04/09	64 (2)	70 - 130	87	80 - 120	<0.2	ug/g	NC	35

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

(2) The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample. The sample was reanalyzed with the same results.

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINGTON AVE.E Sampler Initials: WM

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Brad Newman, Scientific Service Specialist

love Eva Prai CHEEN

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	IN	OICE TO:	1		DEDC	OT TO.	e contra la contra da								-				Pager or o
anna Marra	#3103 Pinchin Li	d		1. ch	NEFL	ATTO.	-		-		-	AZOO	TINFOR	AATION:	-	1	398092	20	IV: Rottle Order #:
Itention:	Accounts Payable		Attention	Michae	al Birch	Kain K	ellu			Quotation	#.	A/09	21		-	100	-	0	
ddress:	2470 Milltower Cr		Address			and a	and			Project:		2309	39.001			JCC	EN	V-1147	709705
	Mississauga ON L	5N 7W5							-	Project Na	ime:	P	hase	TWO	ESA	1	-	COC #:	Project Manager:
el.	(905) 363-0678	Fax: (905) 363-0681	Tet	mbirch	Oninchin cor	Fax	inchin e			Site #.		-1	31 E	glinte	nA	VEE.	Inter		Antonella Brasil
MOE PEC	ULATED DRINKING		Emar	ONICUMITION	i@pinchin.col	n, cxkelly@p	inchin.co	om	AN	Sampled E	By:	UDIEAGE	I Illia	mr	lart	quie		C#709705-01-01	Devile
MOENEG	SUBMITTED O	N THE MAXXAM DRINKING WATE	R CHAIN OF C	CUSTODY	I MUST BE				1000	LTOID RE	QUESTED	FLEASE	BE SPECI	101			the second	Please provide advance notic	a for rush projects
Regulati	on 153 (2011)	Other Regulations		Special In	nstructions	role)		Ň			E		tions			1.1	Regular (S	tandard) TAT:	F
Table 1	Res/Park Medium Ind/Comm Coarse Agri/Other For RSC	Fine CCME Sanitary Sewer I Reg 558. Storm Sewer Byl MISA Municipality	3ylaw aw			ed (please ci	nide	chable Metals t			mium in Soil by	(Soil)	leum Hydrocar	esticides (Soil)		×	Standard TA Standard TA Please note: days - contac	d if Rush TAT is not specified): = 5-7 Working days for most tests Standard TAT for certain tests such a tyour Project Manager for details.	s BOD and Dioxins/Furans are >
		Other				tittere	() Cya	d Lead	~	Metal	Chro	PAHs	Petro	OC P		μ.	Job Specifi Date Require	c Rush TAT (if applies to entire se	ibmission) Time Required:
	Include Criteria	on Certificate of Analysis (Y/N)?				Me	(WAD	g Acto	uctivit	- ICP	valent	g 153	9 153	9 153	HA	160	Rush Confirm	nation Number	(call lab for #)
Sample	e Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix	Ē	Free	Stron	Cond	SAR	Hexa	O.Re	O.Rel (Soll)	O.Re			# of Bottles	Cor	nments
		MW19-01 51	19/3/27	10:30	Soil		~	~	1	1	1			V	\checkmark		4		
		MW19-01 53		10:40				\checkmark	-		1						1		
1		MW19-0251		11:30			1	V	~	5	1			~	~		3	Limited Se	il to samp
		MW19-03 51		12:40										1			1		
		MW19-03 52		12:45			~	1			V	1			~		2		
		MW19-0353		12:50								V	1			~	5		
		MW19-04 51		13:10			1		1	1				1	1		3		
	1	MW19-04 52		13:15				1			1						1		
		MW19-0453		13:20								1	1		1	1	6		
1		MW19-0551	V	9:00	V							V	V	1	V	V	6		
nit	RELINOUSHED BY: (Sig	nature/Print) Date: (YY/M	M/DD) Tir	ne	RECEIVED	BY: (Signature/	Print)		Date: (YY/	MM/DD)	T	ime	# jars	used and			Labora	tory Use Only	
11.1	they /1N	Martynin 19/3/	28 14:	00 11	m- co	LINEL	UKIP	-	20Ha	103/2	Progra	:02		abinited	Time S	Sensitive	Temperat	ure (°C) on Recei Custod	Seal Yes No
	-			- N				56	H9/03	108 30	c				1		11/01	514 Inta	

Maxxam Analytics International Corporation o/a Maxxam Analytics

	INVO	DICE TO:				REF	PORT TO:				1	<u> </u>	PROJE	CT INFORM	MATION:				Laboratory Use	Only:
pany Name	#3103 Pinchin Ltd	1		Company	Name:						Quotation		A709	27					Maxxam Job #:	Bottle Order
ntion.	Accounts Payable			Attention	Michae	Birch	Craig 1	Lelly			P.O.#.		_							
055.	2470 Militower Crt Mississauga ON L	5N 7W5		Address.			3		-	-	Project:		2309	89.001	- 0-					709705
	(905) 363-0678	Fax (905) 363-068	1	Tab							Project Na	me:	th	ase	140	ESA	-		COC #:	Project Manag
ail:	ap@pinchin.com	Pax		Email	mbirch	@pinchin.co	om; cxkelly@	oinchin c	om	-	Site #	her	151	Egu	nton	Ave	E			Antonella Bras
MOE REC	ULATED DRINKING	WATER OR WATER INTENDE	D FOR HU	JMAN C	ONSUMPTION	MUST BE	1	T		AN	ALYSIS RE	QUESTED	(PLEASE	BE SPECI	FIC)	x119.		-	Turnaround Time (TAT)	Required
16.010	SUBMITTED ON	THE MAXXAM DRINKING WA	TER CHA	AIN OF C	CUSTODY	24 L				11								- AREAD	Please provide advance notice	for rush projects
Regula	tion 153 (2011)	Other Regulati	ons		Special In	structions	- sircle		Â			oy fC		irban				Regular (St	andard) TAT:	
Table 1	Res/Park Medium/F	ine CCME Sanitary Sev	ver Bylaw				ase o		letals			Sollt		droce	s (Soi			Standard TAT	= 5-7 Working days for most tests.	
Table 3	Agri/Other For RSC	MISA Municipality	Bylaw				(plea	æ	ble N			u ur	(iio	th m	icide		~	Please note: S days - contact	landard TAT for certain tests such as your Project Manager for details.	BOD and Dioxins/Furans i
laple		PWQO		_			ered Is / F	yanid	sacha		als	romi	Hs (S	troleu	Pest		a	Job Specific	Rush TAT (if applies to entire su	bmission)
		Other	_				d Filt	D) (D)	cid Le	kiivi	P Me	ant Cr	53 P.A	53 Pe	39.00	I	F	Date Required		Time Required:
1	Include Criteria o	on Certificate of Analysis (Y/N)?				-	Field	(M) e	A Brid	Iduct	R-IC	avale	66 1	(i)	teg 15	P	50	Rush Confirma	ation Number.	(call lab for #)
Samp	le Barcode Label	Sample (Location) Identification	Date S	ampled	Time Sampled	Matrix	-	e, H	Str	Ö	SAI	Ŧ	0	O.F (So	U.	-	_	# of Bottles	Com	ments
		BH19-06 51	19/3	3/27	13:30	Soil		~	1	1	1	1			V	V		4		
		BH19.06 52			13:35						1		V	V			1	5		
1		BH19-07 51	1000		13:45					1	~		1	1		V	/	5		
		BUIG-08 SI			11.10		1		1	./	./		/	V	/	/	./	7		
-		UNIT CO DI			11.10	-	-	-	-	V	v	-	~	V	V	V	V	1		
		BH19-08 52		_	11:15			V	V			~						2		
		DUP 19-01			10:40				11			1						1		
		DUP 19-03		11.0	12:50					1			1	1			1	5		
		DUP 19-05			9.05									~		/	v	1		
		DUD 19-06			17.00		1		-		1		-			V		-		
-		put ii Ub		-	15.30	-	-	-		-			-		V		-	1		
		DUP 19-07	4	7	13:45	4				V	V									
Ani.	RELINGUISHED BY: ISign	ature/Print) Date: (Y)	(IMM/DD)	Tin	ne	RECEIVED	BY: (Signature	Print)	1	Date: (YY/	MM/DD)	Ti	me	# jars	used and			Laborat	ory Use Only	
1.0	1 mg	1 Martynia 191	3/28	14	corran	4- 60	UNC CO	ic l'in	2	214/0	3/27	74-0	02	_		Time S	ensitive	Temperatu	re (°C) on Recei Custody Presei	Seal Yes/
			hadren of		2				20	019103	128					1		11/07:	5 IL Intac	1

Maxxam Analytics International Corporation o/a Maxxam Analytics

Pinchin Ltd Client Project #: 230989.001 Project name: PHASE TWO ESA / 131 EGLINGTON AVE.E Client ID: MW19-02 S1

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Reference Spectrum

TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline: C6 - C12	Diesel; C10-C24	Jet Fuels: 06 - 016
Varsol: C8 - C12	Fuel Oils: 66 - 632	Creosote: C10 - C26
Kerosene: C8 - C16	Motor Oils: C16 - C50	Asphalt: C18 - C50+

Pinchin Ltd Client Project #: 230989.001 Project name: PHASE TWO ESA / 131 EGLINGTON AVE.E Client ID: MW19-03 S3

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Reference Spectrum

Gasoline: C6 - C12	Diesel: C10-C24	Jet Fuels: C6 - C16
Varsol: C8 - C12	Fuel Oils: C6 - C32	Creosote: C10 - C26
Kerosene: C8 - C16	Motor Oils: C16 - C50	Asphalt: C18 - C50+

Pinchin Ltd Client Project #: 230989.001 Project name: PHASE TWO ESA / 131 EGLINGTON AVE.E Client ID: MW19-04 S3

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Reference Spectrum

Gasoline: C6 - C12 Diesel: C10 - C24 Jet Fuels: C6 - C16 Varsol: C8 - C12 Fuel Oils: C6 - C32 Creosote: C10 - C26 Kerosene: C8 - C16 Motor Oils: C16 - C50 Asphalt: C18 - C50+

Pinchin Ltd Client Project #: 230989.001 Project name: PHASE TWO ESA / 131 EGLINGTON AVE.E Client ID: MW19-05 S1

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Reference Spectrum

Gasoline: C6 - C12 Diesel: C10 - C24 Jet Fuels: C6 - C16 Varsol: C8 - C12 Fuel Oils: C6 - C32 Creosote: C10 - C26 Kerosene: C8 - C16 Motor Oils: C16 - C50 Asphalt: C18 - C50+

Pinchin Ltd Client Project #: 230989.001 Project name: PHASE TWO ESA / 131 EGLINGTON AVE.E Client ID: BH19-06 S2

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Reference Spectrum

Gasoline: C6 - C12	Diesel: C10-C24	Jet Fuels: C6 - C16
Varsol: C8 - C12	Fuel Oils: C6 - C32	Creosote: C10 - C26
Kerosene: C8 - C16	Motor Oils: C16 - C50	Asphait: C18 - C50+

Pinchin Ltd Client Project #: 230989.001 Project name: PHASE TWO ESA / 131 EGLINGTON AVE.E Client ID: BH19-07 S1

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Reference Spectrum

Gasoline: C6 - C12 Diesel: C10 - C24 Jet Fuels: C6 - C16 Varsol: C8 - C12 Fuel Oils: C6 - C32 Creosote: C10 - C26 Kerosene: C8 - C16 Motor Oils: C16 - C50 Asphalt: C18 - C50+

Pinchin Ltd Client Project #: 230989.001 Project name: PHASE TWO ESA / 131 EGLINGTON AVE.E Client ID: BH19-08 S1

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Reference Spectrum

Gasoline: C6 - C12 Diesel: C10 - C24 Jet Fuels: C6 - C16 Varsol: C8 - C12 Fuel Oils: C6 - C32 Creosote: C10 - C26 Kerosene: C8 - C16 Motor Oils: C16 - C50 Asphalt: C18 - C50+

Pinchin Ltd Client Project #: 230989.001 Project name: PHASE TWO ESA / 131 EGLINGTON AVE.E Client ID: DUP19-03

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Reference Spectrum

Gasoline: C6 - C12 Diesel: C10 - C24 Jet Fuels: C6 - C16 Varsol: C8 - C12 Fuel Oils: C6 - C32 Creosote: C10 - C26 Kerosene: C8 - C16 Motor Oils: C16 - C50 Asphalt: C18 - C50+

Grain Size Analysis Report

Client Sample ID: MW19-01 S1 (JH252) Maxxam Sample ID: VN0442-01 Maxxam Job #: B926843

Tot. Sample Wt (g)*: 10.04 > 2 mm Sample Wt (g)*: 0.88 * Dry mass based on Sieve Aliquot Batch # (Sieve): 9381999 Batch # (Hydro): 9382048

Analysis Date (Sieve): 2019/04/15 Analysis Date (Hydro): 2019/04/15

Grain Size Proportion (%)**:

	Min (mm)	Max (mm)	Percentage
Sand	0.050	2.000	47.5
Silt	0.002	0.050	36.6
Clay	-	0.002	16.0

** Calculations based only on sub 2 mm fraction.

Compatible with USDA and Canadian Soil Triangles

Soil Classification***:

Based on the entire sample

Description		Particle Size	Percent
	Decemption	(mm)	Passing
	Sieve 4	4.750	98.3
	Sieve 10	2.000	91.2
eve	Sieve 20	0.850	87.6
Sie	Sieve 40	0.425	83.8
	Sieve 100	0.150	72.8
	Sieve 200	0.075	63.7
	R1min	0.0476	46.4
Sr.	R3min	0.0281	39.8
lete	R10min	0.0151	31.0
JO.	R30min	0.0089	26.5
ydı	R90min	0.0053	21.0
Т	R270min	0.0032	17.7
	R1080min	0.0015	13.3

Percentage (by mass) less	than 0.075 mm =	63.7
	Classification =	Fine Textured Soil
Based on the < 2 mm fraction ****		
Percentage (by mass) less	than 0.075 mm =	69.8
	Classification =	Fine Textured Soil

of Ontario Regulation 153/04 as amended by Ontario Regulation 511/09, and conducted in accordance with test procedures outlined in ASTM D422.

*** ON Regulation 153/04 requires coarse: fine determination on the < 2 mm fraction. Other jurisdictions may require the entire sample, thus both classifications are provided

Note: Clay/Silt/Sand/Gravel Graphic above Graph: Sand | Silt | Clay fractions in accordance with USDA and Canadian System of Soil Classification. Sub fractions in accordance with the British (BSI) system for information purposes.

Grain Size Analysis Report

Client Sample ID: BH19-06 S2 (JHS263) Maxxam Sample ID: VN0443-01 Maxxam Job #: B926843

Tot. Sample Wt (g)*: 11.52 > 2 mm Sample Wt (g)*: 2.80 * Dry mass based on Sieve Aliquot

Batch # (Sieve): 9381999 Batch # (Hydro): 9382048

Analysis Date (Sieve): 2019/04/15 Analysis Date (Hydro): 2019/04/15

Grain Size Proportion (%)**:

	Min (mm)	Max (mm)	Percentage
Sand	0.050	2.000	18.4
Silt	0.002	0.050	45.2
Clay	-	0.002	36.5

** Calculations based only on sub 2 mm fraction.

Compatible with USDA and Canadian Soil Triangles

Soil Classification***:

Based on the entire sample

	Description	Particle Size (mm)	Percent Passing
	Sieve 4	4.750	78.3
	Sieve 10	2.000	75.7
sve	Sieve 20	0.850	73.7
Sie	Sieve 40	0.425	71.3
	Sieve 100	0.150	64.6
	Sieve 200	0.075	61.7
	R1min	0.0442	61.8
Ъ.	R3min	0.0257	58.9
lete	R10min	0.0139	51.0
шo.	R30min	0.0082	45.1
ydı	R90min	0.0050	39.2
Т	R270min	0.0030	33.4
	R1080min	0.0015	24.5

ſ	Percentage (by mass) less than 0.075 mm = 61.7
	Classification = Fine Textured Soil
	Based on the < 2 mm fraction ****
Ĩ	Percentage (by mass) less than 0.075 mm = 81.5
	Classification = Fine Textured Soil
	**** Grain size analysis performed to classify the soil material according to the criteria prescribed in Section 42.2
	of Ontario Regulation 153/04 as amended by Ontario Regulation 511/09, and conducted in accordance with test

procedures outlined in ASTM D422.

*** ON Regulation 153/04 requires coarse: fine determination on the < 2 mm fraction. Other jurisdictions may require the entire sample, thus both classifications are provided

Note: Clay/Silt/Sand/Gravel Graphic above Graph: Sand | Silt | Clay fractions in accordance with USDA and Canadian System of Soil Classification. Sub fractions in accordance with the British (BSI) system for information purposes.

Grain Size Analysis Report (QA-SRM)

Sieve Batch #: 9381999 Hydrometer Batch #: 9382048

Standard Reference Material

			Acceptan	ce Limits	
	Fraction	% Recovery	Minimum	Maximum	
Sieve	> 0.075 mm	99	75	125	
Sleve	< 0.075 mm	101	75	125	
Hydrometer	Sand	101	75	125	
	Silt	101	75	125	
	Clay	96	75	125	

Your Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINTON AVE. E. Your C.O.C. #: 705704-17-01

Attention: Michael Birch

Pinchin Ltd 2470 Milltower Crt Mississauga, ON CANADA L5N 7W5

> Report Date: 2019/04/24 Report #: R5682143 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B999737 Received: 2019/04/16. 14:14

Sample Matrix: Soil # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Strong Acid Leachable Metals by ICPMS	2	2019/04/18	2019/04/18	CAM SOP-00447	EPA 6020B m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Antonella Brasil, Senior Project Manager Email: ABrasil@maxxam.ca Phone# (905)817-5817

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 1 Page 1 of 8

Report Date: 2019/04/24

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINTON AVE. E. Sampler Initials: WM

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		JLR033	JLR034			
Sampling Data		2019/03/27	2019/03/27			
Sampling Date		13:45	13:45			
COC Number		705704-17-01	705704-17-01			
	LINUTC	BH19-07 S1	BH19-07 S1		OC Patch	
		^	B	RDL		
		A	U			
Metals		A	U			
Metals Acid Extractable Barium (Ba)	ug/g	23	20	0.50	6077067	
Metals Acid Extractable Barium (Ba) RDL = Reportable Detection Li	ug/g mit	23	20	0.50	6077067	

Maxxam Job #: B999737 Report Date: 2019/04/24

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINTON AVE. E. Sampler Initials: WM

TEST SUMMARY

Maxxam ID: Sample ID:	JLR033 BH19-07 S1 A					Collected: Shipped:	2019/03/27
watrix:	5011					Received:	2019/04/16
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	6077067	2019/04/18	2019/04/18	Viviana Ca	inzonieri
Maxxam ID: Sample ID: Matrix:	JLR034 BH19-07 S1 B Soil					Collected: Shipped: Received:	2019/03/27 2019/04/16
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable M	etals by ICPMS	ICP/MS	6077067	2019/04/18	2019/04/18	Viviana Ca	inzonieri

Report Date: 2019/04/24

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINTON AVE. E. Sampler Initials: WM

GENERAL COMMENTS

Each te	emperature is the a	verage of up to	three cooler temperatures taken at receipt				
	Package 1	5.0°C					
Cooler	custody seal was p	resent and inta	t.				
Revised	Revised Report (2019/04/24) : Site address changed to Phase Two ESA / 131 Eglinton Ave. E., as per client request.						
Result	s relate only to the	items tested.					

Maxxam Job #: B999737 Report Date: 2019/04/24

QUALITY ASSURANCE REPORT

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINTON AVE. E. Sampler Initials: WM

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6077067	Acid Extractable Barium (Ba)	2019/04/18	NC	75 - 125	98	80 - 120	<0.50	ug/g	1.4	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

FUNDAMENTAL LABORATORY ACCEPTANCE GUIDELINE

By:

				Maxxam Job #:	B999737
Invoice To:				Date Received:	2019/04/16
Pinchin Ltd				Your C.O.C. #:	705704-17-01
ATTN: Accounts Payable				Your Project #:	230989.001
2470 Milltower Crt				Maxxam Project Manager:	Antonella Brasil
Mississauga, ON				Quote #:	B82222
CANADA L5N 7W5					
Client Contact:					
Michael Birch					
No discrepancies noted.					
Report Comments					
Received Date:	2019/04/16	Time:	14:14	Ву:	
Inspected Date:		Time:		By:	

Time:

FLAG Created Date:

Report Date: 2019/04/24

Pinchin Ltd Client Project #: 230989.001 Site Location: PHASE TWO ESA / 131 EGLINTON AVE. E. Sampler Initials: WM

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	INV	OICE TO:		IMM	E U REPO	RT TO:			PROJECT INFORMATION:					Laboratory Use Only:			
прапу Naл	me: #3103 Pinchin Li	d	Company	Name:	lame:				Quotation I		B82222-	A709	27	15	м	laxxam Job #:	Bottle Order #:
ention:	Accounts Payable		Attention	Michae	I Birch, C	aig Ke	ly		P.O. #		200022 0	02 170	000 0				
dress:	Mississauga ON L	5N 7W5	Address		_	-			Project:		Dhue	TUNO	189.0	01		COC #	705704
	(905) 363-0678	Fax (905) 363-068	Tel			Fax			Project Nat	me:	131 1	Falintar	Aue	W	The second second		Project Manager
all:	ap@pinchin.com		Email	mbirch	@pinchin.com	ckel	14@Div	whin.com	Sampled B	hy:	Willia	in Ma	Ayni	w	Ca	#705704-17-01	Antonella Brasil
MOE RE	EGULATED DRINKING	WATER OR WATER INTENDED	FOR HUMAN C	ONSUMPTION	MUSTBE			ANA	LYSIS REC	QUESTED (PL	EASE BE SE	ECIFIC)				Turnaround Time (TAT)	Required:
-	SUBMITTED O	N THE MAXXAM DRINKING WA	IER CHAIN OF	JUSTODY		(e);		2 1 2 2						Re	gular (Stand	ease provide advance notice lard) TAT:	for rush projects
Regul	Ilation 153 (2011)	Fine CCME Sanitary San	ns ar Bulaw	Special In	structions	< circ								(will	I be applied if Ru	ish TAT is not specified):	
Table 2	Ind/Comm Coarse	Reg 558. Storm Sewer	Bylaw			lease								Sta	Indard TAT = 5-7	Working days for most tests.	
Table 3	Agri/Other For RSC	MISA Municipality				d) pe	5							day	rs - contact your i	Project Manager for details	BOD and Dioxinsir-urans are
Table	_	Diber				iltere	33							Jo	b Specific Rus	h TAT (if applies to entire suf	omission)
	Include Criteria	on Certificate of Analysis (Y/N)?				Me	30							Ru	sh Confirmation	Number	
Sar	mple Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix	Ē	100								of Bottles	Com	(call lab for #) ments
		BH19- 07 51A	19/3/27	13:45	Soil		V								L		
		BH19-0751B	19/3/27	13:45	Soil		V								1		
1		Unit Of Star	1 10-1														
-								_	-		-			-			
-										-	-	-	-	-			
-						-			-	-	-		_	-			
										16	-Apr-1	9 14:14					_
										Antonel	la Bras	il III III					
									11	B9	99737						
										GK1	ENV	-748					
		<u>`</u>								1	1						
1	REUNOUSHED BY: ISH	gature/Print) Date: (Yy	/MM/DD) Ti	me	RECEIVED	BY: (Signature/	Print)	Date: (YY/M	M/DD)	Time	- 1	jars used and	<u> </u>	-	Laboratory U	Jse Only	
WI	They.	W Martysia 19/4	16 14:	10 4	70	AME	- 0	317-7	6	1414	1	not submitted	Time Sen	sitive 1	Temperature (%	C) on Recei Custody S Presen	Seal (Yes)
NLESS OT	HERWISE AGREED TO IN WR	TING, WORK SUBMITTED ON THIS CHAIN	OF CUSTODY IS SL	BJECT TO MAXXA	S STANDARD T	ERMS AND CON	DITIONS. SIGN	NG OF THIS CHAI	N OF CUST	TODY DOCUM	ENTIS	12.20	10.46	and a	200	Intact	hite: Maxxa Yellow:
OWLED	USMENT AND ACCEPTANCE	FOR TERMS WHICH ARE AVAILABLE	OR VIEWING AT W	W.MAXXAM.GA/TE	RMJ.							SAMPL	ES MUST BE	KEPTCOO	L (< 10° C') FR	OM TIME OF SAMPLING	

Maxxam Analytics International Corporation o/a Maxxam Analytics

the second second second