

June 5, 2014

AJ Lamba Realty Group Inc. 910 Eglinton Avenue East L4W 1K1 Mississauga, Ontario

Attention: Mr. A.J. Lamba

RE: Phase Two Environmental Site Assessment

900 - 920 Eglinton Avenue East, Mississauga, Ontario

Altech Reference No. 5140-14

Dear Mr. Lamba:

Please find attached the report for the Phase Two Environmental Site Assessment conducted by Altech at the above location.

If you have any questions or concerns, please do not hesitate to contact the undersigned. Thank you.

Yours very truly,

ALTECH Environmental Consulting Ltd.

Andrew Mutrie, E.I.T.

Andrew Mutrie

Project Consultant

Site Investigation and Remediation Services

Phase Two Environmental Site Assessment

900 – 920 Eglinton Avenue East Mississauga, Ontario

Prepared for

AJ Lamba Realty Group Inc.

Project: 5140-14

ALTECH Environmental Consulting Ltd.

12 Banigan Drive Mississauga, ON, Canada M4H 1E9 Phone: (416) 467-5555 Fax: (416) 467-9824 Toll Free: 1-800-323-4937 www.altech-group.com

June 6, 2014

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	1
2.0	INTRODUCTION	3
2.1 2.2 2.3 2.4	Site Description Property Ownership Current and Proposed Future Uses Applicable Site Condition Standard	3 3
3.0	BACKGROUND INFORMATION	6
3.1 3.2	Physical SettingPast Investigations	
4.0	SCOPE OF THE INVESTIGATION	8
4.1 4.2 4.3 4.4 4.5	Overview of Site Investigation Media Investigated Phase One Conceptual Site Model Deviations from Sampling and Analysis Plan Impediments	9 10 11
5.0	INVESTIGATION METHOD	12
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	Elevation Surveying	12 13 14 15 16 16 17 17 17
	REVIEW AND EVALUATION	-
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	Geology	19 20 20 20 22 22
7.0	CONCLUSIONS	25

TABLE OF CONTENTS

7.1	Signatures	. 25
	Limitations	
8.0	REFERENCES	. 27
9.0	FIGURES AND TABLES	. 28
10.0	APPENDICES	. 29

1.0 EXECUTIVE SUMMARY

ALTECH Environmental Consulting Ltd. (Altech) was retained to complete a Phase Two Environmental Site Assessment (ESA). Details are provided as follows:

Client:

AJ Lamba Realty Group Inc.

Description of lands containing the Phase Two Property:

- The lands known by the municipal addresses of 900, 910 and 920 Eglinton Avenue East, in Mississauga, Ontario;
- The three municipal addresses are directly adjacent to each other and are situated on the south side of Eglinton Avenue East, between a Highway 403 Interchange and Tomken Road. The Phase Two Property is generally rectangular in shape and has an approximate area of 3530 m². A one-storey house-style building is the only building currently present at the Phase Two Property. This building is situated in the central portion of the subject site fronting onto the roadway. The building is surrounded by paved driveway and parking areas. The remainder of the Phase Two property is occupied by vacant land with natural vegetation present.

Dates of the onsite sampling for this Phase Two ESA: May 23 and May 29, 2014.

The purpose of the assessment is to investigate the Areas of Potential Environmental Concern (APECs) at the subject site identified in the Phase One ESA completed by *Toronto Inspection Ltd. (TIL)* in April 2014. The Phase Two Property investigated during this assessment is the same as the Phase One Property investigated by TIL. Please refer to the Phase One ESA report for a thorough summary of all Potentially Contaminating Activities (PCA), from the list of 59 activities proscribed as such by the MOE in Reg.153/04 as amended, that were identified as occurring or historically having occurred at the Phase Two Property and/or in the Phase Two Study Area (within 250 metres of the Phase Two Property).

Five (5) Areas of Potential Environmental Concern (APECs) were identified on the Phase Two Property, as per the *TIL* Phase One ESA:

- Foreign fill material of unknown quality may exist at the Phase Two Property. This APEC cannot be definitely confined to a particular area however is believed to be concentrated at the apparently artificial mounds present in the north portion of the Phase Two Property. Contaminants of Concern (COC) related to this APEC include Metals, Petroleum Hydrocarbons (PHC) and Volatile Organic Compounds (VOC);
- De-icing salts are applied seasonally to the paved areas of the subject site, and also to the paved roadway Eglinton Avenue. As such, the surficial fill underneath the paved areas of the site, and the surficial fill near to the roadway may contain elevated levels of salt-

- related compounds. Contaminants of Concern (COC) related to this APEC include Sodium Absorption Ratio (SAR) and Electrical Conductivity (EC).
- The Phase Two Property and surrounding area has historically been used for agricultural purposes. As such, the surficial fill in the undeveloped areas of the Phase Two Property may have residual contamination from these practices. COCs related to this APEC include Organochlorine Pesticides (OCP);
- The former presence of fuel oil storage tank(s) at the Phase Two Property leads to an APEC in the central area of the Phase Two Property. COCs related to this APEC include PHCs.
- The current and historical presence of an industrial park to the northwest of the Phase Two Property results in an APEC in the northwest portion of the Phase Two Property. COCs related to this APEC include PHCs, and VOCs. The industrial area is located at a distance greater than 70 metres northwest of the Phase Two Property, and the Phase Two Property is less than 40 metres wide (in the northwest-southeast plane.) As such, any migrating contamination has the potential to have affected the subsurface of the entire Phase Two Property.

Altech advanced a total of seven (7) boreholes and installed three (3) monitoring wells to investigate potential impacts to the Phase Two Property. Soil and groundwater samples were collected and analyzed for at least one of the following parameter groups: Petroleum Hydrocarbons (PHC), Volatile Organic Compounds (VOC), Organochlorine Pesticides (OCP), Sodium Absorption Ratio (SAR), Electrical Conductivity (EC) and Metals.

Laboratory analytical results were then compared to the Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition (fine to medium textured soils) for Industrial/Commercial/Community land use (MOE Table 3 Standards 2011). These Standards are considered by the Qualified Person (QP) to be the applicable Standards for the Phase Two Property.

The following conclusions are provided for this Phase Two ESA at the Phase Two Property:

- 1) The APECs identified at the Phase Two Property, were adequately investigated in this Phase Two ESA;
- 2) No contaminants of concern are present in the subsurface soil or groundwater at the Phase Two Property.

2.0 INTRODUCTION

The purpose of the assessment is to provide an objective, independent, professional investigation and assessment of the soil and groundwater conditions underlying the site. This Phase Two Environmental Site Assessment has been commissioned by AJ Lamba Realty Group Inc. (the client) as recommended in a previously completed Phase One ESA.

2.1 Site Description

The 'Phase Two Property' consists of the same lands as the Phase One Property. The lands are described in more detail in the Phase One ESA.

The Phase Two Property consists lots described by three municipal addresses: 900, 910 and 920 Eglinton Avenue East. These lots are directly adjacent to each other and are situated on the south side of Eglinton Avenue East, between a Highway 403 Interchange and Tomken Road. The Phase Two Property is generally rectangular in shape and has an approximate area of 3,530 m². A one-storey house-style building is the only building currently present at the Phase Two Property. This building is situated in the central portion of the subject site fronting onto the roadway. The building is surrounded by paved driveway and parking areas. The remainder of the Phase Two property is occupied by vacant land with natural vegetation present. The Phase Two Property is bound by Eglinton Avenue East to the northwest, by developed commercial properties to the northeast / southeast, and by vacant undeveloped land to the south.

The legal descriptions of the three (3) properties which comprise the Phase Two Property are:

- 900 Eglinton Avenue East: Part 17 of Plan 43R-5515, and Part 2 of Expansion Plan 463716 (PIN 13311-0004 (LT));
- 910 Eglinton Avenue East: Part 18 of Plan 43R-5515 (PIN 13311-0005 (LT));
- 920 Eglinton Avenue East: Part 19 of Plan 43R-5515 and Part 2 of Expansion Plan 463690 (PIN 13311-0006 (LT)).

Please refer to Section 9.0, Figures and Tables, for illustrations of the boundaries of the Phase Two Property. Please refer to Appendix A - 4 for a proper survey of the Phase Two Property.

2.2 Property Ownership

The Phase Two Property at 900 - 920 Eglinton Avenue East, as a whole, is currently owned personally by Mr. and Mrs. Amarjot Lamba. It is the owner's intention to incorporate the land holdings once re-financing is approved. Mr. Lamba currently utilizes the sole building on-site as an office for a real estate business. The contact information is as follows:

• AJ Lamba Realty Group Inc., 910 Eglinton Avenue East, Mississauga, Ontario, L4W 1K1. Phone: 905-502-9944. Contact Personnel: Mr. AJ Lamba. Email: aj@ajlamba.com

2.3 Current and Proposed Future Uses

Zoning of the Phase Two Property and surrounding area was determined through publicly available online maps from the City of Mississauga website. The current zoning of the property at 900 - 920 Eglinton Avenue East is "R4: Detached Dwellings, Minimum 15 meter Lot Frontages". The land adjacent to the site to the south is also zoned as R4. The current zoning of the properties adjacent to the site to the southeast and to the northeast is "M1: Industrial Uses – Limited Outside Storage".

The proposed future use of the Phase Two property is commercial office and/or retail space. The size of the Phase Two property will not change. The proposed future use of the Phase Two Property is considered to be less sensitive than the current use of the Phase Two Property. Therefore, section 168.3.1 of the MOE regulation 511/09 would not prohibit the new use of the property without a Record of Site Condition (RSC) filed.

2.4 Applicable Site Condition Standard

The Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition (fine to medium textured soils) for industrial/commercial/community land use (MOE Table 3 Standards April 15, 2011 as per Reg. 153/04 and amendments) are deemed applicable for comparison of analytical results of soil and groundwater samples. The applicable Standard was determined as follows:

The Ministry of the Environment (MOE) document *Soil, Ground Water [sic] and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act* (April 15, 2011) outlines three site restoration approaches:

- Full Depth Background criteria;
- Full Depth Generic criteria;
- Stratified depth criteria

Comparison of the analytical results to the Full Depth Generic Approach was selected for this site. The QP did not determine any reason or benefit to using the Background or Stratified approach. The site is not considered to be within or adjacent to an area of natural significance.

One soil sample submitted for laboratory analysis (BH1 - 5-7') was analyzed for pH level. The pH of the soil was determined to be 7.89, which is within the acceptable range. No further evidence from soil observations was attained to indicate that the pH of any of the soil underlying the site would be outside the acceptable range to allow the application of the Standards.

Two types of Generic approach are recognized in the *Standards*:

- Full depth criteria;
- Shallow Soils criteria; and,
- Criteria for use within 30 m of a Water Body.

Comparison of the analytical results to the full depth criteria was deemed by the Qualified Person to be appropriate for this site to meet the objectives of this assessment. It was determined

that greater than 5 metres of overburden soil exists underlying the site and thus Shallow Soils criteria do not apply. There are no water bodies within 30 metres of the Phase Two Property.

Two types of soil texture are recognized in the *Standards*:

- Coarse textured soils; and,
- Medium and fine textured soils.

Comparison of the analytical results to the fine to medium textured soil criteria was selected for this site based on visual observation of soils in the field, and confirmation by grain size analysis (discussed further below).

Two types of groundwater condition are recognized in the *Standards*:

- Potable groundwater; and,
- Non-potable groundwater.

Comparison of the analytical results to the non-potable groundwater Standard was selected for this site, since groundwater is not used by the municipality as a source for the municipal drinking water system for the City of Mississauga. The source water for the City drinking water system is surface water (Lake Ontario). Further discussion of this determination is included in the Phase One ESA.

Under non-potable groundwater conditions, two types of site use are recognized in the *Standards*:

- Residential/parkland/institutional land use; and,
- Industrial/commercial/community land use.

Comparison of the analytical results to the industrial/commercial/community land use was selected for this site, based on the current and proposed future land use. Although the Phase Two Property is zoned as residential, it is currently being used for commercial purposes. Also, the intended future use is commercial.

3.0 BACKGROUND INFORMATION

3.1 Physical Setting

The Phase Two Property and the Phase Two Study Area referred to in this report are the same as the Phase One Property and Phase One Study Area referred to in the previously completed Phase One ESA. The Phase Two Study Area include properties within 250 metres of the Phase Two Property.

Topographically, the Phase Two Property slopes steeply down from the road surface to the remainder of the property. The lowest area of the property is the southern corner portion, which is at an elevation approximately four (4) metres lower than the roadway. The highest area of the property is immediately adjacent to the roadway. In addition to the steep slope descending from the roadway, the predominant slope of the Phase Two Property is down to the south. The south/southwest portion of the property is marsh-like. Standing water accumulates here and vegetation such as cattails are present.

The hydrology of the study area consists only of surface runoff that is wholly dictated by the topography of the site. Surface runoff travels down gradient across the paved and grassed areas of the site. Since the surface gradient at the site descends down to the south / southwest, surface water drains to this area of the site.

There are no water bodies or areas of natural significance located on or adjacent to the Phase Two Property, or within the Phase Two Study Area. The rationale for this consideration of the Phase Two Property is as follows:

- 1) It is not reserved or set apart as a provincial park or conservation reserve under the Provincial Parks and Conservation Reserves Act;
- 2) It is not identified by the Ministry of Natural Resources as an area of natural and scientific interest, or wetland, or as a habitat for threatened or endangered species;
- It is not designated by the municipality as environmentally sensitive, of environmental concern, or as ecologically significant. The area is fully developed, and is zoned for development;
- 4) It is not designated as an escarpment natural area or an escarpment protection area by the Niagara Escarpment Plan;
- 5) It is not designated as a natural core area or natural linkage area by the Oak Ridges Moraine Conservation Plan;
- 6) It is not set apart as a wilderness area under the Wilderness Areas Act.

3.2 Past Investigations

The following report was provided to Altech by the client:

• *Phase One ESA*, 900 – 920 Eglinton Avenue East, Mississauga, Ontario. Completed by *Toronto Inspection Ltd.* (TIL). TIL reference: 3844-14-E-AJL-A. Dated: April 14, 2014.

The Phase One ESA identified numerous Potentially Contaminating Activities (PCAs) that historically have occurred at the Phase Two Property, and numerous PCAs that are currently occurring and have historically occurred within the Phase Two Study Area. As per the identified PCAs, multiple Areas of Potential Environmental Concern (APECs) were identified at the Phase Two Property. The concluding statement made by TIL is as follows: "It is TIL's opinion that a Phase Two ESA will be required to confirm the quality of subsoil (sic) and groundwater at the site."

The *TIL* Phase One ESA references a previous Phase One ESA completed for a part of the Phase Two property by *AMEC* in 2011. The *TIL* report utilized the conclusion from the *AMEC* report that no significant water bodies are present in the Phase One Study Area.

Altech reviewed the Phase One ESA in detail and finds no reason to discredit the content or findings contained therein. The Phase One ESA was conducted as per the requirements of O.Reg. 153/04 as amended by O.Reg. 511/09. The Phase One ESA was conservative in its identification of PCAs.

Altech interprets the Phase One ESA to have identified five (5) Areas of Potential Environmental Concern (APECs) at the Phase Two Property, as per the *TIL* Phase One ESA:

- Foreign fill material of unknown quality may exist at the Phase Two Property. This APEC cannot be definitely confined to a particular area however is believed to be concentrated at the apparently artificial mounds present in the north portion of the Phase Two Property. Contaminants of Concern (COC) related to this APEC include Metals, Petroleum Hydrocarbons (PHC) and Volatile Organic Compounds (VOC);
- De-icing salts are applied seasonally to the paved areas of the subject site, and also to the paved roadway Eglinton Avenue. As such, the surficial fill underneath the paved areas of the site, and the surficial fill near to the roadway may contain elevated levels of salt-related compounds. Contaminants of Concern (COC) related to this APEC include Sodium Absorption Ratio (SAR) and Electrical Conductivity (EC).
- The Phase Two Property and surrounding area has historically been used for agricultural purposes. As such, the surficial fill in the undeveloped areas of the Phase Two Property may have residual contamination from these practices. COCs related to this APEC include Organochlorine Pesticides (OCP);
- The former presence of fuel oil storage tank(s) at the Phase Two Property leads to an APEC in the central area of the Phase Two Property. COCs related to this APEC include PHCs.
- The current and historical presence of an industrial park to the northwest of the Phase Two Property results in an APEC in the northwest portion of the Phase Two Property. COCs related to this APEC include PHCs, and VOCs. The industrial area is located at a distance greater than 70 metres northwest of the Phase Two Property, and the Phase Two Property is less than 40 metres wide (in the northwest-southeast plane.) As such, any migrating contamination has the potential to have affected the subsurface of the entire Phase Two Property.

4.0 SCOPE OF THE INVESTIGATION

4.1 Overview of Site Investigation

Altech reviewed the previously completed Phase One ESA and designed this Phase Two ESA investigation to adequately examine all APECs and COCs identified therein.

The sampling plan included advancement of seven (7) boreholes, three (3) of which were to be completed with monitoring wells. Monitoring Wells were to be installed in any boreholes that showed significant signs of impact; if no signs of impact were observed, then the monitoring wells were to be installed in suitable locations to determine groundwater flow direction.

The location of boreholes advanced, and the rationale for these locations, is as follows:

- BH1 was advanced in the west portion of the Phase Two Property, on the paved driveway surface in front of the garage bay door. This borehole was situated to investigate impacts of road-salt application to surficial soils;
- BH2, complete with MWA, was advanced in the central portion of the Phase Two Property, in the paved area near to the rear of the building. This borehole was situated to investigate impacts of road-salt application to surficial soils and impacts from former fuel oil storage in the area;
- BH3 was advanced in the north portion of the Phase Two Property, on the mound of fill that appears to have been artificially created. The borehole was located 11 metres southeast and 11 metres southwest of the north corner of the property. This borehole was situated to investigate impacts of road-salt application to surficial soils, impacts of former pesticide use to surficial soils, and any potential impacts that may be present in the fill (as it is of unknown quality);
- BH4, complete with MWB, was advanced in the northeast portion of the Phase Two Property, beside the mound of fill that appears to have been artificially created in this area. The borehole was located 12 metres southwest and 4 metres northwest of the east corner of the property. This borehole was situated to investigate impacts of former pesticide use to surficial soils, and any potential impacts that may be present in the fill (as it is of unknown quality);
- BH5 was advanced in the southwest portion of the Phase Two Property, approximately 13 metres southwest of the south corner of the subject site building. This borehole is in the area where a former house building was present. This borehole was situated to investigate impacts of former pesticide use, and any potential impacts that may be present in the fill (as it is of unknown quality);
- BH6, complete with MWC, was advanced in the southwest portion of the Phase Two Property. The borehole was located approximately 30 metres southwest and 6 metres northwest of the south corner of the building. This borehole was situated to investigate impacts of former pesticide use to surficial soils, and off-site impacts from industrial properties to the northwest;

• BH7 was advanced in the south portion of the Phase Two Property, approximately 9 metres northeast and 3 metres northwest of the south corner of the property. This borehole was situated to investigate impacts of former pesticide use to surficial soils.

The industrial area to the northwest of the Phase Two Property is located at a distance greater than 70 metres northwest. The Phase Two Property is less than 40 metres wide (in the northwest-southeast plane.) As such, any migrating contamination has the potential to have affected the subsurface of the entire Phase Two Property. Although BH6/MWC is best suited to evaluate any migratory contamination from the industrial area, due to its proximity, all boreholes advanced were evaluated for potential off-site impacts.

The assessment included the advancement of boreholes and installation of monitoring wells, collection and field screening of soil samples, elevation measurements of geologic and hydro geologic units, and analysis of soil and groundwater samples for several chemical parameter groups.

4.2 Media Investigated

The media investigated in this assessment included soil and groundwater, but not sediment or bedrock. The following rationale is provided for each media:

Soil

The potentially contaminating activities (PCA) that could have potentially impacted the subsurface of the Phase Two Property include the storage of fuel oil, the use of pesticides, the use of road salt, the importation of fill of unknown quality, and multiple PCAs that have occurred and are occurring at industrial properties within the Phase Two Study Area.

Pesticides and road salt are applied at the ground surface. If large quantities of these compounds are applied, surficial soils may contain high amounts of pesticides or road-salt related minerals. Surficial soils are considered to be immediately underneath the surface layer. Surface layers encountered during this Phase Two ESA were: paved asphalt, grassed areas, and razed vacant land (generally covered in soil, debris, or disturbed vegetation). Samples collected to investigate the subsurface penetration of pesticides and road salt were generally from 0.5 - 3' below the ground surface (bgs).

The storage of fuel oil is an activity that involves liquid contaminants which if released into the subsurface would contact the soil nearest to the point of release first, that is, soil in the unsaturated overburden closest to the surface. The liquid contaminants would then migrate downward through the subsurface, impacting soil at a greater depth and possibly the groundwater table. Soil at all depths in all boreholes was inspected for visual and olfactory evidence of hydrocarbon contamination.

Similarly, the risk of migratory contamination from industrial activities within the Phase Two Study Area arises from the use of liquid contaminants. If released into the subsurface, these liquid contaminants would contact the soil nearest to the point of release first, that is, soil in the

unsaturated overburden closest to the surface at these neighbouring properties. The liquid contaminants would then migrate downward through the subsurface, impacting soil at a greater depth and possibly the groundwater table. Through groundwater migration, contaminants released to the subsurface as a result of the noted PCAs, could have impacted subsurface soil underlying the Phase Two Property. It was therefore deemed necessary to investigate subsurface soil for potential impacts

Fill of unknown quality exists at the subject site. Evidence of impacts from this fill was examined in all boreholes advanced. Observations were made regarding any foreign debris found in any of the boreholes advanced.

Soil at all depths in all boreholes was visually and olfactory inspected for obvious signs of contamination. Soil at all intervals was field screened using an *RKI Eagle* PID meter, used to detect combustible vapors arising from hydrocarbon contamination, or odourless VOC vapours that would otherwise go undetected.

Groundwater

Groundwater contamination may be or may have been present at properties within the Phase Two Study Area. The presence of such contamination could have impacted the subject site if dissolved phase contaminants migrated with groundwater flow towards the Phase Two Property. It was therefore deemed necessary to investigate groundwater for potential impacts.

Sediment

Since there are no water bodies present on the property, an investigation of potential contamination of sediment was deemed not applicable by the QP.

Bedrock

No bedrock was encountered during borehole advancement at the subject site. Greater than 4.5 metres of overburden soil (i.e. silt formation) was determined to exist under the site. As such, an investigation of potential contamination of bedrock was deemed not applicable by the QP.

4.3 Phase One Conceptual Site Model

In the Phase One ESA report, TIL prepared three (3) drawings for the Conceptual Site Model: Figure 1 – Site Plan, Figure 2 – PCA Locations and Figure 3 – APEC Locations. Information summarized in these figures includes:

- 1) The boundaries of the Phase One Study Area and Phase One Property are clearly illustrated;
- 2) The Phase One Property is not within, or adjacent to, an area of natural significance or water body as defined in O.Reg. 153/04, as amended;
- 3) There are no water wells on the Phase One Property;

4) The road names, property uses, and locations of Potentially Contaminating Activities (PCAs) within the Phase One Study Area are illustrated.

The Phase Two Property and Phase Two Study Area have been defined as the same as those of the Phase One ESA, and as such the above figures remain relevant to this Phase Two ESA. Please refer to the Phase One ESA for a detailed overview of the Phase One Conceptual Site Model. Note that the Phase One ESA does not include a written summary of the conceptual site model, but instead includes a table indicating what section within the report each key piece of information of the conceptual site model can be found.

4.4 Deviations from Sampling and Analysis Plan

There were no deviations from the sampling and analysis plan for subsurface soil and groundwater for the Phase Two ESA. Please refer to Appendix A-1 for the Sampling and Analysis Plan.

4.5 Impediments

There were no notable 'denial of access' issues in the completion of the onsite component of the Phase Two ESA work.

5.0 INVESTIGATION METHOD

5.1 General

The investigation was performed in accordance with prevailing practices used in the environmental assessment industry, and generally accepted standards for environmental investigations.

As mentioned, the purpose and intent of this Phase Two ESA was to investigate the potential for subsurface contamination associated with the environmental concerns identified by the Phase One ESA.

5.2 Drilling and Excavating

Prior to any subsurface work, utilities were located on both public and private property. Ontario One Call was contacted for locates on public property. The following local utilities were contacted prior to the start of drilling:

- 1. Local Water and Sewer utilities.
- 2. Local Telephone Company.
- 3. Local Natural Gas Company.
- 4. Local Cable Company.
- 5. Provincial and Municipal Hydro.

A private locator was contracted to scan each work area and provide physical plant locates within the boundaries of the private property. All utility locate reports are provided in Appendix A-5.

A total of seven (7) boreholes were advanced to a maximum depth of 16 feet (4.9 metres) below surface grade. All boreholes were advanced into the overburden at the site utilizing a rubber-track mounted Geoprobe 7822DT drilling rig operated by Strata Drilling Group Inc. (Strata). The Geoprobe rig employed direct push technology whereby a continuous soil sample was collected, over four-foot intervals, by pushing with hydraulic hammer a 2-inch diameter plastic liner through the soil over the entire depth of each borehole. Notes were made regarding soil classification, evidence of impacts through visual and olfactory observations, and combustible vapour measurements. At least one (1) soil sample was collected for each 4-foot soil interval examined. The collection of soil samples depended on recovery from the soil column, and the stratigraphy of soils encountered.

A total of three (3) monitoring wells were installed into three (3) of the boreholes advanced to a maximum depth of 16 feet (4.9 metres) below surface grade.

Cross-contamination was minimized by using separate plastic liners for each soil interval inspected. Field personnel wore clean plastic gloves to handle all samples. Gloves were changed for each soil interval inspected, at a minimum. Soil samples were organized on a plastic

table provided by Strata, as such soil samples never made contact with the ground surface. The plastic table was continually tidied through the day.

5.3 Soil Sampling

Soil samples were retrieved from various depth intervals in each borehole. Soil from each depth interval was placed into a clean, sealed, 18 x 20 centimetre heavy polyethylene bags so that approximately one quarter of the bag was full, with some headspace in the bag. Any lumps of soil within the bag were gently massaged and broken up by hand. The sample was then monitored for soil vapours accumulated in the headspace. Samples were selected for laboratory analysis on the basis of the results of field screening (discussed in section 5.4 below) for combustible vapours, and any visual and olfactory evidence of impact.

The soil samples selected for laboratory analysis were collected and field preserved in accordance with the instructions provided by the laboratory, ALS Laboratory Group of Mississauga, Ontario. Soil selected for PHC and VOC analysis was placed into a new, clean, 120 or 250 ml glass jar with a Teflon lined lid, and also transferred directly from the soil core using a new, clean, Terracore sampler into two (2) new, clean, 40 ml clear glass vials with Teflon lined lids. Each vial contained 10 ml of methanol, as prepared by the laboratory. Soil selected for Metals or OCP analysis was placed into a new, clean 120 or 250 ml glass jar with a Teflon lid.

The analytical glassware for the selected samples was field preserved in an ice-containing cooler and submitted to the laboratory subcontractor, ALS Environmental Inc.

The samples were labelled with the following information:

- A site reference number (5140-14);
- A borehole (BH#) reference number, for placement of the sample at the site; and,
- A depth reference number from which the sample was retrieved.

Site Geology

The generalized site geology encountered at the site was consistent in each borehole and is best described as follows:

- BH1 was surfaced with asphalt underlain by dark grey gravel to a depth of approximately 2' below ground surface (bgs). A minimal amount of red brick debris was encountered around 1.5' bgs. From 2' bgs to the end of the borehole at 8' bgs, dry brown silt was encountered. The silt contained small pebble rocks interspersed throughout and a larger rock piece was stuck in the soil column around 5' bgs. There was no apparent contamination in the borehole based on visual and olfactory observations.
- BH2, complete with MWA, was surfaced with asphalt underlain by dark grey gravel to a depth of approximately 1' below ground surface (bgs). From 1-3' bgs, dry brown silt was encountered. The silt contained small pebble rocks interspersed. From 3-4.5' bgs

dark grey silty clay was encountered. From 4.5 - 8' bgs, dry brown silt was encountered. From 8-9' bgs, a layer of wet grey-brown clay with small gravel-like rocks mixed in was encountered. From 9' bgs to the end of the borehole at 12' bgs, dry grey silt was encountered. There was no apparent contamination in the borehole based on visual and olfactory observations.

- BH3 was surfaced with disturbed brown silty soil. The entire soil column, to the end of the borehole at a depth of 8' bgs can best be described as brown silt. Some tree roots and leafy organic debris was encountered between 1 and 3' bgs. Some grey sandstone rock debris and a trace amount of red brick debris was encountered between 5 and 7' bgs. There was no apparent contamination in the borehole based on visual and olfactory observations.
- BH4, complete with MWB, was surfaced with disturbed brown silty soil. Dry brown silt continued to be encountered to a depth of 5' bgs. From 5 8' bgs grey-brown silt with some wood debris was encountered. From 8' bgs to the end of the borehole at 12' bgs, wet grey-brown silty clay was encountered. Some small rocks were present in this material. There was no apparent contamination in the borehole based on visual and olfactory observations.
- BH5 was surfaced with unmaintained grass. Below this surface layer to a depth of 8' bgs brown silt was encountered. A piece of red brick debris was present in the soil column around 1' bgs. A coppery tint was possessed by the soil at around 5' bgs. From 8' bgs to the end of the borehole at 12' bgs, grey silt was encountered. There was no apparent contamination in the borehole based on visual and olfactory observations.
- BH6, complete with MWC, was surfaced with unmaintained grass. Dry brown silt was next encountered to a depth of 5' bgs. From 5 6.5' bgs, brown sandy silt was encountered. From 6.5 10' bgs, soft dark brown-grey sandy silt was encountered. Within this layer of sandy silt, relatively high VOC concentrations were measured using the *RKI Eagle*: 160 ppm (7-8') and 110 ppm (9-10'). Next a 0.5' layer of light brown granular sand was encountered. Below this dry brown-grey silt was present to a depth of 12'. From 12 14' bgs wet, grey sandy-silt was encountered. From 14' bgs to the end of the borehole at 16' bgs dry grey silt was present. There was no apparent contamination in the borehole based on visual and olfactory observations.
- BH7 was surfaced with was surfaced with disturbed brown silty soil. Dry brown silt continued to be encountered to a depth of 2' bgs, at which point the soil column transitioned to grey-brown silt to a depth of 5' bgs. Between 5 and 6' bgs dark grey sand and a piece of rock was encountered. From 6 8' bgs dry grey silt was encountered. From 8 10' bgs wet grey-brown sandy silt was encountered. From 10' bgs to the end of the borehole at 12' bgs, dry grey silt was encountered. There was no apparent contamination in the borehole based on visual and olfactory observations.

A detailed description of the geology underlying the subject site is provided in Section 6.1. Field logs of the stratigraphy in each borehole are provided in Appendix A-2.

5.4 Field Screening Measurements

All soil samples were field screened shortly after sampling. For each sample, the polyethylene bag was selected and any lumps of soil within the bag were gently massaged and broken up by hand without opening the bag. The sample was then allowed to come to the ambient air

temperature before monitoring soil vapours accumulated in the headspace. Field testing of soil vapours was made by inserting the probe of a RKI Eagle 2 organic vapour meter (calibrated to 400 parts per million and 40% Lower Explosive Limit Hexane) into the headspace within the bag, and recording the peak value registered by the meter during the first 15 seconds of measurement. The instrument is capable of detecting the gaseous concentration of any volatile, flammable chemical in air over two ranges: 0 to 500 parts per million (ppm) and 0 to 100% Lower Explosive Limit (LEL) or 0 to 11,000 ppm. The instrument is calibrated monthly by Altech personnel, using known concentrations of Hexane Gas.

Notes were also recorded of any visual evidence of chemical impact, soil type (grain size and texture), geological features (e.g. fracturing, colouration) and approximate moisture content. Olfactory evidence of any chemical impacts or other sample characteristics was also recorded.

Soil samples that tested relatively high for combustible vapours and/or possessed volatile odours were submitted to the laboratory for analysis of PHCs and VOCs. Any foreign debris observed in soil columns also affected the selection of soil samples for laboratory analysis.

No deviations to the normal field screening measurements or procedures took place during this Phase Two ESA.

5.5 Groundwater Monitoring Well Installation

Monitoring wells for groundwater sampling were installed into three (3) of the boreholes advanced at the site. The monitoring wells were intended to intercept the shallow groundwater table. Strata completed the installation of the wells using a Geoprobe 7822DT. The monitoring wells were constructed as follows:

- Monitoring well MWA was installed within BH2 to a depth of 10 feet (3.0 metres) below surface grade. The well was constructed using new, clean (so as to avoid cross-contamination) 2-inch diameter schedule 40 polyvinyl chloride (PVC) piping with 5 feet (1.5 metres) of 40-micrometre slotted well screening at the bottom of the well. Clean graded sand was placed around the well screen up to approximately 1 foot (30 centimetres) above the top of the screen. A minimum 36-inch (0.9 metres) bentonite seal was then placed above the sand pack and the remaining annulus was filled with sand. A flush-mounted metal protective casing was installed at surface with concrete seal to protect the well pipe while providing an access point for sampling. An expandable gripper cap (J-plug) was installed to cap the monitoring well.
- 2) Monitoring well MWB was installed within BH4 to a depth of 13 feet (4.0 metres) below surface grade. The well was constructed using 2-inch diameter schedule 40 polyvinyl chloride (PVC) piping with 5 feet (1.5 metres) of 40-micrometre slotted well screening at the bottom of the well. Clean graded sand was placed around the well screen up to approximately 1 foot (30 centimetres) above the top of the screen. A minimum 36-inch (0.9 metres) bentonite seal was then placed above the sand pack and the remaining annulus was filled with sand. The well pipe was extended approximately 1 metre above the ground surface to make the well easily accessible

- for sampling. An expandable gripper cap (J-plug) was installed to cap the monitoring well.
- Monitoring well MWC was installed within BH6 to a depth of 16 feet (4.9 metres) below surface grade. The well was constructed using 2-inch diameter schedule 40 polyvinyl chloride (PVC) piping with 10 feet (3.0 metres) of 40-micrometre slotted well screening at the bottom of the well. Clean graded sand was placed around the well screen up to approximately 1 foot (30 centimetres) above the top of the screen. A minimum 36-inch (0.9 metres) bentonite seal was then placed above the sand pack and the remaining annulus was filled with sand. The well pipe was extended approximately 1 metre above the ground surface to make the well easily accessible for sampling. An expandable gripper cap (J-plug) was installed to cap the monitoring well.

Monitoring well completion details are also included with the borehole logs, in Appendix A-2 and in Table 1.

5.6 Groundwater Field Measurements of Water Quality Parameters

During the Phase Two ESA, no measurements of groundwater quality parameters were made in the field, as this was deemed unnecessary for the purposes of the investigation.

5.7 Groundwater Sampling

Groundwater sampling was completed from the monitoring wells at the site. After installation, the monitoring wells were allowed to reach static water equilibrium. The depth to water in each well was measured with a water-level meter. The volume of water in each well was then calculated and each well was purged using a new, clean, bottom loading disposable bailer. The development of each well involved purging of more than three (3) well volumes of water as outlined in the Ontario Ministry of the Environment's document *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario*.

After development, each well was allowed to recharge to static equilibrium and then a groundwater sample was collected from the well. The sample was then transferred from the bailer to clean analytical vessels, provided by an independent analytical laboratory, ALS Environmental Inc. of Mississauga, Ontario. The samples were immediately field preserved in accordance with the instructions provided by the laboratory.

The groundwater samples were labelled with the following information:

- A site reference number (5140); and,
- A monitoring well location reference for placement of the sample at the site.

5.8 Sediment and Bedrock Sampling

No sediment sampling was completed as part of this Limited Phase Two Environmental Site Assessment. There are no surface water bodies, permanent or seasonal, on the Phase Two Property.

Bedrock was not encountered during the Phase Two ESA, and as such was not investigated.

5.9 Analytical Testing

All soil and groundwater samples collected for analysis during the Phase Two ESA were submitted to and analyzed by ALS Environmental Inc. of Mississauga, Ontario.

5.10 Residue Management Procedures

Residues from the drilling work were limited to excess sampled soil from the borehole and monitoring well advancement, and purged groundwater from well development.

Soil residues from the Geoprobe work were collected in steel drum containers for off-site disposal.

5.11 Elevation Surveying

An elevation survey was completed at the subject site using traditional transit technique. A four-screw transit was set up, leveled, and sighted on a graduated rod set at a benchmark of known elevation. The height of the sight-line on the transit was then calculated by adding the measurement to the elevation of the bench mark. Then the transit was used to sight on the rod at each monitoring well and the elevation of each object was measured. The elevation of each object was calculated by subtracting the sighted measurement at each monitoring well from the height of the instrument.

Altech completed a survey of the elevations of all monitoring wells and other significant points of reference using this technique on May 23, 2014.

Topographic contours of the Phase Two Property and immediately surrounding area were reviewed from a City of Mississauga online maps application. The contours indicate that the site the surface elevation of Eglinton Avenue where it fronts onto the Phase Two Property is approximately 148.5 metres above mean sea level (masl). The contours indicate that the lowest point on the property, at the south corner of the site is at an elevation of approximately 145 masl. The contours indicate that the north portion of the site (i.e. 920 Eglinton Avenue East) is at an elevation of 146 masl.

As a benchmark elevation for surveying purposes, Altech utilized the south corner of the site being at an elevation of 145 masl. BH7, advanced within 10 metres of the south corner, was assumed to be at 145 masl.

A detailed description of the land elevations is provided in Section 6.1.

5.12 Quality Assurance and Quality Control Measures

The sampling containers used at the time of the onsite sampling for the Phase Two ESA for each target parameter of analysis are described as follows:

Soil

PHC: F2, F3, F4: 120 / 250 millilitre (mL) amber glass jars, no preservative

Metals: 120 mL amber glass jar, no preservative OC Pesticides: 120 mL amber glass jar, no preservative

VOC, F1, BTEX: 40 millilitre clear glass vial, methanol preservative

SAR, EC: 120 / 250 millilitre (mL) amber glass jars, no preservative

Groundwater

PHC: F2, F3, F4:

Metals (dissolved):

VOC, PHC: F1, BTEX:

2 x 500 millilitre amber glass bottle, Sodium Bisulfate preservative

125 millilitre clear plastic bottle, no field filtering or preservative.

3 x 40 millilitre amber glass vial, Sodium Bisulfate preservative

OC Pesticides: 2 x 500 millilitre amber glass bottle, no preservative

Each jar, vial and bottle was labeled. All samples submitted for analysis were documented on completed Chain of Custody forms provided by the laboratory.

All soil samples were collected either by hand using new disposable latex or nitrile gloves or using a new disposable terra-core sampler. Groundwater samples were collected using new, disposable bailers. No other sampling equipment was used to collect or handle the samples.

The quality assurance and quality control measures related to the analyses included laboratory duplicate analyses, laboratory blank analyses, and laboratory matrix spike analyses for selected samples and parameters. Field duplicates of soil and groundwater were collected and submitted for analysis.

6.0 REVIEW AND EVALUATION

6.1 Geology

The majority of the surface of the Phase Two Property is covered by grass or disturbed soil/vegetation. This surface covering is present at the north and south lots (i.e. 900 and 920 Eglinton Avenue East) within the Phase Two Property. The central lot at the Phase Two Property (i.e. 910 Eglinton Avenue East) is occupied by the house building and the paved access and parking areas. During the period that this Phase Two project took place, the client was expanding the parking area at the rear of the site. Gravel backfill was being imported to extend the level parking surface. There is no reason to believe any contamination exists within this construction-grade backfill material.

The elevation of the surface of the Phase Two Property ranges between approximately 145 metres (south corner, BH7) to 148.54 metres (driveway in front of garage, BH1) above mean sea level (amsl). The most prominent topographic feature at the Phase Two Property is a steep descent from the roadside down to the southeast portion of the site. This descent is steeper in the south portion, and more gradual in the north portion of the Phase Two Property. The Phase Two property also has a general slope trend descending gently to the south from the north. The lot addressed as 920 Eglinton Avenue East (i.e. the north portion of the site) is generally at a higher elevation than 900 Eglinton Avenue East (i.e. the south portion of the site).

The general geology underlying the subject site consists of a predominantly silt layer, at least 4 metres thick, with some clay and sand interspersed, to a depth of at least 141.2 m amsl.

Cross-sectional diagrams of the subject site have been prepared by Altech to illustrate the geology underlying the site. The figures are included in Section 9.0.

6.2 Groundwater Characterization, Elevation and Flow Direction

Altech determined that the shallow groundwater table at the subject site is located within the overburden soil layer.

Groundwater elevations within the installed monitoring wells were measured to be as follows:

MWA: 0.699 m below surface grade, thus at 144.54 m amsl.

MWB: No groundwater collected in this monitoring well, which was screened from

143.415 to a maximum depth of 141.815 m amsl. Thus the shallow groundwater

table in this area of the site is at a depth greater than 141.815 m amsl.

MWC: 1.60 m below grade, thus at 145.00 masl.

The groundwater elevations are summarized in Table 2.

Limited data to infer groundwater flow direction was gained from the Phase Two ESA. Based on the groundwater elevation measurements taken, an easterly groundwater flow direction is inferred. This inference is consistent with the presence of a tributary of Etobicoke Creek being present to the east of the subject site.

6.3 Fine-Medium Soil Texture

Fine to medium soil texture is being used in determining the applicable site condition Standards. This is based on sieve testing on a soil sample collected from BH1 during the borehole advancement. The soil sample 5140-BH1-5-7' was a grab sample of soil from the silt unit between 2 and 8 feet below surface at that location. It was sieved with a 75 micron sieve and found to have 70% of particles in the samples smaller than 75 micron; qualifying it as fine to medium soil texture. This soil is typical of soil found underlying the site. The soil underlying the site was found to be very consistent in type and texture, and as such the QP determined that one (1) Grain Size Analysis (GSA) was sufficient to confirm the soil texture categorization.

6.4 Soil Field Screening

The field screening methodology used during the Phase Two ESA on site work is described in Section 5.4 above. The details of all VOC measurements of soil samples are included with the borehole logs in Appendix A-2. The following table summarizes the results of the field screening on soil samples.

Borehole number	Highest VOC measurement(s) and corresponding depth below ground surface	Notes on visual and olfactory evidence of impact	Sample(s) submitted for lab analysis
BH1	0 ppm at 1-3', 5-7'	No visual or olfactory evidence of impact	BH1 – 1-3' (SAR, EC) BH1 – 5-7' (VOC, PHC)
BH2	50 ppm at 8-9'	No visual or olfactory evidence of impact	BH2 – 1-3' (SAR, EC) BH2 – 8-9' (VOC, PHC)
внз	0 ppm at 0-4', 4-8'	No visual or olfactory evidence of impact	BH3 – 1-2' (SAR, EC) BH3 – 2-3' (OCP) BH3 – 5-6' (Metals)
BH4	5 ppm at 5-6'	No visual or olfactory evidence of impact	BH4 – 1-2' (SAR, EC, OCP) BH4 – 5-6' (VOC, PHC)
BH5	10 ppm at 3-4'	No olfactory evidence of impact. Red brick debris encountered around 1.5' bgs.	BH5 – 0.5-1' (OCP) BH5 – 1-2' (Metals)
ВН6	160 ppm at 7-8'	No visual or olfactory evidence of impact	BH6 – 7-8' (VOC, PHC)
ВН7	45 ppm at 8-10'	No visual or olfactory evidence of impact	BH7 – 0.5-2' (OCP) BH7 – 8-10' (PHC, VOC0

6.5 Soil Quality

None of the fourteen (14) soil samples submitted from the seven (7) boreholes advanced were in exceedance of the 2011 MOE Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition (fine to medium textured soils) for industrial/commercial/community property use (2011 MOE Table 3 Standards) for any of the parameters analyzed for: Petroleum Hydrocarbons (PHC), Volatile Organic Compounds (VOC), Sodium Absorption Ratio (SAR), Electrical Conductivity (EC), Organochlorine Pesticides (OCP) and Metals.

The following table summarizes the soil samples submitted for analysis, parameters analyzed and the laboratory results:

Sample ID	Depth below surface grade (feet)	Soil unit	Parameters analyzed	Assessment of exceedances
BH1 – 1-3'	1-3'	Silt	SAR, EC	No exceedances of 2011 MOE Table 3 Standards
BH1 – 5-7'	5-7'	Silt	VOC, PHC	No exceedances of 2011 MOE Table 3 Standards
BH2 – 1-3'	1-3'	Silt	SAR, EC	No exceedances of 2011 MOE Table 3 Standards
BH2 – 8-9'	8-9'	Clay	VOC, PHC	No exceedances of 2011 MOE Table 3 Standards
BH3 – 1-2'	1-2'	Silt	SAR, EC	No exceedances of 2011 MOE Table 3 Standards
BH3 – 2-3'	2-3'	Silt	ОСР	No exceedances of 2011 MOE Table 3 Standards
BH3 – 5-6'	5-6'	Silt	Metals	No exceedances of 2011 MOE Table 3 Standards
BH4 – 1-2'	1-2'	Silt	SAR, EC, OCP	No exceedances of 2011 MOE Table 3 Standards
BH4 – 5-6'	5-6'	Silt	VOC, PHC	No exceedances of 2011 MOE Table 3 Standards
BH5 – 0.5-1'	0.5-1'	Silt	ОСР	No exceedances of 2011 MOE Table 3 Standards
BH5 – 1-2'	1-2'	Silt	Metals	No exceedances of 2011 MOE Table 3 Standards
BH6 – 7-8'	7-8'	Sandy Silt	VOC, PHC	No exceedances of 2011 MOE Table 3 Standards
BH7 – 0.5-2'	0.5-2'	Silt	VOC, PHC	No exceedances of 2011 MOE Table 3 Standards
BH7 – 8-10'	8-10'	Sandy Silt	VOC, PHC	No exceedances of 2011 MOE Table 3 Standards

The detailed analytical results for soil are tabulated in Tables 3 - 7 in Section 9.0. For a visual representation of borehole locations, please refer to Figure 2: Site Sketch.

Contaminants of Concern

Based on a comparison of the analytical results to the applicable standards (2011 MOE Table 3 Standards), the contaminants of concern in soil are determined to be:

• No contaminants of concern.

There was no evidence noted, during the Phase Two ESA, of any light or dense non-aqueous phase liquids (LNAPL or DNAPL) in any of the soil encountered.

6.6 Groundwater Quality

Groundwater samples were collected from two (2) of the three (3) monitoring wells and submitted for laboratory analysis. No groundwater sample was collected from MWB because the well did not yield groundwater. Analytical results were compared to the 2011 MOE Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition (fine to medium textured soils) for residential/parkland/institutional land use (2011 MOE Table 3 Standards). No exceedances were found.

The following table summarizes the groundwater quality:

Monitoring Well ID	Depth of screen	Aquifer intercepted by screen	Parameters analyzed	Assessment of exceedances
MWA	5 - 10 ft, 1.5 - 3.0m	Shallow groundwater aquifer in the overburden soil layer.	PHC, VOC, Metals	No exceedances of 2011 MOE Table 3 Standards
MWB	8 - 13 ft, 2.4 – 4.0m	No groundwater recovered.	Not sampled.	Not applicable.
MWC	6 - 16 ft, 1.8 – 4.9m	Shallow groundwater aquifer in the overburden soil layer.	PHC, VOC, OCP	No exceedances of 2011 MOE Table 3 Standards

The detailed analytical results for groundwater are tabulated in Tables 8 - 11 in Section 9.0.

Contaminants of Concern

Based on a comparison of the analytical results to the applicable standards (2011 MOE Table 3 Standards), the contaminants of concern in groundwater are determined to be:

No contaminants of concern.

There was no evidence noted, during the Phase Two ESA, of any light or dense non-aqueous phase liquids (LNAPL or DNAPL) in any of the groundwater encountered.

6.7 Sediment Quality

Sediment quality is not applicable to this Limited Phase Two Environmental Site Assessment.

6.8 Quality Assurance and Quality Control

All samples submitted for analysis were documented on Chain of Custody records. All laboratory analytical results were reported to Altech on finalized, authorized Certificates of Analysis by the laboratory. All of the samples submitted for analysis for the purposes of assessing contaminants of concern on the Phase Two Property were handled in accordance with standard protocol. All samples were analyzed within the holding time of 7 calendar days.

The laboratory reported that the following quality assurance/quality control testing was completed on the Phase Two ESA samples for each parameter group: matrix spike, spiked blank, and method blank. A review of all blank analyses performed indicates that all of the results were below detection limits. The laboratory reported that all of the QA/QC results passed their quality control evaluation. Please refer to the laboratory certificates of analysis included in Appendix A-3 for details.

Altech collected field duplicates of soil and groundwater. The following table summarizes the duplicate quality assurance testing program.

Media	Parameter Group Analyzed for	Sample ID duplicated	Sample ID given to duplicate sample
Soil	PHC	BH7 – 8-10'	BH8 – 4-5'
Soil	VOC	BH7 – 8-10'	BH8 – 4-5'
Groundwater	PHC	MWA	MWD
Groundwater	Metals	MWA	MWD
Groundwater	VOC	MWA	MWD
Groundwater	OCP	MWA	MWD

No statistically meaningful inconsistencies were encountered in the analytical results of the field duplicates. No exceedances of the applicable standards were found in the field duplicates. The results associated with the field duplicate samples are included in Tables 3-11, as organized by sample media and parameter group.

6.9 Phase Two Conceptual Site Model

As explained above, five (5) Areas of Potential Environmental Concern (APEC) were identified on the Phase Two Property as a result of Potentially Contaminating Activities taking place historically at the subject site and taking place historically and currently at properties within the Phase Two Study Area, as per the *TIL* Phase One ESA:

- Foreign fill material of unknown quality may exist at the Phase Two Property. This APEC cannot be definitely confined to a particular area however is believed to be concentrated at the apparently artificial mounds present in the north portion of the Phase Two Property. Contaminants of Concern (COC) related to this APEC include Metals, Petroleum Hydrocarbons (PHC) and Volatile Organic Compounds (VOC);
- De-icing salts are applied seasonally to the paved areas of the subject site, and also to the paved roadway Eglinton Avenue. As such, the surficial fill underneath the paved areas of the site, and the surficial fill near to the roadway may contain elevated levels of salt-related compounds. Contaminants of Concern (COC) related to this APEC include Sodium Absorption Ratio (SAR) and Electrical Conductivity (EC).
- The Phase Two Property and surrounding area has historically been used for agricultural purposes. As such, the surficial fill in the undeveloped areas of the Phase Two Property

- may have residual contamination from these practices. COCs related to this APEC include Organochlorine Pesticides (OCP);
- The former presence of fuel oil storage tank(s) at the Phase Two Property leads to an APEC in the central area of the Phase Two Property. COCs related to this APEC include PHCs.
- The current and historical presence of an industrial park to the northwest of the Phase Two Property results in an APEC in the northwest portion of the Phase Two Property. COCs related to this APEC include PHCs, and VOCs. The industrial area is located at a distance greater than 70 metres northwest of the Phase Two Property, and the Phase Two Property is less than 40 metres wide (in the northwest-southeast plane.) As such, any migrating contamination has the potential to have affected the subsurface of the entire Phase Two Property.

This Phase Two ESA has revealed that the Phase Two Property is underlain by dry overburden generally described as silt to a depth of at least 16 feet (4.9 m) below the ground surface. The groundwater table was encountered within the overburden soil, at a depth range of approximately 0.5 - 2 metres below the ground surface. Limited information was attained regarding the groundwater level and flow direction. Based on the limited information, the groundwater flow direction was inferred to be easterly. Cross-sections of the site are provided as Figures 3 and 4 in Section 9.0.

The investigation and sampling plan conducted adequately investigated the APECs identified in the Phase One ESA. All soil and groundwater observed and analyzed during this Phase Two ESA appeared to be free of impacts and laboratory analytical results met applicable 2011 MOE Table 3 Standards site standards. Based on all information available, it is the opinion of Altech that the subject site is free of subsurface contamination resulting from PCAs at the Phase Two Property and within the Phase Two Study Area.

7.0 CONCLUSIONS

Based on all information, field observations, laboratory analyses, and a comparison of the analytical results compared to the applicable 2011 MOE Table 3 Standards, Altech provides the following conclusion statements:

- 1) The potentially contaminating activities identified on properties within the Phase Two Study Area, and the resultant areas of potential environmental concern, were adequately investigated in this Phase Two ESA;
- 2) No contaminants of concern are present in the subsurface soil or groundwater of the Phase Two Property;
- 3) Altech recommends that the monitoring wells installed as part of this assessment are decommissioned as soon as possible, as per O.Reg. 903/04.

7.1 Signatures

Records and report review, project management, analytical results assessment and evaluation, and report editing was completed by:

Chad R. Stewart, P.Eng., QP-ESA

Chal Sevan

Manager - Site Investigation and Remediation Services

On site field work and sampling, field screening and observations, drawing, surveying and mapping, analytical results tabulation, records and report review, project management, analytical results assessment, and report writing was completed by:

Andrew Mutrie, E.I.T.

Andrew Mutrie

Project Consultant - Site Investigation and Remediation Services

On site field work and sampling, field screening and observations and drawing, surveying and mapping was completed by:

Naveed Rehman, G.I.T.

Project Consultant - Site Investigation and Remediation Services

7.2 Limitations

ALTECH Environmental Consulting Ltd. (Altech) has completed a Limited Phase Two Environmental Site Assessment (ESA) for the subject site and has made the opinions, findings, conclusions and recommendations presented herein. This report has been prepared generally consistent with the Ontario Regulation 153/04, as amended in 2011, and the generally accepted industry standard of practice for a report of this type. No other warranty, expressed or implied, is made.

An environmental site assessment or investigation has inherent limitations in characterizing the conditions of a site based on the information obtained. The test data, chemical analyses, and conclusions given herein are the results of limited sampling completed at the site under the specific conditions encountered during the work program. It is impossible to interpolate between sample locations with absolute certainty, and this assessment does not warrant or guarantee that all areas within, or adjacent to, the subject site are free from exceedances of any regulated Standard, Guideline, Objective or limit in any environmental media. This report does not delineate the exact extent, size or magnitude of any such exceedances and this report on its own is not intended to be used to determine the cost of remediation of any such exceedances. The sampling locations and chemical parameters of analysis have been chosen based on Altech's professional judgement and opinion of environmental concerns, potential contamination sources, types and transport in the environment. The laboratory analytical results presented herein are limited to those laboratory analyses requested.

All information described in this report was obtained from sources deemed to be reliable, however, no representation or warranty is made as to the accuracy thereof. The content of this report represents our unbiased and professional analysis, opinions, conclusions, and recommendations based on all information available as of the date of this report. The information presented is only accurate at the time of collection and Altech reserves the right to alter or revise the findings, opinions, conclusions and recommendations, based on any changes in site conditions or new information, anecdotal or otherwise, obtained by Altech after the date of this report.

ALTECH Environmental Consulting Ltd., its officers, and its employees have no present or contemplated interest in the property. Our employment and compensation for preparing this report are not contingent upon our observations and conclusions.

This report was prepared for, and is owned by, the Client exclusively as named in this report. No statements made in this report can be interpreted as legal advice. Altech accepts no duty of care to, or responsibility for damages suffered by, any third party, whatsoever, and any use a third party makes of this report, or any reliance to, or decisions based on it, are the responsibility of such third parties.

Altech Standard Terms of Agreement Rev. 07/2012 and limitations thereof apply.

8.0 REFERENCES

The following is a list of all documents referred to in this report:

- 1) Soil, Groundwater and Sediment Standard for Use Under Part XV.1 of the Environmental Protection Act, MOE, July 27, 2009.
- 2) Guide for Completing Phase Two Environmental Site Assessment under Regulation 153/04, MOE, June, 2011.
- 3) Ontario Regulation 153/04, MOE, filed June 1, 2004.

9.0 FIGURES AND TABLES

The following Tables are attached to this report:

Table 1: Summary of Well Completion Data

Table 2: Groundwater Elevation Levels

Tables 3-7: Soil Analytical Results

Tables 8-11: Groundwater Analytical Results

The following Figures are attached to this report, immediately following the above tables:

Figure 1: Site Sketch

Figure 2: Groundwater Elevations and Contours

Figure 3: Cross-Section A-A'

Figure 3: Cross-Section B-B'

TABLE 1: Summary of Well Completion Data

Reference: Phase Two ESA

Client: AJ Lamba Realty Group Inc.

Site: 900 - 920 Eglinton Avenue East, Mississauga, On

Well Identification	Well Surface Elevation (m amsl)	Depth To Well Seal fbgs (mbgs)	Depth To Sand Pack fbgs (mbgs)	Depth To Screen fbgs (mbgs)	Total Well Depth fbgs (mbgs)
MWA	145.240	0.50 (0.15)	4 (1.2)	5 (1.5)	10 (3.0)
MWB	145.815	0.50 (0.15)	7 (2.1)	8 (2.4)	13 (4.0)
MWC	146.600	0.50 (0.15)	5 (1.5)	6 (1.8)	16 (4.9)

TABLE 2: Groundwater Elevation Levels

Reference: Phase Two ESA

Client: AJ Lamba Realty Group Inc.

Site: 900 - 920 Eglinton Avenue East, Mississauga

Well	Well Surface Elevation (m amsl)	Static Groundwater Depth (mbgs)	Date Groundwater Measured	Static Groundwater Elevation (m amsl)
MWA	145.240	0.699	23-May-14	144.54
MWB	145.815	ND	23-May-14 29-May-14	< 141.82
MWC	146.600	1.60	23-May-14	145.00

TABLE 3: Summary of Soil Analytical Results for Minerality Parameters

Reference: Phase Two ESA

Client: AJ Lamba Realty Group Inc.

Site: 900 - 920 Eglinton Avenue East, Mississauga

Date Sampled: May 23, 2014

Utilized Criteria: MOE Table 3, Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition,

Industrial/Commercial Property Use, Fine to Medium Textured Soils

	рН	Sodium Absorption Ratio	Electrical Conductivity	Calcium	Magnesium	Sodium
_	pH units		mS/cm	μg/g	μg/g	μg/g
BH1 - 5-7'	7.89	np	np	np	np	np
BH1 - 1-3'	np	5.27	0.542	17.3	1.91	86.6
BH2 - 1-3'	np	5.68	0.493	18.9	1.50	95.4
BH3 - 1-2'	np	0.29	0.244	38.7	1.40	6.71
BH4 - 1-2'	np	0.24	0.222	32.5	2.95	5.44
Method Detection Limit	na	na	0.0040	0.10	0.10	0.10
MOE Table 3 April 15, 2011	na	12	1.4	nc	nc	nc

All values in micrograms per gram (µg/g) (equivalent to parts per million (ppm))

nc = no criteria.

np = analysis not performed.

nd = results below detection limit.

na = not applicable

Standard value within parenthesis indicates value for fine to medium textured soils; Standard value without parenthesis indicates value for coarse textured soils

TABLE 4: **Summary of Soil Analytical Results for Metals**

Reference: Phase Two ESA

Client: AJ Lamba Realty Group Inc

Site: 900 - 920 Eglinton Avenue East, Mississauga

Date Sampled: May 23, 2014

Utilized Criteria: MOE Table 3, Full Depth Generic Site Condition Standards in a Non-Potable Ground Water

Condition, Industrial/Commercial Property Use, Fine to Medium Textured Soils

				MOE
	MDL	BH3- 5-6'	BH5 - 1-2'	Table 3
Metal	μg/g			April 15, 2011
Antimony (Sb)	1.0	nd	nd	40 (50)
Arsenic (As)	1.0	4.6	5.7	18
Barium (Ba)	1.0	61.2	76.3	670
Beryllium (Be)	0.50	0.59	0.66	8 (10)
Boron (B)	5.0	8.6	9.5	120
Cadmium (Cd)	0.50	nd	nd	1.9
Chromium (Cr)	1.0	20.5	23.0	160
Cobalt (Co)	1.0	9.5	10.0	80 (100)
Copper (Cu)	1.0	23.1	24.7	230 (300)
Lead (Pb)	1.0	21.0	19.5	120
Molybdenum (Mo)	1.0	nd	nd	40
Nickel (Ni)	1.0	21.0	22.4	270 (340)
Selenium (Se)	1.0	nd	nd	5.5
Silver (Ag)	0.20	nd	nd	40 (50)
Thallium (Th)	0.50	nd	nd	3.3
Uranium (U)	1.0	nd	nd	33
Vanadium (V)	1.0	29.8	31.3	86
Zinc (Zn)	5.0	82.5	74.9	340

All values in micrograms per gram ($\mu g/g$) (equivalent to parts per million (ppm)) nc=no criteria. nd=results below detection limit.

mp = analysis not performed.

Standard value within parenthesis indicates value for fine to medium textured soils; Standard value without parenthesis indicates value for coarse textured soils.

Criteria are taken from the MOE Soil, Ground Water and Sediment Standards for use under part XV.1 of the Environmental Protection Act, April 15, 2011.

TABLE 5:

Summary of Soil Analytical Results for Volatile Organic Compounds (VOCs)

Reference: Client: Site: Date Sampled: Utilized Criteria:

Phase Two ESA
AJ Lamba Realty Group Inc.
900-920 Eglinton Avenue East, Mississauga
May 23, 2014
MOE Table 3, Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition,
Industrial/Commercial Property Use, Fine to Medium Textured Soils

	MDL	BH1 - 5-7'	BH2 - 8-9'	BH4 - 5-6'	BH6 - 7-8'	BH7 - 8-10'	BH8 - 4-5' (Field Duplicate of BH7 - 8-	MOE Table 3
VOC Compound	µg/g						10')	April 15, 2011
Acetone	0.50	nd	nd	nd	nd	nd	nd	16 (28)
Bromodichloromethane	0.050	nd	nd	nd	nd	nd	nd	18
Bromoform	0.050	nd	nd	nd	nd	nd	nd	0.61 (1.7)
Bromomethane	0.050	nd	nd	nd	nd	nd	nd	0.05
Carbon Tetrachloride	0.050	nd	nd	nd	nd	nd	nd	0.21 (1.5)
Chlorobenzene	0.050	nd	nd	nd	nd	nd	nd	2.4 (2.7)
Dibromochloromethane	0.050	nd	nd	nd	nd	nd	nd	13
Chloroform	0.050	nd	nd	nd	nd	nd	nd	0.47 (0.18)
1,2-Dibromoethane	0.050	nd	nd	nd	nd	nd	nd	0.05
1,2-Dichlorobenzene	0.050	nd	nd	nd	nd	nd	nd	6.8 (8.5)
1,3-Dichlorobenzene	0.050	nd	nd	nd	nd	nd	nd	9.6 (12)
1,4-Dichlorobenzene	0.050	nd	nd	nd	nd	nd	nd	0.2 (0.84)
Dichlorodifluoromethane	0.050	nd	nd	nd	nd	nd	nd	16 (25)
1,1-Dichloroethane	0.050	nd	nd	nd	nd	nd	nd	17 (21)
1,2-Dichloroethane	0.050	nd	nd	nd	nd	nd	nd	0.05
1,1-Dichloroethylene	0.050	nd	nd	nd	nd	nd	nd	0.064 (0.48)
cis-1,2-Dichloroethylene	0.050	nd	nd	nd	nd	nd	nd	55 (37)
trans-1,2-Dichloroethylene	0.050	nd	nd	nd	nd	nd	nd	1.3 (9.3)
Dichloromethane (Methylene Chloride)	0.050	nd	nd	nd	nd	nd	nd	1.6 (2)
1,2-Dichloropropane	0.050	nd	nd	nd	nd	nd	nd	0.16 (0.68)
cis-1,3-Dichloropropene	0.0030	nd	nd	nd	nd	nd	nd	nc
trans-1,3-Dichloropropene	0.0030	nd	nd	nd	nd	nd	nd	nc
n-Hexane	0.050	nd	nd	nd	nd	nd	nd	46 (88)
Methyl Ethyl Ketone	0.50	nd	nd	nd	nd	nd	nd	70 (88)
Methyl Isobutyl Ketone	0.50	nd	nd	nd	nd	nd	nd	31 (210)
MTBE	0.050	nd	nd	nd	nd	nd	nd	11 (3.2)
Styrene	0.050	nd	nd	nd	nd	nd	nd	34 (43)
1,1,1,2-Tetrachloroethane	0.050	nd	nd	nd	nd	nd	nd	0.087 (0.11)
1,1,2,2-Tetrachloroethane	0.050	nd	nd	nd	nd	nd	nd	0.05 (0.094)
Tetrachloroethylene	0.050	nd	nd	nd	nd	nd	nd	4.5 (21)
1,1,1-Trichloroethane	0.050	nd	nd	nd	nd	nd	nd	6.1 (12)
1,1,2-Trichloroethane	0.050	nd	nd	nd	nd	nd	nd	0.05 (0.11)
Trichloroethylene	0.050	nd	nd	nd	nd	nd	nd	0.91 (0.61)
Trichlorofluoromethane	0.050	nd	nd	nd	nd	nd	nd	4 (5.8)
Vinyl Chloride	0.020	nd	nd	nd	nd	nd	nd	0.032 (0.25)

All values in micrograms per gram (µg/g) (equivalent to parts per million (ppm))
nc = no criteria.
nd = results below detection limit.
np = analysis not performed.

Standard value within parenthesis indicates value for fine to medium textured soils; Standard value without parenthesis indicates value for coarse textured soils.
Criteria are latent from the MCE Soil, Ground Water and Gediment Standards for use under part XV.1 of the Environmental Protection Act, April 16, 2011.

TABLE 6: Summary of Soil Analytical Results for Petroleum Hydrocarbons

Reference: Phase Two ESA

Client: AJ Lamba Realty Group Inc.

Site: 900 - 920 Eglinton Avenue East, Mississauga

Date Sampled: May 23, 2014

Utilized Criteria: MOE Table 3, Full Depth Generic Site Condition Standards in a Non-Potable Ground Water

Condition, Industrial/Commercial Property Use, Fine to Medium Textured Soils

	Petroleum	Petroleum	Petroleum Petroleum Petroleu		Benzene	Toluene	Ethyl-	m&p-Xylenes	o-Xylene	Xylenes
	Hydrocarbons	Hydrocarbons	Hydrocarbons	Hydrocarbons			benzene			(Total)
	F1	F2	F3	F4						
	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g
BH1 - 5-7'	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH2 - 8-9'	nd	nd	108	263	nd	nd	nd	nd	nd	nd
BH4 - 5-6'	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH6 - 7-8'	nd	20	198	207	nd	nd	nd	nd	nd	nd
BH7 - 8-10'	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH8 - 4-5' (Field Duplicate of BH7 - 8-10')	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Method Detection Limit	5.0	10	50	50	0.020	0.20	0.050	0.030	0.020	0.050
MOE Table 3 April 15, 2011	55 (65)	230 (250)	1,700 (2,500)	3,300 (6,600)	0.32 (0.4)	68 (78)	9.5 (19)	nc	nc	26 (30)

All values in micrograms per gram (µg/g) (equivalent to parts per million (ppm))

nc = no criteria.

np = analysis not performed.

nd = results below detection limit.

Standard value within parenthesis indicates value for fine to medium textured soils; Standard value without parenthesis indicates value for coarse textured soils. Criteria are taken from the MOE Soil, Ground Water and Sediment Standards for use under part XV.1 of the Environmental Protection Act, April 15, 2011.

TABLE 7:

Summary of Soil Analytical Results for OrganoChloro Pesticides (OCP)

Reference: Phase Two ESA

Client:

AJ Lamba Realty Group Inc. 900 - 920 Eglinton Avenue East, Mississauga

Site: Date Sampled: Utilized Criteria: May 23, 2014
MOE Table 3, Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Industrial/Commercial Property Use, Fine to Medium Textured Soils

		BH3 - 2-3'	BH4 - 1-2'	BH5 - 0.5-1'	BH7 - 0.5-2'	MOE
I	MDL	BH3 - 2-3	BH4 - 1-2	Вно - 0.5-1	BH7 - 0.5-2	Table 3
OCP Compound	μg/g					April 15, 2011
Aldrin	0.020	nd	nd	nd	nd	0.088 (0.11)
gamma-hexachlorocyclohexane	0.010	nd	nd	nd	nd	nc
a-chlordane	0.020	nd	nd	nd	nd	nc
Chlordane (Total)	0.028	nd	nd	nd	nd	0.05
g-chlordane	0.020	nd	nd	nd	nd	nc
op-DDD	0.020	nd	nd	nd	nd	nc
pp-DDD	0.020	nd	nd	nd	nd	nc
Total DDD	0.028	nd	nd	nd	nd	4.6
o,p-DDE	0.020	nd	nd	nd	nd	nc
pp-DDE	0.020	nd	nd	nd	nd	nc
Total DDE	0.028	nd	nd	nd	nd	0.52 (0.65)
op-DDT	0.020	nd	nd	nd	nd	nc
pp-DDT	0.020	nd	nd	nd	nd	nc
Total DDT	0.028	nd	nd	nd	nd	1.4
Dieldrin	0.020	nd	nd	nd	nd	0.088 (0.11)
Endosulfan I	0.020	nd	nd	nd	nd	nc
Endosulfan II	0.020	nd	nd	nd	nd	nc
Endosulfan (Total)	0.028	nd	nd	nd	nd	0.30 (0.38)
Endrin	0.020	nd	nd	nd	nd	0.04
Heptachlor	0.020	nd	nd	nd	nd	0.19
Heptachlor Epoxide	0.020	nd	nd	nd	nd	0.05
Hexachlorobenzene	0.010	nd	nd	nd	nd	0.66
Hexachlorobutadiene	0.010	nd	nd	nd	nd	0.056 (0.063)
Hexachloroethane	0.010	nd	nd	nd	nd	0.21 (0.43)
Methoxychlor	0.020	nd	nd	nd	nd	1.6

All values in micrograms per gram (µg/g) (equivalent to parts per million (ppm))

nc = no criteria.

nd = results below detection limit.

np = analysis not performed.

Standard value within parenthesis indicates value for fine to medium textured soils; Standard value without parenthesis indicates value for coarse textured soils.

Criteria are taken from the MOE Soil, Ground Water and Sediment Standards for use under part XV.1 of the Environmental Protection Act, April 15, 2011.

TABLE 8: Summary of Groundwater Analytical Results for Metals

Reference: Phase Two ESA

Client: AJ Lamba Realty Group Inc.

Site: 900 - 920 Eglinton Avenue East, Mississauga Date Sampled: May 23, 2014 (MWA) and May 29, 2014 (MWD)

Utilized Criteria: MOE Table 3, Full Depth Generic Site Condition Standards in a Non-Potable Ground Water

Condition, All Types of Property Use, Fine to Medium Textured Soils

			MWD (Field duplicate of	MOE
[MDL	MWA	MWA)	Table 3
Metals (Dissolved)	ug/L			April 15, 2011
Antimony (Sb)	0.50	nd	nd	20,000
Arsenic (As)	1.0	nd	nd	1,900
Barium (Ba)	2.0	467	436	29,000
Beryllium (Be)	0.50	nd	nd	67
Boron (B)	10	60	71	45,000
Cadmium (Cd)	0.10	nd	nd	3
Chromium (Cr)	0.50	nd	nd	810
Cobalt (Co)	0.50	3.41	2.75	66
Copper (Cu)	1.0	nd	nd	87
Lead (Pb)	1.0	nd	nd	25
Molybdenum (Mo)	0.50	1.20	1.56	9,200
Nickel (Ni)	1.0	6.0	6.9	490
Selenium (Se)	5.0	nd	nd	63
Silver (Ag)	0.10	nd	nd	1.5
Sodium (Na)	5000	516000	533000	2,300,000
Thallium (Th)	0.30	nd	nd	510
Uranium (U)	2.0	nd	2.8	420
Vanadium (V)	0.50	nd	nd	250
Zinc (Zn)	3.0	nd	13.0	1,100

All values in micrograms per Litre (µg/L) (equivalent to parts per billion (ppb))

nc = no criteria.

 $nd = results \ below \ detection \ limit.$

np = analysis not performed.

Standard value within parenthesis indicates value for fine to medium textured soils; Standard value without parenthesis indicates value for coarse textured soils.

Criteria are taken from the MOE Soil, Ground Water and Sediment Standards for use under part XV.1 of the Environmental Protection Act, April 15, 2011.

TABLE 9:

Summary of Groundwater Analytical Results for Volatile Organic Compounds (VOCs)

Phase Two ESA Reference:

Client: AJ Lamba Realty Group Inc.

Site: 900 -920 Eglinton Avenue East, Mississauga Date Sampled: May 23, 2014 (MWA and MWC), and May 29, 2014 (MWD)

Utilized Criteria: MOE Table 3, Full Depth Generic Site Condition Standards in a Non-Potable Ground Water

Condition, All Types of Property Use, Fine to Medium Textured Soils

					MOE
	MDL	MWA	MWC	MWD (Field duplicate of MWA)	Table 3
Compound	μg/L			WVVA	April 15, 2011
Acetone	30	nd	nd	nd	130000
Bromodichloromethane	2.0	nd	nd	nd	85000
Bromoform	5.0	nd	nd	nd	380 (770)
Bromomethane	0.50	nd	nd	nd	5.6 (56)
Carbon Tetrachloride	0.20	nd	nd	nd	0.79 (8.4)
Chlorobenzene	0.50	nd	nd	nd	630
Dibromochloromethane	2.0	nd	nd	nd	82000
Chloroform	1.0	nd	nd	nd	2.4 (22)
1,2-Dibromoethane	0.20	nd	nd	nd	0.25 (0.83)
1,2-Dichlorobenzene	0.50	nd	nd	nd	4600 (9600)
1,3-Dichlorobenzene	0.50	nd	nd	nd	9600
1,4-Dichlorobenzene	0.50	nd	nd	nd	8 (67)
Dichlorodifluoromethane	2.0	nd	nd	nd	4400
1,1-Dichloroethane	0.50	nd	nd	nd	320 (3100)
1,2-Dichloroethane	0.50	nd	nd	nd	1.6 (12)
1,1-Dichloroethylene	0.50	nd	nd	nd	1.6 (17)
cis-1,2-Dichloroethylene	0.50	nd	nd	nd	1.6 (17)
trans-1,2-Dichloroethylene	0.50	nd	nd	nd	1.6 (17)
Dichloromethane (methylene chloride)	5.0	nd	nd	nd	610 (5500)
1,2-Dichloropropane	0.50	nd	nd	nd	16 (140)
cis-1,3-Dichloropropene	0.30	nd	nd	nd	5.2 (45)
trans-1,3-Dichloropropene	0.30	nd	nd	nd	5.2 (45)
n-hexane	0.50	nd	nd	nd	51 (520)
Methyl Ethyl Ketone	20	nd	nd	nd	470000 (1500000)
Methyl Isobutyl Ketone	20	nd	nd	nd	140000 (580000)
MTBE	2.0	nd	nd	nd	190 (1400)
Styrene	0.50	nd	nd	nd	1300 (9100)
1,1,1,2-Tetrachloroethane	0.50	nd	nd	nd	3.3 (28)
1,1,2,2-Tetrachloroethane	0.50	nd	nd	nd	3.2 (15)
Tetrachloroethylene	0.50	nd	nd	nd	1.6 (17)
1,1,1-Trichloroethane	0.50	nd	nd	nd	640 (6700)
1,1,2-Trichloroethane	0.50	nd	nd	nd	4.7 (30)
Trichloroethylene	0.50	nd	nd	nd	1.6 (17)
Trichlorofluoromethane	5.0	nd	nd	nd	2500
Vinyl Chloride	0.50	nd	nd	nd	0.5 (1.7)
A	•				

All values in micrograms per Litre (µg/L) (equivalent to parts per billion (ppb))

All values in micrograms per Litre (μg/L) (equivaient to pairs per unifor (μονσ))
πc = no criteria.
πd = results below detection limit.
πp = analysis not performed.
Standard value within parenthesis indicates value for fine to medium textured soils; Standard value without parenthesis indicates value for coarse textured soils.
Criteria are taken from the MOE Soil, Ground Water and Sediment Standards for use under part XV.1 of the Environmental Protection Act, April 15, 2011.

TABLE 10: Summary of Groundwater Analytical Results for Petroleum Constituents

Reference: Phase Two ESA

Client: AJ Lamba Realty Group Inc.

Site: 900 - 920 Eglinton Avenue East, Misssissauga

Date Sampled: May 23, 2014 (MWA and MWC), and May 29, 2014 (MWD)

Utilized Criteria: MOE Table 3, Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, All Types of Property Use, Fine to

Medium Textured Soils

	F1 (C6-C10)	F2 (C10-C16)	F3 (C16-C34)	F4 (C34-C50)	Benzene	Toluene	Ethyl-	m&p	o-Xylene	Xylenes
	Hydrocarbons	Hydrocarbons	Hydrocarbons	Hydrocarbons			benzene	Xylenes		Total
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
MWA	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MWC	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MWD (Field duplicate of MWA)	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Method Detection Limit	25	100	250	250	0.50	0.50	0.50	0.40	0.30	0.50
MOE Table 3, April 15, 2011	750	150	500	500	44 (430)	18,000	2,300	nc	nc	4,200

All values in micrograms per litre (µg/L) (equivalent to parts per billion (ppb))

nc = no criteria.

np = analysis not performed.

nd = results below detection limit.

Standard value within parenthesis indicates value for fine to medium textured soils; Standard value without parenthesis indicates value for coarse textured soils.

Criteria are taken from the MOE Soil, Ground Water and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 15, 2011.

TABLE 11:

Summary of Groundwater Analytical Results for OrganoChloro Pesticides (OCP)

Reference: Phase Two ESA

Client: AJ Lamba Realty Group Inc.

Site: 900 - 920 Eglinton Avenue East, Mississauga

Date Sampled: May 23, 2014

MOE Table 3, Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, All Utilized Criteria:

Types of Property Use, Fine to Medium Textured Soils

laan a	MDL	MWC	MWE (Field duplicate of MWC)*	MOE Table 3
OCP Compound Aldrin	µg/L	nd	nd (0.020)	April 15, 2011
	0.010	-		8.5
gamma-hexachlorocyclohexane	0.015	nd	nd (0.020)	nc
a-chlordane	0.040	nd	nd (0.080)	nc
Chlordane (Total)	0.057	nd	nd (0.11)	28
g-chlordane	0.040	nd	nd (0.080)	nc
o,p-DDD	0.030	nd	nd (0.060)	nc
pp-DDD	0.030	nd	nd (0.060)	nc
Total DDD	0.042	nd	nd (0.085)	45
o,p-DDE	0.0080	nd	nd (0.016)	nc
pp-DDE	0.0080	nd	nd (0.016)	nc
Total DDE	0.011	nd	nd (0.023)	20
op-DDT	0.030	nd	nd (0.060)	nc
pp-DDT	0.030	nd	nd (0.060)	nc
Total DDT	0.042	nd	nd (0.085)	2.8
Dieldrin	0.050	nd	nd (0.10)	0.75
Endosulfan I	0.050	nd	nd (0.060)	nc
Endosulfan II	0.030	nd	nd (0.060)	nc
Endosulfan (Total)	0.058	nd	nd (0.085)	1.5
Endrin	0.040	nd	nd (0.080)	0.48
Heptachlor	0.010	nd	nd (0.020)	2.5
Heptachlor Epoxide	0.010	nd	nd (0.020)	0.048
Hexachlorobenzene	0.010	nd	nd (0.020)	3.1
Hexachlorobutadiene	0.010	nd	nd (0.020)	0.44 (4.5)
Hexachloroethane	0.010	nd	nd (0.020)	94 (200)
Methoxychlor	0.050	nd	nd (0.10)	6.5

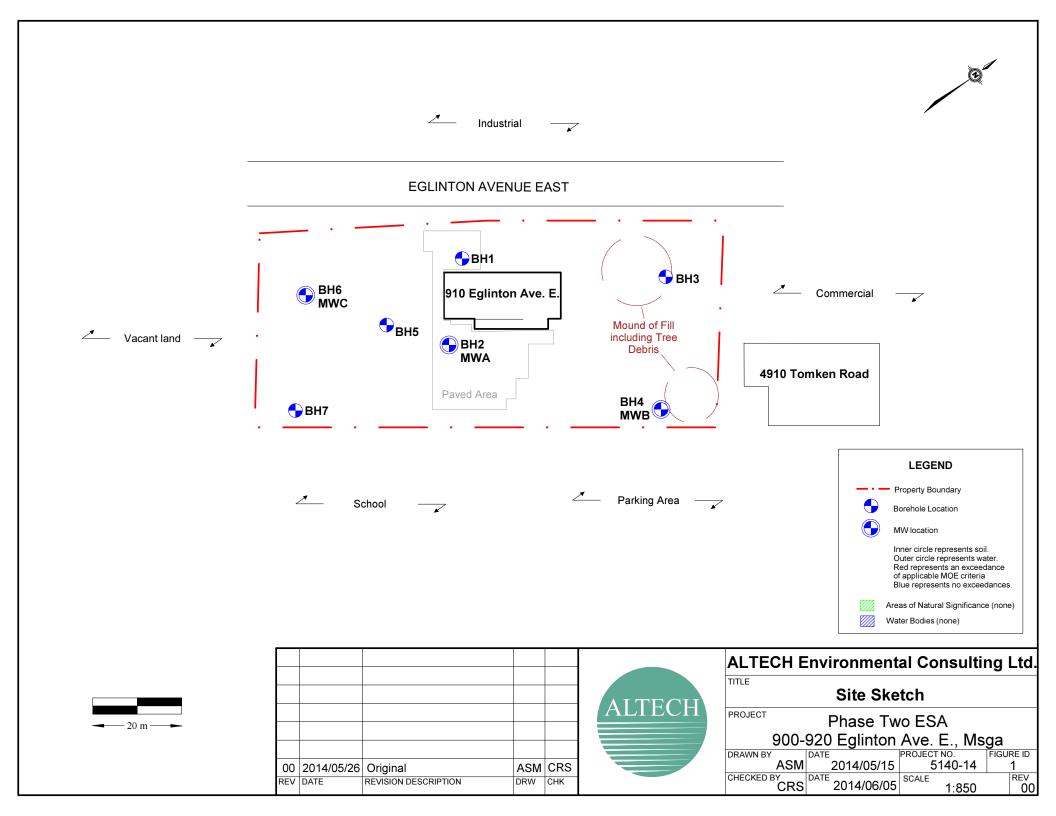
All values in micrograms per Litre (µg/L) (equivalent to parts per billion (ppb))

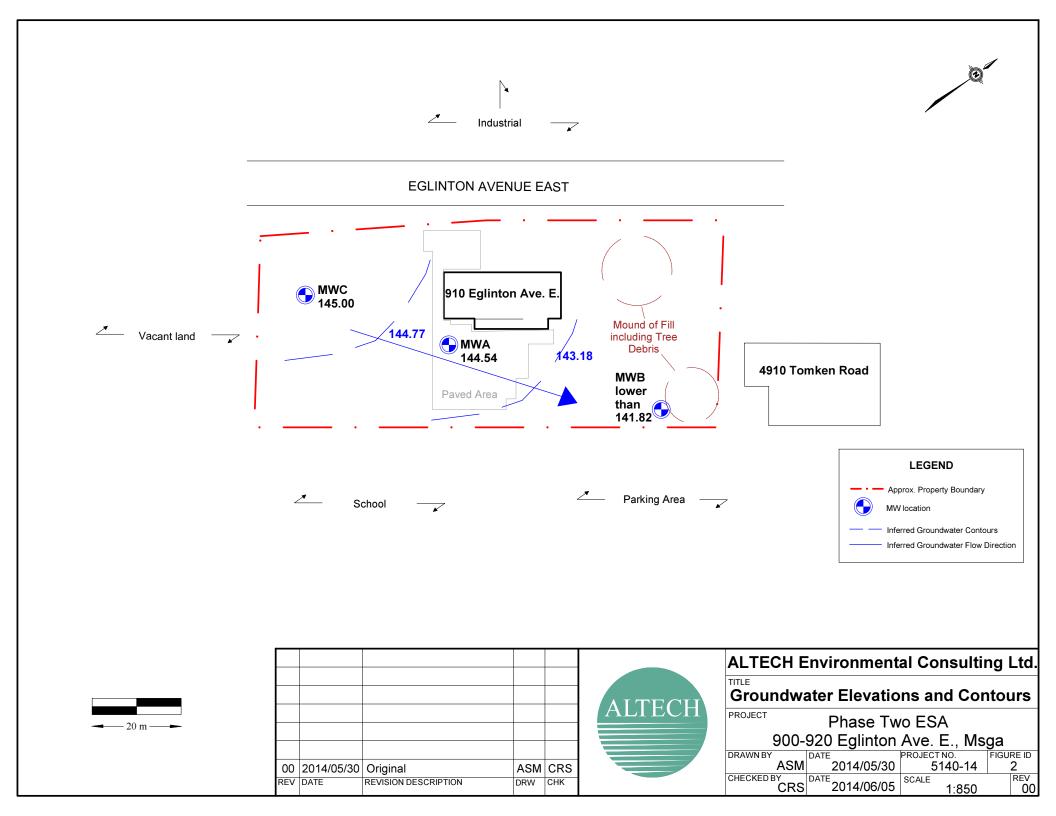
nc = no criteria.

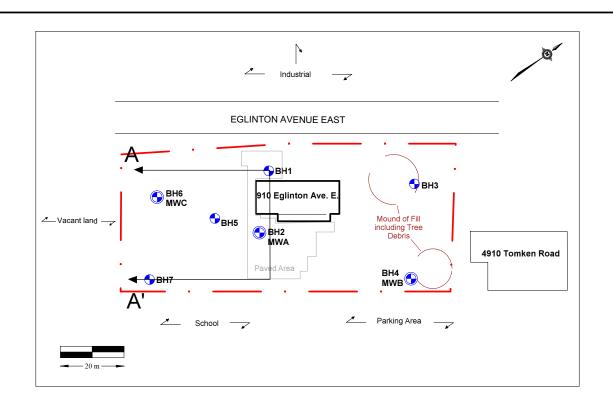
nd = results below detection limit.

ng = analysis not performed.

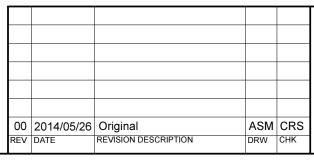
Standard value within parenthesis indicates value for fine to medium textured soils; Standard value without parenthesis


indicates value for coarse textured soils.

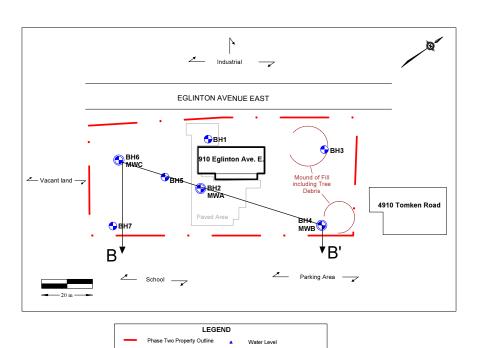

Criteria are taken from the MOE Soil, Ground Water and Sediment Standards for use under part XV.1 of the


Environmental Protection Act, April 15, 2011.

*Detection limit was adjusted due to lower sample volume submitted to laboratory.

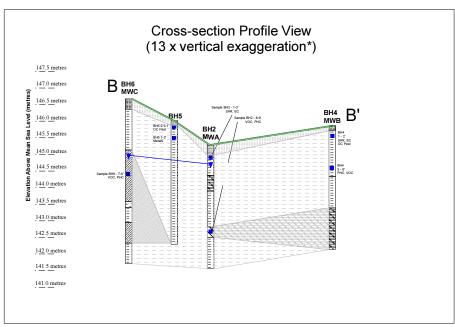


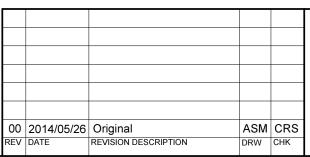
Cross-section Profile View 149.5 metres BH1 149.0 metres 148.5 metres 148.0 metres 147.5 metres 147.0 metres 146.5 metres 146.0 metres BH2 145.5 metres MWA внт А' 145.0 metres 144.5 metres 144.0 metres 143.5 metres 143.0 metres 142.5 metres 142.0 metres 141.5 metres 141.0 metres 140.5 metres * The Cross-Section view is under 13 times vertical exaggeration, meaning 140.0 metres the vertical scale is 13 times larger than the horizontal scale.


TITLE

ALTECH Environmental Consulting Ltd.

Cross Section A A!


	Cross-5	ection A - A	١.
PROJECT	Phas	se Two ESA	
	900-920 Egli	nton Ave. E	., Msga
DDAMALDY	D ATE	DDO IFOT NO	FIGURE


DRAWN BY	DATE	PROJECT NO.	FIGURE ID
ASM	2014/05/30	5140-14	3
CHECKED BY	DATE	SCALE	REV
CRS	2014/06/04	1:1200	00

Silty Clay Soil Sampling Point Meeting Applicable Site Standards

Borehole Location

TITLE

ALTECH Environmental Consulting Ltd.

Cross-Section B - B'

PROJECT Phase Two ESA

900-920 Eglinton Ave. E., Msga

		, ,	_
DRAWN BY	DATE	PROJECT NO.	FIGURE ID
ASM	2014/05/30	5140-14	4
CHECKED BY	DATE	SCALE	REV
CRS	2014/06/04	1:1500	00

10.0 APPENDICES

The following additional Appendices are attached to this report:

APPENDIX A-1 Sampling and Analysis Plan

APPENDIX A-2 Borehole Logs

APPENDIX A-3 Laboratory Certificates of Analysis

APPENDIX A-4 Official Site Survey

APPENDIX A-5 Utility Locates

APPENDIX A-6 Site Photograph Album

Appendix A – 1
Sampling and Analysis Plan

Appendix A - 1: Sampling and Analysis Plan

This Phase Two ESA was designed with the objective of investigating the potential for subsurface contamination associated with the PCAs identified in the Phase One ESA completed by Toronto Inspection Ltd. in April, 2014.

The subsurface investigation included the advancement of a total of seven (7) boreholes to a maximum depth of approximately 20 feet (6.1 metres) depth below surface and installation of three (3) monitoring wells (MWs A, B and C). The media investigated included soil and groundwater, but not sediment or bedrock. The assessment included the advancement of the boreholes, collection and field screening of soil samples, installation of monitoring wells, collection of groundwater samples, measurement and/or observation of hydrogeologic properties, and analysis of samples for several chemical parameters.

Soil and groundwater samples were collected and analyzed for parameters including Petroleum Hydrocarbons (PHCs) including Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX), Metals, Volatile Organic Compounds (VOCs), Sodium Absorption Ratio (SAR), Electrical Conductivity (EC) and Organo Chlorine Pesticides (OCP). Laboratory analytical results were compared to the Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition (fine to medium textured soils) for Industrial/Commercial/Community land use (2011 MOE Table 3 Standards), based on current and proposed future property use.

Altech chose the borehole and monitoring well locations to adequately assess the subsurface quality of the soil and groundwater underlying the Phase Two Property in the areas closest to the environmental concerns noted. Please refer to Figure 1 for a visual representation of the borehole locations. The boreholes and monitoring wells were located as follows:

- BH1 was advanced in the west portion of the Phase Two Property, on the paved driveway surface in front of the garage bay door. This borehole was situated to investigate impacts of road-salt application to surficial soils;
- BH2, complete with MWA, was advanced in the central portion of the Phase Two Property, in the paved area near to the rear of the building. This borehole was situated to investigate impacts of road-salt application to surficial soils and impacts from former fuel oil storage in the area;
- BH3 was advanced in the north portion of the Phase Two Property, on the mound of fill that appears to have been artificially created. The borehole was located 11 metres southeast and 11 metres southwest of the north corner of the property. This borehole was situated to investigate impacts of road-salt application to surficial soils, impacts of former pesticide use to surficial soils, and any potential impacts that may be present in the fill (as it is of unknown quality);
- BH4, complete with MWB, was advanced in the northeast portion of the Phase Two Property, beside the mound of fill that appears to have been artificially created in this area. The borehole was located 12 metres southwest and 4 metres northwest of the east corner of the property. This borehole was situated to investigate impacts of former

pesticide use to surficial soils, and any potential impacts that may be present in the fill (as it is of unknown quality);

- BH5 was advanced in the southwest portion of the Phase Two Property, approximately 13 metres southwest of the south corner of the subject site building. This borehole is in the area where a former house building was present. This borehole was situated to investigate impacts of former pesticide use, and any potential impacts that may be present in the fill (as it is of unknown quality);
- BH6, complete with MWC, was advanced in the southwest portion of the Phase Two Property. The borehole was located approximately 30 metres southwest and 6 metres northwest of the south corner of the building. This borehole was situated to investigate impacts of former pesticide use to surficial soils, and off-site impacts from industrial properties to the northwest;
- BH7 was advanced in the south portion of the Phase Two Property, approximately 9 metres northeast and 3 metres northwest of the south corner of the property. This borehole was situated to investigate impacts of former pesticide use to surficial soils.

Soil samples were retrieved from various depth intervals in each borehole. The soil samples were collected and field preserved in accordance with the instructions provided by the laboratory, ALS Environmental Inc. Soil selected for PHC, OCP, Metals and VOC analysis was placed into a new, clean, 250 ml glass jar with a Teflon lined lid. Soil for PHC and VOC analysis was also transferred directly from the soil core using a new, clean, Terracore sampler into two (2) new, clean, 40 ml clear glass vials with Teflon lined lids. Each vial contained 10 ml of methanol, as prepared by the laboratory.

Soil from each depth interval was placed into clean, sealed, 18 x 20 centimetre heavy polyethylene bags so that approximately one quarter of the bag was full, with some headspace in the bag. Any lumps of soil within the bag were gently massaged and broken up by hand. The sample was then monitored for soil vapours accumulated in the headspace. Samples were selected for laboratory analysis on the basis of the field-testing for combustible vapours, and any visual and olfactory evidence of impact.

The samples were labelled with the following information:

- A site reference number (5140);
- A borehole (BH#) reference number for placement of the sample at the site; and,
- A depth interval range from which the sample was retrieved.

Monitoring wells for groundwater sampling were installed in boreholes 2, 4 and 6. The monitoring wells were intended to intercept groundwater in the unconfined aquifer hosted in the overburden soil underlying the site. These wells included installation such that the screened interval straddles the unconfined aquifer in the overburden underlying the site. For further details of monitoring wells please refer to section 5.5 of the report.

Groundwater samples were taken in accordance with the Ontario Ministry of the Environment's document *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in*

Ontario. No measurements of groundwater quality parameters were made in the field. One (1) sample was taken from monitoring wells MWA and MWC, and submitted for laboratory analysis of various parameters. No groundwater sample was taken from MWB, because the well did not yield any groundwater.

The groundwater samples were labelled with the following information:

- A site reference number (5140); and,
- A monitoring well location reference for placement of the sample at the site.

The investigation and sampling plan conducted set out to adequately investigated the APECs identified in the Phase One ESA. It is Altech's opinion the plan was thorough and conservative in its approach.

Appendix A – 2
Borehole Logs

Borehole: BH1

Phase Two ESA AJ Lamba Realty Group Inc. 900 - 920 Eglinton Ave. E., Mississauga, On

Logged by: Andrew Mutrie Date: May 23, 2014 Drilling Co.: Strata Drilling Group Drill Method: Geoprobe 7822DT

Depth (m)	DESCRIPTION	Depth (ft)	Well Details	Sample ID and Type	Recovery %	VOC Concentration	Comments: Blow Count, N Value, Water level
1	Asphalt surface, underlaid by gravel. Minimal red brick debris noted. SILT, brown, dry. some small pebbles interspersed Rock present around 5'. No visual or olfactory evidence of contamination in the soil column.	1		BH1 1-3' SAR, EC BH1 5-7' VOC, PHC	100	0 ppm (1-3')	BH1 was advanced in the front driveway, near to the garage door: 5 m north of the northeast corner of the west corner of the building. Limited recovery (20%) was attained from 0-4' during the borehole advancement. A second drilling was undertaken, with slightly more recovery (40%)
l	Α	LTEC	1 Er	าvironn	nent	al Consulti	ng Ltd.

Borehole: BH2/MWA

Phase Two ESA AJ Lamba Realty Group Inc. 900 - 920 Eglinton Ave. E., Mississauga, On Logged by: Andrew Mutrie Date: May 23, 2014

Drilling Co.: Strata Drilling Group Drill Method: Geoprobe 7822DT

Depth (m)	DESCRIPTION	Depth (ft)	Strata Plot	Well Details	Sample ID and Type	Recovery %	VOC Concentration	Comments: Blow Count, N Value, Water level
-	Asphalt surface, underlaid by gravel SILT, dry, brown	1— 2—		V	BH2 1 - 3' SAR, EC	70	0 ppm (1-3')	BH2 was advanced in
- — 1	SILTY CLAY, soft, dark grey	3— 4—					15 ppm (3-4')	the rear parking lot: 6 m southeast of
-	SILT, dry, brown	5— 6— 7—				100	0 ppm (5-7') 50 ppm (8-9')	water level was measured to be at 0.70 m bgs on May 23 and at 0.73 m bgs on May 29.
— 2 -	CLAY, Brown-grey, wet Gravel rocks interspersed	9—			BH2 8 - 9' PHC, VOC	100	0 ppm (10-12')	
- 3	SILT, dry, grey	11— - 12—						
-	Small pebbles interspersed throughout borehole	13— 14—	-					
— 4 -		15— 16— 17—	-					
- - - 5		18——						
-		21—	-					
6 		23— 24— 25—	-					
- - - 7		26 — 27 —	- - - -					
	A	LTE	CH	En	vironn	nen	tal Consultii	na Ltd.

Borehole: BH3

Phase Two ESA AJ Lamba Realty Group Inc. 900 - 920 Eglinton Ave. E., Mississauga, On Logged by: Andrew Mutrie

Date: May 23, 2014
Drilling Co.: Strata Drilling Group
Drill Method: Geoprobe 7822DT

Depth (m)	DESCRIPTION	Depth (ft)	Strata Plot	Well Details	Sample ID and Type	Recovery %	VOC Concentration	Comments: Blow Count, N Value, Water level
Depth (m)	Grass surface, underlaid by topsoil SILT, brown, dry. Organic debris interspersed (i.e. small tree roots, leafs) Grey sandstone-like rock present around 6'. Trace red brick debris	10— 11— 12— 11— 11— 11— 11— 11— 11— 11— 11	Strata Ploi		BH3 1-2' SAR, EC BH3 2-3' OC Pest. BH3 5-6' Metals	% So		
5 5 6 6 7	A	18————————————————————————————————————	CH E	Ξn	vironm	nent	al Consultir	na Ltd.

Borehole: BH4/MWB

Phase Two ESA AJ Lamba Realty Group Inc. 900 - 920 Eglinton Ave. E., Mississauga, On Logged by: Andrew Mutrie Date: May 23, 2014

Drilling Co.: Strata Drilling Group Drill Method: Geoprobe 7822DT

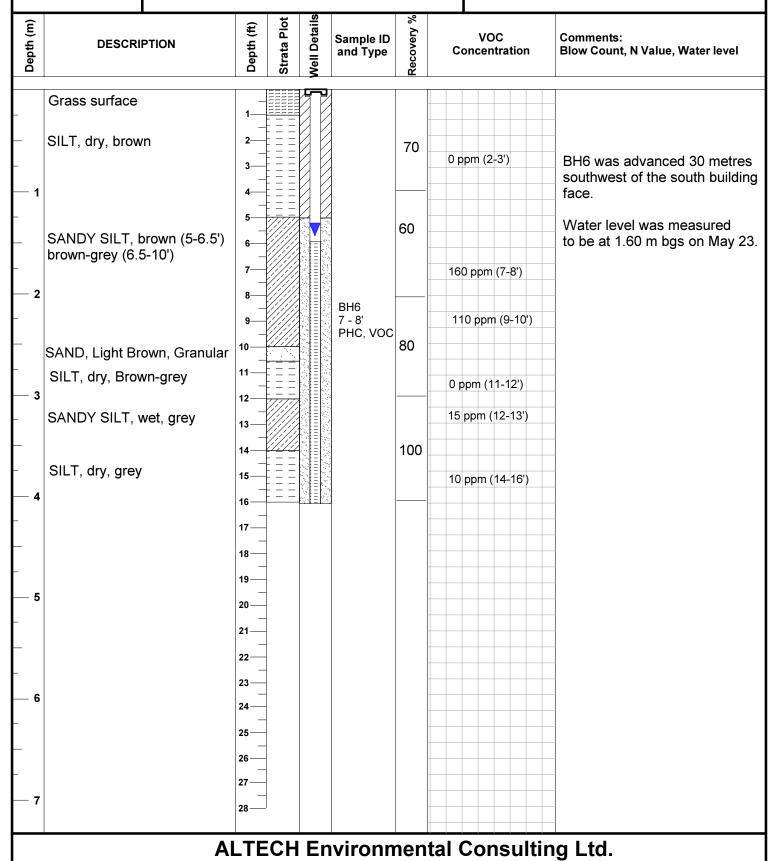
Depth (m)	DESCRIPTION	Depth (ft)	Strata Plot	Well Details	Sample ID and Type	Recovery %	VOC Concentration	Comments: Blow Count, N Value, Water level
_	Asphalt surface, underlaid by gravel SILT, dry, brown	1— 2— 3—			BH4 1 - 2' SAR, EC OC Pest	90	0 ppm (1-2') 0 ppm (3-4')	BH2 was advanced near the East corner of the site.
— 1 - -	SILT, grey-brown, wood debris, small pebbles interspersed	5— 6— 7—			BH4 5 - 6' PHC, VOC	90	5 ppm (5-6') 0 ppm (6-7')	The well was found to be dry on May 23 and again on May 29.
2 3	SILTY CLAY, Grey-brown,wet Pebbles interspersed No visual or olfactory evidence of contamination	8— 9— 10— 11— 12—				80	0 ppm (9-10')	
- — 4	in the soil column.	13 — 14 — 15 — 16 — 16 — 16						
- - - 5		17— 18— 19— 20—						
_ _ _ 6		21						
- - - 7		25— 26— 27— 28—						
	Al	TE	СН	Er	vironn	nen	tal Consulti	ng Ltd.

Borehole: BH5

Phase Two ESA AJ Lamba Realty Group Inc. 900 - 920 Eglinton Ave. E., Mississauga, On Logged by: Andrew Mutrie

Date: May 23, 2014
Drilling Co.: Strata Drilling Group
Drill Method: Geoprobe 7822DT

Depth (m)	DESCRIPTION	Depth (ft)	Strata Plot	Well Details	Sample ID and Type	Recovery %	VOC Concentration	Comments: Blow Count, N Value, Water level
-	Grass surface, underlaid by topsoil	1—			BH5 0.5-1' OC Pest BH5 1-2'		0 ppm (0.5-1')	
-	SILT, brown, dry	3—			Metals	80	10 ppm (3-4')	BH5 was advanced 12 metres southwest and 2 metres southeast of
- 1	Red brick piece encountered around 1.5'	5—					0 ppm (4-5')	the south corner of the building.
_ _ _ 2	Coppery-tint staining encountered around 5'	7—				100	0 ppm (6-7')	The sample analyzed for metals consisted of the silt material on either side of the brick piece.
1		9—						_
	SILT, grey, dry	10—				100	0 ppm (10-11')	
_ 3		11—						
_	No visual or olfactory evidence of contamination in the soil column.	13—						
	in the son column.	15—						
4		16—						
		18—						
5		19—						
		21—						
-		23—						
- 6 -		24-						
		26—						
7		27—						
	A 1		<u> </u>					
	Al	LIE	CHI	En	vironn	nent	al Consultir	ng Lta.



Borehole: BH6/MWC

Phase Two ESA AJ Lamba Realty Group Inc. 900 - 920 Eglinton Ave. E., Mississauga, On Logged by: Andrew Mutrie

Date: May 23, 2014

Drilling Co.: Strata Drilling Group Drill Method: Geoprobe 7822DT

Borehole: BH7

Phase Two ESA AJ Lamba Realty Group Inc. 900 - 920 Eglinton Ave. E., Mississauga, On

Logged by: Andrew Mutrie Date: May 23, 2014 Drilling Co.: Strata Drilling Group Drill Method: Geoprobe 7822DT

Depth (m)	DESCRIPTION	Depth (ft)	Strata Plot	Well Details	Sample ID and Type	Recovery %	VOC Concentration	Comments: Blow Count, N Value, Water level
-	Grass surface, underlaid by brown silty topsoil	1—2—			BH7 0.5-2' OC Pest	50	0 ppm (1-3')	BH5 was advanced
_ 1	SILT, grey-brown, dry	3—						near to the south corner of the property.
-	SAND,dark-grey ROCK, grey	5— 6—				100	0 ppm (5-6')	
– 2	SILT, grey, dry	7— 8—			DU 7 0 401		0 ppm (6.5-7.5')	
	SANDY SILT, wet, grey-brown	9—			BH7 8-10' VOC, PHC	100	45 ppm (8-10')	
- 3	SILT, grey, dry	11— 12—					0 ppm (10-12')	
	No visual or olfactory evidence of contamination in the soil column.	13— 14—						
– 4		15—						
-		17— 18—						
_ 5		19—						
		21—						
– 6		23—						
		25— 25—						
– 7		27— 27— 28—						
	<u> </u>		CL	Er	wironn	nont	al Consultii	na I td

Appendix A – 3

Laboratory Analysis Reports

ALTECH ENVIRONMENTAL ATTN: ANDREW MUTRIE

12 BANIGAN DRIVE

TORONTO ON M4H 1E9

Date Received: 23-MAY-14

Report Date: 03-JUN-14 14:19 (MT)

Version: FINAL

Client Phone: 416-467-5555

Certificate of Analysis

Lab Work Order #: L1459559

Project P.O. #: NOT SUBMITTED

Job Reference: 5140-14

C of C Numbers: 155678, 155679

Legal Site Desc:

Comments: 28-MAY-14:

As per Andrew's request add PSA and pH to Fraction 3.

Mathumai Ganeshakumar Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062

ALS CANADA LTD | Part of the ALS Group | A Campbell Brothers Limited Company

L1459559 CONTD.... Page 2 of 20

5140-14								03-JUN-14 1	4:19 (MT)
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
							Caldolli	io Emilio	
L1459559-1 MWA									
Sampled By: ANDREW M. on 22-MAY-14						#1	#2	#3	#4
Matrix: WATER						π ι	π2	π-5	
Dissolved Metals									
Dissolved Metals Filtration Location	LAB			No Unit	27-MAY-14				
Antimony (Sb)-Dissolved	<0.50		0.50	ug/L	27-MAY-14				
Arsenic (As)-Dissolved	<1.0		1.0	ug/L	27-MAY-14				
Barium (Ba)-Dissolved	467		2.0	ug/L	27-MAY-14				
Beryllium (Be)-Dissolved	<0.50		0.50	ug/L	27-MAY-14				
Boron (B)-Dissolved	60		10	ug/L	27-MAY-14				
Cadmium (Cd)-Dissolved	<0.10		0.10	ug/L	27-MAY-14				
Chromium (Cr)-Dissolved	<0.50		0.50	ug/L	27-MAY-14				
Cobalt (Co)-Dissolved	3.41		0.50	ug/L	27-MAY-14				
Copper (Cu)-Dissolved	<1.0		1.0	ug/L	27-MAY-14				
Lead (Pb)-Dissolved	<1.0		1.0	ug/L	27-MAY-14				
Molybdenum (Mo)-Dissolved	1.20		0.50	ug/L	27-MAY-14				
Nickel (Ni)-Dissolved	6.0		1.0	ug/L	27-MAY-14				
Selenium (Se)-Dissolved	<5.0		5.0	ug/L	27-MAY-14				
Silver (Ag)-Dissolved	<0.10		0.10	ug/L	27-MAY-14				
Sodium (Na)-Dissolved	516000	DLM	5000	ug/L	27-MAY-14				
Thallium (TI)-Dissolved	<0.30		0.30	ug/L	27-MAY-14				
Uranium (U)-Dissolved	<2.0		2.0	ug/L	27-MAY-14				
Vanadium (V)-Dissolved	<0.50		0.50	ug/L	27-MAY-14				
Zinc (Zn)-Dissolved	<3.0		3.0	ug/L	27-MAY-14				
Volatile Organic Compounds									
Acetone	<30		30	ug/L	27-MAY-14				
Benzene	<0.50		0.50	ug/L	27-MAY-14				
Bromodichloromethane	<2.0		2.0	ug/L	27-MAY-14				
Bromoform	<5.0		5.0	ug/L	27-MAY-14				
Bromomethane	<0.50		0.50	ug/L	27-MAY-14				
Carbon tetrachloride	<0.20		0.20	ug/L	27-MAY-14				
Chlorobenzene	<0.50		0.50	ug/L	27-MAY-14				
Dibromochloromethane	<2.0		2.0	ug/L	27-MAY-14				
Chloroform	<1.0		1.0	ug/L	27-MAY-14				
1,2-Dibromoethane	<0.20		0.20	ug/L	27-MAY-14				
1,2-Dichlorobenzene	<0.50 <0.50		0.50	ug/L	27-MAY-14 27-MAY-14				
1,3-Dichlorobenzene			0.50	ug/L					
1,4-Dichlorobenzene Dichlorodifluoromethane	<0.50 <2.0		0.50	ug/L	27-MAY-14				
1,1-Dichloroethane	<0.50		2.0 0.50	ug/L	27-MAY-14 27-MAY-14				
1,2-Dichloroethane	<0.50		0.50	ug/L	27-MAY-14 27-MAY-14				
1,1-Dichloroethylene	<0.50		0.50	ug/L ug/L	27-MAY-14 27-MAY-14				
cis-1,2-Dichloroethylene	<0.50		0.50	ug/L	27-MAY-14				
trans-1,2-Dichloroethylene	<0.50		0.50	ug/L	27-MAY-14				
1,3-Dichloropropene (cis & trans)	<0.50		0.50	ug/L	27-MAY-14				
Methylene Chloride	<5.0		5.0	ug/L	27-MAY-14				
1,2-Dichloropropane	<0.50		0.50	ug/L	27-MAY-14				
cis-1,3-Dichloropropene	<0.30		0.30	ug/L	27-MAY-14				
trans-1,3-Dichloropropene	<0.30		0.30	ug/L	27-MAY-14				
Ethyl Benzene	<0.50		0.50	ug/L	27-MAY-14				
n-Hexane	<0.50		0.50	ug/L	27-MAY-14				
Methyl Ethyl Ketone	<20		20	ug/L	27-MAY-14				
				_ ~9, -					

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

#1: T2-Soil-Agricultural or Other Property Use (Coarse)

#2: T2-Soil-Agricultural or Other Property Use (Fine)

#3: T2-Soil-Ind/Com/Commu Property Use (Coarse)

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L1459559 CONTD....
Page 3 of 20
03-UIN-14 14:19 (MT)

40-14	AINAL I I	IOAL	Page 3 of 20 03-JUN-14 14:19 (MT)								
Sample Details Grouping Analyte	Result Qualifier D.L. Units Analyzed						Guideline Limits				
_1459559-1 MWA											
Sampled By: ANDREW M. on 22-MAY-14											
Matrix: WATER						#1	#2	#3	#4		
Volatile Organic Compounds											
Methyl Isobutyl Ketone	<20		20	ug/L	27-MAY-14						
MTBE	<2.0		2.0	ug/L ug/L	27-MAY-14						
Styrene	<0.50		0.50	ug/L ug/L	27-MAY-14						
· · · · · ·	<0.50		0.50	_	27-MAY-14						
1,1,1,2-Tetrachloroethane	<0.50 <0.50		0.50	ug/L	27-MAY-14 27-MAY-14						
1,1,2,2-Tetrachloroethane				ug/L							
Tetrachloroethylene	< 0.50		0.50	ug/L	27-MAY-14						
Toluene	<0.50		0.50	ug/L	27-MAY-14						
1,1,1-Trichloroethane	<0.50		0.50	ug/L	27-MAY-14						
1,1,2-Trichloroethane	<0.50		0.50	ug/L	27-MAY-14						
Trichloroethylene	<0.50		0.50	ug/L	27-MAY-14						
Trichlorofluoromethane	<5.0		5.0	ug/L	27-MAY-14						
Vinyl chloride	<0.50		0.50	ug/L	27-MAY-14						
o-Xylene	< 0.30		0.30	ug/L	27-MAY-14						
m+p-Xylenes	<0.40		0.40	ug/L	27-MAY-14						
Xylenes (Total)	< 0.50		0.50	ug/L	27-MAY-14						
Surrogate: 4-Bromofluorobenzene	90.5		70-130	%	27-MAY-14						
Surrogate: 1,4-Difluorobenzene	97.7		70-130	%	27-MAY-14						
Hydrocarbons											
F1 (C6-C10)	<25		25	ua/l	27-MAY-14						
F1-BTEX	<25 <25		25 25	ug/L	30-MAY-14						
				ug/L							
F2 (C10-C16)	<100		100	ug/L	30-MAY-14						
F3 (C16-C34)	<250		250	ug/L	30-MAY-14						
F4 (C34-C50)	<250		250	ug/L	30-MAY-14						
Total Hydrocarbons (C6-C50)	<370		370	ug/L	30-MAY-14						
Chrom. to baseline at nC50	YES			No Unit	30-MAY-14						
Surrogate: 2-Bromobenzotrifluoride	85.6		60-140	%	30-MAY-14						
Surrogate: 3,4-Dichlorotoluene	94.9		60-140	%	27-MAY-14						
_1459559-2 MWC											
Sampled By: ANDREW M. on 22-MAY-14											
Matrix: WATER						#1	#2	#3	#4		
Volatile Organic Compounds											
Acetone	<30		30	ug/L	28-MAY-14						
Benzene	< 0.50		0.50	ug/L	28-MAY-14						
Bromodichloromethane	<2.0		2.0	_	28-MAY-14						
Bromodichioromethane	<2.0 <5.0		5.0	ug/L	28-MAY-14 28-MAY-14						
				ug/L							
Bromomethane	<0.50		0.50	ug/L	28-MAY-14						
Carbon tetrachloride	<0.20		0.20	ug/L	28-MAY-14						
Chlorobenzene	< 0.50		0.50	ug/L	28-MAY-14						
Dibromochloromethane	<2.0		2.0	ug/L	28-MAY-14						
Chloroform	<1.0		1.0	ug/L	28-MAY-14						
1,2-Dibromoethane	<0.20		0.20	ug/L	28-MAY-14						
1,2-Dichlorobenzene	<0.50		0.50	ug/L	28-MAY-14						
1,3-Dichlorobenzene	<0.50		0.50	ug/L	28-MAY-14						
1,4-Dichlorobenzene	< 0.50		0.50	ug/L	28-MAY-14						
1,4-DICHIOIODCHZCHC											
Dichlorodifluoromethane	<2.0		2.0	ug/L	28-MAY-14						

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

#1: T2-Soil-Agricultural or Other Property Use (Coarse)

#2: T2-Soil-Agricultural or Other Property Use (Fine)

#3: T2-Soil-Ind/Com/Commu Property Use (Coarse)

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L1459559 CONTD.... Page 4 of 20

03-JUN-14 14:19 (MT) Sample Details Qualifier Units Grouping Analyte Result D.L. Analyzed **Guideline Limits** L1459559-2 **MWC** Sampled By: ANDREW M. on 22-MAY-14 #1 #2 #3 #4 Matrix: WATER **Volatile Organic Compounds** 28-MAY-14 1,2-Dichloroethane < 0.50 0.50 ug/L <0.50 1,1-Dichloroethylene 0.50 ug/L 28-MAY-14 cis-1,2-Dichloroethylene <0.50 0.50 ug/L 28-MAY-14 <0.50 0.50 28-MAY-14 trans-1,2-Dichloroethylene ug/L 1,3-Dichloropropene (cis & trans) < 0.50 0.50 ug/L 28-MAY-14 28-MAY-14 <5.0 5.0 ug/L Methylene Chloride 0.50 28-MAY-14 1,2-Dichloropropane <0.50 ug/L 28-MAY-14 cis-1,3-Dichloropropene < 0.30 0.30 ug/L trans-1,3-Dichloropropene < 0.30 0.30 ug/L 28-MAY-14 Ethyl Benzene < 0.50 0.50 ug/L 28-MAY-14 n-Hexane <0.50 0.50 28-MAY-14 ug/L <20 28-MAY-14 Methyl Ethyl Ketone 20 ug/L Methyl Isobutyl Ketone <20 20 ug/L 28-MAY-14 **MTBE** <2.0 2.0 ug/L 28-MAY-14 Styrene < 0.50 0.50 ug/L 28-MAY-14 1,1,1,2-Tetrachloroethane <0.50 0.50 ug/L 28-MAY-14 0.50 28-MAY-14 1,1,2,2-Tetrachloroethane <0.50 ug/L 28-MAY-14 Tetrachloroethylene < 0.50 0.50 ug/L < 0.50 0.50 ug/L 28-MAY-14 Toluene 1,1,1-Trichloroethane < 0.50 0.50 ug/L 28-MAY-14 1,1,2-Trichloroethane <0.50 0.50 ug/L 28-MAY-14 Trichloroethylene <0.50 0.50 ug/L 28-MAY-14 Trichlorofluoromethane <5.0 5.0 ug/L 28-MAY-14 Vinyl chloride <0.50 0.50 ug/L 28-MAY-14 28-MAY-14 o-Xylene < 0.30 0.30 ug/L ug/L < 0.40 0.40 28-MAY-14 m+p-Xylenes 28-MAY-14 <0.50 0.50 ug/L Xylenes (Total) 28-MAY-14 Surrogate: 4-Bromofluorobenzene 87.3 70-130 % Surrogate: 1,4-Difluorobenzene 97.3 70-130 % 28-MAY-14 Hydrocarbons F1 (C6-C10) <25 25 ug/L 28-MAY-14 F1-BTEX <25 25 ug/L 30-MAY-14 F2 (C10-C16) <100 100 ug/L 30-MAY-14 F3 (C16-C34) <250 250 ug/L 30-MAY-14 F4 (C34-C50) <250 250 ug/L 30-MAY-14 Total Hydrocarbons (C6-C50) <370 370 ug/L 30-MAY-14 Chrom. to baseline at nC50 YES No Unit 30-MAY-14 % Surrogate: 2-Bromobenzotrifluoride 87.5 60-140 30-MAY-14 60-140 % 28-MAY-14 Surrogate: 3,4-Dichlorotoluene 63.2 **Organochlorine Pesticides** <0.010 0.010 30-MAY-14 Aldrin ug/L gamma-hexachlorocyclohexane < 0.015 DLM 0.015 ug/L 30-MAY-14 ug/L a-chlordane <0.040 0.040 30-MAY-14 Chlordane (Total) < 0.057 0.057 ug/L 30-MAY-14 30-MAY-14 g-chlordane < 0.040 0.040 ug/L < 0.030 30-MAY-14 o,p-DDD 0.030 ug/L pp-DDD < 0.030 0.030 ug/L 30-MAY-14 Total DDD < 0.042 ug/L 30-MAY-14

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

0.042

#1: T2-Soil-Agricultural or Other Property Use (Coarse)

#2: T2-Soil-Agricultural or Other Property Use (Fine)

#3: T2-Soil-Ind/Com/Commu Property Use (Coarse)

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L1459559 CONTD....
Page 5 of 20
03-UIN-14 14:19 (MT)

5140-14	ANALII	ICAL	GUID	LLIINL	KLFOR	\ 1		Page 5 3-JUN-14 1			
Sample Details Grouping Analyte	Result Qualifier D.L. Units Analyzed							Guideline Limits			
L1459559-2 MWC											
Sampled By: ANDREW M. on 22-MAY-14						44	40	40	44.4		
Matrix: WATER						#1	#2	#3	#4		
Organochlorine Pesticides											
o,p-DDE	<0.0080		0.0080	ug/L	30-MAY-14						
pp-DDE	<0.0080		0.0080	ug/L	30-MAY-14						
Total DDE	<0.011		0.011	ug/L	30-MAY-14						
op-DDT	<0.030		0.030	ug/L	30-MAY-14						
pp-DDT	<0.030		0.030	ug/L	30-MAY-14						
Total DDT	<0.042		0.042	ug/L	30-MAY-14						
Dieldrin	<0.050	DIM	0.050	ug/L	30-MAY-14						
Endosulfan I Endosulfan II	<0.050 <0.030	DLM	0.050 0.030	ug/L	30-MAY-14 30-MAY-14						
Endosulfan (Total)	<0.050		0.050	ug/L ug/L	30-MAY-14						
Endosulian (Total) Endrin	<0.036		0.038	ug/L ug/L	30-MAY-14						
Heptachlor	<0.010		0.010	ug/L	30-MAY-14						
Heptachlor Epoxide	<0.010		0.010	ug/L	30-MAY-14						
Hexachlorobenzene	<0.010		0.010	ug/L	30-MAY-14						
Hexachlorobutadiene	<0.010		0.010	ug/L	30-MAY-14						
Hexachloroethane	<0.010		0.010	ug/L	30-MAY-14						
Methoxychlor	<0.050		0.050	ug/L	30-MAY-14						
Surrogate: 2-Fluorobiphenyl	96.2		50-140	%	30-MAY-14						
Surrogate: d14-Terphenyl	103.8		50-140	%	30-MAY-14						
L1459559-3 BH1-5-7'											
Sampled By: ANDREW M. on 22-MAY-14											
Matrix: SOIL						#1	#2	#3	#4		
Physical Tests											
% Moisture	11.8		0.10	%	24-MAY-14						
рН	7.89		0.10	pH units	30-MAY-14						
Particle Size											
% >75um	30.0		1.0	%	03-JUN-14						
Volatile Organic Compounds											
Acetone	<0.50		0.50	ug/g	28-MAY-14	16	28	16	28		
Benzene	<0.020		0.020	ug/g	28-MAY-14	0.21	0.17	0.32	0.4		
Bromodichloromethane	<0.050		0.050	ug/g	28-MAY-14	1.5	1.9	1.5	1.9		
Bromoform	<0.050		0.050	ug/g	28-MAY-14	0.27	0.26	0.61	1.7		
Bromomethane	<0.050		0.050	ug/g	28-MAY-14	0.05	0.05	0.05	0.05		
Carbon tetrachloride	<0.050		0.050	ug/g	28-MAY-14	0.05	0.12	0.21	0.71		
Chlorobenzene	<0.050		0.050	ug/g	28-MAY-14	2.4	2.7	2.4	2.7		
Dibromochloromethane	<0.050		0.050	ug/g	28-MAY-14	2.3	2.9	2.3	2.9		
Chloroform	<0.050		0.050	ug/g	28-MAY-14	0.05	0.17	0.47	0.18		
1,2-Dibromoethane	<0.050		0.050	ug/g	28-MAY-14	0.05	0.05	0.05	0.05		
1,2-Dichlorobenzene	<0.050		0.050	ug/g	28-MAY-14	1.2	1.7	1.2	1.7		
1,3-Dichlorobenzene	<0.050		0.050	ug/g	28-MAY-14	4.8	6	9.6	12		
1,4-Dichlorobenzene	<0.050		0.050	ug/g	28-MAY-14	0.083	0.097	0.2	0.57		
Dichlorodifluoromethane	<0.050		0.050	ug/g	28-MAY-14	16	25	16	25		
1,1-Dichloroethane	<0.050		0.050	ug/g	28-MAY-14	0.47	0.6	0.47	0.6		
1,2-Dichloroethane	<0.050		0.050	ug/g	28-MAY-14	0.05	0.05	0.05	0.05		
1,1-Dichloroethylene	<0.050		0.050	ug/g	28-MAY-14	0.05	0.05	0.064	0.48		

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

#1: T2-Soil-Agricultural or Other Property Use (Coarse)

#2: T2-Soil-Agricultural or Other Property Use (Fine)

#3: T2-Soil-Ind/Com/Commu Property Use (Coarse)

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L1459559 CONTD....

Page 6 of 20 3-JUN-14 14:19 (MT)

5140-14							(3-JUN-14 1	4:19 (MT)
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	o Limite	
	IXESUIT	Qualifier	D.L.		Analyzeu		Guideili	ie Liiilis	
L1459559-3 BH1-5-7'									
Sampled By: ANDREW M. on 22-MAY-14						44	40	40	44
Matrix: SOIL						#1	#2	#3	#4
Volatile Organic Compounds									
cis-1,2-Dichloroethylene	<0.050		0.050	ug/g	28-MAY-14	1.9	2.5	1.9	2.5
trans-1,2-Dichloroethylene	<0.050		0.050	ug/g	28-MAY-14	0.084	0.75	1.3	2.5
1,3-Dichloropropene (cis & trans)	<0.042		0.042	ug/g	28-MAY-14	0.05	0.081	0.059	0.081
Methylene Chloride	<0.050		0.050	ug/g	28-MAY-14	0.1	0.96	1.6	2
1,2-Dichloropropane	<0.050		0.050	ug/g	28-MAY-14	0.05	0.085	0.16	0.68
cis-1,3-Dichloropropene	<0.030		0.030	ug/g	28-MAY-14				
trans-1,3-Dichloropropene	<0.030		0.030	ug/g	28-MAY-14				
Ethyl Benzene	<0.050		0.050	ug/g	28-MAY-14	1.1	1.6	1.1	1.6
n-Hexane	<0.050		0.050	ug/g	28-MAY-14	2.8	34	46	88
Methyl Ethyl Ketone	<0.50		0.50	ug/g	28-MAY-14	16	44	70	88
Methyl Isobutyl Ketone	<0.50		0.50	ug/g	28-MAY-14	1.7	4.3	31	210
MTBE	<0.050		0.050	ug/g	28-MAY-14	0.75	1.4	1.6	2.3
Styrene	<0.050		0.050	ug/g	28-MAY-14	0.7	2.2	34	43
1,1,1,2-Tetrachloroethane	<0.050		0.050	ug/g	28-MAY-14	0.058	0.05	0.087	0.11
1,1,2,2-Tetrachloroethane	<0.050		0.050	ug/g	28-MAY-14	0.05	0.05	0.05	0.094
Tetrachloroethylene	<0.050		0.050	ug/g	28-MAY-14	0.28	2.3	1.9	2.5
Toluene	<0.20		0.20	ug/g	28-MAY-14	2.3	6	6.4	9
1,1,1-Trichloroethane	<0.050		0.050	ug/g	28-MAY-14	0.38	3.4	6.1	12
1,1,2-Trichloroethane	<0.050		0.050	ug/g	28-MAY-14	0.05	0.05	0.05	0.11
Trichloroethylene	<0.050		0.050	ug/g ug/g	28-MAY-14	0.061	0.52	0.05	0.11
Trichlorofluoromethane	<0.050		0.050		28-MAY-14	4	5.8	4	5.8
Vinyl chloride	<0.030		0.030	ug/g	28-MAY-14	0.02	0.022	0.032	0.25
o-Xylene	<0.020		0.020	ug/g	28-MAY-14	0.02	0.022	0.032	0.25
m+p-Xylenes	<0.020		0.020	ug/g	28-MAY-14				
Xylenes (Total)	<0.050		0.050	ug/g ug/g	28-MAY-14	3.1	25	26	30
Surrogate: 4-Bromofluorobenzene	90.6		70-130	ug/g %	28-MAY-14	3.1	20	20	30
Surrogate: 1,4-Difluorobenzene	98.2		70-130	% %	28-MAY-14				
Hydrocarbons	90.2		70-130	/0	20-1017 1-14				
	<5.0		5.0	ua/a	28-MAY-14	EE	G.E.		GE.
F1 (C6-C10) F1-BTEX	<5.0 <5.0		5.0	ug/g	30-MAY-14	55 55	65 65	55	65 65
	<10			ug/g		55	65 450	55	65
F2 (C10-C16)	<50		10 50	ug/g	30-MAY-14 30-MAY-14	98	150	230	250
F3 (C16-C34) F4 (C34-C50)	<50 <50		50 50	ug/g		300	1300	1700	2500
Total Hydrocarbons (C6-C50)	<72		50 72	ug/g	30-MAY-14	2800	5600	3300	6600
Chrom. to baseline at nC50	YES		12	ug/g No Unit	30-MAY-14 30-MAY-14				
Surrogate: 2-Bromobenzotrifluoride	89.7		50-140	%	30-MAY-14				
Surrogate: 3,4-Dichlorotoluene	95.9		60-140	%	28-MAY-14				
	30.0		00 140	70	20 100 (1 14				
L1459559-4 BH1-1-3'									
Sampled By: ANDREW M. on 22-MAY-14						#1	#2	#3	#4
Matrix: SOIL						#1	#4	#3	# 4
Physical Tests									
Conductivity	0.542		0.0040	mS/cm	27-MAY-14	0.7	0.7	1.4	1.4
Saturated Paste Extractables									
SAR	5.27		0.10	SAR	26-MAY-14	*5	*5	12	12

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

#1: T2-Soil-Agricultural or Other Property Use (Coarse)

#2: T2-Soil-Agricultural or Other Property Use (Fine)

#3: T2-Soil-Ind/Com/Commu Property Use (Coarse)

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L1459559 CONTD.... Page 7 of 20

5140-14					03-JUN-14 14:19 (MT)				
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L1459559-4 BH1-1-3'									
Sampled By: ANDREW M. on 22-MAY-14									
Matrix: SOIL						#1	#2	#3	#4
Saturated Paste Extractables									
Calcium (Ca)	17.3		0.10	mg/L	26-MAY-14				
Magnesium (Mg)	1.91		0.10	mg/L	26-MAY-14				
Sodium (Na)	86.6		0.10	mg/L	26-MAY-14				
L1459559-5 BH2-8-9'									
Sampled By: ANDREW M. on 22-MAY-14									
Matrix: SOIL						#1	#2	#3	#4
Physical Tests									
% Moisture	17.1		0.10	%	24-MAY-14				
Volatile Organic Compounds									
Acetone	<0.50		0.50	ug/g	28-MAY-14	16	28	16	28
Benzene	<0.020		0.020	ug/g	28-MAY-14	0.21	0.17	0.32	0.4
Bromodichloromethane	<0.050		0.050	ug/g	28-MAY-14	1.5	1.9	1.5	1.9
Bromoform	<0.050		0.050	ug/g	28-MAY-14	0.27	0.26	0.61	1.7
Bromomethane	<0.050		0.050	ug/g	28-MAY-14	0.05	0.05	0.05	0.05
Carbon tetrachloride	<0.050		0.050	ug/g	28-MAY-14	0.05	0.12	0.21	0.71
Chlorobenzene	<0.050		0.050	ug/g	28-MAY-14	2.4	2.7	2.4	2.7
Dibromochloromethane	<0.050		0.050	ug/g	28-MAY-14	2.3	2.9	2.3	2.9
Chloroform	<0.050		0.050	ug/g	28-MAY-14	0.05	0.17	0.47	0.18
1,2-Dibromoethane	<0.050		0.050	ug/g	28-MAY-14	0.05	0.05	0.05	0.05
1,2-Dichlorobenzene	<0.050		0.050	ug/g	28-MAY-14	1.2	1.7	1.2	1.7
1,3-Dichlorobenzene	<0.050		0.050	ug/g	28-MAY-14	4.8	6	9.6	12
1,4-Dichlorobenzene	<0.050		0.050	ug/g	28-MAY-14	0.083	0.097	0.2	0.57
Dichlorodifluoromethane	<0.050		0.050	ug/g	28-MAY-14	16	25	16	25
1,1-Dichloroethane	<0.050		0.050	ug/g	28-MAY-14	0.47	0.6	0.47	0.6
1,2-Dichloroethane	<0.050		0.050	ug/g	28-MAY-14	0.05	0.05	0.05	0.05
1,1-Dichloroethylene	<0.050		0.050	ug/g	28-MAY-14	0.05	0.05	0.064	0.48
cis-1,2-Dichloroethylene	<0.050		0.050	ug/g	28-MAY-14	1.9	2.5	1.9	2.5
trans-1,2-Dichloroethylene	<0.050		0.050	ug/g	28-MAY-14	0.084	0.75	1.3	2.5
1,3-Dichloropropene (cis & trans)	<0.042		0.042	ug/g	28-MAY-14	0.05	0.081	0.059	0.081
Methylene Chloride	<0.050		0.050	ug/g	28-MAY-14	0.1	0.96	1.6	2
1,2-Dichloropropane	<0.050		0.050	ug/g	28-MAY-14	0.05	0.085	0.16	0.68
cis-1,3-Dichloropropene	<0.030		0.030	ug/g	28-MAY-14				
trans-1,3-Dichloropropene Ethyl Benzene	<0.030 <0.050		0.030 0.050	ug/g	28-MAY-14	4.4	4.0		4.0
•				ug/g	28-MAY-14	1.1	1.6	1.1	1.6
n-Hexane Methyl Ethyl Ketone	<0.050 <0.50		0.050 0.50	ug/g ug/g	28-MAY-14 28-MAY-14	2.8 16	34 44	46 70	88 88
Methyl Isobutyl Ketone	<0.50		0.50	ug/g ug/g	28-MAY-14	1.7	4.3	31	oo 210
MTBE	<0.050		0.050	ug/g ug/g	28-MAY-14	0.75	4.3 1.4	1.6	2.3
Styrene	<0.050		0.050	ug/g ug/g	28-MAY-14	0.73	2.2	34	43
1,1,1,2-Tetrachloroethane	<0.050		0.050	ug/g ug/g	28-MAY-14	0.7	0.05	0.087	0.11
1,1,2,2-Tetrachloroethane	<0.050		0.050	ug/g	28-MAY-14	0.05	0.05	0.05	0.094
Tetrachloroethylene	<0.050		0.050	ug/g	28-MAY-14	0.28	2.3	1.9	2.5
Toluene	<0.20		0.20	ug/g	28-MAY-14	2.3	6	6.4	9
1,1,1-Trichloroethane	<0.050		0.050	ug/g	28-MAY-14	0.38	3.4	6.1	12

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

#1: T2-Soil-Agricultural or Other Property Use (Coarse)

#2: T2-Soil-Agricultural or Other Property Use (Fine)

#3: T2-Soil-Ind/Com/Commu Property Use (Coarse)

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L1459559 CONTD.... Page 8 of 20

5140-14	03-JUN-1								
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	e Limits	
L1459559-5 BH2-8-9'									
Sampled By: ANDREW M. on 22-MAY-14									
Matrix: SOIL						#1	#2	#3	#4
Volatile Organic Compounds									
1,1,2-Trichloroethane	<0.050		0.050	ug/g	28-MAY-14	0.05	0.05	0.05	0.11
Trichloroethylene	<0.050		0.050	ug/g	28-MAY-14	0.061	0.52	0.55	0.61
Trichlorofluoromethane	<0.050		0.050	ug/g	28-MAY-14	4	5.8	4	5.8
Vinyl chloride	<0.020		0.020	ug/g	28-MAY-14	0.02	0.022	0.032	0.25
o-Xylene	<0.020		0.020	ug/g	28-MAY-14				
m+p-Xylenes	<0.030		0.030	ug/g	28-MAY-14				
Xylenes (Total)	<0.050		0.050	ug/g	28-MAY-14	3.1	25	26	30
Surrogate: 4-Bromofluorobenzene	91.0		70-130	%	28-MAY-14				
Surrogate: 1,4-Difluorobenzene	98.6		70-130	%	28-MAY-14				
Hydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	28-MAY-14	55	65	55	65
F1-BTEX	<5.0		5.0	ug/g	30-MAY-14	55	65	55	65
F2 (C10-C16)	<10		10	ug/g	30-MAY-14	98	150	230	250
F3 (C16-C34)	108		50	ug/g	30-MAY-14	300	1300	1700	2500
F4 (C34-C50)	263		50	ug/g	30-MAY-14	2800	5600	3300	6600
Total Hydrocarbons (C6-C50)	371		72	ug/g	30-MAY-14	2000	3000	3300	0000
Chrom. to baseline at nC50	YES			No Unit	30-MAY-14				
Surrogate: 2-Bromobenzotrifluoride	99.5		50-140	%	30-MAY-14				
Surrogate: 3,4-Dichlorotoluene	96.6		60-140	%	28-MAY-14				
L1459559-6 BH2-1-3'									
Sampled By: ANDREW M. on 22-MAY-14									
Matrix: SOIL						#1	#2	#3	#4
Physical Tests									
	0.402		0.0040	m C /om	27 MAX 14	0.7	0.7		4.4
Conductivity	0.493		0.0040	mS/cm	27-MAY-14	0.7	0.7	1.4	1.4
Saturated Paste Extractables									
SAR	5.68		0.10	SAR	26-MAY-14	*5	*5	12	12
Calcium (Ca)	18.9		0.10	mg/L	26-MAY-14				
Magnesium (Mg)	1.50		0.10	mg/L	26-MAY-14				
Sodium (Na)	95.4		0.10	mg/L	26-MAY-14				
L1459559-7 BH3-5-6'									
Sampled By: ANDREW M. on 22-MAY-14									
Matrix: SOIL						#1	#2	#3	#4
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	26-MAY-14	7.5	7.5	40	50
Arsenic (As)	4.6		1.0	ug/g	26-MAY-14	11	11	18	18
Barium (Ba)	61.2		1.0	ug/g	26-MAY-14	390	390	670	670
Beryllium (Be)	0.59		0.50	ug/g	26-MAY-14	4	5	8	10
Boron (B)	8.6		5.0	ug/g	26-MAY-14	120	120	120	120
Cadmium (Cd)	<0.50		0.50	ug/g	26-MAY-14	1	1	1.9	1.9
Chromium (Cr)	20.5		1.0	ug/g	26-MAY-14	160	160	160	160
Cobalt (Co)	9.5		1.0	ug/g	26-MAY-14	22	22	80	100
Copper (Cu)	23.1		1.0	ug/g	26-MAY-14	140	180	230	300
Lead (Pb)	21.0		1.0	ug/g	26-MAY-14	45	45	120	120
				33			••	,	

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

#1: T2-Soil-Agricultural or Other Property Use (Coarse)

#2: T2-Soil-Agricultural or Other Property Use (Fine)

#3: T2-Soil-Ind/Com/Commu Property Use (Coarse)

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

5140-14

ANALYTICAL GUIDELINE REPORT

L1459559 CONTD....

Page 9 of 20 03-JUN-14 14:19 (MT)

5140-14 03-JUN-14 14:19 (MT)									
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L1459559-7 BH3-5-6'									
Sampled By: ANDREW M. on 22-MAY-14									
Matrix: SOIL						#1	#2	#3	#4
Metals									
	<1.0		1.0		26-MAY-14	0.0	0.0	40	40
Molybdenum (Mo)	21.0		1.0	ug/g	26-MAY-14	6.9	6.9	40	40
Nickel (Ni)	<1.0		1.0	ug/g	26-MAY-14	100	130	270	340
Selenium (Se) Silver (Ag)	<0.20		0.20	ug/g	26-MAY-14	2.4 20	2.4 25	5.5 40	5.5 50
Thallium (TI)	<0.50		0.50	ug/g	26-MAY-14	1			3.3
Uranium (U)	<1.0		1.0	ug/g	26-MAY-14	23	1 23	3.3 33	3.3 33
Vanadium (V)	29.8		1.0	ug/g ug/g	26-MAY-14	23 86	23 86	86	86
Zinc (Zn)	82.5		5.0	ug/g ug/g	26-MAY-14	340	340	340	340
	02.3		3.0	ug/g	20-1017(1-14	340	340	340	340
L1459559-8 BH3-2-3'									
Sampled By: ANDREW M. on 22-MAY-14						щ.	40	40	44
Matrix: SOIL						#1	#2	#3	#4
Physical Tests									
% Moisture	19.5		0.10	%	24-MAY-14				
Organochlorine Pesticides	15.5		0.10	70	24-101/-11-114				
Aldrin	<0.020		0.020	ug/g	27-MAY-14	0.05	0.05	0.088	0.11
gamma-hexachlorocyclohexane	<0.020		0.020	ug/g ug/g	27-MAY-14	0.056	0.03	0.056	0.11
a-chlordane	<0.010		0.010	ug/g ug/g	27-MAY-14	0.030	0.003	0.030	0.003
Chlordane (Total)	<0.028		0.028	ug/g ug/g	28-MAY-14	0.05	0.05	0.05	0.05
g-chlordane	<0.020		0.020	ug/g	27-MAY-14	0.00	0.00	0.00	0.00
op-DDD	<0.020		0.020	ug/g	27-MAY-14				
pp-DDD	<0.020		0.020	ug/g	27-MAY-14				
Total DDD	<0.028		0.028	ug/g	28-MAY-14	3.3	3.3	4.6	4.6
o,p-DDE	<0.020		0.020	ug/g	27-MAY-14				
pp-DDE	<0.020		0.020	ug/g	27-MAY-14				
Total DDE	<0.028		0.028	ug/g	28-MAY-14	0.26	0.33	0.52	0.65
op-DDT	<0.020		0.020	ug/g	27-MAY-14				
pp-DDT	<0.020		0.020	ug/g	27-MAY-14				
Total DDT	<0.028		0.028	ug/g	28-MAY-14	0.078	0.078	1.4	1.4
Dieldrin	<0.020		0.020	ug/g	27-MAY-14	0.05	0.05	0.088	0.11
Endosulfan I	<0.020		0.020	ug/g	27-MAY-14				
Endosulfan II	<0.020		0.020	ug/g	27-MAY-14				
Endosulfan (Total)	<0.028		0.028	ug/g	28-MAY-14	0.04	0.04	0.3	0.38
Endrin	<0.020		0.020	ug/g	27-MAY-14	0.04	0.04	0.04	0.04
Heptachlor	<0.020		0.020	ug/g	27-MAY-14	0.15	0.15	0.19	0.19
Heptachlor Epoxide	<0.020		0.020	ug/g	27-MAY-14	0.05	0.05	0.05	0.05
Hexachlorobenzene	<0.010		0.010	ug/g	27-MAY-14	0.52	0.52	0.66	0.66
Hexachlorobutadiene	<0.010		0.010	ug/g	27-MAY-14	0.012	0.014	0.031	0.095
Hexachloroethane	<0.010		0.010	ug/g	27-MAY-14	0.089	0.07	0.21	0.43
Methoxychlor	<0.020		0.020	ug/g	27-MAY-14	0.13	0.13	1.6	1.6
Surrogate: 2-Fluorobiphenyl	94.0		50-140	%	27-MAY-14				
Surrogate: d14-Terphenyl	88.8		50-140	%	27-MAY-14				
L1459559-9 BH3-1-2'									
Sampled By: ANDREW M. on 22-MAY-14									
Matrix: SOIL						#1	#2	#3	#4

^{**}Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

#1: T2-Soil-Agricultural or Other Property Use (Coarse)

#2: T2-Soil-Agricultural or Other Property Use (Fine)

#3: T2-Soil-Ind/Com/Commu Property Use (Coarse)

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L1459559 CONTD.... Page 10 of 20

5140-14					03-JUN-14 14:19 (MT)					
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed	Guideline Limits				
L1459559-9 BH3-1-2'										
Sampled By: ANDREW M. on 22-MAY-14										
Matrix: SOIL						#1	#2	#3	#4	
Physical Tests										
Conductivity	0.244		0.0040	mS/cm	27-MAY-14	0.7	0.7	1.4	1.4	
Saturated Paste Extractables										
SAR	0.29		0.10	SAR	26-MAY-14	5	5	12	12	
Calcium (Ca)	38.7		0.10	mg/L	26-MAY-14	Ū	· ·	· -	· -	
Magnesium (Mg)	1.40		0.10	mg/L	26-MAY-14					
Sodium (Na)	6.71		0.10	mg/L	26-MAY-14					
L1459559-10 BH4-5-6'										
Sampled By: ANDREW M. on 22-MAY-14										
Matrix: SOIL						#1	#2	#3	#4	
Physical Tests	40.0									
% Moisture	19.2		0.10	%	24-MAY-14					
Volatile Organic Compounds	40.50		0.50		20 MAY 44	40	00	40	00	
Acetone	<0.50		0.50	ug/g	28-MAY-14	16	28	16	28	
Benzene	<0.020		0.020	ug/g	28-MAY-14	0.21	0.17	0.32	0.4	
Bromodichloromethane	<0.050		0.050	ug/g	28-MAY-14	1.5	1.9	1.5	1.9	
Bromoform	<0.050		0.050	ug/g	28-MAY-14	0.27	0.26	0.61	1.7	
Bromomethane	<0.050		0.050	ug/g	28-MAY-14	0.05	0.05	0.05	0.05	
Carbon tetrachloride	<0.050		0.050	ug/g	28-MAY-14	0.05	0.12	0.21	0.71	
Chlorobenzene Dibromochloromethane	<0.050 <0.050		0.050 0.050	ug/g	28-MAY-14 28-MAY-14	2.4	2.7	2.4	2.7	
Chloroform	<0.050		0.050	ug/g	28-MAY-14	2.3	2.9	2.3	2.9	
	<0.050		0.050	ug/g	28-MAY-14	0.05	0.17	0.47	0.18	
1,2-Dibromoethane 1,2-Dichlorobenzene	<0.050		0.050	ug/g	28-MAY-14	0.05 1.2	0.05 1.7	0.05	0.05 1.7	
1,3-Dichlorobenzene	<0.050		0.050	ug/g	28-MAY-14	4.8	6	1.2 9.6	1.7	
1,4-Dichlorobenzene	<0.050		0.050	ug/g	28-MAY-14	0.083	0.097	0.2	0.57	
Dichlorodifluoromethane	<0.050		0.050	ug/g ug/g	28-MAY-14	16	25	16	25	
1,1-Dichloroethane	<0.050		0.050	ug/g ug/g	28-MAY-14	0.47	0.6	0.47	0.6	
1,2-Dichloroethane	<0.050		0.050	ug/g ug/g	28-MAY-14	0.47	0.05	0.47	0.05	
1,1-Dichloroethylene	<0.050		0.050	ug/g	28-MAY-14	0.05	0.05	0.064	0.48	
cis-1,2-Dichloroethylene	<0.050		0.050	ug/g	28-MAY-14	1.9	2.5	1.9	2.5	
trans-1,2-Dichloroethylene	<0.050		0.050	ug/g	28-MAY-14	0.084	0.75	1.3	2.5	
1,3-Dichloropropene (cis & trans)	<0.042		0.042	ug/g	28-MAY-14	0.05	0.081	0.059	0.081	
Methylene Chloride	<0.050		0.050	ug/g	28-MAY-14	0.03	0.96	1.6	2	
1,2-Dichloropropane	<0.050		0.050	ug/g	28-MAY-14	0.05	0.085	0.16	0.68	
cis-1,3-Dichloropropene	<0.030		0.030	ug/g	28-MAY-14	0.00	0.000	0.10	0.00	
trans-1,3-Dichloropropene	<0.030		0.030	ug/g	28-MAY-14					
Ethyl Benzene	<0.050		0.050	ug/g	28-MAY-14	1.1	1.6	1.1	1.6	
n-Hexane	<0.050		0.050	ug/g	28-MAY-14	2.8	34	46	88	
Methyl Ethyl Ketone	<0.50		0.50	ug/g	28-MAY-14	16	44	70	88	
Methyl Isobutyl Ketone	<0.50		0.50	ug/g	28-MAY-14	1.7	4.3	31	210	
MTBE	<0.050		0.050	ug/g	28-MAY-14	0.75	1.4	1.6	2.3	
Styrene	<0.050		0.050	ug/g	28-MAY-14	0.7	2.2	34	43	
1,1,1,2-Tetrachloroethane	<0.050		0.050	ug/g	28-MAY-14	0.058	0.05	0.087	0.11	
	<0.050	1	0.050	ug/g	28-MAY-14	0.05	0.05	I	0.094	

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

#1: T2-Soil-Agricultural or Other Property Use (Coarse)

#2: T2-Soil-Agricultural or Other Property Use (Fine)

#3: T2-Soil-Ind/Com/Commu Property Use (Coarse)

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L1459559 CONTD.... Page 11 of 20

5140-14 03-JUN-14 14									4:19 (MT)
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L1459559-10 BH4-5-6'									
Sampled By: ANDREW M. on 22-MAY-14									
Matrix: SOIL						#1	#2	#3	#4
Volatile Organic Compounds									
Tetrachloroethylene	<0.050		0.050	ug/g	28-MAY-14	0.28	2.3	1.9	2.5
Toluene	<0.20		0.20	ug/g	28-MAY-14	2.3	6	6.4	9
1,1,1-Trichloroethane	<0.050		0.050	ug/g	28-MAY-14	0.38	3.4	6.1	12
1,1,2-Trichloroethane	<0.050		0.050	ug/g	28-MAY-14	0.05	0.05	0.05	0.11
Trichloroethylene	<0.050		0.050	ug/g	28-MAY-14	0.061	0.52	0.55	0.61
Trichlorofluoromethane	<0.050		0.050	ug/g	28-MAY-14	4	5.8	4	5.8
Vinyl chloride	<0.020		0.020	ug/g	28-MAY-14	0.02	0.022	0.032	0.25
o-Xylene	<0.020		0.020	ug/g	28-MAY-14				
m+p-Xylenes	<0.030		0.030	ug/g	28-MAY-14				
Xylenes (Total)	<0.050		0.050	ug/g	28-MAY-14	3.1	25	26	30
Surrogate: 4-Bromofluorobenzene	90.3		70-130	%	28-MAY-14				
Surrogate: 1,4-Difluorobenzene	98.1		70-130	%	28-MAY-14				
Hydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	28-MAY-14	55	65	55	65
F1-BTEX	<5.0		5.0	ug/g	30-MAY-14	55	65	55	65
F2 (C10-C16)	<10		10	ug/g	30-MAY-14	98	150	230	250
F3 (C16-C34)	<50		50	ug/g	30-MAY-14	300	1300	1700	2500
F4 (C34-C50)	<50		50	ug/g	30-MAY-14	2800	5600	3300	6600
Total Hydrocarbons (C6-C50)	<72		72	ug/g	30-MAY-14				
Chrom. to baseline at nC50	YES			No Unit	30-MAY-14				
Surrogate: 2-Bromobenzotrifluoride	92.6		50-140	%	30-MAY-14				
Surrogate: 3,4-Dichlorotoluene	90.4		60-140	%	28-MAY-14				
L1459559-11 BH4-1-2'									
Sampled By: ANDREW M. on 22-MAY-14									
Matrix: SOIL						#1	#2	#3	#4
Physical Tests									
	0.000		0.0040	C/	07 MAN 44	0.7	o -		
Conductivity	0.222		0.0040	mS/cm	27-MAY-14	0.7	0.7	1.4	1.4
% Moisture Saturated Paste Extractables	15.9		0.10	%	24-MAY-14				
	0.04		0.40	CAD	20 MAY 44	-	_	40	40
SAR	0.24		0.10	SAR	26-MAY-14	5	5	12	12
Calcium (Ca) Magnesium (Mg)	32.5 2.95		0.10 0.10	mg/L	26-MAY-14 26-MAY-14				
Sodium (Na)	5.44		0.10	mg/L mg/L	26-MAY-14				
Organochlorine Pesticides	3.44		0.10	IIIg/L	20-IVIA 1 - 14				
Aldrin	<0.020		0.020	ua/a	27-MAY-14	0.05	0.05	0.088	0.11
gamma-hexachlorocyclohexane	<0.020		0.020	ug/g	27-MAY-14				
				ug/g		0.056	0.063	0.056	0.063
a-chlordane Chlordane (Total)	<0.020 <0.028		0.020 0.028	ug/g	27-MAY-14 28-MAY-14	0.05	0.05	0.05	0.05
g-chlordane	<0.026		0.028	ug/g		0.05	0.05	0.05	0.05
op-DDD	<0.020		0.020	ug/g	27-MAY-14 27-MAY-14				
pp-DDD	<0.020		0.020	ug/g	27-MAY-14				
Total DDD	<0.020		0.020	ug/g ug/g	28-MAY-14	3.3	3.3	4.6	4.6
o,p-DDE	<0.028		0.028		27-MAY-14	3.3	3.3	4.0	4.0
pp-DDE	<0.020		0.020	ug/g ug/g	27-MAY-14				
Total DDE	<0.020		0.020	ug/g ug/g	28-MAY-14	0.26	0.33	0.52	0.65
1 Stal DDL	-0.020		0.020	ug/g	20-IVI/\ I - I +	0.20	0.33	0.52	0.00

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

#1: T2-Soil-Agricultural or Other Property Use (Coarse)

#2: T2-Soil-Agricultural or Other Property Use (Fine)

#3: T2-Soil-Ind/Com/Commu Property Use (Coarse)

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L1459559 CONTD.... Page 12 of 20

140-14	ANALII	ICAL	סוט	LLINL	. KLFON	. I		Page 12 3-JUN-14 1	
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed			ne Limits	
L1459559-11 BH4-1-2'									
Sampled By: ANDREW M. on 22-MAY-14						44	#0	40	44.4
Matrix: SOIL						#1	#2	#3	#4
Organochlorine Pesticides									
op-DDT	<0.020		0.020	ug/g	27-MAY-14				
pp-DDT	<0.020		0.020	ug/g	27-MAY-14				
Total DDT	<0.028		0.028	ug/g	28-MAY-14	0.078	0.078	1.4	1.4
Dieldrin	<0.020		0.020	ug/g	27-MAY-14	0.05	0.05	0.088	0.11
Endosulfan I	<0.020		0.020	ug/g	27-MAY-14				
Endosulfan II	<0.020		0.020	ug/g	27-MAY-14				
Endosulfan (Total)	<0.028		0.028	ug/g	28-MAY-14	0.04	0.04	0.3	0.38
Endrin	<0.020		0.020	ug/g	27-MAY-14	0.04	0.04	0.04	0.04
Heptachlor	<0.020		0.020	ug/g	27-MAY-14	0.15	0.15	0.19	0.19
Heptachlor Epoxide	<0.020		0.020	ug/g	27-MAY-14	0.05	0.05	0.05	0.05
Hexachlorobenzene	<0.010		0.010	ug/g	27-MAY-14	0.52	0.52	0.66	0.66
Hexachlorobutadiene	<0.010		0.010	ug/g	27-MAY-14	0.012	0.014	0.031	0.095
Hexachloroethane	<0.010		0.010	ug/g	27-MAY-14	0.089	0.07	0.21	0.43
Methoxychlor	<0.020		0.020	ug/g	27-MAY-14	0.13	0.13	1.6	1.6
Surrogate: 2-Fluorobiphenyl	93.7		50-140	%	27-MAY-14				
Surrogate: d14-Terphenyl	90.1		50-140	%	27-MAY-14				
_1459559-12 BH5-0.5-1'									
Sampled By: ANDREW M. on 22-MAY-14									
Matrix: SOIL						#1 	#2	#3	#4
Physical Tests									
% Moisture	18.4		0.10	%	24-MAY-14				
Organochlorine Pesticides									
Aldrin	<0.020		0.020	ug/g	27-MAY-14	0.05	0.05	0.088	0.11
gamma-hexachlorocyclohexane	<0.010		0.010	ug/g	27-MAY-14	0.056	0.063	0.056	0.063
a-chlordane	<0.020		0.020	ug/g	27-MAY-14				
Chlordane (Total)	<0.028		0.028	ug/g	28-MAY-14	0.05	0.05	0.05	0.05
g-chlordane	<0.020		0.020	ug/g	27-MAY-14				
op-DDD	<0.020		0.020	ug/g	27-MAY-14				
pp-DDD	<0.020		0.020	ug/g	27-MAY-14				
Total DDD	<0.028		0.028	ug/g	28-MAY-14	3.3	3.3	4.6	4.6
o,p-DDE	<0.020		0.020	ug/g	27-MAY-14				
pp-DDE	<0.020		0.020	ug/g	27-MAY-14				
Total DDE	<0.028		0.028	ug/g	28-MAY-14	0.26	0.33	0.52	0.65
op-DDT	<0.020		0.020	ug/g	27-MAY-14				
pp-DDT	<0.020		0.020	ug/g	27-MAY-14				
Total DDT	<0.028		0.028	ug/g	28-MAY-14	0.078	0.078	1.4	1.4
Dieldrin	<0.020		0.020	ug/g	27-MAY-14	0.05	0.05	0.088	0.11
Endosulfan I	<0.020		0.020	ug/g	27-MAY-14				
Endosulfan II	<0.020		0.020	ug/g	27-MAY-14				
Endosulfan (Total)	<0.028		0.028	ug/g	28-MAY-14	0.04	0.04	0.3	0.38
Endrin	<0.020		0.020	ug/g	27-MAY-14	0.04	0.04	0.04	0.04
Heptachlor	<0.020		0.020	ug/g	27-MAY-14	0.15	0.15	0.19	0.19
Heptachlor Epoxide	<0.020		0.020	ug/g	27-MAY-14	0.05	0.05	0.05	0.05
Hexachlorobenzene	<0.010		0.010	ug/g	27-MAY-14	0.52	0.52	0.66	0.66

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

#1: T2-Soil-Agricultural or Other Property Use (Coarse)

#2: T2-Soil-Agricultural or Other Property Use (Fine)

#3: T2-Soil-Ind/Com/Commu Property Use (Coarse)

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L1459559 CONTD.... Page 13 of 20

5140-14						. •		Page 13 03-JUN-14 1	4:19 (MT)
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L1459559-12 BH5-0.5-1'									
Sampled By: ANDREW M. on 22-MAY-14 Matrix: SOIL						#1	#2	#3	#4
Organochlorine Pesticides									
Hexachloroethane	<0.010		0.010	ug/g	27-MAY-14	0.089	0.07	0.21	0.43
Methoxychlor	<0.020		0.020	ug/g	27-MAY-14	0.13	0.13	1.6	1.6
Surrogate: 2-Fluorobiphenyl	93.9		50-140	%	27-MAY-14				
Surrogate: d14-Terphenyl	94.6		50-140	%	27-MAY-14				
L1459559-13 BH5- 1-2'									
Sampled By: ANDREW M. on 22-MAY-14									
Matrix: SOIL						#1 	#2	#3	#4
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	26-MAY-14	7.5	7.5	40	50
Arsenic (As)	5.7		1.0	ug/g	26-MAY-14	11	11	18	18
Barium (Ba)	76.3		1.0	ug/g	26-MAY-14	390	390	670	670
Beryllium (Be)	0.66		0.50	ug/g	26-MAY-14	4	5	8	10
Boron (B)	9.5		5.0	ug/g	26-MAY-14	120	120	120	120
Cadmium (Cd)	<0.50		0.50	ug/g	26-MAY-14	1	1	1.9	1.9
Chromium (Cr)	23.0		1.0	ug/g	26-MAY-14	160	160	160	160
Cobalt (Co)	10.0		1.0	ug/g	26-MAY-14	22	22	80	100
Copper (Cu)	24.7		1.0	ug/g	26-MAY-14	140	180	230	300
Lead (Pb)	19.5		1.0	ug/g	26-MAY-14	45	45	120	120
Molybdenum (Mo)	<1.0		1.0	ug/g	26-MAY-14	6.9	6.9	40	40
Nickel (Ni)	22.4		1.0	ug/g	26-MAY-14	100	130	270	340
Selenium (Se)	<1.0 <0.20		1.0 0.20	ug/g	26-MAY-14 26-MAY-14	2.4	2.4	5.5	5.5
Silver (Ag) Thallium (TI)	<0.20		0.20	ug/g ug/g	26-MAY-14	20 1	25 1	40 3.3	50 3.3
Uranium (U)	<1.0		1.0	ug/g ug/g	26-MAY-14	23	23	33	33
Vanadium (V)	31.3		1.0	ug/g	26-MAY-14	86	86	86	86
Zinc (Zn)	74.9		5.0	ug/g	26-MAY-14	340	340	340	340
L1459559-14 BH6-7-8'									
Sampled By: ANDREW M. on 22-MAY-14									
Matrix: SOIL						#1	#2	#3	#4
Physical Tests									
% Moisture	14.8		0.10	%	24-MAY-14				
Volatile Organic Compounds	11.0		0.10	,,,	21111111111111				
Acetone	<0.50		0.50	ug/g	28-MAY-14	16	28	16	28
Benzene	<0.020		0.020	ug/g	28-MAY-14	0.21	0.17	0.32	0.4
Bromodichloromethane	<0.050		0.050	ug/g	28-MAY-14	1.5	1.9	1.5	1.9
Bromoform	<0.050		0.050	ug/g	28-MAY-14	0.27	0.26	0.61	1.7
Bromomethane	<0.050		0.050	ug/g	28-MAY-14	0.05	0.05	0.05	0.05
Carbon tetrachloride	<0.050		0.050	ug/g	28-MAY-14	0.05	0.12	0.21	0.71
Chlorobenzene	<0.050		0.050	ug/g	28-MAY-14	2.4	2.7	2.4	2.7
Dibromochloromethane	<0.050		0.050	ug/g	28-MAY-14	2.3	2.9	2.3	2.9
Chloroform	<0.050		0.050	ug/g	28-MAY-14	0.05	0.17	0.47	0.18
1,2-Dibromoethane	<0.050		0.050	ug/g	28-MAY-14	0.05	0.05	0.05	0.05
1,2-Dichlorobenzene	<0.050		0.050	ug/g	28-MAY-14	1.2	1.7	1.2	1.7

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

#1: T2-Soil-Agricultural or Other Property Use (Coarse)

#2: T2-Soil-Agricultural or Other Property Use (Fine)

#3: T2-Soil-Ind/Com/Commu Property Use (Coarse)

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L1459559 CONTD.... Page 14 of 20

5140-14								03-JUN-14 1	4:19 (MT)
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidalir	ne Limits	
	INCOUR	Qualifier	D.L.		Analyzeu		Guideili	ie Liiiils	
L1459559-14 BH6-7-8'									
Sampled By: ANDREW M. on 22-MAY-14						#1	#2	#3	#4
Matrix: SOIL						————	πΔ	π-5	""
Volatile Organic Compounds									
1,3-Dichlorobenzene	<0.050		0.050	ug/g	28-MAY-14	4.8	6	9.6	12
1,4-Dichlorobenzene	<0.050		0.050	ug/g	28-MAY-14	0.083	0.097	0.2	0.57
Dichlorodifluoromethane	<0.050		0.050	ug/g	28-MAY-14	16	25	16	25
1,1-Dichloroethane	<0.050		0.050	ug/g	28-MAY-14	0.47	0.6	0.47	0.6
1,2-Dichloroethane	<0.050		0.050	ug/g	28-MAY-14	0.05	0.05	0.05	0.05
1,1-Dichloroethylene	<0.050		0.050	ug/g	28-MAY-14	0.05	0.05	0.064	0.48
cis-1,2-Dichloroethylene	<0.050		0.050	ug/g	28-MAY-14	1.9	2.5	1.9	2.5
trans-1,2-Dichloroethylene	<0.050		0.050	ug/g	28-MAY-14	0.084	0.75	1.3	2.5
1,3-Dichloropropene (cis & trans)	<0.042		0.042	ug/g	28-MAY-14	0.05	0.081	0.059	0.081
Methylene Chloride	<0.050		0.050	ug/g	28-MAY-14	0.1	0.96	1.6	2
1,2-Dichloropropane	<0.050		0.050	ug/g	28-MAY-14	0.05	0.085	0.16	0.68
cis-1,3-Dichloropropene	<0.030		0.030	ug/g	28-MAY-14				
trans-1,3-Dichloropropene	<0.030		0.030	ug/g	28-MAY-14				
Ethyl Benzene	<0.050		0.050	ug/g	28-MAY-14	1.1	1.6	1.1	1.6
n-Hexane	<0.050		0.050	ug/g	28-MAY-14	2.8	34	46	88
Methyl Ethyl Ketone	<0.50		0.50	ug/g	28-MAY-14	16	44	70	88
Methyl Isobutyl Ketone	<0.50		0.50	ug/g	28-MAY-14	1.7	4.3	31	210
MTBE	<0.050		0.050	ug/g	28-MAY-14	0.75	1.4	1.6	2.3
Styrene	<0.050		0.050	ug/g	28-MAY-14	0.7	2.2	34	43
1,1,1,2-Tetrachloroethane	<0.050		0.050	ug/g	28-MAY-14	0.058	0.05	0.087	0.11
1,1,2,2-Tetrachloroethane	<0.050		0.050	ug/g	28-MAY-14	0.05	0.05	0.05	0.094
Tetrachloroethylene	<0.050		0.050	ug/g	28-MAY-14	0.28	2.3	1.9	2.5
Toluene	<0.20		0.20	ug/g	28-MAY-14	2.3	6	6.4	9
1,1,1-Trichloroethane	<0.050		0.050	ug/g	28-MAY-14	0.38	3.4	6.1	12
1,1,2-Trichloroethane	<0.050		0.050	ug/g	28-MAY-14	0.05	0.05	0.05	0.11
Trichloroethylene	<0.050		0.050	ug/g	28-MAY-14	0.061	0.52	0.55	0.61
Trichlorofluoromethane	<0.050		0.050	ug/g	28-MAY-14	4	5.8	4	5.8
Vinyl chloride	<0.020		0.020	ug/g	28-MAY-14	0.02	0.022	0.032	0.25
o-Xylene	<0.020		0.020	ug/g	28-MAY-14				
m+p-Xylenes	<0.030		0.030	ug/g	28-MAY-14				
Xylenes (Total)	<0.050		0.050	ug/g	28-MAY-14	3.1	25	26	30
Surrogate: 4-Bromofluorobenzene	90.2		70-130	%	28-MAY-14				
Surrogate: 1,4-Difluorobenzene Hydrocarbons	98.5		70-130	%	28-MAY-14				
_	.5.0		5 0		00 144 144				
F1 (C6-C10)	<5.0		5.0	ug/g	28-MAY-14	55	65	55	65
F1-BTEX	<5.0		5.0	ug/g	30-MAY-14	55	65	55	65
F2 (C10-C16)	20		10	ug/g	30-MAY-14	98	150	230	250
F3 (C16-C34)	198		50	ug/g	30-MAY-14	300	1300	1700	2500
F4 (C34-C50)	207		50	ug/g	30-MAY-14	2800	5600	3300	6600
Total Hydrocarbons (C6-C50)	425 VES		72	ug/g	30-MAY-14				
Chrom. to baseline at nC50 Surrogate: 2-Bromobenzotrifluoride	YES 87.9		50-140	No Unit %	30-MAY-14 30-MAY-14				
Surrogate: 2-Bromobenzotimuonde Surrogate: 3,4-Dichlorotoluene	92.7		60-140	% %	28-MAY-14				
Carrogate. 0,4-Distillorotolidene	JZ.1		00-140	/0	20-IVIA 1-14				
							l		

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

#1: T2-Soil-Agricultural or Other Property Use (Coarse)

#2: T2-Soil-Agricultural or Other Property Use (Fine)

#3: T2-Soil-Ind/Com/Commu Property Use (Coarse)

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L1459559 CONTD.... Page 15 of 20

140-14	AINALII	ICAL	שוטט	CLINE	KEPOK	. 1	(Page 15 03-JUN-14 1	
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L1459559-15 BH7-8-10'									
Sampled By: ANDREW M. on 22-MAY-14									
Matrix: SOIL						#1	#2	#3	#4
Physical Tests									
% Moisture	20.3		0.10	%	24-MAY-14				
Volatile Organic Compounds	20.0		0.10	,,					
Acetone	<0.50		0.50	ug/g	28-MAY-14	16	28	16	28
Benzene	<0.020		0.020	ug/g	28-MAY-14	0.21	0.17	0.32	0.4
Bromodichloromethane	<0.050		0.050	ug/g	28-MAY-14	1.5	1.9	1.5	1.9
Bromoform	<0.050		0.050	ug/g	28-MAY-14	0.27	0.26	0.61	1.7
Bromomethane	<0.050		0.050	ug/g	28-MAY-14	0.05	0.05	0.05	0.0
Carbon tetrachloride	<0.050		0.050	ug/g	28-MAY-14	0.05	0.12	0.03	0.7
Chlorobenzene	<0.050		0.050	ug/g	28-MAY-14	2.4	2.7	2.4	2.7
Dibromochloromethane	<0.050		0.050	ug/g	28-MAY-14	2.3	2.9	2.3	2.9
Chloroform	<0.050		0.050	ug/g	28-MAY-14	0.05	0.17	0.47	0.18
1.2-Dibromoethane	<0.050		0.050	ug/g ug/g	28-MAY-14	0.05	0.17	0.47	0.10
1,2-Dichlorobenzene	<0.050		0.050	ug/g	28-MAY-14	1.2	1.7	1.2	1.7
1.3-Dichlorobenzene	<0.050		0.050	ug/g	28-MAY-14	4.8	6	9.6	1.7
1,4-Dichlorobenzene	<0.050		0.050	ug/g ug/g	28-MAY-14	0.083	0.097	0.2	0.5
Dichlorodifluoromethane	<0.050		0.050	ug/g	28-MAY-14	16	25	16	25
1,1-Dichloroethane	<0.050		0.050	ug/g	28-MAY-14	0.47	0.6	0.47	0.6
1,2-Dichloroethane	<0.050		0.050	ug/g ug/g	28-MAY-14	0.47	0.05	0.47	0.0
1,1-Dichloroethylene	<0.050		0.050	ug/g ug/g	28-MAY-14	0.05	0.05	0.05	0.0
cis-1,2-Dichloroethylene	<0.050		0.050		28-MAY-14	1.9	2.5	1.9	2.5
trans-1,2-Dichloroethylene	<0.050		0.050	ug/g ug/g	28-MAY-14	0.084	0.75	1.3	2.5
1,3-Dichloropropene (cis & trans)	<0.030		0.030		28-MAY-14	0.064	0.75	0.059	0.08
Methylene Chloride	<0.042		0.042	ug/g	28-MAY-14	0.05	0.061	1.6	2
1,2-Dichloropropane	<0.050		0.050	ug/g	28-MAY-14				
• •	<0.030			ug/g	28-MAY-14	0.05	0.085	0.16	0.6
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	<0.030		0.030 0.030	ug/g ug/g	28-MAY-14				
Ethyl Benzene	<0.050		0.050	ug/g ug/g	28-MAY-14	1.1	1.6	1.1	1.6
n-Hexane	<0.050		0.050	ug/g ug/g	28-MAY-14	2.8	34	46	88
Methyl Ethyl Ketone	<0.50		0.50	ug/g ug/g	28-MAY-14	16	44	70	88
Methyl Isobutyl Ketone	<0.50		0.50	ug/g ug/g	28-MAY-14	1.7	4.3	31	210
MTBE	<0.050		0.050	ug/g	28-MAY-14	0.75	1.4	1.6	2.3
Styrene	<0.050		0.050	ug/g ug/g	28-MAY-14	0.73	2.2	34	43
1,1,1,2-Tetrachloroethane	<0.050		0.050	ug/g ug/g	28-MAY-14	0.058	0.05	0.087	0.1
1,1,2,2-Tetrachloroethane	<0.050		0.050	ug/g ug/g	28-MAY-14	0.05	0.05	0.05	0.09
Tetrachloroethylene	<0.050		0.050	ug/g ug/g	28-MAY-14	0.03	2.3	1.9	2.5
Toluene	<0.20		0.20	ug/g ug/g	28-MAY-14	2.3	6	6.4	9
1,1,1-Trichloroethane	<0.20		0.20	ug/g ug/g	28-MAY-14	2.3 0.38	3.4	6.1	12
1,1,2-Trichloroethane	<0.050		0.050	ug/g ug/g	28-MAY-14	0.36	0.05	0.05	0.1
Trichloroethylene	<0.050		0.050	ug/g ug/g	28-MAY-14	0.05	0.05	0.05	0.1
Trichlorofluoromethane	<0.050		0.050	ug/g ug/g	28-MAY-14	4	5.8	4	5.8
Vinyl chloride	<0.030		0.020	ug/g ug/g	28-MAY-14	0.02	0.022	0.032	0.2
o-Xylene	<0.020		0.020	ug/g ug/g	28-MAY-14	0.02	0.022	0.032	0.2
m+p-Xylenes	<0.020		0.020	ug/g ug/g	28-MAY-14				
Xylenes (Total)	<0.050		0.050	ug/g ug/g	28-MAY-14	3.1	25	26	30
						J. I			30
Surrogate: 4-Bromofluorobenzene	91.6		70-130	%	28-MAY-14				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

#1: T2-Soil-Agricultural or Other Property Use (Coarse)

#2: T2-Soil-Agricultural or Other Property Use (Fine)

#3: T2-Soil-Ind/Com/Commu Property Use (Coarse)

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L1459559 CONTD.... Page 16 of 20

5140-14								03-JUN-14 1	
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L1459559-15 BH7-8-10'									
Sampled By: ANDREW M. on 22-MAY-14									
Matrix: SOIL						#1	#2	#3	#4
Volatile Organic Compounds									
Surrogate: 1,4-Difluorobenzene	98.1		70-130	%	28-MAY-14				
Hydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	28-MAY-14	55	65	55	65
F1-BTEX	<5.0		5.0	ug/g	30-MAY-14	55	65	55	65
F2 (C10-C16)	<10		10	ug/g	30-MAY-14	98	150	230	250
F3 (C16-C34)	<50		50	ug/g	30-MAY-14	300	1300	1700	2500
F4 (C34-C50)	<50		50	ug/g	30-MAY-14	2800	5600	3300	6600
Total Hydrocarbons (C6-C50)	<72		72	ug/g	30-MAY-14	2000	0000		0000
Chrom. to baseline at nC50	YES		'-	No Unit	30-MAY-14				
Surrogate: 2-Bromobenzotrifluoride	80.6		50-140	%	30-MAY-14				
Surrogate: 3,4-Dichlorotoluene	96.9		60-140	%	28-MAY-14				
L1459559-16 BH7-0.5-2'									
Sampled By: ANDREW M. on 22-MAY-14									
· • •						#1	#2	#3	#4
Matrix: SOIL									
Physical Tests									
% Moisture	17.3		0.10	%	24-MAY-14				
Organochlorine Pesticides									
Aldrin	<0.020		0.020	ug/g	27-MAY-14	0.05	0.05	0.088	0.11
gamma-hexachlorocyclohexane	<0.010		0.010	ug/g	27-MAY-14	0.056	0.063	0.056	0.063
a-chlordane	<0.020		0.020	ug/g	27-MAY-14				
Chlordane (Total)	<0.028		0.028	ug/g	28-MAY-14	0.05	0.05	0.05	0.05
g-chlordane	<0.020		0.020	ug/g	27-MAY-14				
op-DDD	<0.020		0.020	ug/g	27-MAY-14				
pp-DDD	<0.020		0.020	ug/g	27-MAY-14				
Total DDD	<0.028		0.028	ug/g	28-MAY-14	3.3	3.3	4.6	4.6
o,p-DDE	<0.020		0.020	ug/g	27-MAY-14				
pp-DDE	<0.020		0.020	ug/g	27-MAY-14				
Total DDE	<0.028		0.028	ug/g	28-MAY-14	0.26	0.33	0.52	0.65
op-DDT	<0.020		0.020	ug/g	27-MAY-14				
pp-DDT	<0.020		0.020	ug/g	27-MAY-14				
Total DDT	<0.028		0.028	ug/g	28-MAY-14	0.078	0.078	1.4	1.4
Dieldrin	<0.020		0.020	ug/g	27-MAY-14	0.05	0.05	0.088	0.11
Endosulfan I	<0.020		0.020	ug/g	27-MAY-14				
Endosulfan II	<0.020		0.020	ug/g	27-MAY-14				
Endosulfan (Total)	<0.028		0.028	ug/g	28-MAY-14	0.04	0.04	0.3	0.38
Endrin	<0.020		0.020	ug/g	27-MAY-14	0.04	0.04	0.04	0.04
Heptachlor	<0.020		0.020	ug/g	27-MAY-14	0.15	0.15	0.19	0.19
Heptachlor Epoxide	<0.020		0.020	ug/g	27-MAY-14	0.05	0.05	0.05	0.05
Hexachlorobenzene	<0.010		0.010	ug/g	27-MAY-14	0.52	0.52	0.66	0.66
Hexachlorobutadiene	<0.010		0.010	ug/g	27-MAY-14	0.012	0.014	0.031	0.095
Hexachloroethane	<0.010		0.010	ug/g	27-MAY-14	0.089	0.07	0.21	0.43
Methoxychlor	<0.020		0.020	ug/g	27-MAY-14	0.13	0.13	1.6	1.6
Surrogate: 2-Fluorobiphenyl	92.3		50-140	%	27-MAY-14				
Surrogate: d14-Terphenyl	89.3		50-140	%	27-MAY-14				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

#1: T2-Soil-Agricultural or Other Property Use (Coarse)

#2: T2-Soil-Agricultural or Other Property Use (Fine)

#3: T2-Soil-Ind/Com/Commu Property Use (Coarse)

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Sample Parameter Qualifier key listed:

Qualifier Description DLM Detection Limit Adjusted due to sample matrix effects.

Methods Listed (if applicable):

ALS Test Code Matrix **Test Description** Method Reference*** CHLORDANE-T-CALC-Water Chlordane Total sums CALCULATION

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending

on the sample matrix and analyzed by GC/MS.

CHLORDANE-T-CALC-Soil Chlordane Total sums CALCULATION

WT

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending

on the sample matrix and analyzed by GC/MS.

DDD-DDE-DDT-CALC-WT Water DDD. DDE. DDT sums CALCULATION

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending

on the sample matrix and analyzed by GC/MS.

DDD-DDE-DDT-CALC-WT Soil DDD, DDE, DDT sums CALCULATION

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending

on the sample matrix and analyzed by GC/MS.

EC-R511-WT Soil Conductivity-O.Reg 153/04 (July MOEE E3138

2011)
A representative subsample is tumbled with de-ionized (DI) water. The ratio of water to soil is 2:1 v/w. After tumbling the sample is then analyzed by a

conductivity meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental

Protection Act (July 1, 2011).

ENDOSULFAN-T-CALC-Endosulfan Total sums CALCULATION

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.

ENDOSULFAN-T-CALC-Soil Endosulfan Total sums CALCULATION

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending

on the sample matrix and analyzed by GC/MS.

F1-F4-511-CALC-WT Water

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-F4-511-CALC-WT

Soil

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT

Water

F1-O.Reg 153/04 (July 2011)

E3398/CCME TIER 1-HS

Fraction F1 is determined by analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F1-HS-511-WT

Soil

F1-O.Reg 153/04 (July 2011)

E3398/CCME TIER 1-HS

Fraction F1 is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT

Water

F2-F4-O.Reg 153/04 (July 2011) MOE DECPH-E3398/CCME TIER 1

Fractions F2, F3 and F4 are determined by liquid/liquid extraction with a solvent. The solvent recovered from the extracted sample is dried and treated to remove polar material. The extract is then analyzed by GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT

Soil

F2-F4-O.Reg 153/04 (July 2011) MOE DECPH-E3398/CCME TIER 1

Fractions F2, F3 and F4 are determined by extracting a soil sample with a solvent mix. The solvent recovered from the extracted soil sample is dried and treated to remove polar material. The extract is analyzed by GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MET-D-UG/L-MS-WT

Water

Diss. Metals in Water by ICPMS EPA 200.8

(ug/L)
The metal constituents of a non-acidified sample that pass through a membrane filter prior to ICP/MS analysis.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MET-UG/G-CCMS-WT

Soil

Metal Scan Collision Cell ICPMS EPA 200.2/6020A

Sample is vigorously digested with nitric and hydrochloric acid. Analysis is conducted by ICP/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MOISTURE-WT

Soil

% Moisture

Gravimetric: Oven Dried

PEST-OC-511-WT

Water

OC Pesticides-O. Reg 153/04

SW846 8270 (511)

(July 2011)
Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

PEST-OC-511-WT

OC Pesticides-O.Reg 153/04

SW846 8270 (511)

(July 2011)
Soil sample is extracted in a solvent, after extraction a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG

must be reported).

PH-R511-WT

Soil

pH-O.Reg 153/04 (July 2011)

MOEE E3137A

A minimum 10g portion of the sample is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil and then analyzed using a pH meter and electrode.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

PSA-75UM-SIEVE-WT

Soil

% Particles > 75um

ASTM D422-63-HYDROMETER/SIEVE

(Coarse/Fine) An air-dried sample is reduced to < 2 mm size and mixed with a dispersing agent (Calgon solution). The sample is washed through a 200 mesh (75 μm) sieve. The retained mass of sample is used to determine % sand fraction. If the percentage of sand is >50%, the soil is considered to be course textured soil. If the percentage of sand is <50%, the soil is considered to be fine textured.

Reference: ASTM D422-63

SAR-R511-WT

Soil

SAR-O.Reg 153/04 (July 2011) SW846 6010C

A dried, disaggregated solid sample is extracted with deionized water, the aqueous extract is separated from the solid, acidified and then analyzed using a ICP/OES.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental

Protection Act (July 1, 2011).

VOC-1,3-DCP-CALC-WT VOC-1,3-DCP-CALC-WT

Water Regulation 153 VOCs Regulation 153 VOCs Soil

SW8260B/SW8270C

VOC-511-HS-WT Water VOC by GCMS HS O.Reg SW8260B/SW8270C SW846 8260

153/04 (July 2011) Liquid samples are analyzed by headspace GC/MSD.

Soil

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

VOC-511-HS-WT

VOC-O.Reg 153/04 (July 2011) SW846 8260 (511)

Soil and sediment samples are extracted in methanol and analyzed by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-

WT

Sum of Xylene Isomer Concentrations

CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

Water

XYLENES-SUM-CALC-

Soil

Sum of Xylene Isomer

Concentrations

CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

*** ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody numbers:

155678

155679

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA		

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.

	Can had not construct the construction of the		·					1	1	1	I					1	1	C of C # 0000	0
60 NORTHLAND		1	-				CHAIN OF CUSTODY	/ AN	Al Y	TICA	I SE	RVI	CES	RFO	HEST I	OPA	A D	ago 1 of 7	Property and contract and the state of the state of
WATERLOO, ON I		*******	-	4	A							-17.4.1	<u> </u>	ILLQ		OIL	1 1	ige 01	
Phone: (519) 886			-	6	1		Note: all TAT Quoted material is in business days wh				100	ecify d		S	ervice re	queste		2 day TAT (50%)	
Fax: (519) 886-90 Toll Free: 1-800-6			En	nicoi	nmei	ntal	statutory holidays and weekends. TAT samples received	ved pas	t 3:00	pm		require ,	d	5 day	(regular)		X	Next day TAT (100%)	
COMPANY NAME			<u> </u>				or Saturday/Sunday begin the next day.					<u> </u>	İ	3-4 de	ay (25%)	_		Same day TAT (200%)	
COMPANY NAME	Alte	ch					CRITERIA Criteria on report YES X NO	32 S				ANA	LYSIS	REQU	EST			PLEASE INDICATE FILTERED,	
OFFICE	Τ	mo	9				Reg 153/04 Reg 511/09 🔀	7			Г					T		PRESERVED OR BOTH	
PROJECT MANAGER	1 'A	-	-				Table 1 (2) 3 4 5 6 7 8 9	9		-								< (F, P, F/P)	
PROJECT MANAGER	Asi	V					TCLP MISA PWQO											SUBMISSION #:	
PROJECT # 5	140-14						ODWS OTHER	Î								ı		L145955	P
PHONE	1-10-11	FAX	-					\dashv			1							- 100) (
							REPORT FORMAT/DISTRIBUTION			1	ľ	_						ENTERED BY:	1
ACCOUNT #							SHAIL Y SAY DOWN	- S				-8						DATE/TIME ENTERED:	
QUOTATION #		PO #					SELECT: PDE DICITAL BOTH X	CONTAINERS		1		Pesticites						23/05/1	1
	1400				-33.55		SELECT: PDF DIGITAL TO BOTH X EMAIL 1 _ Comutate Catternage com	\				4							4
	MPLING INFO	RMA	TION				EMAIL 2			١,	5	0	B	1				BIN #:	
Sample Date,	/Time	T	/PE	L	MATRI			- °	一	0	15	١,	4					9	
	Time (24hr)	COMP	GRAB	WATER		OTHER	SAMPLE DESCRIPTION TO APPEAR ON REPORT	NUMBER OF	工公	S	Metels	$ \times $	\sim	اليا				COLUMNIC	
Date (dd-mm-yy)	(hh:mm)	ខ	8	×	SOIL	Q	SAME DESCRIPTION TO ATTEAN ON REPORT	₽ N				0			ŀ			COMMENTS	LAB ID
22-05-14				X			STO- MWA	6	X	X	X					†	†	dissolved metals lab for	ler on!
				X			MWC	7	X	X		X						, pres	C. Mis
			L		X		31-11-5-3'	3	X	X									3
			<u> </u>				1841-1-31	1					X	X					4
			<u> </u>				13H2 - 8-91	7	X	X							200		5
			_	<u> </u>			BH2 - 1-3'	11					×	x					0
			<u> </u>		\vdash	 	BH3 - 2-6,	11			X								7
			├		\vdash		BH3 - 2-3'	++	-			X				ļ			8
					H	-	Bu1- 1-2'	+-		ļ.,			x	r					9
					H	-	BH4 - 5- C'	1	X	X	_								10
7 88					\vdash	-	BH4-1-2'	1	+	-	_	X	×	X			-		11
		-	-	_	 }-	 	842-1-5,	+-	-	-		X							12
			 	\vdash	1		846-7-8	1	-	-	X			-		-			13
SPECI/	AL INSTRUCTIO	NS/CC	MMEN	TS		L	THE QUESTIONS BELOW MUST BE A	NSWERE	D FOR	X WATER	SAMPI	ES (C	HECK V	es OR	No)			SAMPLE CONDITIO	14
MAN I I	1.						Are any samples taken from a regulated DW System				١.			D N				FROZEN	MEAN
Methoral K	. () .						If yes, an authorized drinking water COC MUST be a	used fo	r this	submí	ssion.							COLD	TEMP
							Is the water sampled intended to be potable for hu	man co	nsum	ption?			Ye	s 🗅 N	o 🗀			COOLING INITIATED (1) AMBIENT (1)	9.8
SAMPLED BY: A	frew M	mhr	ų .				DATE & TIME RECEIVED BY:					***************************************		DATE &	TIME		7.00	OBSERVATIONS	INIT
RELINQUISHED BY:	11/2					PATE & TIME PROGRESS AT LESS DE LA COMPANIA DEL COMPANIA DEL COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DE LA COMPANIA DE LA COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DEL COMPANIA DE				Yes CI No DE	MI								
Notes	W B			100		-	sa kalika Wasaniki da wan Marfiy	1	1			7		25	May	41	64	If yes add 51F	
1. Quote number must l	oe provided to e	nsure	proper	pricina	 I		2. TAT may vary dependent on complexity of analysis and is	b work!	oad at	time o	f suhmi	ssion	3 Any	known	or suspecta	d hazar	ds rela	ting to a sample must be note:	d on the
		and the same					2. TAT may vary dependent on complexity of analysis and lab workload at time of submission. 3. Any known or suspected hazards relating to a sample must be noted on the Please contact the lab to confirm TATs.						on the						
				Full Time on Depart			ran and a normal artificial to the state of			********			***************************************				*********		

Prince (19) 866-8907	19) 886-6910 19) 886-9047 ee: 1-800-668-9878 NY NAME I MANAGER	Service requested		
Fire 1 200 666 9878 State St	Emulation Enutronmental NY NAME Fauthormental IV NAME Fax IV MANAGER Fax IV # IVPE			2 day TAT (50%)
Company The	Tabus Tabu	Sunday begin the next day.	5 day (regular)	Next day TAT (100%)
ECT NAMACER ECT	Tab	Criteria on report YESNO	LYSIS REQUEST	PLEASE INDICATE FILTERED.
SAMPLE DRIVETED TCLP MISA PWOO MISA MISA PWOO MISA MISA PWOO MISA MIS	TC	Reg 511/09 □ 3 4 5 6 7 8 q		PRESERVED OR BOTH
FRA	T # S 4 0 - H	PWQ0		SUBMISSION #:
Sample Data/Time Calcy Sample Data/Time Calcy The Calcy State Control of	NT # SAMPLING INFORMATION Sample Date/Time (24hr)			145955
SAMPLING IN TOWN AT THE CARD IN THE CARD I	PO # SAMPLING INFORMATION EM EM	ORT FORMAT/DISTRIBUTION		ENTERED BY:
SAMPLE DATE TO BE SAMPLE IN TO BE SAMPLE DESCRIPTION TO APPEAR ON REPORT Sample Date/Time Sample Dat	SAMPLING INFORMATION PO # EM. Date/Time Type MATRIX EM. Time (24hr) P. P	ERS		DATE/TIME ENTERED:
SAMPLIC INFORMATION The CAMPLY Three CAMPAN Three	SAMPLING INFORMATION EM. e/Time TYPE MATRIX EM. TIme (24hr) PM. PM. PM. PM. (hh:mm) O. CM. CM. CM. CM. CM.	NGITAL BOTH TAIL		77105114
Sample Date/Time Time (Zahr)	F/Time (24hr) OMP WATER SOIL (hh:mm) OO CRAB	•		H NA
Time (2dhn) S S S H S SAWPLE DESCRIPTION TO APPEAR ON REPORT S Y X X COMMENTS RH T - 0.5 - 2' 1 X X X X S S S S S S S S S S S S S S S	Time (24hr) COMP CRAB WATER SOIL)H		
TO BY: THE CHAINS FRUCTIONS/COMMENTS. See also authorized drunking week: COC. MUST be used for this submission. The army Market sampled intended to be patible for furman consumption? See water sampled intended to be patible for furman consumption? See water sampled intended to be patible for furman consumption? See water sampled intended to be patible for furman consumption? See water with the provided to ensure proper pricing The army Market was proper pricing to a sample must be noted on the army market was a sample must be noted was a sa		NUMBE		
ED BY: A A A A A A A A A	RH7	7-8-10,		51
ED BY: The QUESTIONS TO BE DUESTIONS BELOW MUST BE ANSWERED FORWATER SAMPLES (CHECK Ves. OR No.) The Answer Sample and Comparing week COC. MUST be used for this submission. The Answer Sample Intended to be potable for thim and consumption? State water sampled intended to be potable for thim and consumption? State water sampled intended to be potable for thim and consumption? State water sampled intended to ensure proper pricing The Answer Sample Countries and the workload at time of submission. 33 Any known or suspected hazards relating to a sample must be noted on	F H/1	1-2-5-0-1		9.
ED BY: The Comments of the water Samples Lack Transport of the Samples Lower Control of the Samples Low				
THE QUESTIONS RELOW MUST BE ANSWERD DOWN/TER SAMPLES COHECK VE. OR. NO. THE QUESTIONS RELOW MUST BE ANSWERD DOWN/TER SAMPLES COHECK VE. OR. NO. THE QUESTIONS RELOW MUST BE ANSWERD DOWN/TER SAMPLES COHECK VE. OR. NO. THE QUESTIONS RELOW MUST BE ANSWERD DOWN/TER SAMPLE COHOMOTON. THE QUESTIONS RELOW MUST BE ANSWERD DOWN/TER SAMPLE COHOMOTON. THE QUESTIONS RELOW MUST BE ANSWERD DOWN/TER SAMPLE COHOMOTON. THE QUESTIONS RELOW MUST BE ANSWERD DOWN/TER SAMPLE COHOMOTON. THE QUESTIONS RELOW MUST BE ANSWERD DOWN/TER SAMPLE COHOMOTON. THE QUESTIONS RELOW MUST BE ANSWERD DOWN/TER SAMPLE COHOMOTON. THE QUESTIONS RELOW MUST BE ANSWERD DOWN/TER SAMPLE COHOMOTON. THE QUESTIONS RELOW MUST BE ANSWERD DOWN/TER SAMPLE COHOMOTON. THE QUESTIONS RELOW MUST BE ANSWERD DOWN/TER SAMPLE COHOMOTON. THE QUESTIONS RELOW MUST BE ANSWERD DOWN/TER SAMPLE COHOMOTON. THE QUESTIONS RELOW MUST BE ANSWERD DOWN/TER SAMPLE COHOMOTON. THE QUESTIONS RELOW MUST BE ANSWERD DOWN/TER SAMPLE COHOMOTON. THE QUESTION OF SAMPLE COHOMOTON. THE QUESTIONS RELOW MUST BE ANSWERD DOWN/TER SAMPLE COHOMOTON. THE QUESTION OF				
ED BY: The ALL SPECIAL INSTRUCTIONS/COMMENTS: Are any samples taken from a regulated DW System? Are any samples taken from a regulated DW System? Are any samples taken from a regulated DW System? Are any samples taken from a regulated DW System? Are any samples taken from a regulated DW System? Are any samples taken from a regulated DW System? Are any samples taken from a regulated DW System? Are any samples must be provided to ensure proper pricing 2. TAT may vary dependent on complexity of analysis and tab workload at time of submission. 3. Any known or suspected hazards relating to a sample must be noted on				
SPECIAL INSTRUCTIONS/COMMENTS STREED TO THE QUESTIONS BELOW MUST BE ANSWERD FORWATER SAMPLES (CHECK Yes, OR. No.) SAMPLE CONDITION Are any sample staken from a regulated DW System? If yes, an authorized drinking water, COC, MUST be used for this submission. So the Amelieur of SAMPLE CONDITION So the Amelieur of SAMPLE CONDITION So the Amelieur of SAMPLE CONDITION The Coche of SAMPLE CONDITION FROZEN COLD AMBIENT DATE & TIME RECEIVED BY: Are any sample mission and any workload at time of submission. 3 Any known or suspected hazards relating to a sample must be noted or so the supported hazards relating to a sample must be noted or so the supported hazards relating to a sample must be noted or so the supported hazards relating to a sample must be noted or so the supported hazards relating to a sample must be noted or so the supported hazards relating to a sample must be noted or so the supported hazards relating to a sample must be noted or so the supported hazards relating to a sample must be noted or supported hazards relating to a sample must be noted or supported hazards relating to a sample must be noted or supported hazards relating to a sample must be noted or supported hazards relating to a sample must be noted or supported hazards relating to the supported hazards relating to the supported hazards relating to the support price of the supported hazards relating to the supported hazards relating to the support price of the supported hazards relating to the su				
ED BY: The QUESTIONS BELOW MUST BE ANSWERED FORWATER SAMPLES (CHECK Yes, OR Mo.) SEREIAL INSTRUCTIONS/COMMENTS: Are any sampled travely from a regulared DW System COC MUST be used for this submission. SEREIAL INSTRUCTIONS/COMMENTS: Are any sampled travely sampled travely sampled travely sampled travely sampled to be potable for human consumption? Sold of the attime and the provided to ensure proper pricing C. TAX may vary dependent on complexity of analysis and lab workload at time of submission. 3. Any known or suspected hazards relating to a sample must be noted on				
SPECIAL INSTRUCTIONS/COMMENTS Are any samples, taken from a regulated DW system THE QUESTIONS BELOW MUST BE ANNUAL ER CAPECK Yes, OR MO) SAMPLE CONDITION THE QUESTIONS BELOW MUST BE ANNUAL ER CAPECK YES, OR MO) FROZEN COLD COLD COLD COLD COLD SERVATIONS SUBSERVATIONS DATE & TIME RECEIVED AT LAB BY DATE & TIME RECEIVED AT LAB BY THE QUESTIONS BELOW MUST BE ANNUAL ER CONDITIONS THE COLD C				
SPECIAL INSTRUCTIONS/COMMENTS Are any Samples, taken from a regulared DW System? Are any Samples taken from a regulared DW System? If Yes, an authorized drinking water COC MUST be used for this submission. If Yes, an authorized drinking water COC MUST be used for this submission. Is the water sampled intended to be potable for human consumption? DATE & TIME DA				
FROZEN FROZEN FROZEN FROZEN FROZEN FROZEN FROZEN FROZEN COLD FROZEN FRO	Andreas Say		ECK Yes OR No.)	SAMPLE CONDITION
ED BY: Haden Mahre, 2415HED BY: UMF		4	Yes D No D	ING INITIATED O
QUISHED BY: () AND the number must be provided to ensure proper pricing	Ander Mahre, DATE & TIME	RECEIVED BY:	DATE & TIME	10
ote number must be provided to ensure proper pricing	QUISHED BY: OATE & TIME	RECEIVED ATLABIBY	111-	Yes O No Or
	and a second design and the second			
		dependent on complexity of analysis and lab workload at time of submission.	3. Any known or suspected hazards refal	ting to a sample must be noted on the

ALTECH ENVIRONMENTAL ATTN: ANDREW MUTRIE

12 BANIGAN DRIVE

TORONTO ON M4H 1E9

Date Received: 29-MAY-14

Report Date: 03-JUN-14 14:24 (MT)

Version: FINAL

Client Phone: 416-467-5555

Certificate of Analysis

Lab Work Order #: L1462166

Project P.O. #: NOT SUBMITTED

Job Reference: 5140-14 C of C Numbers: 155683

Legal Site Desc:

Mathumai Ganeshakunar Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062

ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1462166 CONTD.... PAGE 2 of 6 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1462166-1 MWD Sampled By: ANDREW MUTRIE on 29-MAY-14 Matrix: WATER							
Dissolved Metals							
Dissolved Metals Filtration Location	LAB					30-MAY-14	R2848439
Antimony (Sb)-Dissolved	<0.50		0.50	ug/L	30-MAY-14	30-MAY-14	
Arsenic (As)-Dissolved	<1.0		1.0	ug/L	30-MAY-14	30-MAY-14	R2848871
Barium (Ba)-Dissolved	436		2.0	ug/L	30-MAY-14	30-MAY-14	R2848871
Beryllium (Be)-Dissolved	<0.50		0.50	ug/L	30-MAY-14	30-MAY-14	R2848871
Boron (B)-Dissolved	71		10	ug/L	30-MAY-14	30-MAY-14	R2848871
Cadmium (Cd)-Dissolved	<0.10		0.10	ug/L	30-MAY-14	30-MAY-14	R2848871
Chromium (Cr)-Dissolved	<0.50		0.50	ug/L	30-MAY-14	30-MAY-14	R2848871
Cobalt (Co)-Dissolved	2.75		0.50	ug/L	30-MAY-14	30-MAY-14	R2848871
Copper (Cu)-Dissolved	<1.0		1.0	ug/L	30-MAY-14	30-MAY-14	R2848871
Lead (Pb)-Dissolved	<1.0		1.0	ug/L	30-MAY-14	30-MAY-14	R2848871
Molybdenum (Mo)-Dissolved	1.56		0.50	ug/L	30-MAY-14	30-MAY-14	R2848871
Nickel (Ni)-Dissolved	6.9		1.0	ug/L	30-MAY-14	30-MAY-14	R2848871
Selenium (Se)-Dissolved	<5.0		5.0	ug/L	30-MAY-14	30-MAY-14	R2848871
Silver (Ag)-Dissolved	<0.10		0.10	ug/L	30-MAY-14	30-MAY-14	R2848871
Sodium (Na)-Dissolved	533000	DLM	5000	ug/L	30-MAY-14	30-MAY-14	R2848871
Thallium (TI)-Dissolved	<0.30		0.30	ug/L	30-MAY-14	30-MAY-14	R2848871
Uranium (U)-Dissolved	2.8		2.0	ug/L	30-MAY-14	30-MAY-14	R2848871
Vanadium (V)-Dissolved	<0.50		0.50	ug/L	30-MAY-14	30-MAY-14	R2848871
Zinc (Zn)-Dissolved	13.0		3.0	ug/L	30-MAY-14	30-MAY-14	R2848871
Volatile Organic Compounds							
Acetone	<30		30	ug/L		30-MAY-14	R2848752
Benzene	<0.50		0.50	ug/L		30-MAY-14	R2848752
Bromodichloromethane	<2.0		2.0	ug/L		30-MAY-14	R2848752
Bromoform	<5.0		5.0	ug/L		30-MAY-14	R2848752
Bromomethane	<0.50		0.50	ug/L		30-MAY-14	R2848752
Carbon tetrachloride	<0.20		0.20	ug/L		30-MAY-14	R2848752
Chlorobenzene	<0.50		0.50	ug/L		30-MAY-14	
Dibromochloromethane	<2.0		2.0	ug/L		30-MAY-14	
Chloroform	<1.0		1.0	ug/L		30-MAY-14	
1,2-Dibromoethane	<0.20		0.20	ug/L		30-MAY-14	
1,2-Dichlorobenzene	<0.50		0.50	ug/L		30-MAY-14	
1,3-Dichlorobenzene	<0.50		0.50	ug/L		30-MAY-14	
1,4-Dichlorobenzene	<0.50		0.50	ug/L		30-MAY-14	
Dichlorodifluoromethane	<2.0		2.0	ug/L		30-MAY-14	
1,1-Dichloroethane	<0.50		0.50	ug/L		30-MAY-14	
1,2-Dichloroethane	<0.50		0.50	ug/L		30-MAY-14	
1,1-Dichloroethylene	<0.50		0.50	ug/L		30-MAY-14	
cis-1,2-Dichloroethylene	<0.50		0.50	ug/L		30-MAY-14	
trans-1,2-Dichloroethylene	<0.50		0.50	ug/L		30-MAY-14	R2848752
1,3-Dichloropropene (cis & trans)	<0.50		0.50	ug/L		30-MAY-14	

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1462166 CONTD.... PAGE 3 of 6

Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1462166-1 MWD Sampled By: ANDREW MUTRIE on 29-MAY-14							
Matrix: WATER							
Volatile Organic Compounds							
Methylene Chloride	<5.0		5.0	ug/L		30-MAY-14	R2848752
1,2-Dichloropropane	<0.50		0.50	ug/L		30-MAY-14	R2848752
cis-1,3-Dichloropropene	<0.30		0.30	ug/L		30-MAY-14	R2848752
trans-1,3-Dichloropropene	<0.30		0.30	ug/L		30-MAY-14	R2848752
Ethyl Benzene	<0.50		0.50	ug/L		30-MAY-14	R2848752
n-Hexane	<0.50		0.50	ug/L		30-MAY-14	R2848752
Methyl Ethyl Ketone	<20		20	ug/L		30-MAY-14	R2848752
Methyl Isobutyl Ketone	<20		20	ug/L		30-MAY-14	R2848752
MTBE	<2.0		2.0	ug/L		30-MAY-14	R2848752
Styrene	<0.50		0.50	ug/L		30-MAY-14	
1,1,1,2-Tetrachloroethane	<0.50		0.50	ug/L		30-MAY-14	
1,1,2,2-Tetrachloroethane	<0.50		0.50	ug/L		30-MAY-14	R2848752
Tetrachloroethylene	<0.50		0.50	ug/L		30-MAY-14	R2848752
Toluene	<0.50		0.50	ug/L		30-MAY-14	R2848752
1,1,1-Trichloroethane	<0.50		0.50	ug/L		30-MAY-14	R2848752
1,1,2-Trichloroethane	<0.50		0.50	ug/L		30-MAY-14	R2848752
Trichloroethylene	<0.50		0.50	ug/L		30-MAY-14	R2848752
Trichlorofluoromethane	<5.0		5.0	ug/L		30-MAY-14	R2848752
Vinyl chloride	<0.50		0.50	ug/L		30-MAY-14	R2848752
o-Xylene	<0.30		0.30	ug/L		30-MAY-14	R2848752
m+p-Xylenes	<0.40		0.40	ug/L		30-MAY-14	R2848752
Xylenes (Total)	<0.50		0.50	ug/L		30-MAY-14	
Surrogate: 4-Bromofluorobenzene	87.2		70-130	%		30-MAY-14	R2848752
Surrogate: 1,4-Difluorobenzene	99.9		70-130	%		30-MAY-14	R2848752
Hydrocarbons							
F1 (C6-C10)	<25		25	ug/L		30-MAY-14	R2848752
F1-BTEX	<25		25	ug/L		01-JUN-14	
F2 (C10-C16)	<100		100	ug/L	01-JUN-14	01-JUN-14	R2849624
F3 (C16-C34)	<250		250	ug/L	01-JUN-14	01-JUN-14	R2849624
F4 (C34-C50)	<250		250	ug/L	01-JUN-14	01-JUN-14	R2849624
Total Hydrocarbons (C6-C50)	<370		370	ug/L		01-JUN-14	
Chrom. to baseline at nC50	YES				01-JUN-14	01-JUN-14	R2849624
Surrogate: 2-Bromobenzotrifluoride	62.3		60-140	%	01-JUN-14	01-JUN-14	R2849624
Surrogate: 3,4-Dichlorotoluene	96.7		60-140	%		30-MAY-14	R2848752
L1462166-2 MWE Sampled By: ANDREW MUTRIE on 29-MAY-14 Matrix: WATER							
Organochlorine Pesticides							
Aldrin	<0.020	DLIV	0.020	ug/L	30-MAY-14	03-JUN-14	R2851187
gamma-hexachlorocyclohexane	<0.020	DLIV	0.020	ug/L	30-MAY-14	03-JUN-14	R2851187
a-chlordane	<0.080	DLIV	0.080	ug/L	30-MAY-14	03-JUN-14	R2851187
Chlordane (Total)	<0.11		0.11	ug/L		03-JUN-14	

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1462166 CONTD.... PAGE 4 of 6 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1462166-2 MWE Sampled By: ANDREW MUTRIE on 29-MAY-14 Matrix: WATER							
Organochlorine Pesticides							
g-chlordane	<0.080	DLIV	0.080	ug/L	30-MAY-14	03-JUN-14	R2851187
o,p-DDD	<0.060	DLIV	0.060	ug/L	30-MAY-14	03-JUN-14	R2851187
pp-DDD	<0.060	DLIV	0.060	ug/L	30-MAY-14	03-JUN-14	R2851187
Total DDD	<0.085		0.085	ug/L		03-JUN-14	
o,p-DDE	<0.016	DLIV	0.016	ug/L	30-MAY-14	03-JUN-14	R2851187
pp-DDE	<0.016	DLIV	0.016	ug/L	30-MAY-14	03-JUN-14	R2851187
Total DDE	<0.023		0.023	ug/L		03-JUN-14	
op-DDT	<0.060	DLIV	0.060	ug/L	30-MAY-14	03-JUN-14	R2851187
pp-DDT	<0.060	DLIV	0.060	ug/L	30-MAY-14	03-JUN-14	R2851187
Total DDT	<0.085		0.085	ug/L		03-JUN-14	
Dieldrin	<0.10	DLIV	0.10	ug/L	30-MAY-14	03-JUN-14	R2851187
Endosulfan I	<0.060	DLIV	0.060	ug/L	30-MAY-14	03-JUN-14	R2851187
Endosulfan II	<0.060	DLIV	0.060	ug/L	30-MAY-14	03-JUN-14	R2851187
Endosulfan (Total)	<0.085		0.085	ug/L		03-JUN-14	
Endrin	<0.080	DLIV	0.080	ug/L	30-MAY-14	03-JUN-14	R2851187
Heptachlor	<0.020	DLIV	0.020	ug/L	30-MAY-14	03-JUN-14	R2851187
Heptachlor Epoxide	<0.020	DLIV	0.020	ug/L	30-MAY-14	03-JUN-14	R2851187
Hexachlorobenzene	<0.020	DLIV	0.020	ug/L	30-MAY-14	03-JUN-14	R2851187
Hexachlorobutadiene	<0.020	DLIV	0.020	ug/L	30-MAY-14	03-JUN-14	R2851187
Hexachloroethane	<0.020	DLIV	0.020	ug/L	30-MAY-14	03-JUN-14	R2851187
Methoxychlor	<0.10	DLIV	0.10	ug/L	30-MAY-14	03-JUN-14	R2851187
Surrogate: 2-Fluorobiphenyl	84.8		50-140	%	30-MAY-14	03-JUN-14	R2851187
Surrogate: d14-Terphenyl	106.8		50-140	%	30-MAY-14	03-JUN-14	R2851187

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1462166 CONTD....

PAGE 5 of 6 Version: FINAL

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description Parameter Qualifier Applies to Sample Number(s) Laboratory Control Sample Duplicate Aldrin **RRQC** L1462166-2

LCS duplicate recovery is outside of control limits. Associated sample results have not been affected. Comments:

Qualifiers for Sample Submission Listed:

Qualifier Description CINT Cooling initiated. Samples were packaged with ice or ice packs upon receipt.

Sample Parameter Qualifier key listed:

Qualifier	Description
DLIV	Detection Limit Adjusted: Lower Initial Volume
DLM	Detection Limit Adjusted due to sample matrix effects.
RRQC	Refer to report remarks for information regarding this QC result.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
CHLORDANE-T-CALC- WT	Water	Chlordane Total sums	CALCULATION

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.

DDD-DDE-DDT-CALC-WT Water DDD, DDE, DDT sums CALCULATION

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.

ENDOSULFAN-T-CALC- Water Endosulfan Total sums **CALCULATION**

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.

F1-F4-511-CALC-WT Water F1-F4 Hydrocarbon Calculated CCME CWS-PHC DEC-2000 - PUB# 1310-L

Analytical methods used for analysis of Pamineressoleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-O.Reg 153/04 (July 2011) F1-HS-511-WT E3398/CCME TIER 1-HS Water Fraction F1 is determined by analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT Water F2-F4-O.Reg 153/04 (July 2011) MOE DECPH-E3398/CCME TIER 1

Fractions F2, F3 and F4 are determined by liquid/liquid extraction with a solvent. The solvent recovered from the extracted sample is dried and treated to remove polar material. The extract is then analyzed by GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MFT-D-UG/L-MS-WT Diss. Metals in Water by ICPMS FPA 200 8 Water

The metal constituents of a non-acidified (LSMh) ple that pass through a membrane filter prior to ICP/MS analysis.

L1462166 CONTD....

Reference Information

PAGE 6 of 6 Version: FINAL

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

PEST-OC-511-WT Water OC Pesticides-O. Reg 153/04 (July SW846 8270 (511)

Aqueous sample is extracted by liquid/li@0it1extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

VOC-1,3-DCP-CALC-WT Water Regulation 153 VOCs SW8260B/SW8270C

VOC-511-HS-WT Water VOC by GCMS HS O.Reg 153/04 SW846 8260

Liquid samples are analyzed by headspabely C20/M\$D.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC- Water Sum of Xylene Isomer CALCULATION

VT Concentrations

Total xylenes represents the sum of o-xylene and m&p-xylene.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

155683

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L1462166 Report Date: 03-JUN-14 Page 1 of 13

Client: ALTECH ENVIRONMENTAL

12 BANIGAN DRIVE

TORONTO ON M4H 1E9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F1-HS-511-WT	Water							
	18752 CVS		83.1		%		80-120	30-MAY-14
WG1881194-4 F1 (C6-C10)	DUP	WG188119 4	4-3 <25	RPD-NA	ug/L	N/A	30	30-MAY-14
WG1881194-2 F1 (C6-C10)	МВ		<25		ug/L		25	30-MAY-14
Surrogate: 3,4-Dic	chlorotoluene		103.9		%		60-140	30-MAY-14
WG1881194-5 N F1 (C6-C10)	MS	WG1881194	4-3 76.6		%		60-140	30-MAY-14
F2-F4-511-WT	Water							
Batch R284	9624							
WG1883068-1 G F2 (C10-C16)	cvs		110.2		%		80-120	01-JUN-14
F3 (C16-C34)			100.1		%		80-120	01-JUN-14
F4 (C34-C50)			99.8		%		80-120	01-JUN-14
WG1882092-2 L F2 (C10-C16)	_cs		91.0		%		65-135	01-JUN-14
F3 (C16-C34)			93.9		%		65-135	01-JUN-14
F4 (C34-C50)			94.7		%		65-135	01-JUN-14
	_CSD	WG188209						
F2 (C10-C16)		91.0	90.8		%	0.2	50	01-JUN-14
F3 (C16-C34)		93.9	92.5		%	1.5	50	01-JUN-14
F4 (C34-C50)		94.7	93.7		%	1.1	50	01-JUN-14
WG1882092-1 N F2 (C10-C16)	MB		<100		ug/L		100	01-JUN-14
F3 (C16-C34)			<250		ug/L		250	01-JUN-14
F4 (C34-C50)			<250		ug/L		250	01-JUN-14
Surrogate: 2-Brom	nobenzotrifluoride		73.6		%		60-140	01-JUN-14
MET-D-UG/L-MS-WT	Water							
Batch R284	8871							
WG1882075-1 C Antimony (Sb)-Dis	CVS ssolved		95.3		%		80-120	30-MAY-14
Arsenic (As)-Disso	olved		95.4		%		80-120	30-MAY-14
Barium (Ba)-Disso	olved		93.5		%		80-120	30-MAY-14
Beryllium (Be)-Dis	solved		94.0		%		80-120	30-MAY-14
Boron (B)-Dissolve	- 4		90.8		%		80-120	30-MAY-14

Workorder: L1462166 Report Date: 03-JUN-14 Page 2 of 13

Client: ALTECH ENVIRONMENTAL

12 BANIGAN DRIVE TORONTO ON M4H 1E9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R284887	' 1							
WG1882075-1 CVS			04.4		%		00.400	
Cadmium (Cd)-Dissol			94.4		%		80-120	30-MAY-14
Chromium (Cr)-Disso			97.0				80-120	30-MAY-14
Cobalt (Co)-Dissolved			97.4		%		80-120	30-MAY-14
Copper (Cu)-Dissolve	ed .		96.1		%		80-120	30-MAY-14
Lead (Pb)-Dissolved			100.2		%		80-120	30-MAY-14
Molybdenum (Mo)-Dis	ssolved		91.0		%		80-120	30-MAY-14
Nickel (Ni)-Dissolved			96.3		%		80-120	30-MAY-14
Selenium (Se)-Dissol	ved		98.4		%		80-120	30-MAY-14
Silver (Ag)-Dissolved			100.5		%		80-120	30-MAY-14
Sodium (Na)-Dissolve			101.8		%		80-120	30-MAY-14
Thallium (TI)-Dissolve			103.3		%		80-120	30-MAY-14
Uranium (U)-Dissolve			99.9		%		80-120	30-MAY-14
Vanadium (V)-Dissolv	red .		96.6		%		80-120	30-MAY-14
Zinc (Zn)-Dissolved			92.5		%		80-120	30-MAY-14
WG1882075-3 CVS			00.4		0/			
Antimony (Sb)-Dissol			96.1		%		80-120	02-JUN-14
Arsenic (As)-Dissolve			98.9		%		80-120	02-JUN-14
Barium (Ba)-Dissolve			96.2		%		80-120	02-JUN-14
Beryllium (Be)-Dissolv	/ed		107.0		%		80-120	02-JUN-14
Boron (B)-Dissolved			104.7		%		80-120	02-JUN-14
Cadmium (Cd)-Dissol			100.6		%		80-120	02-JUN-14
Chromium (Cr)-Disso			96.8		%		80-120	02-JUN-14
Cobalt (Co)-Dissolved			99.5		%		80-120	02-JUN-14
Copper (Cu)-Dissolve	d		99.2		%		80-120	02-JUN-14
Lead (Pb)-Dissolved			103.1		%		80-120	02-JUN-14
Molybdenum (Mo)-Dis	ssolved		97.3		%		80-120	02-JUN-14
Nickel (Ni)-Dissolved			99.2		%		80-120	02-JUN-14
Selenium (Se)-Dissol	ved		98.8		%		80-120	02-JUN-14
Silver (Ag)-Dissolved			100.8		%		80-120	02-JUN-14
Sodium (Na)-Dissolve	ed		101.4		%		80-120	02-JUN-14
Thallium (TI)-Dissolve	ed		102.6		%		80-120	02-JUN-14
Uranium (U)-Dissolve	d		103.2		%		80-120	02-JUN-14
Vanadium (V)-Dissolv	/ed		99.2		%		80-120	02-JUN-14
Zinc (Zn)-Dissolved			92.2		%		80-120	02-JUN-14

Contact:

Quality Control Report

Workorder: L1462166 Report Date: 03-JUN-14 Page 3 of 13

Client: ALTECH ENVIRONMENTAL

12 BANIGAN DRIVE TORONTO ON M4H 1E9

ANDREW MUTRIE

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R2848	871							
	JP 	WG1882009						
Antimony (Sb)-Diss		<0.50	<0.50	RPD-NA	ug/L	N/A	20	30-MAY-14
Arsenic (As)-Dissol		<1.0	<1.0	RPD-NA	ug/L	N/A	20	30-MAY-14
Barium (Ba)-Dissolv		11.1	10.9		ug/L	1.5	20	30-MAY-14
Beryllium (Be)-Diss		<0.40	<0.40	RPD-NA	ug/L	N/A	20	30-MAY-14
Boron (B)-Dissolved		<10	<10	RPD-NA	ug/L	N/A	20	30-MAY-14
Cadmium (Cd)-Diss		<0.090	<0.090	RPD-NA	ug/L	N/A	20	30-MAY-14
Chromium (Cr)-Diss	solved	<0.50	<0.50	RPD-NA	ug/L	N/A	20	30-MAY-14
Cobalt (Co)-Dissolv	ed	<0.30	<0.30	RPD-NA	ug/L	N/A	20	30-MAY-14
Copper (Cu)-Dissol	ved	1.2	1.2		ug/L	2.4	20	30-MAY-14
Lead (Pb)-Dissolve	d	<0.50	<0.50	RPD-NA	ug/L	N/A	20	30-MAY-14
Molybdenum (Mo)-I	Dissolved	<0.50	<0.50	RPD-NA	ug/L	N/A	20	30-MAY-14
Nickel (Ni)-Dissolve	ed	<1.0	1.0	RPD-NA	ug/L	N/A	20	30-MAY-14
Selenium (Se)-Diss	olved	<0.40	<0.40	RPD-NA	ug/L	N/A	20	30-MAY-14
Silver (Ag)-Dissolve	ed	<0.10	<0.10	RPD-NA	ug/L	N/A	20	30-MAY-14
Sodium (Na)-Dissol	ved	1070	1090		ug/L	1.3	20	30-MAY-14
Thallium (TI)-Dissol	ved	<0.20	<0.20	RPD-NA	ug/L	N/A	20	30-MAY-14
Uranium (U)-Dissol	ved	<1.0	<1.0	RPD-NA	ug/L	N/A	20	30-MAY-14
Vanadium (V)-Disso	olved	0.65	0.71		ug/L	7.8	20	30-MAY-14
Zinc (Zn)-Dissolved		3.0	3.6		ug/L	17	20	30-MAY-14
WG1882009-2 LC	cs							
Antimony (Sb)-Diss	olved		93.4		%		80-120	30-MAY-14
Arsenic (As)-Dissol	ved		93.4		%		80-120	30-MAY-14
Barium (Ba)-Dissolv	/ed		90.7		%		80-120	30-MAY-14
Beryllium (Be)-Diss	olved		90.5		%		80-120	30-MAY-14
Boron (B)-Dissolved	t		85.4		%		80-120	30-MAY-14
Cadmium (Cd)-Diss	solved		91.4		%		80-120	30-MAY-14
Chromium (Cr)-Diss	solved		92.8		%		80-120	30-MAY-14
Cobalt (Co)-Dissolv	ed		92.7		%		80-120	30-MAY-14
Copper (Cu)-Dissol	ved		93.3		%		80-120	30-MAY-14
Lead (Pb)-Dissolved	d		94.9		%		80-120	30-MAY-14
Molybdenum (Mo)-I	Dissolved		88.8		%		80-120	30-MAY-14
Nickel (Ni)-Dissolve	ed		92.6		%		80-120	30-MAY-14
Selenium (Se)-Diss	olved		96.2		%		80-120	30-MAY-14

Workorder: L1462166 Report Date: 03-JUN-14 Page 4 of 13

Client: ALTECH ENVIRONMENTAL

12 BANIGAN DRIVE TORONTO ON M4H 1E9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R2848871	l							
WG1882009-2 LCS			96.4		%		00.400	00 MANY 44
Silver (Ag)-Dissolved Sodium (Na)-Dissolved	I		95.0		%		80-120	30-MAY-14
Thallium (TI)-Dissolved			97.8		%		80-120	30-MAY-14
Uranium (U)-Dissolved			95.4		%		80-120 80-120	30-MAY-14 30-MAY-14
Vanadium (V)-Dissolved			93.0		%			
Zinc (Zn)-Dissolved	iu .		94.7		%		80-120 80-120	30-MAY-14
WG1882009-1 MB			34.7		70		00-120	30-MAY-14
Antimony (Sb)-Dissolve	ed		<0.50		ug/L		0.5	30-MAY-14
Arsenic (As)-Dissolved			<1.0		ug/L		1	30-MAY-14
Barium (Ba)-Dissolved			<2.0		ug/L		2	30-MAY-14
Beryllium (Be)-Dissolve	ed		<0.40		ug/L		0.4	30-MAY-14
Boron (B)-Dissolved			<10		ug/L		10	30-MAY-14
Cadmium (Cd)-Dissolv	ed		<0.090		ug/L		0.09	30-MAY-14
Chromium (Cr)-Dissolv	red		<0.50		ug/L		0.5	30-MAY-14
Cobalt (Co)-Dissolved			<0.30		ug/L		0.3	30-MAY-14
Copper (Cu)-Dissolved			<1.0		ug/L		1	30-MAY-14
Lead (Pb)-Dissolved			<0.50		ug/L		0.5	30-MAY-14
Molybdenum (Mo)-Diss	solved		<0.50		ug/L		0.5	30-MAY-14
Nickel (Ni)-Dissolved			<1.0		ug/L		1	30-MAY-14
Selenium (Se)-Dissolve	ed		<0.40		ug/L		0.4	30-MAY-14
Silver (Ag)-Dissolved			<0.10		ug/L		0.1	30-MAY-14
Sodium (Na)-Dissolved	I		<500		ug/L		500	30-MAY-14
Thallium (TI)-Dissolved	I		<0.20		ug/L		0.2	30-MAY-14
Uranium (U)-Dissolved			<1.0		ug/L		1	30-MAY-14
Vanadium (V)-Dissolve	ed		<0.50		ug/L		0.5	30-MAY-14
Zinc (Zn)-Dissolved			<3.0		ug/L		3	30-MAY-14
WG1882009-5 MS		WG1882009-3			0/			
Antimony (Sb)-Dissolve			82.8		%		70-130	30-MAY-14
Arsenic (As)-Dissolved			88.8		%		70-130	30-MAY-14
Barium (Ba)-Dissolved			78.0		%		70-130	30-MAY-14
Beryllium (Be)-Dissolve	ea		83.7		%		70-130	30-MAY-14
Boron (B)-Dissolved	- 4		81.9		%		70-130	30-MAY-14
Cadmium (Cd)-Dissolv			83.0		%		70-130	30-MAY-14
Chromium (Cr)-Dissolv	rea		84.1		%		70-130	30-MAY-14

Workorder: L1462166 Report Date: 03-JUN-14 Page 5 of 13

Client: ALTECH ENVIRONMENTAL

12 BANIGAN DRIVE TORONTO ON M4H 1E9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R2848871								
WG1882009-5 MS		WG1882009-3			0/		70.400	
Copper (Cu) Dissolved			83.8		%		70-130	30-MAY-14
Copper (Cu)-Dissolved			83.0		%		70-130	30-MAY-14
Lead (Pb)-Dissolved	-bd		84.5		%		70-130	30-MAY-14
Molybdenum (Mo)-Disso	oivea		81.0		%		70-130	30-MAY-14
Nickel (Ni)-Dissolved			84.5		%		70-130	30-MAY-14
Selenium (Se)-Dissolve	a		96.9		%		70-130	30-MAY-14
Silver (Ag)-Dissolved			87.5		%		70-130	30-MAY-14
Sodium (Na)-Dissolved			82.7		%		70-130	30-MAY-14
Thallium (TI)-Dissolved			84.9		%		70-130	30-MAY-14
Uranium (U)-Dissolved			85.4		%		70-130	30-MAY-14
Vanadium (V)-Dissolved	d		84.4		%		70-130	30-MAY-14
Zinc (Zn)-Dissolved			84.5		%		70-130	30-MAY-14
PEST-OC-511-WT	Water							
Batch R2851187								
WG1884175-1 CVS Aldrin			66.8		%		50.450	00 111N 44
a-chlordane			103.2		%		50-150	03-JUN-14
g-chlordane			103.2		%		50-150	03-JUN-14
o,p-DDD			102.9		%		50-150	03-JUN-14
			104.8		%		50-150	03-JUN-14
pp-DDD			104.8		%		50-150	03-JUN-14
o,p-DDE					%		50-150	03-JUN-14
pp-DDE			106.2				50-150	03-JUN-14
op-DDT			97.1		% %		50-150	03-JUN-14
pp-DDT Dieldrin			108.8				50-150	03-JUN-14
Dieldrin Endosulfan I			137.8 107.8		%		50-150	03-JUN-14
					%		50-150	03-JUN-14
Endosulfan II			105.4		%		50-150	03-JUN-14
Endrin	-h		117.2		%		50-150	03-JUN-14
gamma-hexachlorocyclo	onexane		104.2		%		50-150	03-JUN-14
Heptachlor			106.2		%		50-150	03-JUN-14
Heptachlor Epoxide			104.2		%		50-150	03-JUN-14
Hexachlorobenzene			103.3		%		70-130	03-JUN-14
Hexachlorobutadiene			103.4		%		70-130	03-JUN-14
Hexachloroethane			110.7		%		70-130	

Workorder: L1462166 Report Date: 03-JUN-14 Page 6 of 13

ALTECH ENVIRONMENTAL Client:

12 BANIGAN DRIVE TORONTO ON M4H 1E9

Contact: ANDREW MUTRIE

Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PEST-OC-511-WT Water							
Batch R2851187							
WG1884175-1 CVS Hexachloroethane		110.7		%		70.400	00 11111 44
Methoxychlor		99.3		%		70-130	03-JUN-14
		99.3		70		50-150	03-JUN-14
WG1880609-2 LCS Aldrin		79.2		%		50-140	03-JUN-14
a-chlordane		130.9		%		50-140	03-JUN-14
g-chlordane		137.8		%		50-140	03-JUN-14
o,p-DDD		139.4		%		50-140	03-JUN-14
pp-DDD		128.6		%		50-140	03-JUN-14
o,p-DDE		134.5		%		50-140	03-JUN-14
pp-DDE		129.9		%		50-140	03-JUN-14
op-DDT		118.3		%		50-140	03-JUN-14
pp-DDT		123.7		%		50-140	03-JUN-14
Dieldrin		132.7		%		50-140	03-JUN-14
Endosulfan I		138.3		%		50-140	03-JUN-14
Endosulfan II		132.7		%		50-140	03-JUN-14
Endrin		139.3		%		50-140	03-JUN-14
gamma-hexachlorocyclohexane		109.1		%		50-140	03-JUN-14
Heptachlor		85.9		%		50-140	03-JUN-14
Heptachlor Epoxide		138.7		%		50-140	03-JUN-14
Hexachlorobenzene		93.2		%		50-140	03-JUN-14
Hexachlorobutadiene		71.4		%		50-140	03-JUN-14
Hexachloroethane		79.3		%		40-130	03-JUN-14
Methoxychlor		105.8		%		50-140	03-JUN-14
WG1880609-1 MB							
Aldrin		<0.010		ug/L		0.01	03-JUN-14
a-chlordane		<0.040		ug/L		0.04	03-JUN-14
g-chlordane		<0.040		ug/L		0.04	03-JUN-14
o,p-DDD		<0.030		ug/L		0.03	03-JUN-14
pp-DDD		<0.030		ug/L		0.03	03-JUN-14
o,p-DDE		<0.0080		ug/L		0.008	03-JUN-14
pp-DDE		<0.0080		ug/L		0.008	03-JUN-14
op-DDT		<0.030		ug/L		0.03	03-JUN-14
pp-DDT		<0.030		ug/L		0.03	03-JUN-14
Dieldrin		<0.050		ug/L		0.05	03-JUN-14

Workorder: L1462166 Report Date: 03-JUN-14 Page 7 of 13

Client: ALTECH ENVIRONMENTAL

12 BANIGAN DRIVE TORONTO ON M4H 1E9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PEST-OC-511-WT	Water							
Batch R285118	87							
WG1880609-1 MB			.0.000				0.00	
Endosulfan I			<0.030		ug/L		0.03	03-JUN-14
Endosulfan II			<0.030		ug/L		0.03	03-JUN-14
Endrin	valah avvana		<0.040		ug/L		0.04	03-JUN-14
gamma-hexachlorocy	cionexane		<0.010		ug/L		0.01	03-JUN-14
Heptachlor			<0.010		ug/L		0.01	03-JUN-14
Heptachlor Epoxide			<0.010		ug/L		0.01	03-JUN-14
Hexachlorobenzene			<0.010		ug/L 		0.01	03-JUN-14
Hexachlorobutadiene			<0.010		ug/L		0.01	03-JUN-14
Hexachloroethane			<0.010		ug/L		0.01	03-JUN-14
Methoxychlor			<0.050		ug/L		0.05	03-JUN-14
Surrogate: 2-Fluorobi			84.7		%		50-140	03-JUN-14
Surrogate: d14-Terph	nenyl		112.6		%		50-140	03-JUN-14
VOC-511-HS-WT	Water							
Batch R28487								
WG1881194-1 CVS 1,1,1,2-Tetrachloroet			99.6		%		75-125	30-MAY-14
1,1,2,2-Tetrachloroet			97.6		%		75-125 75-125	30-MAY-14
1,1,1-Trichloroethane			99.9		%		75-125 75-125	30-MAY-14
1,1,2-Trichloroethane			100.9		%		75-125 75-125	30-MAY-14
1,1-Dichloroethane	•		96.4		%		75-125 75-125	30-MAY-14
1,1-Dichloroethylene			87.2		%		60-130	30-MAY-14
1,2-Dibromoethane			99.4		%		70-130	
1,2-Dichlorobenzene			102.3		%		70-130 75-125	30-MAY-14 30-MAY-14
1,2-Dichloroethane			105.6		%			30-MAY-14
1,2-Dichloropropane			96.9		%		75-125 75-125	30-MAY-14
1,3-Dichlorobenzene			102.2		%			
1,4-Dichlorobenzene			105.2		%		75-125	30-MAY-14
Acetone			95.5		%		75-125	30-MAY-14
Benzene			95.5 97.0		%		70-130	30-MAY-14
	20						75-125	30-MAY-14
Bromodichlorometha	IIC		97.0		%		75-125	30-MAY-14
Bromoform			99.1		%		70-130	30-MAY-14
Bromomethane			104.0		%		70-130	30-MAY-14
Carbon tetrachloride			98.6		%		75-125	30-MAY-14
Chlorobenzene			100.9		%		75-125	

Workorder: L1462166 Report Date: 03-JUN-14 Page 8 of 13

Client: ALTECH ENVIRONMENTAL

12 BANIGAN DRIVE TORONTO ON M4H 1E9

Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Water							
		100.0		0/		75.405	00.1447/.44
							30-MAY-14
							30-MAY-14
							30-MAY-14
							30-MAY-14
							30-MAY-14
							30-MAY-14
						70-130	30-MAY-14
						75-125	30-MAY-14
						75-125	30-MAY-14
		107.5		%		70-130	30-MAY-14
		86.0		%		70-130	30-MAY-14
		95.7		%		75-125	30-MAY-14
		98.7		%		75-125	30-MAY-14
		101.9		%		70-130	30-MAY-14
		101.1		%		75-125	30-MAY-14
		100.1		%		75-125	30-MAY-14
		93.8		%		75-125	30-MAY-14
е		94.4		%		75-125	30-MAY-14
е		98.9		%		75-125	30-MAY-14
		97.7		%		75-125	30-MAY-14
		107.8		%		50-140	30-MAY-14
		97.2		%		70-130	30-MAY-14
	WG1881194	-3					
)	<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAY-14
)	<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAY-14
	<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAY-14
	<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAY-14
	<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAY-14
	<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAY-14
	<0.20	<0.20	RPD-NA	ug/L	N/A	30	30-MAY-14
	<0.50	<0.50		ug/L			30-MAY-14
	<0.50	<0.50					30-MAY-14
	<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAY-14
	Water e e e e e e e e e e e e e e e e e e	WG1881194 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50	100.9 100.9 96.8 105.2 97.6 101.2 101.7 95.4 103.6 107.5 86.0 95.7 98.7 101.9 101.1 100.1 93.8 94.4 98.9 97.7 107.8 97.2 WG1881194-3 9.9 97.7 107.8 97.2 WG1881194-3 97.2	100.9 100.9 96.8 105.2 97.6 101.2 101.7 95.4 103.6 107.5 86.0 95.7 98.7 101.9 101.1 100.1 93.8 94.4 98.9 97.7 107.8 97.2 WG1881194-3 9.2 WG1881194-3 9.2 WG188104-3 9.2 WG188104-3 9.2 RPD-NA <0.50 <0.50 RPD-NA	100.9 % 100.9 % 96.8 % 105.2 % 97.6 % 101.2 % 101.7 % 95.4 % 103.6 % 107.5 % 86.0 % 95.7 % 98.7 % 101.9 % 101.1 % 100.1 % 93.8 % 94.4 % 93.8 % 94.4 % 98.9 % 97.7 % 107.8 % 97.2 % WG1881194-3 * 40.50 <0.50 RPD-NA Ug/L <0.50 <0.50 RPD-NA Ug/L	100.9 % 100.9 % 96.8 % 105.2 % 97.6 % 101.2 % 101.7 % 95.4 % 103.6 % 107.5 % 86.0 % 95.7 % 98.7 % 98.7 % 101.9 % 101.1 % 100.1 % 93.8 % 94.4 % 98.9 % 97.7 % 97.7 % 107.8 % 97.2 % WG1881194-3 % 9.50 <0.50 RPD-NA Ug/L N/A <0.50 <0.50 RPD-NA Ug/L N/A	100.9 % 75-125 100.9 % 75-125 96.8 % 75-125 96.8 % 75-125 105.2 % 75-125 97.6 % 75-125 101.2 % 50-140 101.7 % 70-130 95.4 % 75-125 103.6 % 75-125 103.6 % 75-125 107.5 % 70-130 95.7 % 70-130 95.7 % 70-130 95.7 % 75-125 98.7 % 75-125 101.9 % 75-125 101.1 % 75-125

Workorder: L1462166 Report Date: 03-JUN-14 Page 9 of 13

Client: ALTECH ENVIRONMENTAL

12 BANIGAN DRIVE TORONTO ON M4H 1E9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R2848752								
WG1881194-4 DUP		WG1881194-3			/		•	
1,3-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAY-14
1,4-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAY-14
Acetone		<30	<30	RPD-NA	ug/L	N/A	30	30-MAY-14
Benzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAY-14
Bromodichloromethane		<2.0	<2.0	RPD-NA	ug/L	N/A	30	30-MAY-14
Bromoform		<5.0	<5.0	RPD-NA	ug/L	N/A	30	30-MAY-14
Bromomethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAY-14
Carbon tetrachloride		<0.20	<0.20	RPD-NA	ug/L	N/A	30	30-MAY-14
Chlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAY-14
Chloroform		<1.0	<1.0	RPD-NA	ug/L	N/A	30	30-MAY-14
cis-1,2-Dichloroethylene		2.53	2.45		ug/L	3.2	30	30-MAY-14
cis-1,3-Dichloropropene		<0.30	<0.30	RPD-NA	ug/L	N/A	30	30-MAY-14
Dibromochloromethane		<2.0	<2.0	RPD-NA	ug/L	N/A	30	30-MAY-14
Dichlorodifluoromethane		<2.0	<2.0	RPD-NA	ug/L	N/A	30	30-MAY-14
Ethyl Benzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAY-14
n-Hexane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAY-14
m+p-Xylenes		<0.40	<0.40	RPD-NA	ug/L	N/A	30	30-MAY-14
Methyl Ethyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	30-MAY-14
Methyl Isobutyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	30-MAY-14
Methylene Chloride		<5.0	<5.0	RPD-NA	ug/L	N/A	30	30-MAY-14
MTBE		<2.0	<2.0	RPD-NA	ug/L	N/A	30	30-MAY-14
o-Xylene		<0.30	<0.30	RPD-NA	ug/L	N/A	30	30-MAY-14
Styrene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAY-14
Tetrachloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAY-14
Toluene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAY-14
trans-1,2-Dichloroethyler	ne	<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-MAY-14
trans-1,3-Dichloroproper	ne	<0.30	<0.30	RPD-NA	ug/L	N/A	30	30-MAY-14
Trichloroethylene		0.69	0.69		ug/L	0.0	30	30-MAY-14
Trichlorofluoromethane		<5.0	<5.0	RPD-NA	ug/L	N/A	30	30-MAY-14
Vinyl chloride		1.56	1.42		ug/L	9.4	30	30-MAY-14
WG1881194-2 MB								
1,1,1,2-Tetrachloroethan			<0.50		ug/L		0.5	30-MAY-14
1,1,2,2-Tetrachloroethan	ie		<0.50		ug/L		0.5	30-MAY-14

Workorder: L1462166 Report Date: 03-JUN-14 Page 10 of 13

Client: ALTECH ENVIRONMENTAL

12 BANIGAN DRIVE TORONTO ON M4H 1E9

No. State State	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Wordset194-2 MB	VOC-511-HS-WT	Water							
1.1,1-Trichloroethane <0.50 ug/L 0.5 30-MAY-14 1.1,2-Trichloroethane <0.50 ug/L 0.5 30-MAY-14 1.1-Dichloroethane <0.50 ug/L 0.5 30-MAY-14 1.1-Dichloroethylene <0.50 ug/L 0.5 30-MAY-14 1.2-Dichlorobenzene <0.50 ug/L 0.5 30-MAY-14 1.2-Dichloroethane <0.50 ug/L 0.5 30-MAY-14 1.2-Dichloropropane <0.50 ug/L 0.5 30-MAY-14 1.2-Dichlorobenzene <0.50 ug/L 0.5 30-MAY-14 1.3-Dichlorobenzene <0.50 ug/L 0.5 30-MAY-14 1.4-Dichlorobenzene <0.50 ug/L 0.5 30-MAY-14 Acetone <30 ug/L 0.5 30-MAY-14 Benzene <0.50 ug/L 0.5 30-MAY-14 Bromoform <0.50 ug/L 0.5 30-MAY-14 Bromomethane <0.50 ug/L 0.5 30-MAY-14 <th>Batch R2848752</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Batch R2848752								
1,1,2-Trichloroethane <0.50				40 FO				0.5	
1,1-Dichloroethylene <0.50						•			
1,1-Dichloroethylene <0.50						<u>-</u>			
1,2-Dibromoethane <0.20						•			
1,2-Dichlorobenzene <0.50	-					•			
1,2-Dichloroethane <0.50	•								
1,2-Dichloropropane <0.50	,					•			
1,3-Dichlorobenzene <0.50						<u>-</u>			
1,4-Dichlorobenzene <0.50						•			
Acetone <30	·					•			
Benzene <0.50									30-MAY-14
Bromodichloromethane <2.0						ug/L			30-MAY-14
Bromoform	Benzene			<0.50		ug/L		0.5	30-MAY-14
Bromomethane <0.50	Bromodichloromethane			<2.0		ug/L		2	30-MAY-14
Carbon tetrachloride <0.20 ug/L 0.2 30-MAY-14 Chlorobenzene <0.50	Bromoform			<5.0		ug/L		5	30-MAY-14
Chlorobenzene	Bromomethane			<0.50		ug/L		0.5	30-MAY-14
Chloroform <1.0	Carbon tetrachloride			<0.20		ug/L		0.2	30-MAY-14
cis-1,2-Dichloroethylene <0.50	Chlorobenzene			<0.50		ug/L		0.5	30-MAY-14
cis-1,3-Dichloropropene <0.30	Chloroform			<1.0		ug/L		1	30-MAY-14
Dibromochloromethane <2.0	cis-1,2-Dichloroethylene			<0.50		ug/L		0.5	30-MAY-14
Dichlorodifluoromethane <2.0	cis-1,3-Dichloropropene			< 0.30		ug/L		0.3	30-MAY-14
Ethyl Benzene	Dibromochloromethane			<2.0		ug/L		2	30-MAY-14
n-Hexane <0.50	Dichlorodifluoromethane	:		<2.0		ug/L		2	30-MAY-14
m+p-Xylenes <0.40	Ethyl Benzene			<0.50		ug/L		0.5	30-MAY-14
Methyl Ethyl Ketone <20	n-Hexane			<0.50		ug/L		0.5	30-MAY-14
Methyl Isobutyl Ketone <20	m+p-Xylenes			<0.40		ug/L		0.4	30-MAY-14
Methylene Chloride <5.0	Methyl Ethyl Ketone			<20		ug/L		20	30-MAY-14
MTBE <2.0	Methyl Isobutyl Ketone			<20		ug/L		20	30-MAY-14
o-Xylene <0.30	Methylene Chloride			<5.0		ug/L		5	30-MAY-14
o-Xylene <0.30	MTBE			<2.0		ug/L		2	30-MAY-14
Styrene <0.50 ug/L 0.5 30-MAY-14 Tetrachloroethylene <0.50	o-Xylene			<0.30		ug/L		0.3	
Tetrachloroethylene <0.50 ug/L 0.5 30-MAY-14	Styrene			<0.50				0.5	
	Tetrachloroethylene			<0.50		ug/L		0.5	
	Toluene							0.5	

Workorder: L1462166 Report Date: 03-JUN-14 Page 11 of 13

Client: ALTECH ENVIRONMENTAL

12 BANIGAN DRIVE TORONTO ON M4H 1E9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R284875	2							
WG1881194-2 MB trans-1,2-Dichloroethy	lene		<0.50		ug/L		0.5	30-MAY-14
trans-1,3-Dichloroprop	ene		<0.30		ug/L		0.3	30-MAY-14
Trichloroethylene			<0.50		ug/L		0.5	30-MAY-14
Trichlorofluoromethan	е		<5.0		ug/L		5	30-MAY-14
Vinyl chloride			<0.50		ug/L		0.5	30-MAY-14
Surrogate: 1,4-Difluoro	obenzene		98.2		%		70-130	30-MAY-14
Surrogate: 4-Bromoflu	orobenzene		83.9		%		70-130	30-MAY-14
WG1881194-5 MS		WG1881194-3	;					
1,1,1,2-Tetrachloroeth	ane		100.9		%		50-150	30-MAY-14
1,1,2,2-Tetrachloroeth	ane		107.5		%		50-150	30-MAY-14
1,1,1-Trichloroethane			106.4		%		50-150	30-MAY-14
1,1,2-Trichloroethane			104.2		%		50-150	30-MAY-14
1,1-Dichloroethane			104.9		%		50-150	30-MAY-14
1,1-Dichloroethylene			91.9		%		50-150	30-MAY-14
1,2-Dibromoethane			104.1		%		50-150	30-MAY-14
1,2-Dichlorobenzene			103.1		%		50-150	30-MAY-14
1,2-Dichloroethane			119.6		%		50-150	30-MAY-14
1,2-Dichloropropane			102.9		%		50-150	30-MAY-14
1,3-Dichlorobenzene			99.9		%		50-150	30-MAY-14
1,4-Dichlorobenzene			106.5		%		50-150	30-MAY-14
Acetone			118.2		%		50-140	30-MAY-14
Benzene			102.5		%		50-150	30-MAY-14
Bromodichloromethan	е		108.8		%		50-150	30-MAY-14
Bromoform			107.5		%		50-150	30-MAY-14
Bromomethane			111.0		%		50-150	30-MAY-14
Carbon tetrachloride			105.0		%		50-150	30-MAY-14
Chlorobenzene			101.1		%		50-150	30-MAY-14
Chloroform			111.6		%		50-150	30-MAY-14
cis-1,2-Dichloroethyler	ne		103.6		%		50-150	30-MAY-14
cis-1,3-Dichloroproper	ne		108.4		%		50-150	30-MAY-14
Dibromochloromethan	е		101.0		%		50-150	30-MAY-14
Dichlorodifluorometha	ne		104.5		%		50-150	30-MAY-14
Ethyl Benzene			92.7		%		50-150	30-MAY-14
n-Hexane			93.6		%		50-150	30-MAY-14

Workorder: L1462166 Report Date: 03-JUN-14 Page 12 of 13

Client: ALTECH ENVIRONMENTAL

12 BANIGAN DRIVE

TORONTO ON M4H 1E9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R2848752								
WG1881194-5 MS		WG1881194-	-					
m+p-Xylenes			99.7		%		50-150	30-MAY-14
Methyl Ethyl Ketone			120.5		%		50-150	30-MAY-14
Methyl Isobutyl Ketone			90.2		%		50-150	30-MAY-14
Methylene Chloride			108.7		%		50-150	30-MAY-14
MTBE			100.6		%		50-150	30-MAY-14
o-Xylene			94.9		%		50-150	30-MAY-14
Styrene			94.4		%		50-150	30-MAY-14
Tetrachloroethylene			95.1		%		50-150	30-MAY-14
Toluene			86.4		%		50-150	30-MAY-14
trans-1,2-Dichloroethyle	ene		100.1		%		50-150	30-MAY-14
trans-1,3-Dichloroprope	ene		94.2		%		50-150	30-MAY-14
Trichloroethylene			100.6		%		50-150	30-MAY-14
Trichlorofluoromethane			113.1		%		50-150	30-MAY-14
Vinyl chloride			95.1		%		50-150	30-MAY-14

Workorder: L1462166 Report Date: 03-JUN-14

Client: ALTECH ENVIRONMENTAL Page 13 of 13

12 BANIGAN DRIVE TORONTO ON M4H 1E9

Contact: ANDREW MUTRIE

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.
RRQC	Refer to report remarks for information regarding this QC result.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

			-,		*****				****		1	j						}	C of C # 0000	0	
60 NORTHLAND WATERLOO, ON I		<u> </u>	-					CHAIN O	F CUSTOD	Y / AN	ALY	TIC	AL SERV	/ICES	REQU	JEST	FORI	M P	age 1_ of 1		
Phone: (519) 886							Note: all TAT Quoted material is in business days which exclude Specify date						Service requested		ed	2 day TAT (50%)					
Fax: (519) 886-90			Er	(A	LS)	ntal	statutory holidays and weekends. TAT samples received past 3:00 pm required						5 day (T	Next day TAT (100%)				
Toll Free: 1-800-6	68-9878						or Saturday/Sun			15		* * 0.0000		3-4 day (25%)			X				
COMPANY NAME	AHO	ch					CRITERIA	Criteria on	report YES NO			ANA		NALYSI	SIS REQUEST				PLEASE INDICATE FILTERED.		
OFFICE	7	.L.				V 10	Reg 153/04 ☐ Reg 511/09 ☐					T			TTT			T	PRESERVED OR BOTH		
DROUGH	1000	~\V	-				Table 1 2	3 4 5	6 7 8	9									< (F, P, F/P)		
PROJECT MANAGER	Andre	w.	1	1,1	ריע.		TCLP MIS	SA PW0	JO		- 3								SUBMISSION #:		
PROJECT # 51	40-14			U-			ODWS O	THER			J. Mahrel								14646	6	
PHONE		FAX		West			BEDOR	F FORMAT /DIS	TRIBUTION										ENTERED BY:		
ACCOUNT !							REPOR	T FORMAT/DIS	LKIROLION		Mehly	1 _							NC.		
ACCOUNT #							EMAIL	FAX	BOTH	Ä	-3	3				İ			DATE/TIME ENTERED:		
QUOTATION #		PO #	ł				SELECT: PDF DIGITAL BOTH				2								29. Ma	·H	
\$4	MPLING INFO	DRMA	TION	, vi			EMAIL 1			OF CONTAINERS	~								BIN #;	1	
Sample Date,			YPE		MATR		EMAIL 2			— ö	70/	9						1		b	
Date (dd-mm-yy)	Time (24hr) (hh:mm)	COMP	GRAB	WATER	SOIL	OTHER	SAMPLE DESC	RIPTION TO API	PEAR ON REPOR	NUMBER T	PR	3							COMMENTS	LAB ID	
24-05-14	(1111.111310)	_	7	_	10,	 →	MWI	0	-	6	1				 		-	-		-1	
			×	አ	†		MWE			13	+ '	X	-	-	!	_	+	+-	1	- 7	
8 3 3 3 3											+	+,		1			1 -	1	-		
						T					1	·		1		_					
					<u> </u>				·												
					2500	_															
				-		_			- 6												
			-	-	┼	-								1							
		-	\vdash		-	-	ļ				-	4		_			-	↓			
			-	-	-				•		-	-		-		_	_	1-			
						1		- X-100	1 2		+	-				-1-	-	-		_	
						-			ii ii		1	+		+-				-		-	
											†	1		+			+	+		_	
SPECIA	LINSTRUCTIO	NS/CC	MMEN	TS 🕒	the 3th	2012		THE QUESTION	S BELOW MUST	E ANSWER	ED FOR	WATER	SAMPLES (CHECK,	Yes OR No) = i = . ·	57 TA	1.5	SAMPLE CONDITION	N	
No pre in	rehis bol	He.	Plea	x f	:Her	enl	Are any samples If yes, an authori is the water sami	taken from a re zed drinking wa oled intended to	gulated DW Sys ater COC MUST o be potable for	tem? be used f human c	or this onsum	subm ption?	ission.	Ye Ye	s□ No s□ No	₽ b -			FROZEN COLD COOLING INITIATED CAMBIENT CO	MEAN TEMP	
SAMPLED BY: DATE & TIME					& TIME RECEIVED BY							DATES	A.A. 67	05	179	OBSERVATIONS	TINIT				
RELINQUISHED BY:	WX						DATE & TIME	RECEIVED AT		a day	, West		JAA Maani	DATE & TIME					Yes O No O If yes add SIF	*	
Notes													HEAL		<u> </u>						
1. Quate number must b	e provided to e	nsure	proper	pricing	3		2. TAT may vary der	pendent on comple	exity of analysis a	nd lab work	load at	time o	of submission						ting to a sample must be note	d on the	
2 on a comment reconstruction	AT MORPH AND THE REST OF THE		0 (1 (a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a	4			! Please contact the	e lab to confirm T	AIS.		ententer :		the contract of	cha	in of custo	dy in cor	mments	section	1.		

ALTECH ENVIRONMENTAL ATTN: ANDREW MUTRIE

12 BANIGAN DRIVE

TORONTO ON M4H 1E9

Date Received: 02-JUN-14

Report Date: 05-JUN-14 14:30 (MT)

Version: FINAL

Client Phone: 416-467-5555

Certificate of Analysis

Lab Work Order #: L1463611

Project P.O. #: NOT SUBMITTED

Job Reference: 5140-14 C of C Numbers: 114079

Legal Site Desc:

Mathumai Ganeshakumar Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062

ALS CANADA LTD | Part of the ALS Group | A Campbell Brothers Limited Company

L1463611 CONTD.... Page 2 of 5

05-JUN-14 14:30 (MT) Sample Details Grouping Qualifier D.L. Units Analyte Result Analyzed **Guideline Limits** L1463611-1 BH8-4-5' Sampled By: CLIENT on 29-MAY-14 #1 #2 #3 #4 Matrix: SOIL **Physical Tests** % 04-JUN-14 % Moisture 17.9 0.10 **Volatile Organic Compounds** 05-JUN-14 Acetone < 0.50 0.50 28 16 28 ug/g 16 Benzene <0.020 0.020 05-JUN-14 0.32 0.21 ug/g 04 0.17 Bromodichloromethane < 0.050 0.050 05-JUN-14 ug/g 18 18 13 13 Bromoform 05-JUN-14 < 0.050 0.050 ug/g 0.61 1.7 0.27 0.26 Bromomethane < 0.050 0.050 05-JUN-14 0.05 0.05 0.05 ug/g 0.05 Carbon tetrachloride < 0.050 0.050 ug/g 05-JUN-14 0.21 1.5 0.05 0.12 Chlorobenzene < 0.050 0.050 05-JUN-14 2.4 2.7 2.4 2.7 ug/g 05-JUN-14 Dibromochloromethane < 0.050 0.050 ug/g 13 13 9.4 9.4 05-JUN-14 Chloroform < 0.050 0.050 ug/g 0.47 0.18 0.05 0.17 < 0.050 0.050 05-JUN-14 1.2-Dibromoethane 0.05 0.05 0.05 0.05 ug/g 1.2-Dichlorobenzene < 0.050 0.050 05-JUN-14 ug/g 6.8 8.5 3.4 4.3 1.3-Dichlorobenzene < 0.050 0.050 05-JUN-14 ug/g 9.6 12 4.8 6 1,4-Dichlorobenzene < 0.050 0.050 ug/g 05-JUN-14 0.2 0.84 0.083 0.097 Dichlorodifluoromethane < 0.050 0.050 ug/g 05-JUN-14 25 16 25 16 1,1-Dichloroethane < 0.050 0.050 ug/g 05-JUN-14 17 21 3.5 11 1,2-Dichloroethane < 0.050 0.050 05-JUN-14 ug/g 0.05 0.05 0.05 0.05 1,1-Dichloroethylene < 0.050 0.050 05-JUN-14 0.064 0.48 0.05 0.05 ug/g cis-1,2-Dichloroethylene < 0.050 0.050 ug/g 05-JUN-14 55 37 3.4 30 < 0.050 0.050 05-JUN-14 trans-1,2-Dichloroethylene ug/g 1.3 9.3 0.084 0.75 05-JUN-14 1,3-Dichloropropene (cis & trans) < 0.042 0.042 ug/g 0.18 0.21 0.05 0.083 05-JUN-14 Methylene Chloride < 0.050 0.050 0.96 ug/g 1.6 2 0.1 <0.050 0.050 05-JUN-14 1,2-Dichloropropane ug/g 0.16 0.68 0.05 0.085 cis-1,3-Dichloropropene 05-JUN-14 < 0.030 0.030 ug/g trans-1,3-Dichloropropene < 0.030 0.030 05-JUN-14 ug/g Ethyl Benzene < 0.050 0.050 05-JUN-14 19 2 15 ug/g 9.5 n-Hexane < 0.050 0.050 05-JUN-14 46 88 2.8 34 ug/g Methyl Ethyl Ketone < 0.50 0.50 ug/g 05-JUN-14 70 88 16 44 Methyl Isobutyl Ketone < 0.50 0.50 ug/g 05-JUN-14 31 210 1.7 4.3 **MTBE** 0.050 05-JUN-14 < 0.050 ug/g 11 3.2 0.75 1.4 05-JUN-14 Styrene < 0.050 0.050 ug/g 34 43 0.7 2.2 1,1,1,2-Tetrachloroethane < 0.050 0.050 05-JUN-14 0.11 0.058 ug/g 0.087 0.05 1,1,2,2-Tetrachloroethane < 0.050 0.050 05-JUN-14 ug/g 0.05 0.094 0.05 0.05 Tetrachloroethylene < 0.050 0.050 05-JUN-14 ug/g 21 0.28 2.3 4.5 Toluene < 0.20 0.20 05-JUN-14 ug/g 68 78 2.3 6 < 0.050 0.050 05-JUN-14 1,1,1-Trichloroethane ug/g 6.1 12 0.38 3.4 1,1,2-Trichloroethane < 0.050 0.050 05-JUN-14 0.05 0.11 0.05 0.05 ug/g Trichloroethylene < 0.050 0.050 05-JUN-14 0.91 0.61 0.061 0.52 ug/g Trichlorofluoromethane < 0.050 0.050 ug/g 05-JUN-14 5.8 5.8 Vinyl chloride < 0.020 0.020 05-JUN-14 0.032 0.25 0.02 0.022 ug/g 05-JUN-14 o-Xylene < 0.020 0.020 ug/g m+p-Xylenes < 0.030 0.030 ug/g 05-JUN-14 < 0.050 05-JUN-14 Xylenes (Total) 0.050 ug/g 26 30 3.1 25 % 05-JUN-14 Surrogate: 4-Bromofluorobenzene 84.8 70-130

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T3-Soil-All

#1: T3-Soil-Ind/Com/Commu. Property Use (Coarse)

#2: T3-Soil-Ind/Com/Commu. Property Use (Fine)

#3: T3-Soil-Res/Park/Inst. Property Use (Coarse) #4: T3-Soil-Res/Park/Inst. Property Use (Fine)

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L1463611 CONTD....

Page 3 of 5 05-JUN-14 14:30 (MT

40-14								Page 3 05-JUN-14 1	
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
.1463611-1 BH8-4-5'									
Sampled By: CLIENT on 29-MAY-14									
Matrix: SOIL						#1	#2	#3	#4
olatile Organic Compounds									
Surrogate: 1,4-Difluorobenzene	99.4		70-130	%	05-JUN-14				
ydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	05-JUN-14	55	65	55	65
F1-BTEX	<5.0		5.0	ug/g	05-JUN-14	55	65	55	65
F2 (C10-C16)	<10		10	ug/g	05-JUN-14	230	250	98	150
F3 (C16-C34)	<50		50	ug/g	05-JUN-14	1700	2500	300	1300
F4 (C34-C50)	<50		50	ug/g	05-JUN-14	3300	6600	2800	5600
Total Hydrocarbons (C6-C50)	<72		72	ug/g	05-JUN-14				
Chrom. to baseline at nC50	YES			No Unit	05-JUN-14				
Surrogate: 2-Bromobenzotrifluoride	89.0		50-140	%	05-JUN-14				
Surrogate: 3,4-Dichlorotoluene	100.8		60-140	%	05-JUN-14				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T3-Soil-All

#1: T3-Soil-Ind/Com/Commu. Property Use (Coarse)

#2: T3-Soil-Ind/Com/Commu. Property Use (Fine)

#3: T3-Soil-Res/Park/Inst. Property Use (Coarse)

#4: T3-Soil-Res/Park/Inst. Property Use (Fine)

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Method Reference***
F1-F4-511-CALC-WT	Soil	F1-F4 Hydrocarbon Calculated Parameters	CCME CWS-PHC DEC-2000 - PUB# 1310-S

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT Soil F1-O.Reg 153/04 (July 2011) E3398/CCME TIER 1-HS

Fraction F1 is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT

Soil

F2-F4-O.Reg 153/04 (July 2011) MOE DECPH-E3398/CCME TIER 1

Fractions F2, F3 and F4 are determined by extracting a soil sample with a solvent mix. The solvent recovered from the extracted soil sample is dried and treated to remove polar material. The extract is analyzed by GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MOISTURE-WT Soil Gravimetric: Oven Dried % Moisture VOC-1,3-DCP-CALC-WT Soil Regulation 153 VOCs SW8260B/SW8270C VOC-511-HS-WT Soil VOC-O.Reg 153/04 (July 2011) SW846 8260 (511)

Soil and sediment samples are extracted in methanol and analyzed by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-

Soil

Sum of Xylene Isomer Concentrations

CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

*** ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody numbers:

114079

WT

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO ONTARIO, CANADA	,	

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million. < - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.

Workorder: L1463611 Report Date: 05-JUN-14 Page 1 of 9

ALTECH ENVIRONMENTAL Client:

12 BANIGAN DRIVE TORONTO ON M4H 1E9

Contact: ANDREW MUTRIE

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F1-HS-511-WT		Soil							
Batch R2 WG1884868-1 F1 (C6-C10)	852951 CVS			91.1		%		80-120	05-JUN-14
WG1884207-3 F1 (C6-C10)	DUP		WG1884207-5 <5.0		RPD-NA	ug/g	N/A	50	05-JUN-14
WG1884207-2 F1 (C6-C10)	LCS			98.1		%		80-120	05-JUN-14
WG1884207-1 F1 (C6-C10)	MB			<5.0		ug/g		5	05-JUN-14
Surrogate: 3,4-D	Dichlorote	oluene		111.9		%		60-140	05-JUN-14
WG1884207-7 F1 (C6-C10)	MS		WG1884207-6	103.3		%		60-140	05-JUN-14
F2-F4-511-WT		Soil							
	852887								
WG1884285-4 F2 (C10-C16)	CRM		ALS PHC2 IRM	/ 102.5		%		70-130	05-JUN-14
F3 (C16-C34)				95.6		%		70-130	05-JUN-14
F4 (C34-C50)				89.9		%		70-130	05-JUN-14
WG1885688-1 F2 (C10-C16)	cvs			101.9		%		80-120	OF 111N 44
F3 (C16-C34)				99.7		%		80-120 80-120	05-JUN-14 05-JUN-14
F4 (C34-C50)				98.3		%		80-120	05-JUN-14
WG1884285-10 F2 (C10-C16)	DUP		WG1884285-8 20	21		ug/g	3.8	40	05-JUN-14
F3 (C16-C34)			57	65		ug/g	14	40	05-JUN-14
F4 (C34-C50)			<50	<50	RPD-NA	ug/g	N/A	40	05-JUN-14
WG1884285-2 F2 (C10-C16)	LCS			99.6		%		80-120	05-JUN-14
F3 (C16-C34)				99.7		%		80-120	05-JUN-14
F4 (C34-C50)				96.2		%		80-120	05-JUN-14
WG1884285-3 F2 (C10-C16)	LCSD		WG1884285-2 99.6	101.4		%	1.8	50	05-JUN-14
F3 (C16-C34)			99.7	100.8		%	1.2	50	05-JUN-14
F4 (C34-C50)			96.2	96.9		%	0.7	50	05-JUN-14
WG1884285-1 F2 (C10-C16)	МВ			<10		ug/g		10	05-JUN-14
F3 (C16-C34)				<50		ug/g		50	05-JUN-14 05-JUN-14
. (212 221)						5 5			33 0011 17

Workorder: L1463611 Report Date: 05-JUN-14 Page 2 of 9

Client: ALTECH ENVIRONMENTAL

12 BANIGAN DRIVE

TORONTO ON M4H 1E9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F2-F4-511-WT	Soil							
Batch R285288	37							
WG1884285-1 MB F4 (C34-C50)			<50		ug/g		50	05-JUN-14
Surrogate: 2-Bromobe	enzotrifluoride		89.6		%		50-140	05-JUN-14
WG1884285-9 MS		WG1884285-8			0/			
F2 (C10-C16) F3 (C16-C34)			98.9		% %		60-140	05-JUN-14
F4 (C34-C50)			99.1 109.9		%		60-140	05-JUN-14
			109.9		70		60-140	05-JUN-14
MOISTURE-WT	Soil							
Batch R285197								
WG1884086-3 DUF % Moisture)	L1463823-2 2.92	3.01		%	2.9	30	04-JUN-14
WG1884086-2 LCS	•					2.0	00	04 0011 14
% Moisture			87.5		%		70-130	04-JUN-14
WG1884086-1 MB								
% Moisture			<0.10		%		0.1	04-JUN-14
VOC-511-HS-WT	Soil							
Batch R285295								
WG1884868-1 CVS 1,1,1,2-Tetrachloroeth			100.2		%		75-125	05-JUN-14
1,1,2,2-Tetrachloroeth			98.5		%		75-125 75-125	05-JUN-14
1,1,1-Trichloroethane			97.7		%		75-125 75-125	05-JUN-14
1,1,2-Trichloroethane			103.8		%		75-125	05-JUN-14
1,1-Dichloroethane			93.7		%		75-125	05-JUN-14
1,1-Dichloroethylene			82.9		%		70-130	05-JUN-14
1,2-Dibromoethane			101.0		%		75-125	05-JUN-14
1,2-Dichlorobenzene			102.0		%		75-125	05-JUN-14
1,2-Dichloroethane			103.6		%		75-125	05-JUN-14
1,2-Dichloropropane			96.8		%		75-125	05-JUN-14
1,3-Dichlorobenzene			102.8		%		70-130	05-JUN-14
1,4-Dichlorobenzene			105.1		%		75-125	05-JUN-14
Acetone			94.9		%		70-130	05-JUN-14
Benzene			95.9		%		75-125	05-JUN-14
Bromodichloromethar	ne		96.5		%		75-125	05-JUN-14
Bromoform			101.5		%		70-130	05-JUN-14
Bromomethane			101.2		%		70-130	05-JUN-14

Workorder: L1463611 Report Date: 05-JUN-14 Page 3 of 9

Client: ALTECH ENVIRONMENTAL

12 BANIGAN DRIVE TORONTO ON M4H 1E9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R2852951								
WG1884868-1 CVS					0/			
Carbon tetrachloride			96.3		%		75-125	05-JUN-14
Chlorobenzene			100.9		%		75-125	05-JUN-14
Chloroform			99.3		%		75-125	05-JUN-14
cis-1,2-Dichloroethylene			96.6		%		75-125	05-JUN-14
cis-1,3-Dichloropropene			107.1		%		75-125	05-JUN-14
Dibromochloromethane			98.8		%		75-125	05-JUN-14
Dichlorodifluoromethan	е		92.6		%		60-140	05-JUN-14
Ethyl Benzene			102.3		%		75-125	05-JUN-14
n-Hexane			92.1		%		75-125	05-JUN-14
Methylene Chloride			93.8		%		75-125	05-JUN-14
MTBE			97.5		%		75-125	05-JUN-14
m+p-Xylenes			103.3		%		70-130	05-JUN-14
Methyl Ethyl Ketone			84.2		%		70-130	05-JUN-14
Methyl Isobutyl Ketone			90.7		%		70-130	05-JUN-14
o-Xylene			102.5		%		75-125	05-JUN-14
Styrene			102.8		%		75-125	05-JUN-14
Tetrachloroethylene			100.3		%		75-125	05-JUN-14
Toluene			95.0		%		75-125	05-JUN-14
trans-1,2-Dichloroethyle	ene		91.6		%		75-125	05-JUN-14
trans-1,3-Dichloroprope	ne		103.1		%		75-125	05-JUN-14
Trichloroethylene			96.7		%		70-130	05-JUN-14
Trichlorofluoromethane			103.3		%		70-130	05-JUN-14
Vinyl chloride			93.3		%		70-130	05-JUN-14
WG1884207-3 DUP		WG1884207-	5					
1,1,1,2-Tetrachloroetha	ne	<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
1,1,2,2-Tetrachloroetha	ne	<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
1,1,1-Trichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
1,1,2-Trichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
1,1-Dichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
1,1-Dichloroethylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
1,2-Dibromoethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
1,2-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
1,2-Dichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14

Workorder: L1463611 Report Date: 05-JUN-14 Page 4 of 9

Client: ALTECH ENVIRONMENTAL

12 BANIGAN DRIVE TORONTO ON M4H 1E9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R2852951								
WG1884207-3 DUP		WG1884207-5		DDD 114				
1,2-Dichloropropane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
1,3-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
1,4-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
Acetone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	05-JUN-14
Benzene		<0.020	<0.020	RPD-NA	ug/g ,	N/A	40	05-JUN-14
Bromodichloromethane		<0.050	<0.050	RPD-NA	ug/g ,	N/A	40	05-JUN-14
Bromoform		<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
Bromomethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
Carbon tetrachloride		<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
Chlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
Chloroform		<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
cis-1,2-Dichloroethylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
cis-1,3-Dichloropropene		<0.030	<0.030	RPD-NA	ug/g	N/A	40	05-JUN-14
Dibromochloromethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
Dichlorodifluoromethane	!	<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
Ethyl Benzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
n-Hexane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
Methylene Chloride		<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
MTBE		<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
m+p-Xylenes		<0.030	<0.030	RPD-NA	ug/g	N/A	40	05-JUN-14
Methyl Ethyl Ketone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	05-JUN-14
Methyl Isobutyl Ketone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	05-JUN-14
o-Xylene		<0.020	<0.020	RPD-NA	ug/g	N/A	40	05-JUN-14
Styrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
Tetrachloroethylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
Toluene		<0.20	<0.20	RPD-NA	ug/g	N/A	40	05-JUN-14
trans-1,2-Dichloroethylei	ne	<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
trans-1,3-Dichloroproper	ne	<0.030	<0.030	RPD-NA	ug/g	N/A	40	05-JUN-14
Trichloroethylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
Trichlorofluoromethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	05-JUN-14
Vinyl chloride		<0.020	<0.020	RPD-NA	ug/g	N/A	40	05-JUN-14
WG1884207-2 LCS 1,1,1,2-Tetrachloroethar	ne		97.7		%		60-130	05-JUN-14

Report Date: 05-JUN-14 Workorder: L1463611 Page 5 of 9

ALTECH ENVIRONMENTAL Client:

12 BANIGAN DRIVE TORONTO ON M4H 1E9

Contact: ANDREW MUTRIE

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R28529	951							
WG1884207-2 LC			101.0		0/		00.400	
1,1,2,2-Tetrachloroe			104.0		%		60-130	05-JUN-14
1,1,1-Trichloroethan			97.0		%		60-130	05-JUN-14
1,1,2-Trichloroethan	e		100.7		%		60-130	05-JUN-14
1,1-Dichloroethane	_		94.0		%		60-130	05-JUN-14
1,1-Dichloroethylene			81.6		%		60-130	05-JUN-14
1,2-Dibromoethane			98.8		%		70-130	05-JUN-14
1,2-Dichlorobenzene	9		101.0		%		70-130	05-JUN-14
1,2-Dichloroethane			101.9		%		60-130	05-JUN-14
1,2-Dichloropropane			95.5		%		70-130	05-JUN-14
1,3-Dichlorobenzene			98.2		%		70-130	05-JUN-14
1,4-Dichlorobenzene	9		102.0		%		70-130	05-JUN-14
Acetone			99.9		%		60-140	05-JUN-14
Benzene			95.4		%		70-130	05-JUN-14
Bromodichlorometha	ane		99.0		%		50-140	05-JUN-14
Bromoform			102.3		%		70-130	05-JUN-14
Bromomethane			95.3		%		50-140	05-JUN-14
Carbon tetrachloride)		97.2		%		70-130	05-JUN-14
Chlorobenzene			98.3		%		70-130	05-JUN-14
Chloroform			100.6		%		70-130	05-JUN-14
cis-1,2-Dichloroethy	lene		95.7		%		70-130	05-JUN-14
cis-1,3-Dichloroprop	ene		102.5		%		70-130	05-JUN-14
Dibromochlorometha	ane		97.4		%		60-130	05-JUN-14
Dichlorodifluorometh	nane		71.8		%		50-140	05-JUN-14
Ethyl Benzene			97.2		%		70-130	05-JUN-14
n-Hexane			84.6		%		70-130	05-JUN-14
Methylene Chloride			94.6		%		70-130	05-JUN-14
MTBE			96.0		%		70-130	05-JUN-14
m+p-Xylenes			100.1		%		70-130	05-JUN-14
Methyl Ethyl Ketone			111.9		%		60-140	05-JUN-14
Methyl Isobutyl Keto	ne		90.4		%		60-140	05-JUN-14
o-Xylene			98.9		%		70-130	05-JUN-14
Styrene			99.3		%		70-130	05-JUN-14
Tetrachloroethylene			95.6		%		60-130	05-JUN-14
. ca ac. norodary forto			00.0		,•		00-100	00-0011-14

Qualifier

Workorder: L1463611 Report Date: 05-JUN-14 Page 6 of 9

RPD

Limit

Analyzed

Units

Client: ALTECH ENVIRONMENTAL

12 BANIGAN DRIVE TORONTO ON M4H 1E9

Matrix

Reference

Result

Contact: ANDREW MUTRIE

Test

rest	IVIALITIX	Reference	Resuit	Qualifier	Units	KPD	LIIIII	Analyzeu
VOC-511-HS-WT	Soil							
Batch R285295	51							
WG1884207-2 LCS Toluene	3		89.4		%		70.400	05 11111 44
trans-1,2-Dichloroethy	vlono		90.8		%		70-130	05-JUN-14
•	•						60-130	05-JUN-14
trans-1,3-Dichloropro	pene		93.3		%		70-130	05-JUN-14
Trichloroethylene			96.2		%		60-130	05-JUN-14
Trichlorofluoromethar	ne		99.99		%		50-140	05-JUN-14
Vinyl chloride			82.9		%		70-130	05-JUN-14
WG1884207-1 MB 1,1,1,2-Tetrachloroeth	nane		<0.050		ug/g		0.05	05-JUN-14
1,1,2,2-Tetrachloroeth	nane		<0.050		ug/g		0.05	05-JUN-14
1,1,1-Trichloroethane			<0.050		ug/g		0.05	05-JUN-14
1,1,2-Trichloroethane			<0.050		ug/g		0.05	05-JUN-14
1,1-Dichloroethane			<0.050		ug/g		0.05	05-JUN-14
1,1-Dichloroethylene			<0.050		ug/g		0.05	05-JUN-14
1,2-Dibromoethane			<0.050		ug/g		0.05	05-JUN-14
1,2-Dichlorobenzene			<0.050		ug/g		0.05	05-JUN-14
1,2-Dichloroethane			<0.050		ug/g		0.05	05-JUN-14
1,2-Dichloropropane			<0.050		ug/g		0.05	05-JUN-14
1,3-Dichlorobenzene			<0.050		ug/g		0.05	05-JUN-14
1,4-Dichlorobenzene			<0.050		ug/g		0.05	05-JUN-14
Acetone			<0.50		ug/g		0.5	05-JUN-14
Benzene			<0.020		ug/g		0.02	05-JUN-14
Bromodichloromethar	ne		<0.050		ug/g		0.05	05-JUN-14
Bromoform			<0.050		ug/g		0.05	05-JUN-14
Bromomethane			<0.050		ug/g		0.05	05-JUN-14
Carbon tetrachloride			<0.050		ug/g		0.05	05-JUN-14
Chlorobenzene			<0.050		ug/g		0.05	05-JUN-14
Chloroform			<0.050		ug/g		0.05	05-JUN-14
cis-1,2-Dichloroethyle	ene		<0.050		ug/g		0.05	05-JUN-14
cis-1,3-Dichloroprope	ne		<0.030		ug/g		0.03	05-JUN-14
Dibromochloromethan	ne		<0.050		ug/g		0.05	05-JUN-14
Dichlorodifluorometha	ane		<0.050		ug/g		0.05	05-JUN-14
Ethyl Benzene			<0.050		ug/g		0.05	05-JUN-14
n-Hexane			<0.050		ug/g		0.05	05-JUN-14
Methylene Chloride			<0.050		ug/g		0.05	05-JUN-14

Workorder: L1463611 Report Date: 05-JUN-14 Page 7 of 9

Client: ALTECH ENVIRONMENTAL

12 BANIGAN DRIVE TORONTO ON M4H 1E9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R2852951								
WG1884207-1 MB MTBE			<0.050		110/0		0.05	05 11111 44
m+p-Xylenes			<0.030		ug/g		0.03	05-JUN-14
Methyl Ethyl Ketone			<0.50		ug/g		0.03	05-JUN-14
			<0.50		ug/g		0.5	05-JUN-14
Methyl Isobutyl Ketone			<0.020		ug/g		0.02	05-JUN-14
o-Xylene					ug/g		0.02	05-JUN-14
Styrene			<0.050		ug/g			05-JUN-14
Tetrachloroethylene			<0.050		ug/g		0.05	05-JUN-14
Toluene			<0.20		ug/g		0.2	05-JUN-14
trans-1,2-Dichloroethyle			<0.050		ug/g		0.05	05-JUN-14
trans-1,3-Dichloroprope	ne		<0.030		ug/g		0.03	05-JUN-14
Trichloroethylene			<0.050		ug/g		0.05	05-JUN-14
Trichlorofluoromethane			<0.050		ug/g		0.05	05-JUN-14
Vinyl chloride			<0.020		ug/g		0.02	05-JUN-14
Surrogate: 1,4-Difluorob			105.9		%		70-130	05-JUN-14
Surrogate: 4-Bromofluor	robenzene		93.7		%		70-130	05-JUN-14
WG1884207-4 MS 1,1,1,2-Tetrachloroethan	ne	WG1884207-5	97.8		%		50-140	05-JUN-14
1,1,2,2-Tetrachloroetha	ne		101.6		%		50-140	05-JUN-14
1,1,1-Trichloroethane			96.4		%		50-140	05-JUN-14
1,1,2-Trichloroethane			101.6		%		50-140	05-JUN-14
1,1-Dichloroethane			93.2		%		50-140	05-JUN-14
1,1-Dichloroethylene			80.1		%		50-140	05-JUN-14
1,2-Dibromoethane			100.3		%		50-140	05-JUN-14
1,2-Dichlorobenzene			99.99		%		50-140	05-JUN-14
1,2-Dichloroethane			104.4		%		50-140	05-JUN-14
1,2-Dichloropropane			96.0		%		50-140	05-JUN-14
1,3-Dichlorobenzene			97.2		%		50-140	05-JUN-14
1,4-Dichlorobenzene			100.9		%		50-140	05-JUN-14
Acetone			101.9		%		50-140	05-JUN-14
Benzene			95.1		%		50-140	05-JUN-14
Bromodichloromethane			98.2		%		50-140	05-JUN-14
Bromoform			101.8		%		50-140	05-JUN-14
Bromomethane			95.1		%		50-140	05-JUN-14
Carbon tetrachloride			96.0		%		50-140	05-JUN-14

Workorder: L1463611 Report Date: 05-JUN-14 Page 8 of 9

Client: ALTECH ENVIRONMENTAL

12 BANIGAN DRIVE

TORONTO ON M4H 1E9

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
/OC-511-HS-WT	Soil							
Batch R2852951								
WG1884207-4 MS		WG1884207-						
Chlorobenzene			98.7		%		50-140	05-JUN-14
Chloroform			100.8		%		50-140	05-JUN-14
cis-1,2-Dichloroethylene			95.7		%		50-140	05-JUN-14
cis-1,3-Dichloropropene			101.1		%		50-140	05-JUN-14
Dibromochloromethane			98.5		%		50-140	05-JUN-14
Dichlorodifluoromethane			65.9		%		50-140	05-JUN-14
Ethyl Benzene			96.9		%		50-140	05-JUN-14
n-Hexane			82.2		%		50-140	05-JUN-14
Methylene Chloride			94.8		%		50-140	05-JUN-14
MTBE			94.6		%		50-140	05-JUN-14
m+p-Xylenes			99.6		%		50-140	05-JUN-14
Methyl Ethyl Ketone			115.3		%		50-140	05-JUN-14
Methyl Isobutyl Ketone			89.0		%		50-140	05-JUN-14
o-Xylene			98.3		%		50-140	05-JUN-14
Styrene			98.8		%		50-140	05-JUN-14
Tetrachloroethylene			95.7		%		50-140	05-JUN-14
Toluene			90.0		%		50-140	05-JUN-14
trans-1,2-Dichloroethyler	ne		89.4		%		50-140	05-JUN-14
trans-1,3-Dichloropropen			92.5		%		50-140	05-JUN-14
Trichloroethylene			95.4		%		50-140	05-JUN-14
Trichlorofluoromethane			97.2		%		50-140	05-JUN-14
Vinyl chloride			80.8		%		50-140	05-JUN-14 05-JUN-14

Workorder: L1463611 Report Date: 05-JUN-14

Client: ALTECH ENVIRONMENTAL Page 9 of 9

12 BANIGAN DRIVE TORONTO ON M4H 1E9

Contact: ANDREW MUTRIE

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

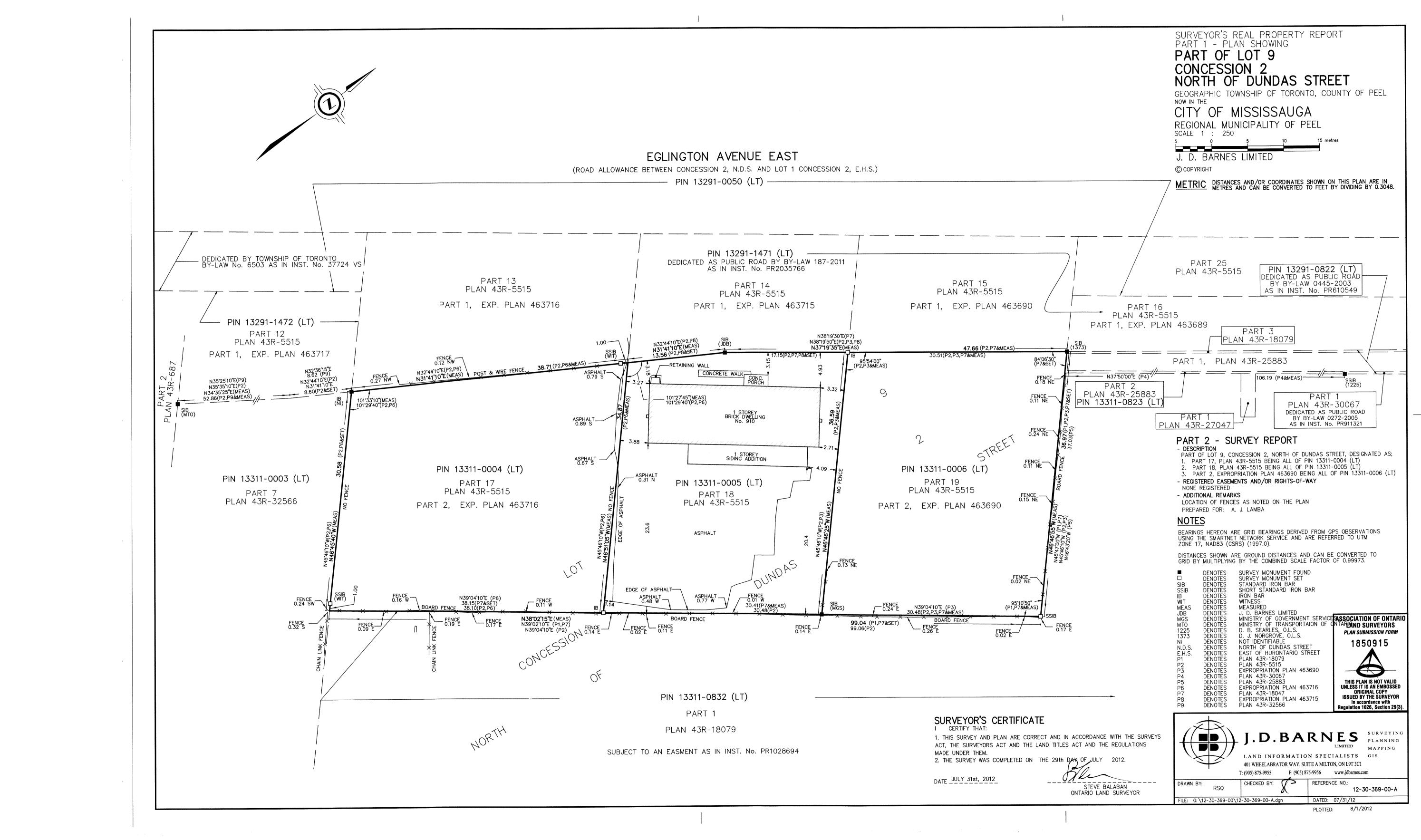
Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.


Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

of C # 00000

60 NORTHLAND	ROAD, UNIT	1																001		C of C # (00000	
WATERLOO, ON N	the contract of the contract o			175				CHAIN O	F CUSTODY ,	ANA	ALYT	ICA	L SERI	/ICES	REQ	MES	ol F(JKIV	I Pa	age of		
Phone: (519) 886-	6910			A	A		Note: all TAT Quo	ted material is	in business days wh	ich excl	ude		Specify	date	9	Servic	e requ	ueste	d	2 day TAT (50%)	No.	
Fax: (519) 886-90	47		Ent	JIFOR	LS)	ntal	statutory holidays	s and weekends	. TAT samples recei	ved pas	t 3:00 p	om	requ	ired	5 day	(regi	ılar)		10	Next day TAT (100	%)	
Toll Free: 1-800-6	68-9878						or Saturday/Sund	ay begin the ne	xt day.			11		17	3-4 d	lay (25	5%)	78	X	Same day TAT (200	096)	
COMPANY NAME	Altech	1					CRITERIA		report YES X NO				А	NALYSI	S REQU	JEST				PLEASE INDICATE F),
OFFICE	Toron	to				- 3	Reg 153/04 2	Reg 511/09 \$	6 7 8	9			1						1/6	< (F, P, F/P)		A.
PROJECT MANAGER	Andrew	N	luti	ie.			TCLP MIS		20							di.				SUBMISSION #:	61	1
PROJECT # 5/4	19-14			No.		Wil	001130	1121	1							18						1
PHONE		FAX	7.70				REPORT	FORMAT/DIS	TRIBUTION				K			0.3	R		1	ENTERED BY: N		
ACCOUNT #									вотн	NINER	2									DATE/TIME ENTERE		U
QUOTATION #		PO#					EMAIL 1		BOTH	CONTAINERS	3		2							07-Ja	n-1	1
the same of the sa	MPLING INFO			,	11170	10	EMAIL 2			OF C	~					13						
Sample Date	Time (24hr)	COMP	PE BY	WATER	MATR	OTHER	SAMPLE DESC	RIPTION TO AP	PEAR ON REPORT	NUMBER	州									COMMENTS		LAB ID
Date (dd-mm-yy)	(hh:mm)	00	GRAB	N N	SOIL	TO	///		Ī													
29-05-14			*		×		MAL	1946年	2,	7	K								_	2		-1
All Since						-				HA THE	4			-				1				
					-	-			<u> </u>						-			4.1	-	11 11 11		
	i i			-	-	-			N C	a son	-	_			-				-			Service Control
			-		-	-		STATE OF STATE		+	1											-
								4014	1													
19 19 19	Table 1		4.00	100					2													
			1 6						EV CONTRACTOR OF THE PARTY OF T					Maria San					The same			
	190.75		Asi									0.00				Ü. A.						-
111		1	1		- 19			51		18 6											any to	
18cm	To Carry				1		111				-	- 100				- 90						
	1) 3-1-13 A	5,110	1 87			-	- ANNE -						House I in	THE R		7			WA			
SPEC	IAL INSTRUCTION	NS/C	OMMEN	NTS	1000		n EUSEULUS STORE	THE QUESTIO	NS BELOW MUST BE	ANSWER	ED FOR	WATER	SAMPLES	(CHECK	Yes OR	(No		TO BE SEE	TOP SOLD	SAMPLE CO	NDITION	1
				2003/20			If yes, an author	ized drinking w	egulated DW Syste vater COC MUST be to be potable for h	used fo					'es □ † 'es □					FROZEN COLD COOLING INITIATED AMBIENT	وملاه	MEAN TEMP 2-3
SAMPLED BY:	it				-		DATE & TIME	RECEIVED BY:							DATE	& TIME		11129	417	OBSERVATIONS		INIT
RELINQUISHED BY:	V A						DATE & TIME	RECEIVED AT	LAPPIER HE	xurs	8	R	PLS	RH	DATE	& TIME JUN	J-14	r 0	4-30	Yes D No D If yes add SIF		
Notes	Y. C.															JP.	9	1107				
1. Quote number mus	be provided to	ensure	proper	r pricin	9			ependent on comp he lab to confirm		lab work	load at	time o	f submissi		ny knowi nain of ci					ating to a sample must b n.	be nated	on the

Appendix A – 4

Phase Two Property Survey

Appendix A - 5
Utility Locate Reports

All Clear Locates Inc. 416-890-4357 info@allclearlocates.com www.allclearlocates.com

Page (of 2

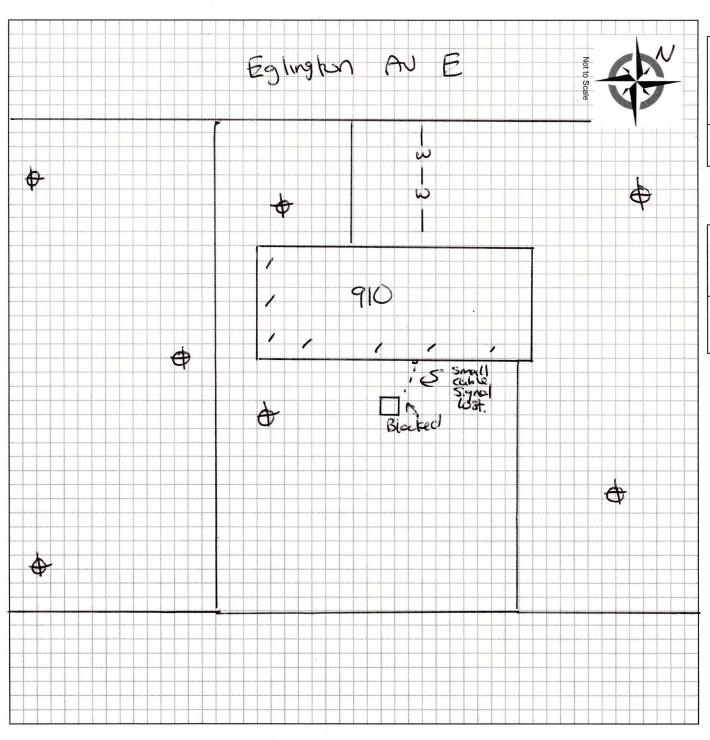
P.O. Box 77331 RPO Courtney Park Mississauga, ON L5T 2P4

Locate Report - Overview	iew	Date:	ie: May	16 , with (m/d/y)	n/d/y)
Company Name: Altech	<u>a</u>	P.O./Ref:	1-0-15	7	
.si	0	Crew:	Dream	1	
Andrew M	へから	Vehicle:	AD		
Site Name:		Locate System: _	BR	Nts:	
Site Address: 200 - 920 Egi	Eglingha AUE	City/Town:	M.55.555M	- States	
Start Time Lunch Hour	Finish Time	Total	Total Hours Total Mob.	lob. Public Locates	cates
9:30 @	SO(1)	M M	5 07	By All Clear (By Client)	lear Ant
UTILITY Scope Status	Method	LEGEND			
Gas		Status M	Marked on site		
Electrical		O	Clear in located area	6	
Water		뉟	Not locatable		
Sanitary Sewer			Not Requested		
Storm Sewer		Method EM	Electromagnetic*		8
Communications		GPR	Ground Penetrating Radar*	Radar*	
Other		SR	Site Record*		
		PU	Public Utility (not marked by All Clear)	irked by All Clear)	
		Other			
		* See Terms and Conditions	onditions		
bec Ansol	unbss Si	Barris	SITE CONDITIONS	DITIONS	`
			Work Plan Provided		7
at or clear.	AND MALE OF THE PROPERTY OF TH		Access to	Access to building(s)	Ъ
			Utility Drav	ided	
			Wet Conditions	s/Kalli	7
			Snow Covered Public Locates	Completed	
	1			1	ı !
ATTENTION: Ontario One Call must be notified to mark any public utilities A copy of this Private Locate Report and the Public Locate Report must be on site during drilling or excavation work Locate Report is only valid for 30 days after completion date	t any public utilities the Public Locate Reporter completion date	rt must be on site	eduring drilling or exca	vation work	
Do not drill or excavate within 1m of marked utility, if markings have been washed away the site must be remarked Please read the limitations of this locate on reverse	ed utility, if markings ha	ave been washed	l away the site must be	remarked	₁
Rep. Name:		Signature:			

I have read and understand the Terms and Conditions on the reverse of this report. I have notified the site owner and all involved with the project. I understand that this Locate Report is for convenience only and does not substitute for the authorized location of any underground utility by the owner. All Clear Locates Inc. is not liable for any damages of any amount in excess of the fees paid by the client under any circumstances.

All Clear Locates Inc. 416-890-4357 info@allclearlocates.com www.allclearlocates.com

Page N of. 2


Locate Report -CATES Sketch

LEGEND	SYMBOL	PAINT
Gas	-G-	Yellow
Electric	I _E I	Red
Water	- W-	Blue
Sanitary	—SAN —	Green
Storm Sewer	— ST —	Green
Bell	— BT —	Orange
Communications	-c-	Orange
Unknown	—?—	Pink
Transformer	Þ	
Street Light	\otimes	
Pedestal	\boxtimes	
Manhole	0	

LEGEND	STINDOL
Property Line	—PL—
Building Line	— BL—
Limit of Locate	-LOL-
Sidewalk	— ws —
Curb Line	—CL—
Driveway	-DW-
Fence	-xx-
Hydrant	a
Catch Basin	
Pole	0
Vegetation	0
Borehole (BH)	+

كعسور	8	cletric	Symals	Locate Area: _
is not located	No sewel refer in wet ever	and w	- mo fu	Scar bh
safed.	3 0	and well to ado	rel Mer	S Ex a
	to arear	直	sypals - mus burnel. Murped private	Scar bhs for actue/passive

- Drill within 1 m of centre of borehole, excavate inside cleared area only
 Do not drill or dig within 1 m of marked utility
 Refer to 'Locate Report Overview' and Terms and Conditions

Terms and Conditions

Limits of locating technology

It is understood that fundamental laws of physics apply and the equipment may not be able to locate all features and structures that exist underground. Such utilities are not locatable and are not covered in this locate report. The cable or pipe must be conductive or it cannot be located. Non-metallic (concrete, clay, plastic, asbestos etc.) may not be locatable, as well as DC or low voltage lines. The type of pipe or cable and soil conditions may weaken signal strength. Passive signals are not always be detectable.

Utilities are locatable if:

- Utility is metallic, can carry an electrical signal, or contains a tracer wire where direct access to a point can be coupled to it, as provided by the client.
- Other materials around the utility do not interfere with magnetic fields.
- Soil condition or depth does not cause the signal to be weak and undetectable.
- Utilities emerge in accessible areas where the work area is not physically blocked by snow or other obstacle where they can be safely coupled onto.
- The lines do not have breaks, plastic repairs, rubber gaskets, corrosion or any other characteristic that would limit its conductivity.
- Utilities are not clustered with other lines that may redirect magnetic signals

Ground Penetrating Radar: The ability to detect pipes or objects depends on the type, structure and electrical properties of the soil. Site conditions may make data difficult or impossible to interpret. Therefore, All Clear Locates Inc. cannot make warranties regarding the depth of penetration or the ability to successfully locate underground utilities or structures using this technology.

Limited Liability of All Clear Locates Inc.

The services performed by All Clear Locates is based on the information provided by the client and do not substitute for an authorized location of the utilities by the owner.

All Clear Locates Inc. will locate all locatable utilities in a given work area. Non-locatable utilities will not be marked due to the limitations of locating technology or access to utilities.

Public utilities will not be marked by All Clear Locates Inc. Public utilities can only be marked by the utility owner.

The locate report must be on site during drilling or excavating and is not valid after 30 days.

The client may not drill outside a one-meter radius of a cleared borehole, outside a cleared work zone or may not excavate outside of the located area.

Excavation (including but not limited to digging and drilling) may not occur with one meter of any marked utility.

A remark must be obtained if:

- Markings are unclear
- Sketch and site markings do not coincide
- Work areas have moved or enlarged
- New information has become available about underground utilities
- An error has been identified in locate report or markings

Given the limitations of the technology used for locating, All Clear Locates Inc. cannot guarantee that underground utilities do not exist in a given work area. The service provided by All Clear Locates Inc. is for convenience only. If damage does occur, then All Clear Locates Inc. must be notified in a reasonable time frame. All Clear Locates Inc. is not liable for any amount in excess of fee paid for the service resulting from damage, loss, injury or death that results for negligence of All Clear Locates Inc. or its employees in the performance or non-performance of the service.

CCS				E					r o B 2-311					te F		1			Pag	e 1 of	
From: 900	т	º: 920			- Ex				REW M			047	-342	.7034		equest #	ė.	in manufacture	TOTAL SERVICE		
From: 900 Street: EGLINT Intersection 1:70	/A NC	ÆE"				ALTE	ECH E	ENVI	RONN	MENT		DNSL	LTIN	lG			20	1420	672:	2	
Intersection 2: City: MISSISS	AUG	Ą				Phone:	416)	-467-	-5555		Fax:	(416))-467	-9824	E		or Dat 5/201	355.00	Uı	its:	
Type of Work: BORE HOLE	S																			27	
STANDARD w1405121648310 DRILLING TO TAKE TOMKEN AND EGL DIR. DRILLING, PRI	PLACE INTON 5	IS ONE BU ON ALL 3 0 M SOUT	PROPER HEAST	AT THE T RTIES, FI DEPTH L	HREE P RONT, S JNKNO	SIDE, E	BACK												OTS AF	E VAC	ANT.
Dig Area	: Exc	avator	shall	not w	rork	outs	ide t	he li	mits	of th	ne Di	g Are	ea w	ithou	t ob	tain	ing a	noth	er lo	cate	e.
From: W/PC 7	+ 90		SUN							To:	E/PL	, #	92	0		LIN			E 6		
From: SIPU	1 90	0/910	192	OE	GLI	STOP	N	JE	e.	To:	1/PL	# 9	00/	109	192	0 6	531	NTE	jas A	WE (E,
LEGENE		HAND and pa	DIG : dmour	l metr	e eith quipn	ner sid nent -	de of	mar CAVA	ki <u>ng</u> s TOR	- HA shall l	ND D be liat	DIG 3 ble fo	met r dar	res a nages	roun s incl	d teri	minal	poles	, tra	nsfori	mers
Building Line	-BL-	sketche Method o			m is	valid	d 30	day	s afte	er co	mple	tion	of lo	cate				-		_	
Property Line	-PL-	Paint	☐ St	akes 🗀																Red)	
Fence Line	-FL-		HAN	ND DIG	WITH.	A7-11 15-10				§			OF TH	E EXC	AVA ·	rion (DF MA	RKIN	GS	Ņ	
Curb Line	-CL-		s <i>l</i> cL		•	. t	ĢL	W.	TON	I A	rUE	. (Ç,	•	•	•			W	4 (♣	} ► E
Manhole	MH	CSN.		•	•		100		•		•		•	•	•			•		- ¥	
Catch Basin		$\overline{\Diamond}$	F(-			, H				- K		•		- H				- H	·	•	·
Sidewalk	CSW					٠	0	•		**	9		• •		•	•	•	• • •)	· ·	•
Pole	0			2,80	2.0	N•8	1.00	8.00									ĺ.		·C		
Railway	+++++		•		•	•		1	. A	130		7		8							
Transformer			¥	1965	80 4 (3)	\$1 6 00	285			120	5 2 4		30	•	ÿ.	*		٠			*
Conduit	-c-		بر.	to a	\cap	. ▼.			#q	in				• 19		4	Piss	Э.			•
Hydrant	Ø			70		3.52	. 2	2	. 1	10	•	8	₹.		*			•	-	. •	*:
Hydro Cable				٠	275	•	•		. 5	ja.	i.			•	•			*	8		
Streetlight	-SL-		*	2002	1985	100	•	-		120		س	92		•		•	•	8		<u>.</u>
Telecom Handwell	HW				:#II	8 . €0	(#C)			1.* 3.*											•
Telecom Plant	-T-						•		(i)	**						•		*	•		
Telecom Pedestal	\boxtimes				5 . 0		(*	()				; •					*	*			*
				(2)		8 7 87	(5)	1.7.51	85	5 .	1.7	i.				•					*
							S	KETCH	INOT	DRAV	WN TO	SCAL	F								

be present in Dig Area, check with property owner. Locate is VOID after 30 days. For remarks within 30 Calendar days call "Locate Company" at the phone numbers above.

After 30 Calendar days call Ontario One Call 1-800-400-2255.

Accepted by:	Located by: Q	Date and Time:
		14/05/2014
Print:	I.D. number: 140019	☐ Mark and Fax ☐ Left on Site ☐ Other

A copy of this Locate Report must be on site and in the hands of the machine operator during work operations.

Appendix A – 6
Site Photographs

Photograph 1 BH 1 location (Orange mark)

Photograph 2 BH 2 / MW A location

Photograph 3 BH3 location

Photograph 4 BH4 / MW A location (pylon)

Photograph 5 BH 5 location (red), BH6/MWC location (green), BH7 location (yellow)

Photograph 6
Soil column extracted from BH4

Photograph 7 Red brick debris found in BH5 at around 1' bgs.

Photograph 8
Soil column extracted from BH6. Arrow points to soil material that tested high for VOC readings.