Hydrogeological Investigation

Proposed Residential Development 5150 Ninth Line Mississauga, Ontario

Prepared For:

Mattamy (5150 Ninth Line) Limited

DS CONSULTANTS LTD.

6221 Highway 7, Unit 16 Vaughan, Ontario, L4H 0K8 Telephone: (905) 264-9393 <u>www.dsconsultants.ca</u> 18-748-100

October 5, 2020

Flora Tang Mattamy (5150 Ninth Line) Limited 7800 Keele Street, Suite 400 Vaughan, ON L4K 4G7

Via email: flora.tang@mattamycorp.com

RE: Hydrogeological Assessment – 5150 Ninth Line, City of Mississauga, Ontario

DS Consultants Limited (DS) was retained by Mattamy (5150 Ninth Line) Limited to complete a hydrogeological assessment for the proposed development at 5150 Ninth Line in Mississauga, Ontario (Site). It is understood that the proposed development will be a residential subdivision including residential houses with one level of basement, roads and sewers. The average grade elevation at site is about 191 meters above sea level (masl). The assumed finished floor elevation of the basement and installation of underground service utilities for the proposed development would be approximately 3.0 and 5.0 meters below the existing ground surface (mbgs), respectively This hydrogeological assessment includes an overview of the existing geological and hydrogeological conditions at the Site and the surrounding area, an assessment of the hydrogeological constraints, impacts of the proposed development on the local groundwater and provides an estimation of construction dewatering requirements during the proposed development phase. This investigation is based on existing monitoring wells that were previously installed by others in support of geotechnical and environmental investigations at the Site.

If needed, the results of this investigation can be used in support of an application for a Category 3 Permit to Take Water (PTTW) or an Environmental Activity Sector Registry (EASR) for construction dewatering from the Ministry of the Environment Conservation and Parks (MECP) and discharge permitting from the Peel Region.

Based on the results of our investigation, the following conclusions and recommendations are presented:

- Based on the MECP water well records search, there are records for thirty-one (31) water wells within 500 m of the Site (Fig. 1). Sixteen (16) wells were noted as domestic wells, nine (9) wells were noted as test holes/monitoring wells and six (6) wells were noted as not in use or unknown. The study area is partly serviced with municipal water. However, a door to door well survey is needed to confirm the presence or absence of private wells and groundwater users within a radius of 500 metres from the Site.
- 2. A total of six (6) boreholes (BH19-1 to BH19-6) were drilled by DS as part of geotechnical and environmental investigations concurrently with hydrogeological investigation. All boreholes were advanced in January 2019 to depths ranging from 2.1 m to 11.3 meters below ground surface

(mbgs). Two (2) monitoring wells (BH19-1 and BH19-4) were screened into silty clay till at depths ranging from 4.3 m to 8.55 mbgs. Also, Sirati and Partners Consultants Limited (Sirati) previously installed two (2) wells (BH9 and BH4) at the Site to a depth of 8.2 mbgs in January 2017 as part of environmental and geotechnical investigations.

- 3. The overburden geology at the Site and study area is dominated by silty clay till overlaid by sandy silt till deposits. Bedrock depth is more than 25 meters below ground surface (mbgs) and was not encountered during drilling.
- 4. Groundwater levels were measured at various occasions between March 2019 and March 2020, in all monitoring wells. Groundwater was found in monitoring wells ranging from 0.82 m to 1.55 mbgs, representing the groundwater elevation at the Site which can be subject to seasonal fluctuations.
- 5. Single Well Response Test (SWRT) was completed by DS in March 2020 in well BH9 which was screened into silty clay till unit to estimate hydraulic conductivity (k). For due diligence purposes, DS also compared its results to the results obtained from wells installed by others at south adjacent property. The value of calculated hydraulic conductivity (k) ranges from 1.86 × 10⁻⁸ m/s to 4.5 × 10⁻⁷ m/s in silty clay till, which is consistent with typical k-values 10⁻⁷ m/s to 10⁻⁹ m/s.
- 6. An unfiltered groundwater sample was collected from the well BH9 (On-Site) on March 5, 2020 and submitted to SGS Laboratories, a CALA-certified laboratory in Mississauga and analyzed for the parameters listed under City of Mississauga's Storm Sewer Discharge By-Law and the Provincial Water Quality Objectives (PWQO). The reported analytical results indicated that Total Suspended Solid (TSS), Aluminum (total), Manganese (total), Phosphorus (total) and Zinc (total) were in exceedance of the Mississauga's Sewer Discharge By-Law criteria. Also, all parameters met the PQWO By-Law criteria except Total Chlorine, Aluminum (total), Arsenic (total), Copper (total), Lead (total), Phosphorus (total), Zinc (total), 4AAP-Phenolics, Perylene, Anthracene, Benzo(a)anthracene, Benzo(ghi)perylene, Benzo(k)fluoranthene, Chrysene, Dibenzo(a,h)anthracene, Fluoranthene and Phenanthrene. When compared against the PWQO guideline, concentrations of various total metals and phenols exceeded the PWQO standards. Higher concentrations of total metals are typically associated with suspended solids and can be reduced with water filtration. groundwater at the Site is not suitable for direct discharge without treatment into sewer system and nearby watercourse. Treatment options include but not limited to settlement and filtration of sediments.
- 7. Discharge permits and agreements may be required to be obtained from Peel Region and/or the City of Mississauga if private water is discharged to the sewer system for construction dewatering
- 8. The estimated dewatering rate during construction considering the unsealed excavation method for the residential dwellings with one level of basement (for a block of 150m X 100m) would be approximately 29,000 L/day (29 m³/day) with the safety factor of 1.5. The estimated maximum steady-state flow rate for the installation of underground services for a trench of 30 x 3 m at any given time, would be approximately 11,400 L/day (11.4 m³/day) including the safety factor of 1.5.
- 9. The estimated dewatering rate is above the MECP pumping limit of 50,000 L/day, as such, an Environmental Activity and Sector Registry (EASR) is required to be submitted to the MECP for short-term dewatering.

- 10. Structures such as residential dwellings, roads or utilities are not present within the predicted radius of influence of about 72 meters from the center of excavation. Also, the proposed construction is anticipated in low permeable silty clay till. Therefore, it is not expected any impact on structures or settlements because of any dewatering activities.
- 11. Once a groundwater dewatering system is set up at the Site, daily and weekly monitoring should be implemented to assess the groundwater conditions such as water levels, measurement of discharge flow, discharge water quality and any adverse impacts as a result of dewatering including settlement.
- 12. In conformance with Regulation 903 of the Ontario Water Resources Act, the decommissioning of any dewatering system and monitoring wells should be carried out by a licensed contractor under the supervision of a licensed water well technician.

Should you have any questions regarding these findings, please do not hesitate to contact the undersigned.

DS Consultants Ltd.

Prepared By:

Reviewed By:

Meysam Jafari, M.Sc., GIT Geologist Martin Gedeon, M.Sc., P.Geo. Senior Hydrogeologist

Table of Contents

1.	INTRO	DUCTION	1
	1.1	Purpose	1
	1.2	Scope of Work	.1
2.	FIELD	INVESTIGATION	2
3.	PHYSI	CAL SETTING	2
	3.1 P	hysiography and Drainage	. 2
	3.2	Geology	. 2
	3.2.1	Quaternary Geology	. 3
	3.2.2	Bedrock Geology	. 3
	3.2.3	Site Geology	. 3
	3.3	Hydrogeology	.4
	3.3.1	Local Groundwater Use	.4
	3.3.2	Groundwater Condition	.4
	3.3.3	Hydraulic Conductivity	.4
	3.3.4	Groundwater Quality	.5
5.	CONST	IRUCTION DEWATERING	6
	5.1	Estimation of Flow Rate- Unsealed Excavation (Residential Subdivision)	.6
	БЭ	Estimation of Flow Rate- Subdivision (Local Services)	-
	5.2		. /
	5.2 4.3	Estimation of Flow Rate- Storm Water Consideration	. 7
	5.2 4.3 4.3	Estimation of Flow Rate- Storm Water Consideration Total Estimation of Flow Rate (Short-Term/ Temporary Discharge	. 7 . 7 . 7
	5.2 4.3 4.3 5.5	Estimation of Flow Rate- Storm Water Consideration Total Estimation of Flow Rate (Short-Term/ Temporary Discharge Permit Requirements	. 7 . 7 . 7
	5.2 4.3 4.3 5.5 5.5.1	Estimation of Flow Rate- Storm Water Consideration Total Estimation of Flow Rate (Short-Term/ Temporary Discharge Permit Requirements Environmental Activity and Sector Registry (EASR) /Permit to Take Water (PTTW)	. 7 . 7 . 7
	5.2 4.3 4.3 5.5 5.5.1	Estimation of Flow Rate- Storm Water Consideration Total Estimation of Flow Rate (Short-Term/ Temporary Discharge Permit Requirements Environmental Activity and Sector Registry (EASR) /Permit to Take Water (PTTW) Application	. 7 . 7 . 7 . 8
	 5.2 4.3 4.3 5.5 5.5.1 5.5.2 	Estimation of Flow Rate- Storm Water Consideration Total Estimation of Flow Rate (Short-Term/ Temporary Discharge Permit Requirements Environmental Activity and Sector Registry (EASR) /Permit to Take Water (PTTW) Application Discharge Permits (Construction Dewatering and Permanent Drainage)	. 7 . 7 . 8 . 8
6.	 5.2 4.3 4.3 5.5 5.5.1 5.5.2 POTEN 	Estimation of Flow Rate- Storm Water Consideration Total Estimation of Flow Rate (Short-Term/ Temporary Discharge Permit Requirements Environmental Activity and Sector Registry (EASR) /Permit to Take Water (PTTW) Application Discharge Permits (Construction Dewatering and Permanent Drainage) ITIAL IMPACTS.	7 7 8 8 8
6.	 5.2 4.3 4.3 5.5 5.5.1 5.5.2 POTEN 6.1 	Estimation of Flow Rate- Storm Water Consideration Total Estimation of Flow Rate (Short-Term/ Temporary Discharge Permit Requirements Environmental Activity and Sector Registry (EASR) /Permit to Take Water (PTTW) Application Discharge Permits (Construction Dewatering and Permanent Drainage) Impacts Associated with Dewatering Activities	7 7 8 8 8
6.	 5.2 4.3 4.3 5.5 5.5.1 5.5.2 POTEN 6.1 6.2.1 	Estimation of Flow Rate- Storm Water Consideration Total Estimation of Flow Rate (Short-Term/ Temporary Discharge Permit Requirements Environmental Activity and Sector Registry (EASR) /Permit to Take Water (PTTW) Application Discharge Permits (Construction Dewatering and Permanent Drainage) ITIAL IMPACTS Impacts Associated with Dewatering Activities Local Groundwater Use	7 7 8 8 8 8
6.	 5.2 4.3 4.3 5.5 5.5.1 5.5.2 POTEN 6.1 6.2.1 6.2.2 	Estimation of Flow Rate- Storm Water Consideration Total Estimation of Flow Rate (Short-Term/ Temporary Discharge Permit Requirements Environmental Activity and Sector Registry (EASR) /Permit to Take Water (PTTW) Application Discharge Permits (Construction Dewatering and Permanent Drainage) ITIAL IMPACTS Impacts Associated with Dewatering Activities Local Groundwater Use Point of Discharge and Groundwater Quality	7 7 8 8 8 8 8
6.	 5.2 4.3 4.3 5.5 5.5.1 5.5.2 POTEN 6.1 6.2.1 6.2.2 6.2.4 	Estimation of Flow Rate- Storm Water Consideration Total Estimation of Flow Rate (Short-Term/ Temporary Discharge Permit Requirements Environmental Activity and Sector Registry (EASR) /Permit to Take Water (PTTW) Application Discharge Permits (Construction Dewatering and Permanent Drainage) ITIAL IMPACTS Impacts Associated with Dewatering Activities Local Groundwater Use Point of Discharge and Groundwater Quality Geotechnical Consideration- Settlement	7 7 8 8 8 8 8 8 8 8
6.	 5.2 4.3 4.3 5.5 5.5.1 5.5.2 POTEN 6.1 6.2.1 6.2.2 6.2.4 MONITION 	Estimation of Flow Rate- Storm Water Consideration Total Estimation of Flow Rate (Short-Term/ Temporary Discharge Permit Requirements Environmental Activity and Sector Registry (EASR) /Permit to Take Water (PTTW) Application Discharge Permits (Construction Dewatering and Permanent Drainage) ITIAL IMPACTS Impacts Associated with Dewatering Activities Local Groundwater Use Point of Discharge and Groundwater Quality Geotechnical Consideration- Settlement	7 7 8 8 8 8 8 8 8 8
6. 7. 8.	 5.2 4.3 4.3 5.5 5.5.1 5.5.2 POTEN 6.1 6.2.1 6.2.2 6.2.4 MONIT CONSUMATION 	Estimation of Flow Rate- Storm Water Consideration Total Estimation of Flow Rate (Short-Term/ Temporary Discharge Permit Requirements Environmental Activity and Sector Registry (EASR) /Permit to Take Water (PTTW) Application Discharge Permits (Construction Dewatering and Permanent Drainage) ITIAL IMPACTS Impacts Associated with Dewatering Activities Local Groundwater Use Point of Discharge and Groundwater Quality Geotechnical Consideration - Settlement TORING AND MITIGATION	7 7 8 8 8 8 8 8 8 9 9 9

FIGURES

Figure 1	Site Location and MECP Water Well Record Map
Figure 2	Surficial Geology Map
Figure 3	Borehole and Monitoring Well Location Plan
Figure 4A	Geological Cross-Section along A-A'
FIGURE 4B	Geological Cross-Section along B-B'

APPENDICES:

Appendix A	Borehole Logs
Appendix B	Hydraulic Conductivity Analysis
Appendix C	Groundwater Quality Certificate of Analysis
Appendix D	MECP Water Wells Records

1. INTRODUCTION

DS Consultants Limited (DS) was retained by Mattamy (5150 Ninth Line) Limited to complete a hydrogeological assessment for the proposed development at 5150 Ninth Line, Mississauga (the Site). The Site is about 5-hectare (12.35 acres) parcel of land located at approximately 500 m northwest of the intersection of Ninth Line and Eglinton Ave West. It is understood that the proposed development will be a residential subdivision including residential houses with one level of basement, roads and sewers. The average grade elevation at site is about 191 meters above sea level (masl). The assumed finished floor elevation of the basement and installation of underground service utilities for the proposed development would be approximately 3.0 and 5.0 meters below the existing ground surface (mbgs), respectively. **Figure 1** shows the Site location.

This investigation includes an overview of the existing geological and hydrogeological conditions at the Site and the surrounding area, provides an assessment of the hydrogeological constraints and impacts of the proposed development on the local groundwater and estimation of construction dewatering requirements and groundwater permanent drainage.

1.1 Purpose

The purpose of this investigation was to review and determine the need for dewatering, estimate dewatering rates, assess groundwater quality and determine the need for a Permit to Take Water (PTTW) or an Environmental Activity Sector Registry (EASR) from the Ministry of Environment and Conservation and Parks (MECP) in addition to requirements to obtain discharge permits from the Peel Region. Potential impacts related to construction dewatering and associated monitoring/mitigation measures were also to be investigated.

1.2 Scope of Work

The scope of work for this investigation included:

- (i) Site visits;
- (ii) Collecting and interpreting available reports and data including the MECP Water Well Records (WWR), geotechnical, hydrogeological and environmental studies completed at the Site;
- (iii) Groundwater Monitoring;
- (iv) In-situ hydraulic conductivity testing of existing monitoring wells;
- (v) Estimation of temporary groundwater flow rate during the construction;
- (vi) Assessing groundwater quantity and quality to evaluate discharge options;
- (vii) Assessment of impacts associated with construction dewatering; and,
- (viii) Data analyses and report preparation.

2. FIELD INVESTIGATION

A total of six (6) boreholes (BH19-1 to BH19-6) were drilled by DS as part of geotechnical and environmental investigations concurrently with hydrogeological investigation. All boreholes were advanced in January 2019 to depths ranging from 2.1 m to 11.3 meters below ground surface (mbgs). Two (2) monitoring wells (BH19-1 and BH19-4) were screened into silty clay till at depths ranging from 4.3 m to 8.55 mbgs. Also, Sirati and Partners Consultants Limited (Sirati) previously installed two (2) wells (BH9 and BH4) at the Site to a depth of 8.2 mbgs in January 2017 as part of environmental and geotechnical investigations. At the time of preparing this report, none of above-mentioned wells were available to access for groundwater level monitoring and hydraulic conductivity testing except well BH9. Therefore, for due diligence purposes, DS compared its results to the results obtained from the monitoring wells installed by S2S Environmental Inc. at the south adjacent property (5080 Ninth Line). All these monitoring wells were developed prior to any use to allow for groundwater level monitoring, hydraulic conductivity testing, and to assess representative groundwater quality. A single well response test (SWRTs) were completed at monitoring well BH9 by performing a rising head test to estimate hydraulic conductivity values of formations/soils at the Site.

One (1) groundwater sample was collected and analyzed for the parameters listed under City of Mississauga's Sewer Use By-Law and Provincial Water Quality Objectives (PWQO) guideline to assess groundwater quality prior to any discharge to sewers system. The sample was submitted to SGS laboratories, a CALA-certified Lab, in Mississauga, Ontario. The locations of the BHs/MWs are shown in **Figure 3** and detailed subsurface conditions are presented on the geologic cross-section (**Figure 4**) and the borehole Logs in **Appendix A**.

3. PHYSICAL SETTING

Available topographic maps, environmental, geotechnical and hydrogeological reports were used to develop an understanding of the physical setting of the study area. The borehole logs from the previous and current geotechnical investigations by DS, Sirati and S2S at the Site as well as the Ministry of the Environment, Conservation and Parks Water Wells Records (MECP WWRs) were used to interpret the geological and hydrogeological conditions at the Site.

3.1 Physiography and Drainage

The topography at the Site is generally flat with a surface elevation of approximately 191 metres above sea level (masl). The topography within the study area generally slopes to the northeast, towards Sixteen Mile Creek. Drainage is generally controlled by streams and artificial channels. Sixteen Mile Creek is located about 3.5 km southwest of the Site.

3.2 Geology

The following presents a brief description of regional and Site geology based on the review of available information and Site-specific soil investigations.

3.2.1 Quaternary Geology

The study area (500 m radius) lies within the Halton Hill physiographic region of southern Ontario and characterized by Till Moraines physiographic landform. Based on the regional mapping, the surficial geology at the Site and study area is dominated by clay to silt-textured till, high carbonated content and clast poor deposits derived from glaciolacustrine deposits or shale (as per OGS Earth). The surficial geology map is shown in **Figure 2**.

3.2.2 Bedrock Geology

Available published mapping shows that bedrock in the area is predominantly shales, limestones, dolostone and siltstone of the Queenston Formation (MNDM Map 2544 Bedrock Geology of Ontario). Based on the review of existing boreholes logs and well record information, the depth to bedrock in the study area is estimated to be approximately 25 meters below the existing surface and was not encountered at the Site during drilling.

3.2.3 Site Geology

On-site subsurface soils were interpreted from the boreholes/monitoring wells (BHs/MWs) drilled by DS and Sirati. The locations of the BHs/MWs are shown in **Figure 3** and detailed subsurface conditions are presented on the borehole Logs in **Appendix A**. The subsurface conditions in the boreholes are summarized in the following paragraphs, and the geologic cross-sections are presented in **Figure 4**. The subsurface conditions in the boreholes are summarized in the following in the boreholes are summarized in the following paragraphs.

Topsoil & Fill Materials:

A 150 to 350 mm thick surficial layer of topsoil was found at borehole locations. It should be noted that the thickness of the topsoil explored at the borehole locations may not be representative for the site and should not be relied on to calculate the amount of topsoil at the site. Fill material consisting of clayey silt, sandy silt and silty sand was encountered in Sirati boreholes, extending to depths ranging from 0.8 to 2.3m. Fill materials in BH6 was reported to contain metal fragments.

Weathered/Disturbed Native:

Below the topsoil, a layer of weathered/disturbed native clayey silt to sandy silt was encountered in majority of the boreholes, extending to depths of 0.8 to 1.5m below existing grade. This weathered/disturbed soil layer contained trace to some topsoil/organics and was generally present in very loose to loose/soft to firm state.

Glacial Till Deposits:

Below the fill material or weathered/disturbed native, glacial till deposits consisting of sandy silt till and clayey silt to silty clay till were encountered in all the boreholes, extending to the maximum explored depths of boreholes. The till deposits were present in a firm to hard consistency and compact to dense state. Occasional cobble and boulder and wet sand seams were inferred within the till deposits.

3.3 Hydrogeology

The hydrogeology at the Study Site was evaluated using the on-Site and off-Site monitoring wells, local domestic wells and existing reports for the area.

3.3.1 Local Groundwater Use

As part of the hydrogeological study, DS completed a search of the Ministry of the Environment, Conservation and Parks (MECP) Water Well Records (WWRs) database. Based on the MECP water well records search, there are thirty-one (31) water wells within 500 meters of the Site (**Appendix D**). Sixteen (16) wells were noted as domestic wells, nine (9) wells were noted as test holes/monitoring wells and six (6) wells were noted as not in use or unknown. **Figure 1** shows the MECP water well location plan. The study area is partly serviced with municipal water. However, a door to door well survey is needed to confirm the presence or absence of domestically used wells in the study area.

3.3.2 Groundwater Condition

A total of four (4) boreholes/monitoring wells (MWs/BHs) were used for the current groundwater assessment. All wells were screened within the clayey silt to silty clay till unit. Groundwater levels were measured at various occasions in all monitoring wells. **Table 1** presents the groundwater levels in monitoring wells. Groundwater was found in monitoring wells ranging from 0.82 m to 1.55 mbgs, representing the groundwater elevation at the Site which can be subject to seasonal fluctuations. The groundwater flow direction within the site area is inferred to be south-westerly towards the Sixteen Mile.

Well ID	Ground Elevation (masl)	Well Depth (mbgs)	Screened Interval (mbgs)	Date	Depth to Water (mbgs)	Groundwater Elevation (masl)
BH9 (On-Site)	194.00	8.2	5.2-8.2	March 5,2020	1.55	192.45
BH9 (Off-Site, S2S)	189.05	5.8	2.8-5.8	May 24,2019	1.00	188.05
				March19, 2019	0.82	188.79
	189.61	63	3 3-6 3	April 25, 2019	1.27	188.34
biiii (Oii-Site, 525)		0.5	3.5-0.5	May 24,2019	1.20	188.41
				March 18,2020	0.90	188.71
				March19, 2019	1.30	189.02
	100 22	0.1	6101	April 25, 2019	1.20	189.12
BH12 (Off-Site, S2S)	190.52	9.1	0.1-9.1	May 24,2019	1.48	188.84
				March 18,2020	1.23	189.09

Table 1: Groundwater Levels in Monitoring Wells

3.3.3 Hydraulic Conductivity

Single Well Response Test (SWRTs) was completed by DS in well BH9 (On-Site), on March 5, 2020 to estimate hydraulic conductivity (k) for the representative geological units in which the well is completed. SWRT was completed by performing a rising head test and a data logger was placed in the well to monitor recovery. Since except BH9, the other on-site wells (BH19-4 and BH19-1) were not accessible at the time of writing this report, DS acquired the hydrogeological date from the wells BH9 and BH11 installed by S2S

Environmental Inc. at 5080 Ninth Line (south adjacent property) to compare with its data to access the hydrogeological condition of the study area. **Table 3** presents a summary of the Hydraulic Conductivity (k) results for the representative geological units. The value of calculated hydraulic conductivity (k) ranges from 1.86×10^{-8} m/s to 4.5×10^{-7} m/s in silty clay till, which is consistent with typical k-values 10^{-7} m/sec to 10^{-9} m/sec. The highest value of 4.50×10^{-7} m/s was used in the dewatering assessment as a conservative measure. The hydraulic testing results are provided in **Appendix B**.

Well ID	Screened Interval (mbgs)	Screened Formation	Analysis Method	K- Value(m/s)
BH9 (On-Site)	5.2-8.2	Silty clay till	Hvorslev	4.50 x 10 ⁻⁷
BH9 (Off-Site, S2S)	2.8-5.8	Clay/Silt	Cooper-Jacob Analysis	7.04 x 10 ⁻⁸
BH12(Off-Site, S2S) 6.1-9.1		Silt/Clay	Cooper-Jacob Analysis	1.86 x 10 ⁻⁸

Table 3: Summary of Hydraulic Conductivity (k) Test Results

3.3.4 Groundwater Quality

An unfiltered groundwater sample was collected from the well BH9 (On-Site) on March 5, 2020 and submitted to SGS Laboratories, a CALA-certified laboratory in Mississauga and analyzed for the parameters listed under City of Mississauga's Storm Sewer Discharge By-Law and the Provincial Water Quality Objectives (PWQO). The reported analytical results indicated that Total Suspended Solid (TSS), Aluminum (total), Manganese (total), Phosphorus (total) and Zinc (total) were in exceedance of the Mississauga's Sewer Discharge By-Law criteria. Also, all parameters met the PQWO By-Law criteria except Total Chlorine, Aluminum (total), Arsenic (total), Copper (total), Lead (total), Phosphorus (total), Zinc 4AAP-Phenolics, (total), Perylene, Anthracene, Benzo(a)anthracene, Benzo(ghi)perylene, Benzo(k)fluoranthene, Chrysene, Dibenzo(a,h)anthracene, Fluoranthene and Phenanthrene. When compared against the PWQO guideline, concentrations of various total metals and phenols exceeded the PWQO standards. Higher concentrations of total metals are typically associated with suspended solids and can be reduced with water filtration. Table 3 presents a summary of exceeded parameters, and the certificate of analysis is provided in Appendix C.

Parameter`	Unit	Mississauga's Storm Sewer Use Bylaw Criteria	PQWO Bylaw Criteria	BH9 Concentration
Total Suspended Solids (TSS)	mg/L	15	-	24,000
Metals and Inorganics				
Total Chlorine	mg/L	1	0.002	<u><0.02</u>
Aluminum (total)	mg/L	1	0.015	<u>14.4</u>
Aluminum (0.2µm)	mg/L	-	0.015	<u>0.537</u>
Arsenic (total)	mg/L	0.02	0.005	<u>0.0059</u>
Copper (total)	mg/L	0.04	0.001	<u>0.0152</u>
Lead (total)	mg/L	0.12	0.001	<u>0.00901</u>
Manganese (total)	mg/L	0.05	-	0.552
Phosphorus (total)	mg/L	0.4	0.01	<u>0.641</u>
Zinc (total)	mg/L	0.04	0.02	<u>0.045</u>
Phenols				
4AAP-Phenolics	mg/L	0.008	0.001	<0.002

SVOCs											
Perylene	mg/L	-	7e ⁻⁸	<u><0.0005</u>							
SVOCs - PAHs											
Anthracene	mg/L	-	8e ⁻⁷	<u><0.0001</u>							
Benzo(a)anthracene	mg/L	-	4e ⁻⁷	<u><0.0001</u>							
Benzo(ghi)perylene	mg/L	-	2e ⁻⁸	<u><0.0002</u>							
Benzo(k)fluoranthene	mg/L	-	2e ⁻⁷	<u><0.0001</u>							
Chrysene	mg/L	-	1e ⁻⁷	<u><0.0001</u>							
Dibenzo(a,h)anthracene	mg/L	-	2e ⁻⁶	<u><0.0001</u>							
Fluoranthene	mg/L	-	7e ⁻⁸	<u><0.0001</u>							
Phenanthrene	mg/L	-	3e ⁻⁵	<u><0.0001</u>							
Bold- Exceeds Storm Sewer Use Bylaw Criteria											

Underlined- Exceeds PQWO Bylaw Criteria

5. CONSTRUCTION DEWATERING

At the time of writing this report, design drawings were not available for the subdivision development and assumptions were made to estimate dewatering volumes. It is understood that the proposed construction will be completed using unsealed excavation and backfill. The depth of excavation required for constructing one (1) level of basement and installation of utilities was estimated to be about 3.0 m and 5.0 m below the existing ground surface, respectively. This section calculates the estimated dewatering needed during the construction considering open-cut excavation methods. Excavation dimensions of 150 m long and 100 m wide, and the highest groundwater elevation of 192.45 masl and k-value ($4.5 \times 10^{-7} m/sec$) were considered to estimate the flow rate.

5.1 Estimation of Flow Rate- Unsealed Excavation (Residential Subdivision)

The predicted dewatering required for a block (150 m X 100 m) of houses with one level of basement was calculated based on the highest water level and hydraulic conductivity values obtained.

$$Q_R = K * (H^2 - h^2) / 0.733 * Log (R_0/r_e) = 19,300 L/day$$

Where,

 $K - Hydraulic conductivity = 4.50 \times 10^{-7} m/s$

H – Distance from water level to the bottom of an aquifer = 3 m

h – Depth of water in the well while pumping = 1.5 m

 $r_{\rm e}$ – equivalent radius, where a and b excavation dimensions (150 m x 100 m) = 70 m $\,$

$$r_e = \left(\frac{(a \, x \, b)}{\pi}\right)^{0.5}$$

 R_0 – Radius of the cone of depression (150 m x 100 m) = 72 m

$$R_0 = (r_e + 3000)(H - h)(k^{0.5})$$

5.2 Estimation of Flow Rate- Subdivision (Local Services)

DS considered an unsealed excavation, a maximum installation depth of about 5 m and a section/trench (30 m long and 3 m wide at any given time) to estimate flow rate during the installation of local services. The trenches are expected to be dug mainly in the silty clay till deposit. Therefore, no major problems with groundwater are expected during excavation due to the low permeability of the soils. However, perched water is expected in materials which should be controllable with the conventional method of pumping from sumps. The highest groundwater elevation (192.45 masl) was used in the calculation.

$$Q = \pi K \left(H^2 - h^2 \right) / \ln \left(R_0 / R_S \right) + 2 \left((XK \left(H^2 - h^2 \right)) / 2L = 7,600 L / Day$$

Where,

 $K - Hydraulic conductivity = 4.5 \times 10^{-7} m/s$

H – Distance from water level to the bottom of an aquifer = 5 m

h – Depth of water in the well while pumping = 1.5 m

X – Length of trench = 30 m

 R_s – equivalent radius, where a and b excavation dimensions = 5.35 m

 R_o – cone of depression radius, where a and b excavation dimensions = 12 m

 $L - R_0/2$

R_s- Equivalent radius:

$$R_s = \left(\frac{(a \times b)}{\pi}\right)^{0.5}$$

R₀ – Radius of Influence:

$$R_0 = 3(H-h)(\sqrt{K})$$

4.3 Estimation of Flow Rate- Storm Water Consideration

The additional flow rate may be required from precipitation into the open excavation during construction. The estimated flow rate is based on an excavation area about 150 meters long and 100 meters wide for residential area and in total 5 mm precipitation events in 24 hours. The total estimated dewatering that might be needed as a result of precipitation events would be approximately **75,000 L/day (75 m³/day)**.

4.3 Total Estimation of Flow Rate (Short-Term/ Temporary Discharge

Considering the unsealed excavation method, the estimated maximum steady-state flow rate for the residential houses with one level of basement would be approximately **29,000 L/day (29 m³/day)** with the safety factor. A high factor of safety x1.5 has been added to account for the variability in hydraulic

conductivity that may be encountered. The estimated maximum steady-state flow rate for the installation of underground services would be approximately **11,400 L/day (11.4 m³/day)** with the safety factor of 1.5.

A highly conservative approach has been adopted while estimating the flow rates which can be significantly lower depending on the nature of soils encountered during the construction. The highest k-value and groundwater level are considered to estimate the flow rate. Based on the stratigraphy at the site, most of the construction will be ended into cohesive silty clay till which is considered a low permeable soil and the flow rates is expected low.

5.5 Permit Requirements

5.5.1 Environmental Activity and Sector Registry (EASR) /Permit to Take Water (PTTW) Application

An Environmental Activity Sector Registration (EASR) is required to be submitted to the Ministry of the Environment, Conservation and Parks (MECP) if the taking of groundwater and stormwater for a temporary construction project is between 50,000 L/day and 400,000 L/ day. The EASR application is an online registry and should be submitted to the MECP before any construction dewatering. A PTTW is required to be submitted to the MECP if the taking of groundwater and stormwater for a temporary construction project is more than 400,000 L/ day.

Since the expected design dewatering rate for the unsealed excavations is anticipated to be between 50,000 L/day and 400,000 L/day, an EASR application is required to be submitted to the MECP for short-term dewatering. All permitting requirements will be revised based on detail design and all necessary permits will be obtained.

5.5.2 Discharge Permits (Construction Dewatering and Permanent Drainage)

A discharge permit will be required from the Peel Region/City of Mississauga if private water is to be sent to the sewer system.

6. POTENTIAL IMPACTS

The following are the predicted potential impacts as a result of development:

6.1 Impacts Associated with Dewatering Activities

6.2.1 Local Groundwater Use

The study area is partly serviced with municipal water. However, a door to door well survey is needed to confirm the presence or absence of private wells and groundwater users within a radius of 500 metres from the Site.

6.2.2 Point of Discharge and Groundwater Quality

Groundwater quality analysis indicates that various parameters listed in the Mississauga's Sewer Discharge By-Law criteria and the PWQO guideline exceeded the criteria/guideline concentrations. Therefore, groundwater cannot be discharged into the sewer system without treatment. However, there are parameters listed in the City's Storm Sewer Discharge By-Law criteria which has no guideline limit, the City should be consulted for further requirements. Treatment options include but not limited to settlement and filtration of sediments. Discharge permits and agreements are required from the Peel Region and/or City of Mississauga for short-term discharge.

6.2.4 Geotechnical Consideration- Settlement

Structures such as residential dwellings, roads or utilities are not located within the predicted radius of influence of about 72 meters from the center of excavation. Also, the proposed construction is anticipated in low permeable silty clay till unit. Therefore, it is not expected any impact on structures or settlements because of any dewatering activities.

7. MONITORING AND MITIGATION

Based on the finding of hydrogeological assessment and associated potential impacts due to development, the following monitoring and mitigation program is provided:

- 1. A door to door private well survey and post-construction water level monitoring program is recommended to confirm the groundwater users in the area.
- 2. Based on the dewatering assessment, an EASR application is required. Additional monitoring may be required by the MECP to be implemented during the design stage.
- 3. Baseline groundwater quality has been assessed and established before the construction. Groundwater quality should be monitored during construction dewatering and after the construction to ensure that water quality meets the guideline or regulations associated with any permits from the MECP and the Halton Region.
- 4. Once a groundwater dewatering system is set up at the Site, a daily and weekly monitoring should be implemented to assess the groundwater conditions such as water levels, measurement of discharge flow, discharge water quality.
- 5. Following the completion of construction activities, all dewatering wells, well points, eductors and monitoring wells installed at various stages of this project shall be decommissioned. The installation and eventual decommissioning of the wells and the dewatering system will be carried out by a licensed water well contractor in accordance with Regulation 903 of the Ontario Water Resources Act.

Should you have any questions regarding these findings, please do not hesitate to contact the undersigned.

DS Consultants Ltd.

Prepared By:

Reviewed By:

Meysam Jafari, M.Sc., GIT Geologist Martin Gedeon, M.Sc., P.Geo. Senior Hydrogeologist

8. CONSULTANTS QUALIFICATIONS

Martin Gedeon, M.Sc., P.Geo., is a Professional Geoscientist (P.Geo.) with over 24 years of experience as an environmental/hydrogeological consultant in the areas of groundwater and soil monitoring, environmental Site assessments, environmental due diligence, and remediation. Martin has significant experience in physical and contaminant hydrogeology across Canada and overseas and has provided hydrogeological/environmental technical support on various projects. Martin has prepared hundreds of hydrogeological reports in support of permit applications for a private sector development application, municipal dewatering operations and provincial infrastructure projects across the province.

Meysam Jafari, M.Sc., GIT is a Geoscientist in Training working as a Geologist with DS Consultants Ltd. Meysam holds master's in engineering Geology and geology (soil & groundwater) and has several years of experience working in the geoscience industry. Meysam has experience with conducting Phase One and Phase Two Environmental Site Assessments, hydrogeological and geotechnical investigations in the Greater Toronto Area (GTA), and has been involved with project coordination, field assessments, data interpretation and reporting.

9. **REFERENCES**

Chapman, L.J., and D.F. Putnam; The Physiography of Southern Ontario, Third Edition, Ontario Geological Survey Special Volume 2; 1984, & 2007.

Freeze, R.A. and J.A. Cherry. "Groundwater". Prentice-Hall, Inc. Englewood Cliffs, NJ. 1979.

Ontario Regulation 153/04 made under the Environmental Protection Act, July 1, 2011.

The Peel Region Sewers By-law.

Ontario Regulation 245/11- Environmental Activity and Sector Registry.

Powers, J. Patrick, P.E. (1992); Construction Dewatering: New Methods and Applications - Second Edition, New York: John Wiley & Sons.

Pat M. Cashman and Martin Preene; Groundwater Lowering in Construction- Second Edition, CRC Press.

Preliminary Report on Geotechnical Investigation, Proposed Residential Development, 5150 Ninth Line, Mississauga, Ontario by Sirati and Partners, February 2017.

Report on Preliminary Geotechnical Investigation, proposed Residential Development, 5150 Ninth Line, Mississauga, Ontario by DS, August 2019.

Figures

C:\0Sharon\18-748 5150 Ninth line\1-QGIS\HydroG\Figure 1 - Site Location and MECP Well Records.qgs

C:\0Sharon\18-748 5150 Ninth line\1-QGIS\HydroG\Figure 2 - Surficial Geology Map.qgs

J:\-GIS\18-748 5150 Ninth line\1-QGIS\HydroG\Figure 3 – Borehole and Monitoring Well Locations.qgs

Path:j:\-gis\18-748 5150 ninth line\7-misc\cad\geological cross sections-9th line.dwg

Appendices

Appendix A: Borehole Logs

PROJECT: Geotechnical Investigation

CLIENT: Mattamy (5150 Ninth Line) Limited

PROJECT LOCATION: 5150 & 5170 Ninth Line, Mississauga, Ontario

DATUM: Geodetic

BOREHOLE LOCATION: See Drawing 1 N 4821148.928 E 601945.2

LOG OF BOREHOLE BH19-2

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm

Date: Jan-24-2019

		SOIL PROFILE		S	SAMPL	ES	~		RESIS	TANCE	PLOT	>					URAL			F	METHAN	IE
	(110)		F						2	0 4	0 6	8 06	30 10	00	LIMIT		TURE	LIQUID	ËN.	Ν	AND	
	(m)		2			S F	NS NS	z					20)	Î	WP	V	N	WL	ET PI (kPa)	L UN	GRAIN SI	ZE
		DESCRIPTION	₹ E	К		0.0	₽₽	0E				іп (кг +	FIELD V	ANE	—		>		CU)	URA (kN	DISTRIBUT	TION
	DEFIN		AT	MBE	щ	퓁	<u>D</u> D	A N		JICK TI		LΧ	& Sensiti LAB V	vity ANE	WA	ER CO	NTEN	T (%)	۲ ۲	ITAN	(%)	
	101 3		STF	Ñ	ΤYF	ż	К Ó		2	0 4	0 6	8 08	80 10	00	1	0 2	20 3	80		É	GR SA SI	СІ
	- 100 0	TOPSOIL : 150mm	N 14	-		•			-			-	-					-				02
	0.2	SANDY SILT: trace clay brown	ĪT					101	-													
	-	moist, loose(weatherly disturbed)	·['	1	SS	6		191	-													
	400 5	· · · · · · · · · · · · · · · · · · ·							-													
	190.5		÷∏	-					-													
	<u> </u>	trace gravel grevish brown moist			~~	10			-													
	-	compact to dense		2	SS	18			-													
	-							190	_													
	-		1	1					-													
			$\left \cdot \right \left \cdot \right $	3	SS	22			-													
	2		[.	Ĭ	00				L													
			ŀŀŀ						E													
				<u> </u>				189														
	-			4	00	24			F													
	400.4			4	33	- 34			-													
	2.9																					
	2.0	Notes:																				
		1) Borehole open and dry upon																				
		completion.																				
		2) Borehole backfilled with bentonite																				
		upon completion.																				
-10																						
9-7.																						
1																						
B																						
DS.																						
2																						
ŋ.																						
JES																						
ΛŌ																						
₹																						
TAN																						
AT																						
Ň.																						
Щ																						
έL																						
N																						
515(
5 U																						
2																						
OIL																						
S S																						
ப						1					1	1	1	1			1	1				

DS CONSULTANTS LTD. Geotechnical Environmental Materials Hydrogeology

PROJECT: Geotechnical Investigation

CLIENT: Mattamy (5150 Ninth Line) Limited

PROJECT LOCATION: 5150 & 5170 Ninth Line, Mississauga, Ontario

DATUM: Geodetic

BOREHOLE LOCATION: See Drawing 1 N 4821288.223 E 602026.882 SAMPLES SOIL PROFILE

LOG OF BOREHOLE BH19-3

DRILLING DATA

Method: Solid Stem Auger

DYNAMIC CONE PENETRATION RESISTANCE PLOT

Diameter: 150mm

Date: Jan-24-2019

	SOIL PROFILE		S	SAMPL	ES	~		RESIS	TANCE	E PLOT		TION			NATU	JRAL			F	METHANE		
(m)		F				TEF		2	0 4	0 6	0 8	0 10	00	LIMIT	MOIS	TURE TENT	LIQUID	Ľ.	Μ	AND		
(111)		LO.			<u>ч Ş</u>	NSNS	z	SHE			штн /ис	 2a)	-	WP	v	w w _L		(kPa	(m ³)	GRAIN SIZE		
ELEV DEPTH	DESCRIPTION	ĂΕ	ЦЦ		<u>10</u>	₽ Ê	TIC		NCONF	INED	(KF +	G) FIELD V	ANE		(`		S S S	URA (KN			
		A1	MBI	Ж			≡∨⊿	• Q	UICK TI		_ ×	& Sensitiv	vity ANE	WAT	ER CO	NTEN	T (%)	<u>م</u>	NAT	(%)		
189.6		STI	Ī	Ϊ	Ż	C GR	ELE	2	0 4	0 6	0 8	0 10	00	1	0 2	0 3	30			GR SA SI CL		
189.0	TOPSOIL: 150mm	<u>\\ 17</u>	·					_														
0.2	SANDY SILT: trace clay, dark		1					-														
-	brown, moist, loose(weatherly		1	SS	6		100	-														
- 188 8	disturbed))	111					189	-										1				
-, 0.8	SILT TILL: trace clay, trace sand,	H.						-														
-	greyish brown, moist, compact		2	SS	19			-														
-			—					-														
-								-														
							188	-														
			3	SS	22			-														
⁻² 187.5								-														
2.1	END OF BOREHOLE																					
	Notes:																					
	completion																					
	2) Borehole backfilled with bentonite																					
	upon completion.		L																			
			L																			
			L																			
			L																			
			L																			
			1																			
			L																			
			L																			
			L																			
			L																			
			L																			
			L																			
			L																			
			L																			
			L																			
			1																			
			L																			
			L																			
			1															1	1			

DS SOIL LOG 5150 NINTH LINE - MATTAMY HOMES.GPJ DS.GDT 19-7-10

PROJECT: Geotechnical Investigation

CLIENT: Mattamy (5150 Ninth Line) Limited

PROJECT LOCATION: 5150 & 5170 Ninth Line, Mississauga, Ontario

DATUM: Geodetic

BOREHOLE LOCATION: See Drawing 1 N 4821205.549 E 601909.149

LOG OF BOREHOLE BH19-5

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm Date: Jan-23-2019 REF. NO.: 18-748-100 O.: 6

		ENCL NO

	SOIL PROFILE		5	SAMPLES		~		RESIS	TANCE	E PLOT		ATION				URAL			F	METHANE	
(m)		F				ЦЩ.		2	0 4	0 6	i0 8	30 10	00	LIMIT	MOIS CON	TURE	LIQUID	ż.	N ⊥I	AND	
(m)		0			SN E	NS NS	z	SHEA			TH (k	Pa)	1	W _P	1	N	W_{L}	(KPa	L UN	GRAIN SIZE	
DEPTH	DESCRIPTION	TAF	Ë		0.3	2 Ĕ	ATI0		NCONF	INED	+	FIELD V	ANE	-		0		ξŐ	N S	DISTRIBUTION	4
		R	MB	Ä			Ň	• QI	JICK TI	RIAXIAI	LΧ	LAB V	ANE	WAT	ER CO	ONTEN	T (%)	_	LAN	(%)	
191.7		ST	z	È	Ż	βΩ	Ш	2	0 4	0 6	6 8	30 10	00	1	0 2	20 3	30			GR SA SI C	;L
190.0	TOPSOIL: 150mm	1.1. 171	<u> </u>					-													
0.2	CLAYEY SILT: trace gravel, some			~~~	6			-													
-	disturbed)		1	33	0		101	-													
190.9		14	₽				191	-													
1 0.0	and grey moist dense	.		~~~	24																
-		ŀŀ	12	33	34			-													
190.2		$\left \cdot \right $						_													
- 1.5	SANDY SILT TILL:trace gravel,		1				190	_													
E.	grey, moist, compact	ŀ	• 3	SS	22			-													
⁻² 189.6								_													_
2.1	END OF BOREHOLE																				
	1) Borehole open and dry upon																				
	completion.																				
	2) Borehole backfilled with bentonite																				
	upon completion.																				
2																					
			1															1			
<u>ו</u> פ			1															1			
۲ <u>۲</u>			1															1			
<u>r</u>			1															1			
			1															1			
			1															1			
Ĕ			1															1			
MM			1															1			
-			1															1			
N I			1															1			
ž			1															1			
린			1															1			
			1															1			
z			1															1			
			1															1			
2			1															1			
			1															1			
			1															1			
			1															1			
										L	L	1					1	-	-		_

(m)

ELEV DEPTH

192.0 19**0.0** 0.2

191.2

190.5 1.5

²189.9

2.1

1

0.8

DS CONSULTANTS LTD. Geotechnical Environmental Materials Hydrogeology

PROJECT: Geotechnical Investigation

CLIENT: Mattamy (5150 Ninth Line) Limited

PROJECT LOCATION: 5150 & 5170 Ninth Line, Mississauga, Ontario

DATUM: Geodetic

BOREHOLE LOCATION: See Draw SOIL PROFILE

LOG OF BOREHOLE BH19-6

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm Date: Jan-24-2019

IOLE LOCATION: See Drawing 1 N 4	8211	50.5	13 E 6	01864	.924		-												
SOIL PROFILE		s	AMPL	ES	~ ~		DYNA RESIS	MIC CO	NE PE		TION		NAT	URAL	חווסנו		5	METH	ANE
DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" <u>BLOWS</u> 0.3 m	GROUND WATEF CONDITIONS	ELEVATION	2 SHEA 0 U • Q	20 4 AR STI NCONF UICK TI 20 4	0 6 RENG INED RIAXIAI 0 6	i0 8 TH (kF + L × i0 8	Pa) FIELD V & Sensiti LAB V 0 10	ANE vity ANE 00		TURE TENT 0 0 0 0 0 0 0 1	LIMIT WL T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT V (kN/m ³)	AN GRAIN DISTRIB (% GR SA	D SIZE UTION) SI CL
TOPSOIL: 150mm	1/1/2						-												
CLAYEY SILT: trace sand, brown orange and grey seams, moist, loose(weatherly disturbed)		1	SS	8			-												
CLAYEY SILT: trace sand, trace gravel, greyish brown, moist, compact		2	SS	12		191	-												
SILT TILL: trace sand, trace gravel, greyish brown, moist, dense	•	3	SS	36		190	-												
END OF BOREHOLE Notes: 1) Borehole open and dry upon completion. 2) Borehole backfilled with bentonite upon completion.																			

DS CONSULTANTS LTD. Geotechnical Environmental Materials Hydrogeology

PROJECT: Geotechnical Investigation

CLIENT: Mattamy (5150 Ninth Line) Limited

PROJECT LOCATION: 5150 & 5170 Ninth Line, Mississauga, Ontario

DATUM: Geodetic

BOREHOLE LOCATION: See Drawing 1 N 4821188.497 E 601813.962 SOIL PROFILE SAMPLES

LOG OF BOREHOLE BH19-D1

ND WATER

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm Date: Jan-23-2019 REF. NO.: 18-748-100 ENCL NO.: 8

5

JRAL UNIT (kN/m³)

DYNAMIC CONE PENETRATION RESISTANCE PLOT PLASTIC LIMIT NATURAL MOISTURE CONTENT LIQUID LIMIT (ET PEN.) (KPa) 40 20 60 80 100 w WP W_{L}

(m)		6			ω.	IS IS	_	2	0 4	06	08	0 100	0		CON	TENT	LIIVII I	Pa) F	UNIT ()	GRAIN SIZE	ĺ
ELEV	DESCRIPTION	A PL	ъ		<u>3 m</u>		LION	SHEA	RST	RENG	TH (kF	Pa) FIELD VA	NE	•• _P	(×		CKET Su) (k	RAL I	DISTRIBUTION	ĺ
DENIH	22001	ZAT,	MBE	Щ	BL		EVA ⁻	0 UI	JICK TI	INED RIAXIAI	_ ×	& Sensitivit LAB VA	ty NE	WAT	ER CO	NTEN	Г (%)	PO D	NATU	(%)	ĺ
192.9		STF	N	ΤYF	"z	GR CO	ELE	2	0 4	06	0 8	0 100	0	1	0 2	0 3	0			GR SA SI CL	ĺ
190.0	TOPSOIL 150mm	11/2 11/2						-													ĺ
0.2	CLAYEY SILT: trace gravel, brown with orange seams moist		1	SS	8			_													ĺ
102 1	loose(weatherly disturbed)			00	Ŭ			_													ĺ
0.8	SANDY SILT: trace clay, trace	H					192	_													ĺ
- -	gravel, brown with orange seams,		2	SS	15			_													ĺ
	disturbed)							-													ĺ
•								_													ĺ
			3	SS	23		191	_													ĺ
² 190.8							101	_													
2.1	Notes:																				ĺ
	1) Borehole open and dry upon																				ĺ
	completion. 2) Borehole backfilled with bentonite																				ĺ
	upon completion.																				ĺ
																					ĺ
																					ĺ
																					ĺ
																					ĺ
																					l
																					l
																					l
																					l
																					l
																					l
																					l
																					l
																					l
																					ĺ
																					l
																					ĺ
																					l
																					l
																					ĺ
																					ĺ
																					l
				[1	1			i i

DS SOIL LOG 5150 NINTH LINE - MATTAMY HOMES.GPJ DS.GDT 19-7-10

METHANE

AND

PROJECT: Geotechnical Investigation

CLIENT: Mattamy (5150 Ninth Line) Limited

PROJECT LOCATION: 5150 & 5170 Ninth Line, Mississauga, Ontario

DATUM: Geodetic

BOREHOLE LOCATION: See Drawing 1 N 4821193.931 E 601812.739 SOIL PROFILE SAMPLES

LOG OF BOREHOLE BH19-D2

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm Date: Jan-23-2019 REF. NO.: 18-748-100 ENCL NO.: 9

Date: Jan-23-2019	EN	CL
DYNAMIC CONE PENETRATION RESISTANCE PLOT	PLASTIC NATURAL MOISTURE	LIC

		SOIL PROFILE		S	SAMPL	ES			RESIS	TANCE	E PLOT		ATION			- NAT	URAL			⊢	мет	HANE
	(m) <u>ELEV</u> DEPTH	DESCRIPTION	ATA PLOT	BER		BLOWS 0.3 m	UND WATER DITIONS	/ATION	2 SHEA O UN	0 4 R STF	RENG	0 8 TH (kF +	Pa) FIELD V & Sensiti	00 I ANE vity					POCKET PEN. (Cu) (kPa)	ATURAL UNIT W (kN/m ³)	A GRAI DISTRI	ND N SIZE BUTION %)
	102.0		STR/	MUN	ΓΥΡΕ	z	GRO CON	ELEV	Ql 2	JICK TI 0 4	RIAXIAI 0 6	L X 0 8	LAB V. 0 1	ANE 00	1 VVA	0 2	20 3	1 (%) 30		Ż	GR SA	SI CI
	- 192.0	TOPSOIL 150mm	· <u>, 1. 1.</u>	-	,	-			-										-			01 01
		CLAYEY SILT: trace gravel, brown, moist, loose(weatherly disturbed)		1	SS	5			-													
	- 192.0 - 0.8	SANDY SILT TILL: trace clay, trace gravel, brown, moist, compact		2	SS	17		192	-													
	-				SS	22		191	-										_			
	-2190.7		0	Ľ																		
DS SOIL LOG 5150 NINTH LINE - MATTAMY HOMES.GPJ DS.GDT 19-7-10	2.1	END OF BOREHOLE Notes: 1) Borehole open and dry upon completion. 2) Borehole backfilled with bentonite upon completion.																				

1 OF 1

PROJECT: Geotechnical Investigation

CLIENT: Mattamy (5150 Ninth Line) Limited

PROJECT LOCATION: 5150 & 5170 Ninth Line, Mississauga, Ontario

DATUM: Geodetic

BOREHOLE LOCATION: See Drawing 1 N 4821186.899 E 601808.017 SAMPLES SOIL PROFILE

LOG OF BOREHOLE BH19-D3

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm Date: Jan-23-2019 REF. NO.: 18-748-100 ENCL NO.: 10

	SOIL PROFILE		9	SAMPL	ES			DYNA RESIS	VIC CC	NE PE		ATION			ΝΑΤΙ					METHANE
						Ë			0 4		\sim		20	PLASTI LIMIT	C MOIS	TURE	LIQUID	ź	T WT	
(m)		1 5			<u>ဖ</u>	VAT VS	7	2	0 4	06	08	0 10 I	00		CON	TENT v		T PE (Pa)	UNI.	GRAIN SIZE
ELEV	DESCRIPTION	PL	с		3 M	⊇ ṕ	ē	SHEA	RST	RENG	TH (kF	Pa) FIFLDV		i–			— - L	Яŝ	RAL	DISTRIBUTION
DEPTH	DESCRIPTION	ATA	B	ш	<u>ol</u> B.		VAT				+	& Sensiti	vity	WAT	FR CC		Г (%)	89 80	ATU)	(%)
100.0		I R	l ⊇	Ę	ż	N S	Ë	2	0 4		∟ 0 _ 8	LAB V/		1	0 2	0 3	0		z	
192.9	TOPSOIL 150mm	1.1.	2	-		00	ш							· ·	<u> </u>					GR SA SI CL
0.2	CLAYEY SILT: some sand to	tîTî						-												
-	sandy, brown, moist.	H1	1	SS	11			-												
-	compact(weatherly disturbed)	FEL						-												
192.1	SANDY SILT THE trace clay	14XK	1				100	_												
1 0.0	trace gravel brown moist compact	1.14		~~	15		192	-												
-	adob gravol, brown, moloc, compact		12	55	15			-												
-								-												
-		111				1		-												
-			3	SS	22			_												
- 		• [•]					191	-												
2.1	END OF BOREHOLE																			
	Notes:																			
	1) Borehole open and dry upon																			
	2) Borebole backfilled with bentonite																			
	upon completion.																			
			1			I				1			1	1					1	

DS SOIL LOG 5150 NINTH LINE - MATTAMY HOMES.GPJ DS.GDT 19-7-10

PROJECT: Geotechnical Investigation

CLIENT: Mattamy (5150 Ninth Line) Limited

PROJECT LOCATION: 5150 & 5170 Ninth Line, Mississauga, Ontario

DATUM: Geodetic

BOREHOLE LOCATION: See Drawing 1 N 4821192.626 E 601806.278 SOIL PROFILE SAMPLES

LOG OF BOREHOLE BH19-D4

DRILLING DATA

Method: Solid Stem Auger

DYNAMIC CONE PENETRATION RESISTANCE PLOT

Diameter: 150mm Date: Jan-23-2019 REF. NO.: 18-748-100 ENCL NO.: 11

		SOIL PROFILE		S	SAMPL	ES	r		RESIS	TANCE	PLOT	\geq			PI ASTI		JRAL	סוווסוו		5	METHANE	
	(m) <u>ELEV</u> DEPTH	DESCRIPTION	TRATA PLOT	JUMBER	YPE	N" <u>BLOWS</u> 0.3 m	ROUND WATEF	LEVATION	2 SHEA 0 UN • QL	0 4 IR STF NCONF JICK TF	0 6 RENG ⁻ INED RIAXIAL	0 8 TH (kF + - ×	0 10 Pa) FIELD V/ & Sensitiv LAB V/ 0 10	ANE vity ANE			TURE TENT V ONTEN	LIQUID LIMIT WL T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT W (kN/m ³)	AND GRAIN SIZE DISTRIBUTION (%)	
	192.8	TODOO!! 450	0	z	-	÷	00	ш		4	0 0	0 0			- 1	0 2	0 3				GR SA SI CL	1
	<u>- 192.0</u> - 0.2 - - - 192.0	CLAYEY SILT: trace gravel, brown, moist, compact(weatherly disturbed)		1	SS	14			-													
	0.8	SANDY SILT: trace clay, trace gravel, brown, moist, compact		2	SS	15		192														
	- - 			3	SS	24		191	-										-			
DS SOIL LOG 5150 NINTH LINE - MATTAMY HOMES.GPJ DS.GDT 19-7-10	2.1	END OF BOREHOLE Notes: 1) Borehole open and dry upon completion. 2) Borehole backfilled with bentonite upon completion.																				

LOG OF BOREHOLE MW19-1

PROJECT: Geotechnical Investigation

CLIENT: Mattamy (5150 Ninth Line) Limited

PROJECT LOCATION: 5150 & 5170 Ninth Line, Mississauga, Ontario

DATUM: Geodetic

BOREHOLE LOCATION: See Drawing 1 N 4821304.684 E 601978.502

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm Date: Jan-24-2019 REF. NO.: 18-748-100 ENCL NO.: 2

	SOIL PROFILE		S	SAMPL	ES	~		D) RE	YNAM ESIST	IC CC ANCE	NE PE		ATION	I		_ NAT	URAL			F	METHANE
(m) ELEV	DESCRIPTION	PLOT	r		3 m	D WATEF IONS	NOI	SI	20 HEAF	4 R STF	0 6 RENG	0 E TH (ki	Pa)				TURE TENT W		NET PEN. u) (kPa)	RAL UNIT W	AND GRAIN SIZE DISTRIBUTIO
DEPTH	DESCRIPTION	STRATA	NUMBER	түре	N" BLO	GROUN	ELEVAT	•	 UN QUI 20 	CONF ICK TF 4	INED RIAXIAI 0 6	+ × _ 0 _ 8	& Sens LAB	VANE sitivity VANE 100	WAT 1	TER CO	ONTEN 20	IT (%) 30	9 <u>0</u> 0	NATUF	(%) GR SA SI (
190.0	TOPSOIL: 150mm	<u>x1 17.</u>						Ŧ													
0.2	SANDY SILT: trace clay, brown, moist, very loose(weatherly disturbed)		1	SS	2		19	0													
<u>189.7</u> 0.8	CLAYEY SILT: trace clay, dark brown, moist to very moist, loose(weatherly disturbed)		2	SS	8			-													
189.0 1.5 2	SANDY SILT: trace clay, trace sand, brown and grey, moist, compact		3	SS	19		18	9													
			4	SS	30		18	8											-		
³ 187.4			<u> </u>					-													
3.1	SANDY SILT TILL: greyish brown, moist, dense		5	SS	32		18	7													
4		· · ·						-													
185.9 4.6	CLAYEY SILT TILL: trace sand, trace gravel, grey, moist, stiff		6	SS	12		18	6													
							18	5											-		
⁶ 184.4			1			l:≣:	.	F													
6.1	moist to very moist		7	SS	11				4.0 m												
Z							. Feb (04, 2	2019												
182.9							. 18	3													
7.6 ⁸	SILTY CLAY TILL: trace gravel, grey, very moist, firm		8	SS	7		•	-													
							18	2													
⁹ 181.4			1					Ē													
9.1	CLAYEY SILT TILL trace sand, trace gravel, grey, moist, stiff		9	SS	15		18	1													
0																					
179.8		19.					18		_										-		
10.7	SILTY CLAY TILL: trace sand,	1XX	1					F							1		1		1	1	

GROUNDWATER ELEVATIONS

trace gravel, grey, very moist, very

1) 50mm monitoring well installed

END OF BOREHOLE Notes:

upon completion.

10 SS 18

stiff

DS SOIL LOG 5150 h

179.2

11.3

O ^{8=3%} Strain at Failure

LOG OF BOREHOLE MW19-4

PROJECT: Geotechnical Investigation

CLIENT: Mattamy (5150 Ninth Line) Limited

PROJECT LOCATION: 5150 & 5170 Ninth Line, Mississauga, Ontario

DATUM: Geodetic

BOREHOLE LOCATION: See Drawing 1 N 4821190.173 E 601810.369 SOIL PROFILE SAMPLES

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm Date: Jan-23-2019 REF. NO.: 18-748-100 ENCL NO.: 5

DYNAMIC CONE PENETRATION RESISTANCE PLOT PLASTIC LIMIT NATURAL MOISTURE CONTENT METHANE GROUND WATER CONDITIONS LIQUID LIMIT POCKET PEN. (Cu) (kPa) AND 20 40 60 80 100 NATURAL UNIT ((kN/m³) (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m Wp w W_{L} SHEAR STRENGTH (kPa) O UNCONFINED + FIELD VANE & Sensitivity QUICK TRIAXIAL × LAB VANE ELEVATION ELEV DEPTH -0 -1 DISTRIBUTION DESCRIPTION NUMBER (%) WATER CONTENT (%) TYPE ż 20 40 60 80 100 10 20 30 GR SA SI CL 192.8 TOPSOIL: 150mm 190.0 CLAYEY SILT: trace gravel, brown 1 SS 14 with orange seams, moist, compact(weatherly disturbed) 192.0 192 SANDY SILT: trace clay, trace 0.8 4 gravel, brown with orange seams, 2 SS 16 moist, compact(weatherly disturbed) 3 SS 21 191 190.5 2.3 SILT TILL: some sand, trace gravel, greyish brown, moist, SS 21 4 compact to dense 190 35 5 SS 189 188.2 SILTY CLAY TILL: trace sand. 46 ľ 188 trace gravel, grey, very moist, SS 6 18 compact 187.6 CLAYEY SILT TILL: grey, very 5.2 moist, stiff 187 ШÜ W. L. 186.6 m 7 SS 13 Feb 04, 2019 _ 186 19-7-10 moist below 7.6 m 185 SS 11 8 DS.GDT 184.6 END OF BOREHOLE 8.2 Notes: 1) 50mm monitoring well installed upon completion.

	Sirati & Partners Consult Geotechnical & Environmenta Engineering Solutions	ants] 1 Serv	Ltd. ices		L	OG	i Ol	F BC	OREHOLE BH9)					1 OF 1
PRC CLIE PRC DAT	JECT: Preliminary Geotechnical Investig NT: Mattamy Homes JECT LOCATION: 5150 9th Line, Missis UM: Geodetic	gation ssaug	a, Ol	N					DRILLING DATA Method: Solid Sterr Diameter: 150mm Date: Jan-30-2017	n Augers 7		REF. NO ENCL N	D.: SI IO.: 5	P17-′	109-10
	SOIL PROFILE		6	SAMPL	.ES				DYNAMIC CONE PEN	IETRATION					
(m) <u>ELEV</u> DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" <u>BLOWS</u> 0.3 m	GROUND WATER	CONDITIONS	ELEVATION	20 40 60 SHEAR STRENGT O UNCONFINED QUICK TRIAXIAL 20 40 60	0 80 100 I I I FIELD VANE + Sensitivity × LAB VANE 0 80 100			POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	REMARKS AND GRAIN SIZE DISTRIBUTION (%) GR SA SI C
- <u>199:8</u> - 0.2	TOPSOIL: 200mm FILL: sandy silt, trace rootlets, brown, moist, loose		1	SS	5		XXX					φ			
<u>- 193.2</u> - <u>1</u> 0.8 - -	 POSSIBLE FILL: sandy silt to silty sand, brown, very moist, loose 	×	2	SS	8			193	3			ο	_		
-			3	SS	8			192	2			0	-		
- 2.3	SILTY CLAY TILL: some sand, trace gravel, grey, moist, stiff		4	SS	10			10/			0				
-			5	SS	10			19			o				
- - - - -								190					-		
- - - - -			6	SS	8			189	9		0		_		
- - - - 6								188	8				_		
			7	SS	8						o				
JGA.GPJ SPCI								vv. L. Feb 0	187.2 m 187.2 m 197.2 m 197				_		
185.8			8	SS	10			186	6			o	-		wet spoon @ 7.6 m
	Notes: 1)Monitoring well installed in the borehole upon completion 2) Water level in monitoring well at 6.8m on 09Feb ,2017														
LOG SP1/-109-															
SPCL SUIL															

 $\begin{array}{c} 1 \\ \text{Measurement} \end{array} \begin{array}{c} 1 \\ \underline{\nabla} \end{array} \begin{array}{c} 2 \\ \underline{\nabla} \end{array} \begin{array}{c} 3 \\ \underline{\nabla} \end{array} \begin{array}{c} 3 \\ \underline{\nabla} \end{array} \begin{array}{c} 4 \\ \underline{\nabla} \end{array} \begin{array}{c} 4 \\ \underline{\nabla} \end{array} \end{array}$

NOTES to Sensitivity Strain at Failure

Appendix B: Hydraulic Conductivity Analysis

Slug Test Analysis Report	
Project: 5150 Ninth Line	
Number: 18-748-100	
Client: Mattamy Limited	
Location: 5150 Ninth Line, Mississauga Slug Test: BH9 Test Well: BH9	
Test Conducted by: MJ Test Date: 2020-0)3-27
Analysis Performed by: MJ Hvorslev Analysis Date: 20	20-03-27
Aquifer Thickness:	
Time [s]	
0 1000 2000 3000 4000	5000
2 <u>2</u>	
Calculation using Hvorslev	
Observation Well Hydraulic Conductivity	
[m/s]	
BH9 4.50 × 10 ⁻⁷	

Appendix C: Groundwater Quality Certificate of Analysis

CA14296-MAR20 R1

18-748-100

Prepared for

DS Consultants

First Page

CLIENT DETAILS			_S
Client	DS Consultants	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8, Canada		
Contact	Meysam Jafari	Telephone	705-652-2143
Telephone	905-264-9393	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	brad.moore@sgs.com
Email	meysam.jafari@dsconsultants.ca	SGS Reference	CA14296-MAR20
Project	18-748-100	Received	03/05/2020
Order Number		Approved	03/12/2020
Samples	Ground Water (3)	Report Number	CA14296-MAR20 R1
		Date Reported	03/12/2020

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 6 degrees C Cooling Agent Present:Yes Custody Seal Present:Yes

Chain of Custody Number:016135

SIGNATORIES

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-12
Exceedance Summary	13
QC Summary	14-21
Legend	22
Annexes	23

CA14296-MAR20 R1

Client: DS Consultants

Project: 18-748-100

Project Manager: Meysam Jafari

PACKAGE: PWQO - General Chemist	ny (WATER)		Ser	nple Number	7		
			8	ample Name	BH9		
L1 = PWQO / WATER / Table 2 - General - July 1999 PIE	BS 3303E		8	ampie Matrix	Ground Water		
L2 = SANSEW / WATER / Mississauga - Storm Sewer - I	BL_259_05			Sample Date	05/03/2020		
Parameter	Units	RL	L1	12	Result		
General Chemistry							
Biochemical Oxygen Demand (BOD5)	mg/L	2		15	< 4↑		
Total Suspended Solids	mg/L	2		15	24000		
Total Kjeldahl Nitrogen	as N mg/L	0.5		1	< 0.5		
			•		_	0	0
PACKAGE: PWQO - Metals and Inorg	anics (WATER)		Sar	npie Number	1	8	9
			8	ampie Name	BH9	BH9 Dissolved	BH9 CI
L1 = PWQO / WATER / Table 2 - General - July 1999 PIE	BS 3303E		8	ample Matrix	Ground Water	Ground Water	Ground Water
L2 = SANSEW / WATER / Mississauga - Storm Sewer - E	BL_259_05			Sample Date	05/03/2020	05/03/2020	11/03/2020
Parameter	Un its	RL	L1	12	Result	Result	Result
Metals and Inorganics			1				
Cyanide (total)	mg/L	0.01		0.02	< 0.01		
Total Chlorine	mg/L	0.02	0.002	1			< 0.02
Aluminum (total)	mg/L	0.001	0.015	1	14.4		
Aluminum (0.2µm)	mg/L	0.001	0.015			0.537	
Arsenic (total)	mg/L	0.0002	0.005	0.02	0.0059		
Cadmium (total)	mg/L	0.00000	0.0001	0.008	0.000060		
		3					
Chromium (total)	mg/L	0.00008		0.08	0.0198		
Copper (total)	mg/L	0.0002	0.001	0.04	0.0152		
Lead (total)	mg/L	0.00001	0.001	0.12	0.00901		
Manganese (total)	mg/L	0.00001		0.05	0.552		
Nickel (total)	mg/L	0.0001	0.025	0.08	0.0200		
			1				
Phosphorus (total)	mg/L	0.003	0.01	0.4	0.641		

CA14296-MAR20 R1

Client: DS Consultants

Project: 18-748-100

Project Manager: Meysam Jafari

BACKAGE: BWOO - Metale and Incomenter			Se	mole Number	7	8	9
			-	iempie Neme	PLIQ		
			e		ВПЭ	BH9 Dissolved	
L1 = PWQO / WATER / Table 2 - General - July 1999 PIBS 330	3E		8		Ground Water	Ground Water	Ground Water
L2 = SANSEW / WATER / Mississauga - Storm Sewer - BL_259	9_05			Sample Date	05/03/2020	05/03/2020	11/03/2020
Parameter	Units	RL	L1	L2	Result	Result	Recuit
Metals and inorganics (continued)							
Silver (total)	mg/L	0.00005	0.0001	0.12	< 0.00005		
Zinc (total)	mg/L	0.002	0.02	0.04	0.045		
PACKAGE: PWQO - Microbiology (WATER	R)		Sa i	mple Number	7		
			8	ampie Name	BH9		
L1 = PWQO / WATER / Table 2 - General - July 1999 PIBS 3303E		8	ample Matrix	Ground Water			
L2 = SANSEW / WATER / Mississauga - Storm Sewer - BL_259	9_05			Sample Date	05/03/2020		
Parameter	Units	RL	L1	12	Result		
Microbiology							
E. Coli	cfu/100mL	-	100	200	< 5↑		
PACKAGE: PWQO - Other (ORP) (WATE	R)		Sar	mple Number	7		
			8	ample Name	BH9		
L1 = PWQO / WATER / Table 2 - General - July 1999 PIBS 330	3E		8	ample Matrix	Ground Water		
L2 = SANSEW / WATER / Mississauga - Storm Sewer - BL 259	9_05			Sample Date	05/03/2020		
Parameter	Units	RL	L1	L2	Result		
Other (ORP)							
рН	no unit	0.05	8.5	9	7.58		
Chromium VI	mg/L	0.0002	0.001	0.04	< 0.0002		
Mercury (total)	mg/L	0.00001	0.0002	0.0004	0.00006		
,	~		1				

CA14296-MAR20 R1

Client: DS Consultants

Project: 18-748-100

Project Manager: Meysam Jafari

PACKAGE: PWQO - PAHs (WATER)			8 a	mple Number	7
			8	Sample Name	BH9
L1 = PWQO / WATER / Table 2 - General - July 1999 PIBS 330	3E		8	Sample Matrix	Ground Water
L2 = SANSEW / WATER / Mississauga - Storm Sewer - BL 259	9 05			Sample Date	05/03/2020
Parameter	Units	RL	L1	L2	Rewit
PAHe					
					10,0001
Benzo(b+j)fluoranthene	mg/L	0.0001			< 0.0001
PACKAGE: PWQO - Phenois (WATER)			Se	mple Number	7
			8	Sample Name	BH9
L1 = PWQO / WATER / Table 2 - General - July 1999 PIBS 330	3E		8	Sample Matrix	Ground Water
L2 = SANSEW / WATER / Mississauga - Storm Sewer - BL_259	9_05			Sample Date	05/03/2020
Parameter	Units	RL	L1	L2	Result
Phenols					
4AAP-Phenolics	mg/L	0.002	0.001	0.008	< 0.002
PACKAGE: PWQO - SVOCs (WATER)			80	mple Number	7
			8	Sample Name	BH9
L1 = PWQO / WATER / Table 2 - General - July 1999 PIBS 330	3E		8	Sample Matrix	Ground Water
L2 = SANSEW / WATER / Mississauga - Storm Sewer - BL_259	9_05			Sample Date	05/03/2020
Parameter	Units	RL	L1	L2	Result
SVOCa					
	ma/l			0.002	< 0.001
	mg/L	-	70.000	0.002	< 0.001
Perylene	mg/L	0.0005	7e-008		< 0.0000
PACKAGE: PWQO - SVOCs - PAHs (WAT	ΓER)		80	mple Number	7
	,		8	Sample Name	BH9
L1 = PWQO / WATER / Table 2 - General - July 1999 PIBS 330	3E		8	Sample Matrix	Ground Water
L2 = SANSEW / WATER / Mississauga - Storm Sewer - BL 259	9 05			Sample Date	05/03/2020
		PI	11		Read

CA14296-MAR20 R1

Client: DS Consultants

Project: 18-748-100

Project Manager: Meysam Jafari

		-		_
(WATER)		Ser	npie Number	7
		8	ampie Name	BH9
BS 3303E		8	ample Matrix	Ground Water
BL_259_05			Sample Date	05/03/2020
Units	RL	L1	L2	Result
mg/L	0.0001			< 0.0001
mg/L	0.0001	8e-007		< 0.0001
mg/L	0.0001	4e-007		< 0.0001
mg/L	0.0001			< 0.0001
mg/L	0.0001			< 0.0001
mg/L	0.0002	2e-008		< 0.0002
mg/L	0.0001	2e-007		< 0.0001
mg/L	0.0001	1e-007		< 0.0001
mg/L	0.0001	2e-006		< 0.0001
mg/L	0.0001			< 0.0001
mg/L	0.0001			< 0.0001
mg/L	0.0001	8e-007		< 0.0001
mg/L	0.0002			< 0.0002
mg/L	0.0001	3e-005		0.0001
mg/L	0.0001			< 0.0001
	WATER) 35 3303E 31_259_05 Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/	WATER) as 3303E aL 259_05 Units RL mg/L 0.0001 mg/L 0.0002 mg/L 0.0002	WATER) Same Same Same Same Same Same Same Same	WATER) Sample Number AS 3303E Sample Matrix SS 3303E Sample Matrix SL 259.05 Sample Datrix Units RL L1 L2 mg/L 0.0001 4e-007 Img/L mg/L 0.0001 4e-007 Img/L mg/L 0.0001 2e-008 Img/L mg/L 0.0001 2e-007 Img/L

CA14296-MAR20 R1

Client: DS Consultants

Project: 18-748-100

Project Manager: Meysam Jafari

PACKAGE: PWQO - VOC8 - BTEX (W	/ATER)		San	n pie Number	7
			8	ample Name	BH9
L1 = PWQO / WATER / Table 2 - General - July 1999 PIB	3S 3303E		8	ample Matrix	Ground Water
L2 = SANSEW / WATER / Mississauga - Storm Sewer - E	3L_259_05		8	Sample Date	05/03/2020
Parameter	Units	RL	L1	L2	Result
VOCs - BTEX					
Benzene	mg/L	0.0005	0.1	0.002	< 0.0005
Ethylbenzene	mg/L	0.0005	0.008	0.002	< 0.0005
Toluene	mg/L	0.0005	0.0008	0.002	< 0.0005
Xylene (total)	mg/L	0.0005		0.0044	< 0.0005
m-p-xylene	mg/L	0.0005	0.002		< 0.0005
o-xylene	mg/L	0.0005	0.04		< 0.0005
PACKAGE: SANSEW - General Chem	istry (WATER)		San	nple Number	7
			8	ample Name	BH9
L1 = PWQO / WATER / Table 2 - General - July 1999 PIB	3S 3303E		8	ampie Matrix	Ground Water
L2 = SANSEW / WATER / Mississauga - Storm Sewer - E	BL_259_05		8	Sample Date	05/03/2020
Parameter	Units	RL	L1	L2	Result
General Chemistry					
Biochemical Oxygen Demand (BOD5)	mg/L	2		15	< 4↑
Total Suspended Solids	mg/L	2		15	24000
Total Kjeldahl Nitrogen	as N mg/L	0.5		1	< 0.5

CA14296-MAR20 R1

Client: DS Consultants

Project: 18-748-100

Project Manager: Meysam Jafari

PACKAGE: SANSEW - Metals and	Inorganics		San	pie Number	7	8	9
WATER)	-						
			80	ample Name	BH9	BH9 Dissolved	BH9 CI
.1 = PWQO / WATER / Table 2 - General - July 199	99 PIBS 3303E		80	imple Matrix	Ground Water	Ground Water	Ground Water
2 = SANSEW / WATER / Mississauga - Storm Sew	ver - BL_259_05		8	Sample Date	05/03/2020	05/03/2020	11/03/2020
Parameter	Units	RL	L1	L2	Result	Result	Result
Metals and Inorganics							
Cyanide (total)	mg/L	0.01		0.02	< 0.01		
Total Chlorine	mg/L	0.02	0.002	1			< 0.02
Aluminum (total)	mg/L	0.001	0.015	1	14.4		
Aluminum (0.2µm)	mg/L	0.001	0.015			0.537	
Arsenic (total)	mg/L	0.0002	0.005	0.02	0.0059		
Cadmium (total)	mg/L	0.00000	0.0001	0.008	0.000060		
		3					
Chromium (total)	mg/L	0.00008		0.08	0.0198		
Copper (total)	mg/L	0.0002	0.001	0.04	0.0152		
Lead (total)	mg/L	0.00001	0.001	0.12	0.00901		
Manganese (total)	mg/L	0.00001		0.05	0.552		
Nickel (total)	mg/L	0.0001	0.025	0.08	0.0200		
Phosphorus (total)	mg/L	0.003	0.01	0.4	0.641		
Selenium (total)	mg/L	0.00004	0.1	0.02	0.00017		
Silver (total)	mg/L	0.00005	0.0001	0.12	< 0.00005		
Zinc (total)	mg/L	0.002	0.02	0.04	0.045		

CA14296-MAR20 R1

Client: DS Consultants

Project: 18-748-100

Project Manager: Meysam Jafari

CA14296-MAR20 R1

Client: DS Consultants

Project: 18-748-100

Project Manager: Meysam Jafari

PACKAGE: SANSEW - Phenois (WATER	र)		Sa	mple Number	7
			8	ampie Name	BH9
L1 = PWQO / WATER / Table 2 - General - July 1999 PIBS 3	303E		8	ampie Matrix	Ground Water
L2 = SANSEW / WATER / Mississauga - Storm Sewer - BL 2	259 05			Sample Date	05/03/2020
Parameter	Units	RL	L1	L2	Result
Phenole					
					40.000
4AAP-Phenolics	mg/L	0.002	0.001	0.008	< 0.002
PACKAGE: SANSEW - SVOCS (WATER	()		Sa	mple Number	7
			8	ampie Name	BH9
1 = PWOO / WATER / Table 2 - General - July 1999 PIRS 3	303E		8	ample Matrix	Ground Water
12 = SANSEW / WATER / Mississaura - Storm Sever - BL	259.05			Sample Date	05/03/2020
Berometer	l inite	DI	14	12	Beaut
	Childs			-	r.sour
SVOCS					
PAHs (Total)	mg/L	-		0.002	< 0.001
Perylene	mg/L	0.0005	7e-008		< 0.0005
			80	male Number	7
PACKAGE: SANSEW - SVOCS - PAHS (WATER)		08	inple Rumber	/
			8	ample Name	BH9
L1 = PWQO / WATER / Table 2 - General - July 1999 PIBS 3	303E		8	ample Matrix	Ground Water
L2 = SANSEW / WATER / Mississauga - Storm Sewer - BL_2	259_05			Sample Date	05/03/2020
Parameter	Units	RL	L1	L2	Result
SVOCs - PAHs					
7Hdibenzo(c,g)carbazole	mg/L	0.0001			< 0.0001
Anthracene	mg/L	0.0001	8e-007		< 0.0001
Benzo(a)anthracene	mg/L	0.0001	4e-007		< 0.0001
Benzo(a)pyrene	ma/L	0.0001			< 0.0001
Benzolejovrene	ma/l	0.0001			< 0.0001
Bonzo(ghi)pondono	mg/L	0.0002	20.009		< 0.0002
Derizo(gni)peryiene	mg/∟	0.0002	2e-008		- 0.000Z

CA14296-MAR20 R1

Client: DS Consultants

Project: 18-748-100

Project Manager: Meysam Jafari

ACKAGE: Sansew - Svocs - Pah	S (WATER)		Sam	ple Number	7
			80	mple Name	BH9
1 = PWQO / WATER / Table 2 - General - July 1999 PI	BS 3303E		80	mple Matri x	Ground Water
2 = SANSEW / WATER / Mississauga - Storm Sewer -	BL_259_05		8	ample Date	05/03/2020
Parameter	Unite	RL	L1	L2	Result
VOCs - PAHs (continued)					
Benzo(k)fluoranthene	mg/L	0.0001	2e-007		< 0.0001
Chrysene	mg/L	0.0001	1e-007		< 0.0001
Dibenzo(a,h)anthracene	mg/L	0.0001	2e-006		< 0.0001
Dibenzo(a,i)pyrene	mg/L	0.0001			< 0.0001
Dibenzo(a,j)acridine	mg/L	0.0001			< 0.0001
Fluoranthene	mg/L	0.0001	8e-007		< 0.0001
Indeno(1,2,3-cd)pyrene	mg/L	0.0002			< 0.0002
Phenanthrene	mg/L	0.0001	3e-005		0.0001
Pyrene	mg/L	0.0001			< 0.0001

CA14296-MAR20 R1

Client: DS Consultants

Project: 18-748-100

Project Manager: Meysam Jafari

PACKAGE: Sansew - Vocs - B	BTEX (WATER)		Sen	n ple Number	7
			8	ampie Name	BH9
1 = PWQO / WATER / Table 2 - General - July 7	1999 PIBS 3303E		8	ampie Matrix	Ground Water
.2 = SANSEW / WATER / Mississauga - Storm S	Sewer - BL_259_05			Sample Date	05/03/2020
Parameter	Units	RL	L1	L2	Result
VOC8 - BTEX					
Benzene	mg/L	0.0005	0.1	0.002	< 0.0005
Ethylbenzene	mg/L	0.0005	0.008	0.002	< 0.0005
Toluene	mg/L	0.0005	0.0008	0.002	< 0.0005
Xylene (total)	mg/L	0.0005		0.0044	< 0.0005
m-p-xylene	mg/L	0.0005	0.002		< 0.0005
o-xylene	mg/L	0.0005	0.04		< 0.0005

EXCEEDANCE SUMMARY

				PWQO / WATER / - - Table 2 - General	SANSEW / WATER / Mississauga -
				- July 1999 PIBS	Storm Sewer -
				3303E	BL_259_05
Parameter	Method	Unite	Result	L1	L2
BH9					
Anthracene	EPA 3510C/8270D	µg/L	< 0.0001	80-007	
Benz(a)anthracene	EPA 3510C/8270D	µg/L	< 0.0001	40-007	
Benzo(g,h,i)perylene	EPA 3510C/8270D	µg/L	< 0.0002	28-008	
Benzo(k)fluoranthene	EPA 3510C/8270D	µg/L	< 0.0001	28-007	
Chrysene	EPA 3510C/8270D	µg/L	< 0.0001	1e-007	
Dibenz(a,h)anthracene	EPA 3510C/8270D	µg/L	< 0.0001	26-008	
Fluoranthene	EPA 3510C/8270D	µg/L	< 0.0001	80-007	
Perylene	EPA 3510C/8270D	µg/L	< 0.0005	76-008	
Phenanthrene	EPA 3510C/8270D	µg/L	0.0001	36-005	
Total Suspended Solids	SM 2540D	mg/L	24000		15
Aluminum	SM 3030/EPA 200.8	µg/L	14.4	0.015	
Arsenic	SM 3030/EPA 200.8	µg/L	0.0059	0.005	
Copper	SM 3030/EPA 200.8	µg/L	0.0152	0.001	
Lead	SM 3030/EPA 200.8	µg/L	0.00901	0.001	
Manganese	SM 3030/EPA 200.8	mg/L	0.552		0.05
Phosphorus	SM 3030/EPA 200.8	µg/L	0.641	0.01	
Zinc	SM 3030/EPA 200.8	µg/L	0.045	0.02	
4AAP-Phenolics	SM 5530B-D	mg/L	< 0.002	0.001	
BH9 Dissolved					
Aluminum (dissolved)	SM 3030/EPA 200.8	µg/L	0.537	0.015	
BH9 CI					
Chlorine	SM 4500	μg/L	< 0.02	0.002	

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	:S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(76)	(%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0011-MAR20	mg/L	2	< 2	20	30	94	70	130	78	70	130

Chlorine

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Duplicate		LC	8/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover (%	Recovery Limits (%)		Recovery Limits (%)	
						(76)	(%)	Low	High	(%)	Low	High
Total Chlorine	EWL0086-MAR20	mg/L	0.02	< 0.02	NV	20	100	90	110	NA		
Total Chlorine	EWL0171-MAR20	mg/L	0.02	< 0.02	ND	20	93	90	110	NA		

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duç	licate	L	CS/Spike Blank		Ma	utrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ny Limits %)	Spike Recovery	Recover (9	r y Limits K)
						(76)	(%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0070-MAR20	mg/L	0.01	<0.01	ND	10	95	90	110	92	75	125

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-IENVISKA-LAK-AN-012

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	:8/8pike Blan k		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recove	ny Limits %)	Spike Recovery	Recover (9	ry Limits 6)
						(76)	(%)	Low	High	(%)	Low	High
Chromium VI	SKA0074-MAR20	mg/L	0.0002	<0.0002	5	20	103	80	120	NV	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duş	blicate	LC	S/Spike Blan k		M	atrix Spike / Ref .	
	Reference			Blank	RPD	AC	Spike	Recover	ry Limits 6)	Spike Recovery	Recover (9	y Limits ;)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0009-MAR20	mg/L	0.00001	< 0.00001	ND	20	113	80	120	114	70	130

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-IENVISPE-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	3/Spike Blank		Ma	atrix Spike / Ref.	•
	Reference			Blank	RPD	AC (%)	Spike	Recover (9	y Limits 6)	Spike Recovery	Recover (9	/y Limits 6)
						(70)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0045-MAR20	mg/L	0.00005	<0.00005	ND	20	103	90	110	96	70	130
Aluminum (total)	EMS0045-MAR20	mg/L	0.001	<0.001	1	20	104	90	110	110	70	130
Aluminum (0.2µm)	EMS0045-MAR20	mg/L	0.001	<0.001	1	20	104	90	110	110	70	130
Arsenic (total)	EMS0045-MAR20	mg/L	0.0002	<0.0002	10	20	102	90	110	98	70	130
Cadmium (total)	EMS0045-MAR20	mg/L	0.000003	<0.00003	3	20	99	90	110	101	70	130
Chromium (total)	EMS0045-MAR20	mg/L	0.00008	<0.00008	17	20	107	90	110	106	70	130
Copper (total)	EMS0045-MAR20	mg/L	0.0002	<0.0002	1	20	103	90	110	107	70	130
Manganese (total)	EMS0045-MAR20	mg/L	0.00001	<0.00001	0	20	103	90	110	102	70	130
Nickel (total)	EMS0045-MAR20	mg/L	0.0001	<0.0001	1	20	102	90	110	100	70	130
Lead (total)	EMS0045-MAR20	mg/L	0.00001	<0.00001	1	20	100	90	110	117	70	130
Phosphorus (total)	EMS0045-MAR20	mg/L	0.003	<0.003	1	20	100	90	110	NV	70	130
Selenium (total)	EMS0045-MAR20	mg/L	0.00004	<0.00004	ND	20	102	90	110	101	70	130
Zinc (total)	EMS0045-MAR20	mg/L	0.002	<0.002	9	20	102	90	110	130	70	130

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dupli	cate	LC	S/Spike Blank		Ma	ntrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover,	y Limits)	Spike Recovery	Recover, (%	y Limits))
						(70)	(%)	Low	High	(%)	Low	High
E. Coli	BAC9114-MAR20	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	:8/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover, (%	y Limits)	Spike Recovery	Recover (%	y Limits .)
						(74)	(%)	Low	High	(%)	Low	High
рН	EWL0118-MAR20	no unit	0.05	NA	0		101			NA		

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-IENVISFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duş	olicate	LC	8/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blenk	RPD	AC (%)	Spike	Recove	ry Limits K)	Spike Recovery	Recover (%	y Limits i)
						(~)	(%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0072-MAR20	mg/L	0.002	<0.002	NV	10	105	90	110	NV	75	125

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-TENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	3/Spike Blank		Ma	ntrix Spike / Rei	1
	Reference			Blank	RPD	AC (%)	Spike	Recover (9	y Limits 6)	Spike Recovery	Recover	ry Limits K)
						(70)	(%)	Low	High	(%)	Low	High
7Hdibenzo(c,g)carbazole	GCM0109-MAR20	mg/L	0.0001	< 0.0001	NSS	30	104	50	140	NSS	50	140
Anthracene	GCM0109-MAR20	mg/L	0.0001	< 0.0001	NSS	30	91	50	140	NSS	50	140
Benzo(a)anthracene	GCM0109-MAR20	mg/L	0.0001	< 0.0001	NSS	30	92	50	140	NSS	50	140
Benzo(a)pyrene	GCM0109-MAR20	mg/L	0.0001	< 0.0001	NSS	30	91	50	140	NSS	50	140
Benzo(b+j)fluoranthene	GCM0109-MAR20	mg/L	0.0001	< 0.0001	NSS	30	102	50	140	NSS	50	140
Benzo[e]pyrene	GCM0109-MAR20	mg/L	0.0001	< 0.0001	NSS	30	84	50	140	NSS	50	140
Benzo(ghi)perylene	GCM0109-MAR20	mg/L	0.0002	< 0.0002	NSS	30	94	50	140	NSS	50	140
Benzo(k)fluoranthene	GCM0109-MAR20	mg/L	0.0001	< 0.0001	NSS	30	87	50	140	NSS	50	140
Chrysene	GCM0109-MAR20	mg/L	0.0001	< 0.0001	NSS	30	93	50	140	NSS	50	140
Dibenzo(a,h)anthracene	GCM0109-MAR20	mg/L	0.0001	< 0.0001	NSS	30	92	50	140	NSS	50	140
Dibenzo(a,i)pyrene	GCM0109-MAR20	mg/L	0.0001	< 0.0001	NSS	30	94	50	140	NSS	50	140
Dibenzo(a,j)acridine	GCM0109-MAR20	mg/L	0.0001	< 0.0001	NSS	30	102	50	140	NSS	50	140
Fluoranthene	GCM0109-MAR20	mg/L	0.0001	< 0.0001	NSS	30	93	50	140	NSS	50	140
Indeno(1,2,3-cd)pyrene	GCM0109-MAR20	mg/L	0.0002	< 0.0002	NSS	30	94	50	140	NSS	50	140
Perylene	GCM0109-MAR20	mg/L	0.0005	< 0.0005	NSS	30	89	50	140	NSS	50	140
Phenanthrene	GCM0109-MAR20	mg/L	0.0001	< 0.0001	NSS	30	90	50	140	NSS	50	140
Pyrene	GCM0109-MAR20	mg/L	0.0001	< 0.0001	NSS	30	92	50	140	NSS	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-IENVIEWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	ntrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ny Limits %)	Spike Recovery	Recover, (%	y Limits 5)
						(76)	(%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0122-MAR20	mg/L	2	< 2	0	10	NV	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-TENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	ry Limits	Spike	Recover	y Limits
						(%)	Recovery	(?	6)	Recovery	(9	5)
						(~)	(%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0087-MAR20	as N mg/L	0.5	<0.5	2	10	104	90	110	102	75	125

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Unite	RL	Method	Dup	licate	LC	S/Spike Blank		M	utrb: Spike / Ref.	•
	Reference			Biank	RPD	AC (K)	Spike Boomenu	Recover (9	y Limita 6)	Spike Recovery	Recover (9	y Limits 6)
						(70)	(%)	Low	High	(%)	Low	High
Benzene	GCM0103-MAR20	mg/L	0.0005	<0.0005	ND	30	100	60	130	93	50	140
Ethylbenzene	GCM0103-MAR20	mg/L	0.0005	<0.0005	ND	30	102	60	130	95	50	140
m-p-xylene	GCM0103-MAR20	mg/L	0.0005	<0.0005	ND	30	103	60	130	95	50	140
o-xylene	GCM0103-MAR20	mg/L	0.0005	<0.0005	ND	30	101	60	130	94	50	140
Toluene	GCM0103-MAR20	mg/L	0.0005	<0.0005	ND	30	101	60	130	95	50	140

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

CA14296-MAR20 R1

QC SUMMARY

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis. **RL** Reporting Limit.

- **†** Reporting limit raised.
- Reporting limit lowered.
- $\ensuremath{\mathsf{N\!A}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

elved By: selved Date: 03/00120 (mm/dd/yr) selved Time: 0:00120 (mm/dd/yr) selved Time: 0:00120 (hr. min)	Idon: 657 Consortium Court, L	London, UN, NGE 258 Prior	10.013-0/2-4000 1011 Lice. 0	200 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0						
eved Date: 6:35 (hr.: min) eved Time: 6:35 (hr.: min) REPORT INFORMATION	Received By Custody Seal	(signature): Ves No	oratory Information or Cooling Age	oction - Lab use only nt Present: Yes No	Type:	é		-	CA 142	AL - MARZO
	Custody Sea INVOICE INFC	I Intact: Yest No	Temperatur	e Upon Receipt (°C)	0				·# CMI	
mpany: DS Cousting BS	(same as Report Informs	ation)	Quotation #:	48-100			P.O.#: Site Lo	cation/ID:		
ntact: Meyson Jotori Con	npany:		Project #:	22-01	TURNA	T OUND T	IME (TAT) RE(QUIRED		Contraction 0
dress: 6221 Hwy F. Umt 10 Con	ntact:		Regular TAT	(5-7days)			TAT's are Samples	quoted in business days eceived after 6pm or on	(exclude statutor) weekends: TAT b	y nolidays & weekends). egins next business day
Veryhave Add	dress:		RUSH TAT (Additiona	I Charges May Apply): ISH FEASIBILITY WITH S	11 11 11 11 11 11 11 11 11 11 11 11 11		E PRIOR TO	ays 🗌 4 Days SUBMISSION		
x:	one:	leeves Harts Ca	Specify Due Date:		NOTE: DI	INKING (P	OTABLE) WATE WITH SGS I	R SAMPLES FOR HUM DRINKING WATER CHA	AN CONSUMPTIC	ON MUST BE SUBMITTED
nail:meysam. Jafari Odscarsultants. cdEm BEGHI A	TIONS	0.5 mm 1-151/02/0		ANA	LYSIS F	EQUE	STED		•	
		Counter Ru-I aw	M&I	SVOC PCB P	HC VC	DC Pe	t 0	Other (please specify)	TCLP	
ggulation 153/04: Oth] Table 1 Res/Park Solil Texture: C] Table 2 Ind/Com C carse V [] Table 3 Agri/Other Medum C	her Regulations: Reg 347/558 (3 Day min PWGO D MMER CCME Dother:	TAT) Santary Santary Vunicipality:	Hð' CrAI 2VH-soil) C2				mossiscy		Zation Pkg Iended tests	
RECORD OF SITE CONDITION (RSC)	VES NO	ρ .	Y/N)	м,оч,во лА [Polin othe		icteri Ex V	COMMENTS:
SAMPLE IDENTIFICATION	DATE TIME SAMPLED SAMPLEI	D BOTTLES MATRI	× jeld Filtered (<i>Lisetals</i> (<i>Lisetals</i>) (<i>Lisetals</i>	Agenticutors Agenticutors Additional Ad	o BTEX • BTEX • OOCS	STEX only	Pw Qo	Sewer Use:	Specify proj.	
BH9 N	lach 5.700 12.00	Gaw					11			
										and the second se
				3						
2										
8										
6										
10										
1										
12					_				_	
Observations/Comments/Special Instructions	4		Y	+						Clinet
Sampled By (NAME): Marcon Ta	· ···	Signature:	/ Ners	ye blon		Date:	3 3	1 20 20 (mm/o	(dryy)	Yellow & White Copy - SGS
Relinquished by (NAME):	100	Signature:	S. F	to a complete 191 Submission	of samples to S	GS is conside	red authorization fo	or completion of work. Sign:	atures may appear or	this form or be retained on file in

Appendix D: MECP Water Wells Records

5150 9th Line, Mississauga, ON												
TOWNSHIP C	UTM	E	N	DATE CNTR	CASING	WATER	PUMP TEST	WELL USE	SCREEN	WELL	1	FORMATION
											(Z192696)	BRWN FILL LOOS 0005 BRWN CLAY FSND PCKD
MILTON TOWN (TRAFALG	17 W	602099	4820671	2014/06 7472	2.04			мо	0020 10	7224941	A166033	0030
											(Z213484)	BRWN SAND SILT CLAY 0005 BRWN CLAY 0017
MILTON TOWN (TRAFALG	17 W	602013	4820656	2015/09 7241	2			MT	0015 10	7249209	A179266	GREY CLAY DNSE 0025
											(Z213485)	BRWN SAND SILT CLAY 0005 BRWN CLAY 0017
MILTON TOWN (TRAFALG	17 W	602016	4820679	2015/09 7241	2			MT	0015 10	7249210	A179267	GREY CLAY DNSE 0025
											(Z213488)	BRWN SAND SILT CLAY 0005 BRWN CLAY 0017
MILTON TOWN (TRAFALG	17 W	602048	4820657	2015/09 7241	2			MT	0015 10	7249211	A179268	GREY CLAY 0025
											(Z213487)	BRWN SILT SAND CLAY 0005 BRWN CLAY 0017
MILTON TOWN (TRAFALG	17 W	602001	4820713	2015/09 7241	2			MT	0015 10	7249212	A179269	GREY CLAY DNSE 0025
											(Z252633)	
MILTON TOWN (TRAFALG	17 W	601809	4821137	2017/02 7472	2			MO	0015 10	7283290	A222847	BRWN CLAY TILL PCKD 0025
												BRWN LOAM 0001 BRWN SAND CLAY 0017 BLUE
												CLAY SILT LYRD 0040 GREY SILT STNS HARD 0060
MILTON TOWN (TRAFALG DS N 02 00	17 W	602367	4820884	1987/02 3030	36	FR 0017 FR	17///:	DO		2806585	-6252	BLUE CLAY SILT LYRD 0065 GREY SAND 0065
												BRWN LOAM SOFT 0001 BRWN CLAY STNS HARD
												0014 GREY CLAY STNS HARD 0045 RED CLAY
MILTON TOWN (TRAFALG NS 01 001	17 W	602207	4821130	1988/06 4868	30 30	FR 0020	28/49/3/1:0	DO		2806945	-7770	STNS HARD 0050 GREY CLAY SAND STNS 0055
												LOAM 0002 CLAY BLDR 0055 CLAY MSND 0083
MILTON TOWN (TRAFALG NS 09 001	17 W	602232	4821108	1964/01 1612	4	FR 0086	19/80/2/1:0	DO		2802669	()	GRVL 0086
												BRWN LOAM 0002 BRWN CLAY 0014 GREY CLAY
												0050 RED CLAY 0052 GREY CLAY 0062 BRWN
MILTON TOWN (TRAFALG NS 09 001	17 W	602090	4821230	1972/08 3637	30 32	FR 0074	18/72/2/2:0	DO		2804137	()	SAND STNS 0074 BLCK SAND 0075
												LOAM 0002 BLUE CLAY 0062 MSND GRVL 0083
MILTON TOWN (TRAFALG NS 09 001	17 W	602207	4821138	1965/05 1612	55	FR 0110	16/111/1/2:3	DO		2802670	()	RED SHLE 0111
MILTON TOWN (TRAFALG NS 09 001	17 W	601835	4820730	1966/12 1307	30	FR 0065	30//2/:	DO		2802672	()	BRWN LOAM CLAY 0018 GREY CLAY 0063 MSND
											0	LOAM 0001 BLUE CLAY 0054 GRVL MSND 0093
MILTON TOWN (TRAFALG NS 09 001	17 W	602267	4820936	1967/07 1612	6			20		2802673	() A	RED_SHLE 0140
MILTON TOWN (TRAFALG NS 09 001	17 W	601818	4820662	2003/04 69/4				DO		2809735	-258793 A	
											0	BRWN CLAY 0010 GREY CLAY STNS 0062 GRVL
MILION TOWN (TRAFALG NS 09 001	17 W	602235	4820903	1970/04 1307	30	FR 0063	15/5//6/1:0	DO		2803350	()	BLDR 0063
	17.14/	601000	4024207	7260						7202200	(C386//)	
MILTON TOWN (TRAFALG NS 09 001	17 W	601808	4821207	/360		FD 0070	24///	D 0		7293389	AZZ/4Z/ P	
MILTON TOWN (TRAFALG NS 09 001	17 W	602148	4820784	1956/11 1642	6	FR 0078	24///:	DO		2802667	()	PRDG 0030 CLAY MISND 0080
	17.14	602250	4020061	1007/07 1010		FD 0105	25/100/0/10	00		2002674	0	
MILTON TOWN (TRAFALG NS 09 001	17 VV	602250	4820961	1967/07 1612	5 5	FR 0105	25/108/0/48			2802674	0	
MILTON TOWN (TRAFALG NS 09 001	17 VV	602081	4820721	1956/09 1642	6	FR 0069	18///:	00		2802666	() (7212496)	
	17 \\/	601000	1020727	2015/00 7241				МАТ	0015 10	7240212	(2213480) A 199763	CREVIN SAIND SILL CLAT UUUS BRWIN CLAT UUT
IVITETON TOWN (TRAFALG NS 09 001	T/ AA	001989	4820727	2015/09/241	2				0012-10	7249213	HT00/07	
MILTON TOWN (TRAFALC NS 00.001	17 \\/	602000	1021102	71 47						7270010	(LSS094)	
IVILLION TOWN (TRAFALG NS 09 001	T/ VV	002008	4821192	/14/			I	I		/2/9919	AZ10200 P	

											(Z259507)	BRWN LOAM LOOS 0002 BRWN CLAY SAND
MILTON TOWN (TRAFALG NS 09 001	17 W	601936	4821330	2017/06 7472	2			MO	0015 10	7292424	A227426	PCKD 0014 GREY CLAY SAND PCKD 0025
											(Z259508)	BRWN LOAM LOOS 0002 BRWN CLAY SAND
MILTON TOWN (TRAFALG NS 09 001	17 W	601807	4821201	2017/06 7472	2			MO	0015 10	7292425	A227427	PCKD 0014 GREY CLAY SAND PCKD 0025
												BRWN CLAY SAND LOOS 0025 GREY CLAY SAND
MILTON TOWN (TRAFALG NS 09 002	17 W	601464	4821384	1990/07 4005	6	UK 0077	34/75/2/2:0	PS		2807626	-76656	LOOS 0076 BRWN GRVL SAND LOOS 0077
												BRWN LOAM 0002 BRWN CLAY STNS 0073
										1		BRWN CLAY MSND GRVL 0074 BRWN CLAY STNS
MISSISSAUGA CITY (TR NS 10 001	17 W	602355	4821053	1970/03 3903	6 1	FR 0073 SA	32/125/8/0:2	INU	0126 2	2803411	()	0080 BRWN MSND CLAY GRVL 0100 RED SHLE
												BRWN OBDN SAND 0015 GREY CLAY 0055 GREY
MISSISSAUGA CITY (TR NS 10 001	17 W	602235	4821303	1972/09 1307	30	FR 0065	35/62/0/1:0	DO		2803939	()	CLAY SAND 0063 SAND 0065
	Γ				 			Γ				CLAY 0019 GREY CLAY 0055 GREY CLAY GRVL
MISSISSAUGA CITY (TR NS 10 001	17 W	602155	4821263	1970/04 4602	6	MN 0067	18/72//:	DO		2803352	()	0067 RED CLAY 0073 RED SHLE 0076
												PRDG 0032 GREY CLAY 0044 GREY CLAY GRVL
MISSISSAUGA CITY (TR NS 10 001	17 W	602253	4821259	1967/09 4602	66	FR 0080 FR	21/111/2/2:0	DO		2802701	()	0068 RED CLAY 0073 RED SHLE 0111
												BRWN LOAM 0002 BRWN CLAY STNS 0012 GREY
MISSISSAUGA CITY (TR NS 10 002	17 W	601675	4821703	1970/03 3903	2 1	FR 0063	29/94/11/0:2	JNU	0095 2	2803412	()	CLAY STNS SILT 0063 GREY CLAY SILT 0073 RED
	Γ							Γ		!		BRWN LOAM CLAY 0018 GREY CLAY 0050 RED
MISSISSAUGA CITY (TR NS 10 002	17 W	601732	4821709	1964/11 1307	30	FR 0076	40//0/:	DO		2802702	()	CLAY 0068 RED SHLE 0076
												BRWN LOAM 0018 GREY CLAY STNS 0050 SAND
MISSISSAUGA CITY (TR NS 10 002	17 W	601735	4821683	1976/08 1307	30	FR 0050	52/72/1/1:0	DO		2805029	()	0052 RED CLAY 0074 RED SHLE 0074