

FUNCTIONAL SERVICING REPORT

PROPOSED HIGH-RISE CONDOMINIUM

420 LAKESHORE ROAD EAST PLAZA CORP.

FILE NO. 220-M44

MAY 27, 2020

3464 Semenyk Court, Suite 100 Mississauga, Ontario L5C 4P8 (905) 276-5100 info@skiraconsult.ca

TABLE OF CONTENTS

Page No.

1.0	Introduction	3
2.0	Site Area Information	4
3.0	Site Access	5
4.0	Storm Drainage System	6
5.0	Sanitary Drainage System	9
6.0	Watermain Distribution System	10
7.0	Summary	12

LIST OF FIGURES

Figure No.

1	-	Key Plan
2	-	Existing Storm Sewer Drainage Plan
220-M44-1	-	Concept Site Servicing Plan
220-M44-2	-	Concept Site Grading Plan
220-M44-3	-	Composite Utility Plan

LIST OF APPENDICES

Appendix A	-	Storm Sewer Drainage Records & Storm Sewer Design Chart
Appendix B	-	Stormceptor Design
Appendix C	-	Sanitary Sewer Capital Work Information
Appendix D	-	Water Supply Test

1.0 INTRODUCTION

Skira & Associates Ltd. (Skira) was retained by Plaza Corp. to prepare a Functional Servicing Report (FSR) in support of an Official Plan Amendment and Zoning Bylaw Amendment for a proposed 12-storey high-rise condominium consisting of 300.0m² retail commercial space and 195 condominium units in the City of Mississauga, Regional Municipality of Peel.

The purpose of this report is to define the existing municipal services to the subject parcel of land and the proposed servicing details in support of the proposed development.

It is intended that this FSR will result in an 'approval in principle' of the design proposal by the City of Mississauga, Regional Municipality of Peel and any other relevant authorities. Detailed design will be provided during the Site Plan Application process.

2.0 SITE AREA INFORMATION

The subject property is located on 420 Lakeshore Road East and covers an area of approx. 0.375 Ha. It is legally known as Lot 12, Conc. 3, South of Dundas Street in the City of Mississauga, Regional Municipality of Peel.

The site is bounded by Lakeshore Road East on the north, Enola Avenue on the east, existing residential on the south, and existing commercial plaza to the west. *Refer to Figure 1 – Key Plan.*

Currently, the property is developed with a building and at-grade parking, former Beer Store. The existing building and parking surface is scheduled for demolition prior to the start of construction.

The majority of the site will be developed with a high-rise condominium building, including 2 levels of underground garage.

3.0 SITE ACCESS

The subject site is located on the southwest corner of Lakeshore Road East and Enola Avenue, east of Hurontario Street. Currently, there are accesses for the existing building from Lakeshore Road East and Enola Avenue.

All existing accesses will be removed. Access to the proposed high-rise condominium will be from Enola Avenue.

Enola Avenue is currently constructed as municipal 20m ROW with 8.0m pavement.

Existing boulevards will be reconstructed at minimum 2.00% slope to the satisfaction of City of Mississauga on both Lakeshore Road and Enola Avenue.

The existing road network will provide access to arterial roads, being Hurontario Street, Lakeshore Road, and Cawthra Road and to nearby major highways, Highways 427, and Queen Elizabeth Way.

This existing road pattern will provide good access to nearby commercial districts, employment districts, schools, municipal offices, community centres, and parks.

4.0 STORM DRAINAGE SYSTEM

According to available records, there is an existing 525mm dia. storm sewer running south on Enola Avenue. The existing system discharges directly to Cumberland Creek at the bottom of Enola Avenue.

The subject property is within the Cooksville Creek sub-watershed; however, the site will contribute and drains directly to Cumberland Creek sub-watershed. Accordingly, on-site quantity stormwater management will not be required.

4.1 **Existing Drainage Conditions**

Currently the land is developed with an existing building, parking surface area, and landscaped area. Existing runoff coefficient C = 0.84. The site has an existing 250mm dia. storm connection at the south corner of the property, connecting to the existing 525mm dia. storm sewer on Enola Avenue. This connection will be abandoned.

The land is relatively flat in topography, with gentle sloping from north to south, with a grade differential of approx. 2.0m. The entire site sheet flows to the existing right-of-way on Enola Avenue. Enola Avenue is graded with a gentle slope south from Lakeshore Road East southerly, and storm runoff is captured by the existing storm sewer system on Enola Avenue.

Total Site Area	$=3,750m^{2}$
Development Area	$=3,405m^{2}$

The pre-development site statistics and associated runoff coefficients are summarised as follows:

Area Description	Area	Runoff Coefficient						
Paved Building/Roof Landscape	2,910 0.09 460 0.95 380 0.25							
Total Development/Site:	3,750	0.84						

Existing storm sewer has been designed for 10-ye storm intensity. *Refer to Figure 2 – Storm Sewer Drainage Plan.*

The pre-development flow for a 10-yr storm event is as follows:

Q = 0.0028 CIA Where, A = area in hectares, 0.375 Ha C = runoff coefficient, 0.84 T_c = 15.00 min I_{10-yr} = 99.18

 $Q_{10-yr} = 0.087 m^3/s$

Therefore, the maximum allowable discharge from the site is 0.087m³/s.

Existing 525mm storm sewer on Enola Avenue has capacity to accept drainage from subject property. *See Appendix A for design sheets.*

4.2 Post-Development Storm Drainage Servicing

The proposed high-rise condominium will be provided with a new 300mm dia. storm connection located at the southeast corner of the site and will outlet to the proposed storm sewer on Enola Avenue. The connection will provide sufficient depth and capacity for pose-development stormwater runoff.

The storm sewer on Enola Avenue will be extended to capture drainage from the site and approx. 60m of the road; a 300mm dia. storm sewer is proposed. Enola Avenue and the property were previously designed to discharge to the same storm sewer system. There are no existing drainage records for the area and confirmation of capacity in the existing storm sewer system on Enola Avenue, downstream of the development.

The proposed high-rise condominium will cover majority of the site; most of the site will be covered by rooftops and amenity terraces.

As previously noted, no stormwater management quantity control is required for this area.

4.3 <u>Stormwater Runoff Volume Reduction</u>

The City of Mississauga requires stormwater runoff volume reduction, where the first 5mm of runoff shall be retained on-site and managed by way of infiltration, evapotranspiration, or reuse.

As such, the required volume to be retained on-site is:

$$V_{5mm} = 3,750m^2 \ge 0.005m$$

= 18.75m³ per rainfall

As majority of the site area is occupied by the proposed high-rise condominium and underground parking, infiltration is not feasible for this project. Therefore, water evapotranspiration and reuse will be the primary mechanisms utilized to address water balance.

The stormwater tank will be extended beneath the proposed outlet to provide storage of the required 5mm volume. As previously mentioned, approximately $400m^2$ of green roof is proposed to be installed on the 2^{nd} , 3^{rd} , 7^{th} or 12^{th} floor, where currently amenity terraces are proposed. The reuse strategy for this site will be to utilize the stored water from the storage tank for irrigation.

Detailed design of the green roof and irrigation/grey water reuse systems will be provided at the Site Plan Application stage. Mechanical design for the irrigation system will ensure that the water temporarily stored in the sump storage of the tank will be emptied before switching to the potable water.

4.4 Quality Control

The City of Mississauga requires a minimum treatment of 80% total suspended solids (TSS) removal for the protection of waterways. On-site best management practice (BMP) is required to ensure the overall water quality from the proposed development meets this minimum.

As previously mentioned, majority of the site is covered by rooftops, green roofs, and amenity terraces. Surface vehicle parking at grade is limited and some of the driveway will be covered by the building rooftops and terraces above. Portion of the surface parking will be provided with permeable surface.

Runoff from the rooftops, green roofs and amenity terraces is generally considered to be clean. Sediment and contaminant generating activities are not expected in high quantities and considered minor outside the roof coverage areas. The minor runoff generated outside the roof coverage areas will be directed to the oil/grit interceptor located at property limit. An STC 1000 structure is proposed. For detail design *see Appendix B*.

5.0 SANITARY DRAINAGE SYSTEM

According to available records, there is an existing 675mm dia. sanitary sewer running south on Enola Avenue and an existing 900mm dia. sanitary sewer running east on Lakeshore Road East.

Based on information obtained from Peel Capital Works, the existing 675mm sanitary sewer on Enola Avenue will be decommissioned and 67.5m of new 250mm sanitary will be constructed. *See Appendix C* for information on connecting to 675mm trunk on the greenway.

Currently, the site has a sanitary connection, which will be disconnected as per Region of Peel standards.

The proposed high-rise condominium will be serviced to the future 250mm dia. sanitary sewer on Enola Avenue. Proposed sanitary manhole and 250mm dia. sanitary connection will be provided to service the development to the sanitary sewer. *Refer to Appendix C*.

The proposed 250mm dia. sanitary sewer has sufficient depth to accept the sanitary flows from the highrise condominium building. The proposed sanitary invert at property line is approx. 76.67m. The proposed lowest finished main floor is approx. 72.85. Therefore, the building main floor and above floors will have gravity sewage flows. The basement and underground parking drains will require sanitary ejection pumps.

Refer to Dwg. 220-M44-1 – Concept Site Servicing Plan

Sanitary Flow Calculation

 $\frac{\text{Residential}}{195 \text{ units x } 2.54 \text{ PPU} = 495.3 \simeq 496$

<u>Commercial</u> 0.0300 floor hectares x 50p/hectares = 1.5 population ~ 2

Total Population	= 496 + 2 = 498
Peak Factor	= $1 + \underline{14}$ Where, P = population in thousands 4 + P ^{0.5}
	$= 1 + 144 + 0.498^{0.5}$
	= 1 + 2.97 = 3.97
Expected Peak Flow Rate	= 302.8 x 498 x 3.97 = 598,653 L/day = 6.93 L/s

6.0 WATERMAIN DISTRIBUTION SYSTEM

According to available records, there is an existing 300mm dia. watermain on Lakeshore Road East and an existing 150mm dia. watermain on Enola Avenue.

Currently, the site has a water service connection, which will be disconnected as per Region of Peel standards.

The existing fire hydrants on Lakeshore Road East and Enola Avenue will be utilised to provide external fire coverage for the building.

The proposed high-rise condominium will be serviced to the existing 300mm dia. watermain located on Lakeshore Road East. Proposed 200mm dia. watermain connection will be constructed for fire and 100mm dia. water service for domestic use for the proposed condominium.

Refer to Dwg. No. 220-M44-1 – Concept Site Servicing Plan

Water Demand Calculations

<u>Residential</u> Proposed Unit (Residential 496 population, as per previous calculation)

Site Average Flow	= 280 Litres/capita/day = 280 x 496 = 138,880 L/day = 1.60 L/s
Total Expected Peak Flow Rate	= Site Average Flow x Peak Hour Factor = 138,880 x 3.0 = 416,640 L/day = 4.80 L/s
Total Expected Max. Daily Flow	= Site Average Flow x Max. Day Factor = 138,880 x 2.0 = 277,760 L/day = 3.20 L/s
<u>Commercial</u> Population = 2 persons, as previously c	alculated
Site Average Flow	= 300 Litres/capita/day = 300 x 2 = 600 L/day = 0.007 L/s
Total Expected Peak Flow Rate	= Site Average Flow x Peak Hour Factor = 600 x 3.0 = 1,800 L/day = 0.02 L/s
Total Expected Max. Daily Flow	= Site Average Flow x Max. Day Factor = 600 x 1.4 = 840 L/day = 0.01 L/s

Based on *Fire Underwriters Survey 1999*, the fire flow is calculated on the area of the largest floor + 25% of 2 immediately adjoining floors using the following formula:

 $F = 220 \text{ CVA} \qquad \text{Where, C} = \text{coefficient for fire resistance construction} = 0.60$ $A = \text{area} = 5,340\text{m}^2$ F = fire flow in L.min

F = 220 x 0.60 x $\sqrt{5,340}$ = 9,645 L/min \approx 10,000 L/min

A decrease can be applied for occupancy having a low contents fire hazard:

F = 10,000 L/min - 25% = 7,500 L/min

The building is sprinklered, therefore a 30% reduction can be applied:

F = 7,500 L/min x 30% = 2,250 L/min

Therefore, the fire flow demand is:

F = 7,500 - 2,250 = 5,250 L/min	0 ≈ 6,000 L/min = 100.00 L/s
Max. Peak Flow	= 4.80 (res.) + 0.02 (com.) + 100.00 (fire) = 104.82 L/s
Max. Daily Flow	= 3.20 (res.) + 0.01 (com.) = 3.21 L/s

Due to COVID-19 State of Emergency in Ontario, the fire flow test cannot be obtained at present time and will be completed when order is lifted.

Refer to Appendix D.

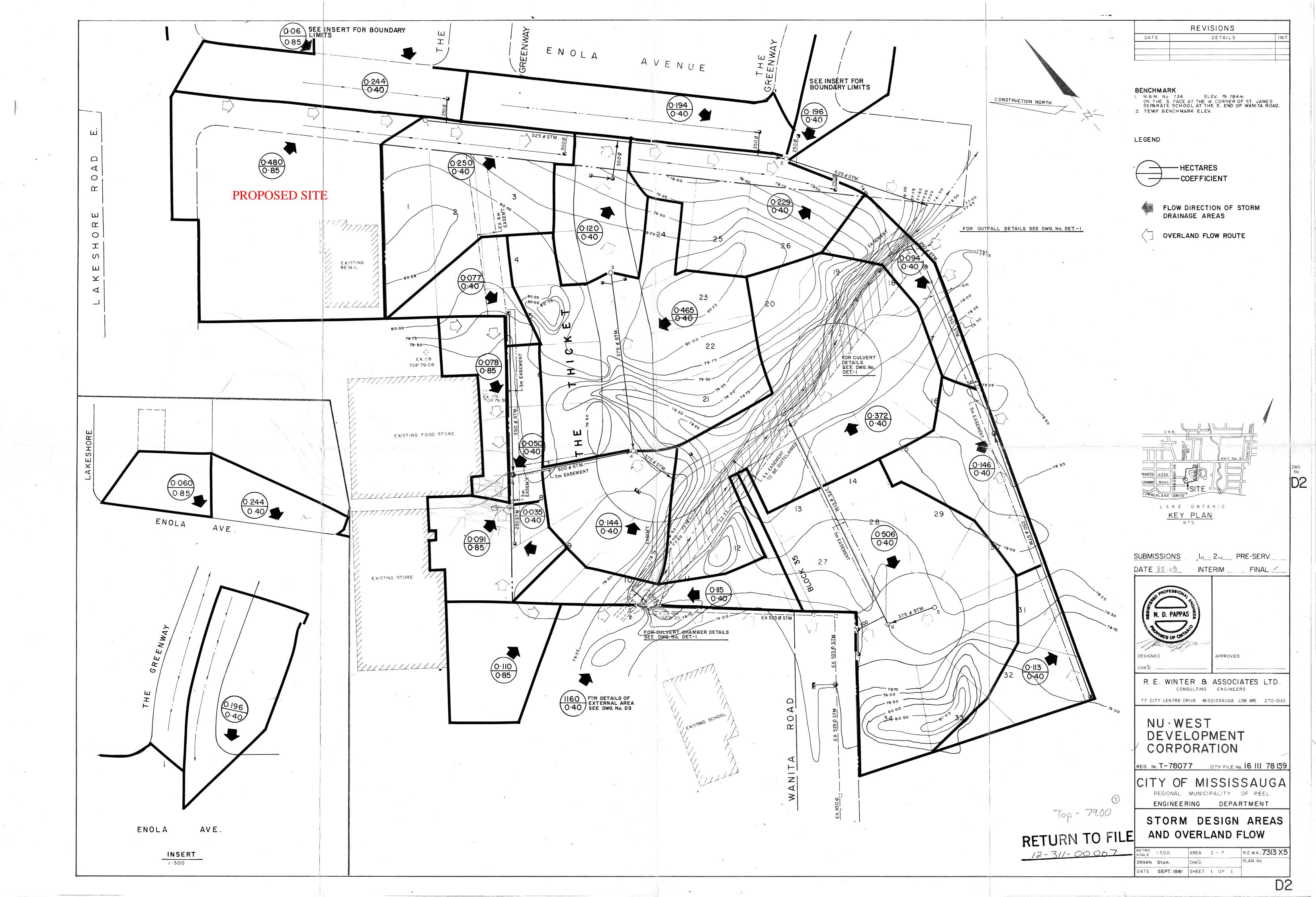
7.0 <u>SUMMARY</u>

The findings and recommendations were prepared in accordance with accepted professional engineering principles and practices and reveal that the proposed high-rise condominium can be fully serviced to the available services on Lakeshore Road East and Enola Avenue. The findings of this report are global and are related to the servicing functionality of this application. These findings by means are final and are not to replace the detail review of this application which shall take place upon submission of Site Plan or Servicing Agreement.

The conclusion is as follows:

- Storm sewer outlet will be to the existing 525mm dia. storm sewer on Enola Avenue.
- Future capital works 250mm dia. sanitary sewer will be available on Enola Avenue.
- A 300mm dia. watermain is available on Lakeshore Road East with fire protection from Enola Avenue.

We respectively submit this report with intention of obtaining approval in principal the recommendation.


Yours truly,	PROFESSIONAL
SKIRA & ASSOCIATES LTD.	PROFESSIONAL FURCE
Michael Jozwik, P. Eng. MJ:ak	May 27, 2020 POLINCE OF ONTARIO

NOTE: <u>Limitation of Report</u>

This report was prepared by **Skira & Associates Ltd.** for **Plaza Corp.** for review and approval by government agencies only.

In light of the information available at the time of preparation of this report, any use by a *Third Party* of this report are solely the responsibility of such *Third Party* and *Skira & Associates Ltd.* accepts no responsibility for any damages, if any, suffered by the *Third Party*.

Appendix A Storm Sewer Drainage Records & Storm Sewer Design Chart

SUBORVISION HU-WEST REVELOPMENT CORP. LTP

JUSULTANT _RE.WINTER & ASSOCIATES LTD _

CITY OF MISSISSAUGA

PPOISCT Nº 731

STORM SEWER DESIGN CHART

PROJECT Nº ______ 7313 × 5 ____ 0.013

DESIGNED BY ____ DATE ____ DATE ____

SHEET NS ----- OF ------

•				7.		7				
DRAINAGE	AREA	PLAN	Nº	 4	_	-	-	-	 -	

<u>.</u>	FROM	TO	AREA	RUNOFF		ACCUM	T. OF C.	C. INTENSIT	EXPECTED	INVERT	INVERT ELEVATION			GRADIENT	PIPE	CAPACITY	VELOCITY	TIME	DROP
LOCATION	м н.	M. H.	(he.)	COEFF	A t R	ALR	(minutes)	(mm./hr)	FLOW (c.m.s.)	UPPER M.H.	LOWER M.H.	FALL (meters)	LENGTH (meters)	1	SIZE (mm)	(c m.s)	(m. p. s.)	OF FLOW (minutes)	
ENOLA AVE	CB.	-	0.480	0.85	0.408	-													
	(LOT3) ROAD	T	0.250	0.40	0.100	0.508	15.0	100	0.141	17.500	77.38	0.12	6.0	2.00	300	0.145	2.00	0.05	
	CB	5250	0.120	0.40	0.048	0.048	15.0	100	0.013	78.000	77.88	0:12	12.0	1.00	250	0.060	1.20	0.20	
	(EX:LoT)	5250	0.244	0.40	0.098	0.149	15.0	100	0.042	77.600	77.525	0.075	7.5	1.00	250	0.060	1.20	0.08	
	(EX.LOT)	5250	0.194	0.40	0.077	0.077	15.0	100	0.022	77.075	77.000	0.075	7.5	1.00	250	0.060	1.20	008	
	1	2	.0.	0	0	0.782	15.2	99	0.21	77.200	76.780	0.420	120	0.35	525	0.26	1.20	1.6	0.03
	(LOT 26)	525 p	0.229	040	0.092	0.092	15.0	100	0.026	76.940	79.860	0.080	4.0	2.00	250	0.085	1.7.0	0.04	
	(BX-LOT)	525\$	0.196	0.40	0.078	0.078	15.0	100	0.022	77.045	76950	0.095	9.5	1:00	250	0.060	1.20	0.13	
	2	CHANNEL	0	0	0	0.952	.16.8	92	0.246	77.750	76.582	0.168	48	0.35	525	0.26	1.20	0.6	
HE THICKET	3	4	0.465	0.40	0.186	0.186	15.0	100	0.052	77.710	77.530	0.180	60	0.30	375	0.095	0.88	1.1	0:03
	K		•												-			<	r.v
		\mathcal{P}	0.077	0.40	0.031													• • •	
	LOTIG	CBMH	0.078	0.85	0.066	0.097	15.0	100	0.03	77.920	77.655	0.255	53	050	250	0.042	0.86	0.8	0.06
	LOT B	CBMH LOT 8	0.035	0.40	0.014	0.014	15.0	100	0.04	77.770	77.655	0.115	23	0.05	250	0.042	0.86	04	0.061
	CBMH LOT 8	4	0.050	0.40	0.020	0.208	158	95	0.055	77.590	77.370	0.220	40	0.55		0.075	1.02	0.6	
P	14	CONC.	0.144	0.40	0.058	0.452	16.4	94	0.118	77.280	77.195	0.085				0.130	1.13	0.2	0.0 4
	V														2/2				· ·
			0.110	0.85	0.094														
	CB	CONC. CULV	0.115	0.40	0.046	0,140,	15.0	100	0.039					1.00	250	0.06	1.20		
	10110	CULV		0.40	0.070									1.00	120	0.06	1.20		
																	Q.		
VANITA ROAD.	5		6.506	0.40	0.202	0.202	15.0	10.0	0.056	77.360	77.310	0.050	10		276				
VANULA KOAU		CONC.			0.202	0.202	15.3	98		77,275		0.228			375		0.90	0.3	0.02
	6	CULV.	0	0	0	01202	15/2	48	0.056	11.212	77.041	0,228	10	0.30	212	0.100	0.90	1.3	
													D	ET	HR	NT	0 FI	LE	
																	The second s		1
	- ·							1						12	- 5	11-1	0000		

Appendix B Stormceptor Design

Stormceptor Sizing Detailed Report PCSWMM for Stormceptor

Project Information

Date	6/1/2020
Project Name	Enola Condo
Project Number	220-M44
Location	Mississauga

Stormwater Quality Objective

This report outlines how Stormceptor System can achieve a defined water quality objective through the removal of total suspended solids (TSS). Attached to this report is the Stormceptor Sizing Summary.

Stormceptor System Recommendation

The Stormceptor System model STC 750 achieves the water quality objective removing 86% TSS for a Fine (organics, silts and sand) particle size distribution.

The Stormceptor System

The Stormceptor oil and sediment separator is sized to treat stormwater runoff by removing pollutants through gravity separation and flotation. Stormceptor's patented design generates positive TSS removal for all rainfall events, including large storms. Significant levels of pollutants such as heavy metals, free oils and nutrients are prevented from entering natural water resources and the re-suspension of previously captured sediment (scour) does not occur.

Stormceptor provides a high level of TSS removal for small frequent storm events that represent the majority of annual rainfall volume and pollutant load. Positive treatment continues for large infrequent events, however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load.

Stormceptor is the only oil and sediment separator on the market sized to remove TSS for a wide range of particle sizes, including fine sediments (clays and silts), that are often overlooked in the design of other stormwater treatment devices.

Small storms dominate hydrologic activity, US EPA reports

"Early efforts in stormwater management focused on flood events ranging from the 2-yr to the 100-yr storm. Increasingly stormwater professionals have come to realize that small storms (i.e. < 1 in. rainfall) dominate watershed hydrologic parameters typically associated with water quality management issues and BMP design. These small storms are responsible for most annual urban runoff and groundwater recharge. Likewise, with the exception of eroded sediment, they are responsible for most pollutant washoff from urban surfaces. Therefore, the small storms are of most concern for the stormwater management objectives of ground water recharge, water quality resource protection and thermal impacts control."

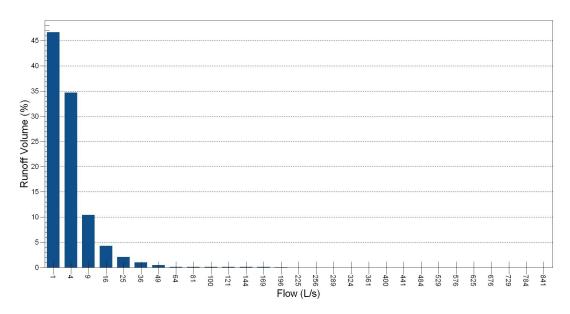
"Most rainfall events are much smaller than design storms used for urban drainage models. In any given area, most frequently recurrent rainfall events are small (less than 1 in. of daily rainfall)."

"Continuous simulation offers possibilities for designing and managing BMPs on an individual site-by-site basis that are not provided by other widely used simpler analysis methods. Therefore its application and use should be encouraged."

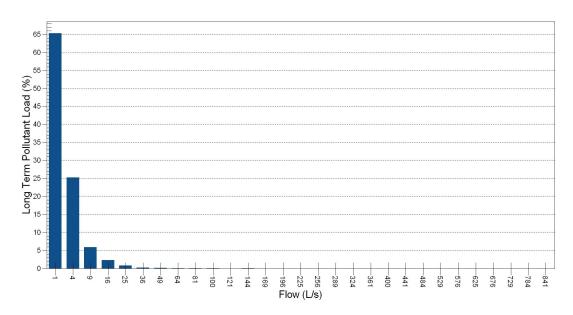
– US EPA Stormwater Best Management Practice Design Guide, Volume 1 – General Considerations, 2004

Design Methodology

Each Stormceptor system is sized using PCSWMM for Stormceptor, a continuous simulation model based on US EPA SWMM. The program calculates hydrology from up-to-date local historical rainfall data and specified site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to achieve a defined water quality objective.


The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load. Stormceptor's unit process for TSS removal is settling. The settling model calculates TSS removal by analyzing (summary of analysis presented in Appendix 2):

- Site parameters
- Continuous historical rainfall, including duration, distribution, peaks (Figure 1)
- Interevent periods
- Particle size distribution
- Particle settling velocities (Stokes Law, corrected for drag)
- TSS load (Figure 2)
- Detention time of the system


The Stormceptor System maintains continuous positive TSS removal for all influent flow rates. Figure 3 illustrates the continuous treatment by Stormceptor throughout the full range of storm events analyzed. It is clear that large events do not significantly impact the average annual TSS removal. There is no decline in cumulative TSS removal, indicating scour does not occur as the flow rate increases.

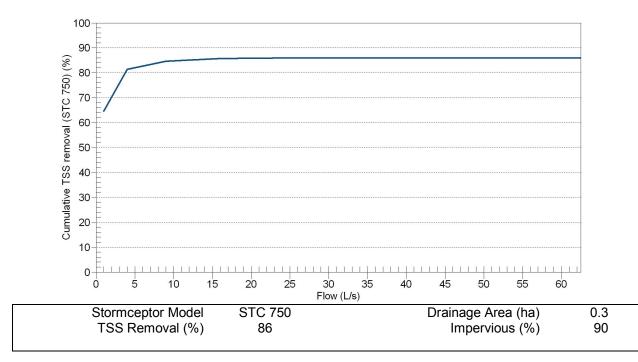

Figure 1. Runoff Volume by Flow Rate for TORONTO CENTRAL – ON 100, 1982 to 1999 for 0.3 ha, 90% impervious. Small frequent storm events represent the majority of annual rainfall volume. Large infrequent events have little impact on the average annual TSS removal, as they represent a small percentage of the total annual volume of runoff.

Figure 2. Long Term Pollutant Load by Flow Rate for TORONTO CENTRAL – 100, 1982 to 1999 for **0.3 ha, 90% impervious.** The majority of the annual pollutant load is transported by small frequent storm events. Conversely, large infrequent events carry an insignificant percentage of the total annual pollutant load.

Figure 3. Cumulative TSS Removal by Flow Rate for TORONTO CENTRAL – 100, 1982 to 1999. Stormceptor continuously removes TSS throughout the full range of storm events analyzed. Note that large events do not significantly impact the average annual TSS removal. Therefore no decline in cumulative TSS removal indicates scour does not occur as the flow rate increases.

Appendix 1 Stormceptor Design Summary

Project Information

Date	6/1/2020
Project Name	Enola Condo
Project Number	220-M44
Location	Mississauga

Designer Information

Company Skira & Associates Ltd Contact Michael Jozwik

Notes

N/A

Drainage Area

Total Area (ha)	0.3
Imperviousness (%)	90

The Stormceptor System model STC 750 achieves the water quality objective removing 86% TSS for a Fine (organics, silts and sand) particle size distribution.

Rainfall

Name	TORONTO CENTRAL
State	ON
ID	100
Years of Records	1982 to 1999
Latitude	45°30'N
Longitude	90°30'W

Water Quality Objective

TSS Removal (%)	80

Upstream Storage

Storage	Discharge
Storage (ha-m)	(L/s)
0	0

Stormceptor Sizing Summary

Stormceptor Model	TSS Removal %				
STC 300	78				
STC 750	86				
STC 1000	86				
STC 1500	87				
STC 2000	90				
STC 3000	91				
STC 4000	93				
STC 5000	93				
STC 6000	94				
STC 9000	96				
STC 10000	96				
STC 14000	97				

Particle Size Distribution

Removing silt particles from runoff ensures that the majority of the pollutants, such as hydrocarbons and heavy metals that adhere to fine particles, are not discharged into our natural water courses. The table below lists the particle size distribution used to define the annual TSS removal.

Fine (organics, silts and sand)								
Particle Size	Distribution	Specific Gravity	Settling Velocity		Particle Size	Distribution	Specific Gravity	Settling Velocity
μm	%		m/s		μm	%	-	m/s
20 60 150 400 2000	20 20 20 20 20	1.3 1.8 2.2 2.65 2.65	0.0004 0.0016 0.0108 0.0647 0.2870					

Stormceptor Design Notes

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor version 1.0
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal.
- Only the STC 300 is adaptable to function with a catch basin inlet and/or inline pipes.
- Only the Stormceptor models STC 750 to STC 6000 may accommodate multiple inlet pipes.
- Inlet and outlet invert elevation differences are as follows:

Inlet and Outlet Pipe Invert Elevations Differences

Inlet Pipe Configuration	STC 300	STC 750 to STC 6000	STC 9000 to STC 14000
Single inlet pipe	75 mm	25 mm	75 mm
Multiple inlet pipes	75 mm	75 mm	Only one inlet pipe.

- Design estimates are based on stable site conditions only, after construction is completed.
- Design estimates assume that the storm drain is not submerged during zero flows. For submerged applications, please contact your local Stormceptor representative.
- Design estimates may be modified for specific spills controls. Please contact your local Stormceptor representative for further assistance.
- For pricing inquiries or assistance, please contact Hanson Pipe & Precast, 1-888-888-3222.

Appendix 2 **Summary of Design Assumptions**

SITE DETAILS

Site Drainage Area

0.3	Imperviousness (%)	90
	Infiltration Parameters	
110	Horton's equation is used to estimate	infiltration
2	Max. Infiltration Rate (mm/h)	61.98
0.508	Min. Infiltration Rate (mm/h)	10.16
5.08	Decay Rate (s ⁻¹)	0.00055
0.015	Regeneration Rate (s ⁻¹)	0.01
Pervious Manning's n 0.25		
	Evaporation	
	Daily Evaporation Rate (mm/day)	2.54
Sediment build-up reduces the storage volume for sedimentation. Frequency of maintenance is assumed for TSS removal calculations.		
	110 2 0.508 5.08 0.015 0.25	Infiltration Parameters 110 Horton's equation is used to estimate 2 Max. Infiltration Rate (mm/h) 0.508 Min. Infiltration Rate (mm/h) 5.08 Decay Rate (s ⁻¹) 0.015 Regeneration Rate (s ⁻¹) 0.25 Evaporation Daily Evaporation Rate (mm/day)

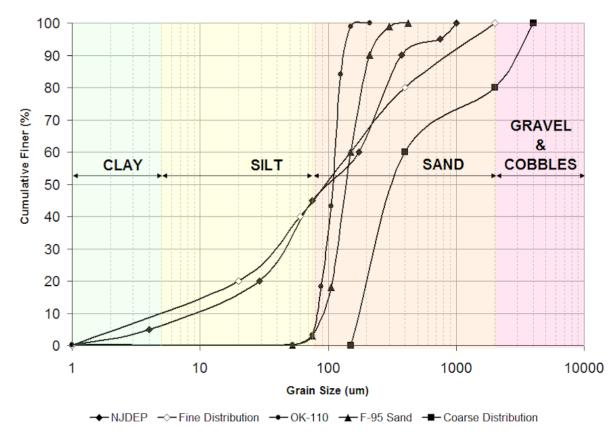
Maintenance Frequency (months) 12

Dry Weather Flow (L/s)	No
	110

Upstream Attenuation

Stage-storage and stage-discharge relationship used to model attenuation upstream of the Stormceptor System is identified in the table below.

0 0	Storage ha-m	Discharge L/s
	0	0



PARTICLE SIZE DISTRIBUTION

Particle Size Distribution

Removing fine particles from runoff ensures the majority of pollutants, such as heavy metals, hydrocarbons, free oils and nutrients are not discharged into natural water resources. The table below identifies the particle size distribution selected to define TSS removal for the design of the Stormceptor System.

			Fine (organics	5, S	silts and sand)			
Particle Size	Distribution	Specific Gravity	Settling Velocity		Particle Size	Distribution	Specific Gravity	Settling Velocity
μm	%	-	m/s		μm	%	-	m/s
20 60 150 400 2000	20 20 20 20 20	1.3 1.8 2.2 2.65 2.65	0.0004 0.0016 0.0108 0.0647 0.2870					

PCSWMM for Stormceptor Grain Size Distributions

Figure 1. PCSWMM for Stormceptor standard design grain size distributions.

TSS LOADING

TSS Loading Parameters

TSS Loading Function

Buildup / Washoff

Parameters

Target Event Mean Concentration (EMC) (mg/L)	125
Exponential Buildup Power	0.4
Exponential Washoff Exponential	0.2

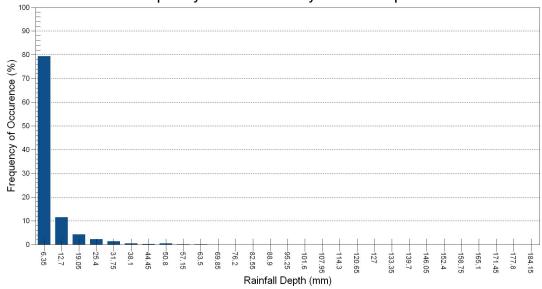
HYDROLOGY ANALYSIS

PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of the Stormceptor System are based on the average annual removal of TSS for the selected site parameters. The Stormceptor System is engineered to capture fine particles (silts and sands) by focusing on average annual runoff volume ensuring positive removal efficiency is maintained during all rainfall events, while preventing the opportunity for negative removal efficiency (scour).

Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section.

Rainfall Station

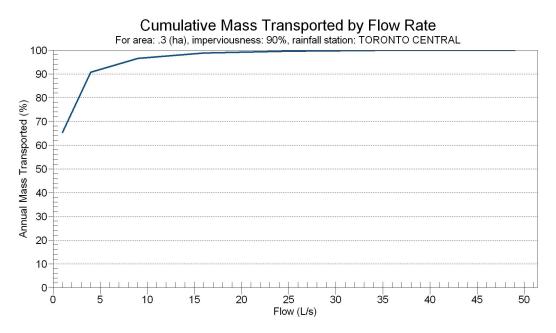
Rainfall Station	TORONTO CE	TORONTO CENTRAL					
Rainfall File Name	ON100.NDC	Total Number of Events	3020				
Latitude	45°30'N	Total Rainfall (mm)	13190.7				
Longitude	90°30'W	Average Annual Rainfall (mm)	732.8				
Elevation (m)	328	Total Evaporation (mm)	1169.0				
Rainfall Period of Record (y)	18	Total Infiltration (mm)	1312.5				
Total Rainfall Period (y)	18	Percentage of Rainfall that is Runoff (%)	81.9				



Rainfall Event Analysis

Rainfall Depth	No. of Events	Percentage of Total Events	Total Volume	Percentage of Annual Volume
mm		%	mm	%
6.35	2398	79.4	3626	27.5
12.70	346	11.5	3182	24.1
19.05	130	4.3	2037	15.4
25.40	66	2.2	1432	10.9
31.75	38	1.3	1075	8.2
38.10	16	0.5	545	4.1
44.45	7	0.2	292	2.2
50.80	13	0.4	611	4.6
57.15	2	0.1	106	0.8
63.50	2	0.1	121	0.9
69.85	0	0.0	0	0.0
76.20	0	0.0	0	0.0
82.55	1	0.0	79	0.6
88.90	1	0.0	85	0.6
95.25	0	0.0	0	0.0
101.60	0	0.0	0	0.0
107.95	0	0.0	0	0.0
114.30	0	0.0	0	0.0
120.65	0	0.0	0	0.0
127.00	0	0.0	0	0.0
133.35	0	0.0	0	0.0
139.70	0	0.0	0	0.0
146.05	0	0.0	0	0.0
152.40	0	0.0	0	0.0
158.75	0	0.0	0	0.0
165.10	0	0.0	0	0.0
171.45	0	0.0	0	0.0
177.80	0	0.0	0	0.0
184.15	0	0.0	0	0.0
190.50	0	0.0	0	0.0
196.85	0	0.0	0	0.0
203.20	0	0.0	0	0.0
209.55	0	0.0	0	0.0
>209.55	0	0.0	0	0.0

Frequency of Occurence by Rainfall Depths



Pollutograph

Flow Rate	Cumulative Mass
L/s	%
1	65.4
4	90.7
9	96.5
16	98.8
25 36	99.6 99.9
30 49	99.9 100.0
49 64	100.0
81	100.0
100	100.0
121	100.0
144	100.0
169	100.0
196	100.0
225	100.0
256	100.0
289	100.0 100.0
324 361	100.0
400	100.0
400	100.0
484	100.0
529	100.0
576	100.0
625	100.0
676	100.0
729	100.0
784	100.0
841 900	100.0 100.0
900	100.0

Appendix C Sanitary Sewer Capital Works Information

Region of Peel Working for you

Scope of Work

Date:	Nov.23, 2017		Ward #	1
	STREET NAME:	ENOLA AVE	AUTHOR:	Mark Knuckle
	Brampton	Caledon	🛛 Mississauga	Tile 0058
Work F	REQUIRED: ABAN	IDON EXISTING SEWER AN	D INSTALL NEW LOCA	L SEWER ON ENOLA AVE
🛛 Rep	lacement	CIPP line	🖂 Othe	r – Abandon existing DN675mm
Coordin	ATION:			
Propos	ermain ed Year: ntract #:	Roads Resur	Year: P	Other roposed Year: Contract #

Proposed Year:	Proposed Year:
Contract #:	Contract #:
PM:	PM:
	NA
	-
	Proposed Year: Contract #:

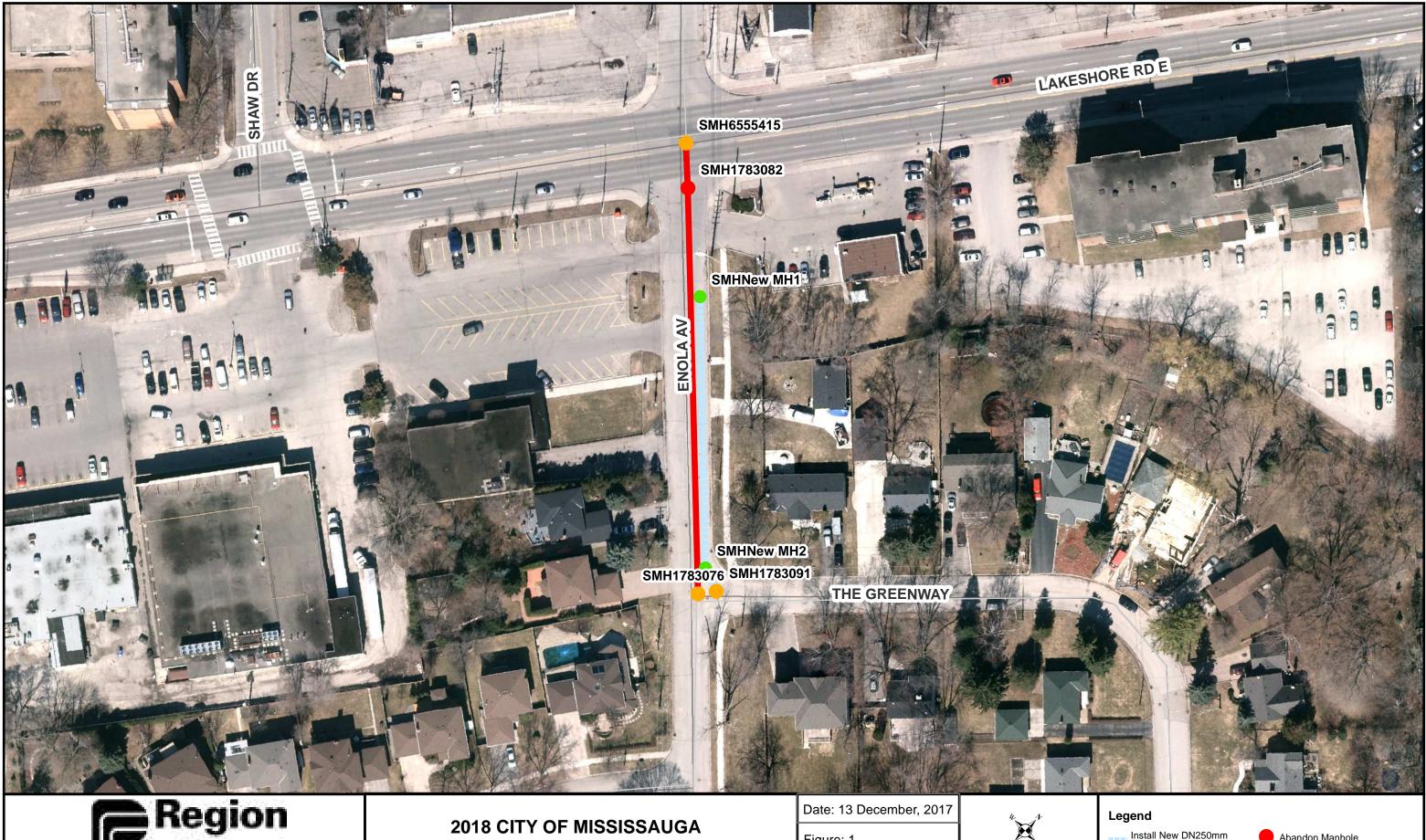
Associated Program(s)
This work is being done due to the redirection of sanitary flows at Lakeshore Rd East and Enola Ave with the new pump station at Beechwood.
Summary of Work:
 Install new DN250mm sanitary sewer on Enola Ave Install 2 new MH chambers Transfer 4 laterals from the old DN675mm sewer to the new one Properly abandon 99m of existing DN675mm sewer and 1 MH chamber (1783082)

Region of Peel Working for you

Scope of Work

Street Name	Enola	Ave	Stre	et Name	Enola Ave	9
From:	Lakes	shore Rd East	To:		The Gree	nway
From SMH #	17830			783082 To SMH # 1783076		
Pipe Size:	675m	m	Dept	th of Pipe:	4m	
Age of Pipe:		led 1962 ears old)	Mate Pipe	erial of	Concrete	
Pipe Length	93.5n	1	-	iber of holes	2	
		f the new sewer and tran ewer and 1 MH chamber MH	·(SMH			
		MH	l Cha	mbers:		
SMH Material: Formed in place			SMH Cond	dition:	fair	
Recommendation: Properly abandon 1783082 Rebuild benching and trough in SMH 1783076			Drop pipe (internal/e		no	
			Later	als:		_
Number of Laterals:		4		Lateral Dia	ameter:	125
Lateral Condi		fair		Recomme	ndation:	Replace all 4 laterals to the property line.
Flows Levels:						
5%						

Region of Peel Working for you


Scope of Work

Street Name	Enola	Ave	Stre	et Name	Enola Ave	9
From:	20m s East	south of Lakeshore Rd To:			The Greenway	
From SMH #		New SMH 1 New SMH 2		o SMH #	New SMF 1783091	12
Pipe Size:	250m	m	Dept	th of Pipe:	To be det design	ermined during detailed
Age of Pipe:	new		Mate Pipe	erial of	PVC	
Pipe Length	58.5 + 8.5 = 67m Final length to be determined during detailed design			iber of holes	2	
few metre's up South/East cor	stream ner of	of the lateral connection Lakeshore and Enola. SMH 1783091	n for th	ne lateral co		on of New SMH 1 will be a r the gas station on the
		MF	l Cha	mbers:		
SMH Material	:	new		SMH Cond	dition:	new
Recommenda	ommendation: N/A			Drop pipe (internal/e		N/A
			Later	als:		
Number of 4 Laterals:			Lateral Dia	ameter:	125mm	
Lateral Condi	tion	fair		Recomme	endation:	Replace all 4 laterals to the property line.
Flows Levels:						
5%						

Other Considerations (e.g. Project description, justification, ward, length of pipe, reason for construction):

Easement/Righ	t of Way		
Easement,	🗌 Yes,	🗌 No	Right of Way
Link to supporting documents			

Supporting Documents:
Sketch of required works
<u>CCTV report</u>
As constructed drawings

Region	
of Peel	
working with you	i.

2018 CITY OF MISSISSAUGA SANITARY SEWER REPLACEMENT PROGRAM **STREET- Enola Avenue**

Date: 13 December, 2017	
Figure: 1	
Drawn By: KA	
Checked By: MK	

Legend

10

Install New DN250mm Diameter Sewer Abandon Existing DN675mm Diameter Sewer

Proposed Rehab Manhole

Abandon Manhole Proposed New Manhole Main Water Course Street Name

Appendix D Water Supply Test