

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT

3575 Kaneff Crescent

Prepared for Kaneff Developments

Project #: 20-632

1st Submission (Zoning) – May 2020

Table of Contents

1. II	NTRODUCTION	1
1.1. 1.2. 1.3.	Subject Site	1
2. G	RADING	3
3. S	TORM SERVICING AND STORMWATER MANAGEMENT	3
3.1. 3.2.		3
3.3.	STORM WATER MANAGEMENT	5
3.	.3.2. Quantity and Quality Control	7
4. S	ANITARY SERVICING	8
4.1. 4.2. 4.3.	EXISTING WASTEWATER INFRASTRUCTURE	8
5. W	VATER DISTRIBUTION	9
6. EI	ROSION AND SEDIMENT CONTROL	10
7. C	ONCLUSION	10

FIGURES AND DRAWINGS

Drawing 1 - Site Servicing Plan

Drawing 2 – Site Grading Plan

Drawing 3 – Demolition and ESC Plan

Drawing 4 – Pre-Development Drainage Plan

Drawing 5 – Post- Development Drainage Plan

Drawing 6 – Sanitary Drainage Plan

Appendices

Appendix A Background Drawings and Information **Appendix B** Storm and SWM calculations and PC SWMM Output

Page i

1. INTRODUCTION

1.1. Background

Urbantech has been retained to prepare a Functional Servicing Report / Stormwater Management Report in support of an official plan and zoning by-law amendment application for 3575 Kaneff Crescent (hereafter referred to as the "subject lands" or "site"). The site is located at southeast corner of Mississauga Valley Drive and Kaneff Crescent in the City of Mississauga. The legal description of this property is Blocks 8, 9 and 10 (Plan 43R-4627).

Refer to **Drawing 1** for the **Site Location Plan.**

This report reviews offsite servicing capacities and provides functional servicing design and stormwater management information for the proposed development. The proposed site grading, site servicing and stormwater management designs are in accordance with accepted engineering practices, as well as, both City of Mississauga and Region of Peel standards and specifications.

1.2. Subject Site

The site is approximately 0.27 ha in size and is currently occupied by an existing parking lot space. The site is bounded by Mississauga Valley Boulevard to the north, Obelisk Way to the south, Kaneff Crescent to the east and Elm Drive to the west. The site is in the jurisdiction of the Credit Valley Conservation Authority and is within the Cooksville Creek watershed.

1.3. Proposed Development

The proposed works include redeveloping the subject lands with a 29 storey, 282 unit residential development with underground parking areas and associated water, storm and sanitary servicing. Vehicle access to the building, loading bay and underground parking is proposed as a way one access from Obelisk Way to Kaneff Crescent.

2. GRADING

The future grades required to service the site will generally be influenced by boundary conditions and matching existing grades on the north, south, east and west sides of the site. In addition, the site grading design will take into consideration the following requirements and constraints:

- Conform to City of Mississauga's design criteria.
- Provide overland flow conveyance for major storm conditions.
- Reduce or eliminate the need for retaining walls.
- Provide suitable cover on proposed servicing.
- Achieve stormwater management and environmental objectives required for the site.

A geotechnical investigation was not available at this time. Geotechnical recommendations will be added once the report is available.

Swales are proposed around the perimeter of the site to ensure the first 5mm of rainfall is captured on-site. The site and swale grading have been designed to match the existing perimeter grades to minimize disturbance to the existing boundaries. Please refer to **Drawing 2** for **Grading Plan**.

3. STORM SERVICING AND STORMWATER MANAGEMENT

3.1. Existing Storm Servicing

City of Mississauga storm sewers are sized for the 10-year storm event. Underground services on Elm Drive consist of a trunk storm sewer (2550mm) which conveys flow east to Cooksville Creek. Flows within the site are captured at one internal low point via a double catch basin inlet. Flows are then conveyed to a 300mm diameter storm sewer that connects to a 375mm storm sewer service connection within the ROW before finally connecting to the Elm Drive Trunk Sewer. Existing landscaped area around site perimeter currently runs off uncontrolled to the street.

The existing 25-year and 100-year storm design sheets are included in **Appendix A.** The sheet was provided by the City of Mississauga along with the image of GIS storm sewer information. Based on the storm sewer information this site is a part of a large drainage area that discharges to what is referred to as the Square One Storm Trunk drainage area to Cooksville Creek. Refer to **Drawing 4** for the **Pre- Development Drainage Plan** for the existing site drainage area details.

Table 1: Existing Area Breakdown and Runoff Coefficients

	Drainage Area (m²)	Runoff Coefficient C	Outlet Location
Parking Lot Paved Area	1348	0.90	Ex STM Sewer Connection
Grass	552	0.25	Ex STM Sewer Connection
Overall Parking Lot Site	1900	0.70	Ex STM Sewer Connection
Grassed area to ROW	800	0.25	Uncontrolled Runoff to ROW
Total	2700		

3.2. Proposed Storm Servicing

The storm drainage concept for the site has been designed to maintain flows and contributing drainage areas to the existing outlets on the site as described in Section 3.1. The release rate to the municipal storm system from the existing development is based on the 2-year peak flow rate, applying the existing conditions' runoff coefficient for the area draining to the minor system. This was found to be 40 L/s. Under proposed conditions, flows from the subject lands will be captured at low points within the site and conveyed to the stormwater holding tank within underground parking level 1, then through the underground parking lot into EX. MH11. The existing structures within the site will be removed.

A weighted runoff coefficient of 0.77 was used to calculate proposed flows. Refer to **Drawing 5 Post - Development Drainage Plan** for the proposed site for drainage area details.

Table 2: Proposed Area breakdown and runoff coefficient

	Drainage Area (m²)	Runoff Coefficient C	Outlet Location
Impervious Rooftop	1518	0.90	Ex STM Sewer Connection
Swales Area	383	0.25	Ex STM Sewer Connection
Impervious Surfaces (includes hard landscaping area)	741	0.90	Ex STM Sewer Connection
Overall Site	2600	0.77	Ex STM Sewer Connection
Walkways	82	0.90	Uncontrolled Runoff to Street

The existing condition and post-development flows from the subject site are shown in Table 3.

Table 3: Existing and Proposed Conditions flows

Outlet Point	Drainage Area (ha)	Runoff Coefficient	Description	Existing (Flo L _j Return Per	ws 's
Existing Condition	0.19	0.70	Conveyed to existing STM network via CB's	40 (target for post- development conditions)	110
Existing Condition	0.08	0.25	Drains to street uncontrolled	10	50
Post Development	0.26	0.69	Drains to low points within the site and outlets into EX. MH 49	60	160
Post Development	0.008	0.9	Drains to street uncontrolled	2	6

^{*} Per City of Mississauga guidelines, a 1.25 adjustment factor is incorporated in calculating the 100-year flow

As mentioned in **Section 1.2** the site is located within the Cooksville Creek and City of Mississauga has standards in place where the post-development flow has to be controlled to the 2-year predevelopment rates. Therefore, a PC SWMM model was developed to determine the flows for the existing and proposed site conditions. The 2-year and 100-year design storm event flows were calculated by running the Chicago 4-hour storm, using the rainfall intensity equation: I (mm / hr) = A / $(T+B)^{c}$, where T is the Time of Concentration in minutes. The values for the A, B and C for the storms were obtained from the latest Engineering Design Criteria from the City of Mississauga.

Under existing conditions, the 375mm diameter storm sewer downstream of EX. MH11 with a slope of 0.67% has been modelled in PC SWMM and from the model the pipe has capacity to convey the uncontrolled 100-year storm from the site. Controls will be however put in place by having a stormwater tank that will control flows to pre-development 2-year flow of 40 L/s.

The PC SWMM model plan for existing and proposed site development is provided in **Appendix B**. **Drawing 1** - **Site Servicing Plan** shows details on proposed service connections.

3.3. Storm Water Management

3.3.1. Water balance and LID Measures

In order to meet the design criteria described in the T&W Developments Requirements Manual, the first 5 mm of runoff should be retained on-site. The required volume was established to determine the runoff and infiltration volume under post-development conditions with mitigation measures.

To determine the volume of rainfall that is to be retained on-site to achieve water balance targets, proposed site area was taken and multiplied by the 5mm rainfall depth across the total area.

Table 4: Site Water Balance Calculations

Site Drainage Area (m²)	Rainfall Depth (mm)	Rainfall Volume (m³)
2600	5	13

Therefore, to achieve site water balance 13m³ of rainfall needs to be retained on-site. There are swales around the perimeter of the site which have sufficient capacity to retain and infiltrate the target 5mm retention volume. Swale details can be seen in **Drawing 2 - Site Grading**.

Table 5: Swale Details

Swale Number	Swale Length (m)	Swale Area (m²)	Volume Retained (m³)						
1	15.5	0.14	2.2						
2	32	0.14	4.6						
3	14	0.14	2.0						
4	14.3	0.14	2.0						
5	7.5	0.14	1.1						
6	2.1	0.14	0.3						
7	2.3 0.14	2.3 0.14	2.3 0.14	0.14	2.3 0.14	2.3 0.14	2.3 0.14	2.3 0.14	0.3
8	3 5.9 0.14		0.8						
9	9 11.4 0.14								
1	15.0								

Due to grading constraints, the swales have varying slopes from 1.4% to 5%. In order to retain and hold water, berms or check dams will be provided along the length of the swale. In order to calculate the volume of water that would be retained, area of the berm is multiplied by the length of each swale. Details are provided in **Table 5**. The total volume of rainfall retained in swales can achieve the site water balance. Where possible, clean drainage from the site (e.g. roofs, landscaped areas) should be directed to the swales. Refer to **Drawing 5** – **Post-Development Drainage Plan** for the proposed site drainage area details.

3.3.2. Quantity and Quality Control

Post-development flows from the roof areas, loading bay and other impervious surfaces will be directed to capture points / area drains and will be conveyed through the underground parking lot and will outlet into EX. MH11. The site post-development flow will be controlled to 2-year predevelopment flow.

To size the stormwater tank, the post-development PC SWMM model was used. Details on the storage are provided in **Table 6** and details on sizing in **Appendix C.**

Table 6: Stormwater Tank Storage Calculations

Existing Condition Flow (existing 2-year) (m³/s)	Proposed Condition Flow (100-year) (m³/s)	Total Storage Needed (m ³)
0.04	0.16	77.1

Because the post-development flows mainly consist of "clean" rooftop water and landscape (soft and hard) areas with marginal flows conveyed through the loading bay, no quality control measures are proposed. The swales surrounding the site can also be considered to achieve a portion (approximately $17m^3$) of the quantity control at detailed design and efforts should be made to discharge the clean roof runoff to the swales to meet the 5mm retention target and water quality "polishing". Otherwise, a sump will have to be provided in the underground tank to retain the balance of the 5mm volume that cannot be directed to the swales.

4. Sanitary Servicing

4.1. Wastewater Servicing Design Criteria

Wastewater infrastructure will be designed in accordance with the latest Region of Peel Sanitary Sewer Design standards and specifications:

Wastewater Design Criteria

• Type of Development: 1 Bedroom Apartment – 1.68 person/unit

2+Bedroom Apartment – 2.54 person/unit

• Unit Sewage Flow 302.8 L/person/day

• Infiltration & Inflow 0.2 L/s/ha

• Peaking Factor $Pf = 1 + [14 / (4 + p^{0.5})]$

The estimated population is 622 people (Refer to **Drawing 6** for **Sanitary Drainage Plan**). The total wastewater flow is 13 L/s (based on the minimum flow for populations less than 1000 people) + 0.052 L/s of I/I flow.

4.2. Existing Wastewater Infrastructure

The existing 600 mm wastewater sewer along Elm Drive is the designated gravity outlet for wastewater servicing of the subject lands. A 250mm sanitary sewer connection and control MH 8A are available at the southwest corner of Mississauga Valley and Elm Drive.

4.3. Proposed Wastewater Servicing

Sanitary drainage will be captured from the site and conveyed to the existing Sanitary MH. 8A and 250 mm sanitary sewer that connects into the existing 600 mm wastewater sewer along Elm Drive. **Drawing 1** illustrates the location of the existing services. Wastewater servicing design within the proposed building will be provided by the mechanical engineer at detailed design.

5. Water Distribution

A 400mm CPP watermain along the south side of Mississauga Valley Boulevard and a 400 mm CPP watermain within the east side of the Elm Drive pavement surround the subject site. To calculate the domestic and fire flow water demands for the proposed development, the design criteria outlined in the Region of Peel "Watermain Design Criteria, 2010" will be used during the detailed design stage. The following **Table 7** summarizes the residential population densities that will be used to calculate the domestic water demands.

Table 7: Equivalent Population Density

Type of Development	Equivalent Population Density
Townhouse (Row Dwellings)	3.5 People/unit
Apartment (1 Bedroom)	1.68 People/unit
Apartment (2 or more bedrooms)	2.54 People/unit

The equivalent population for the site was calculated to be 622 people. **Table 8** summarizes the average daily demand and peaking factors that will be used in the future water distribution analysis. **Table 9** provides the Fire Underwriters Survey fire flow requirements.

Table 8: Water Design Factors

Type of Development	Average Daily Demand	Maximum Daily Demand Peaking Factor	Peak Hourly Demand Peaking Factor
Residential	280 L/capita/day	2.0	3.0

Table 9: Fire Flow Requirements

Type of Development	Fire Flow (L/s)
Townhouses (Row)	267
Townhouses (Stacked)	217
Mid-rise Apartments	117

A hydrant test and hydraulic analysis will be completed to confirm the proposed water distribution strategy including fire flow and pressures. All criteria and design flows are to be confirmed by the appropriate designer as the building details are confirmed.

As shown on **Drawing 1**, the proposed development will be serviced via a service connection to the 400mm watermain on Mississauga Valley Boulevard to avoid the encroachment / disturbance to the Elm Street ROW that would result from providing a service connection across the entire ROW.

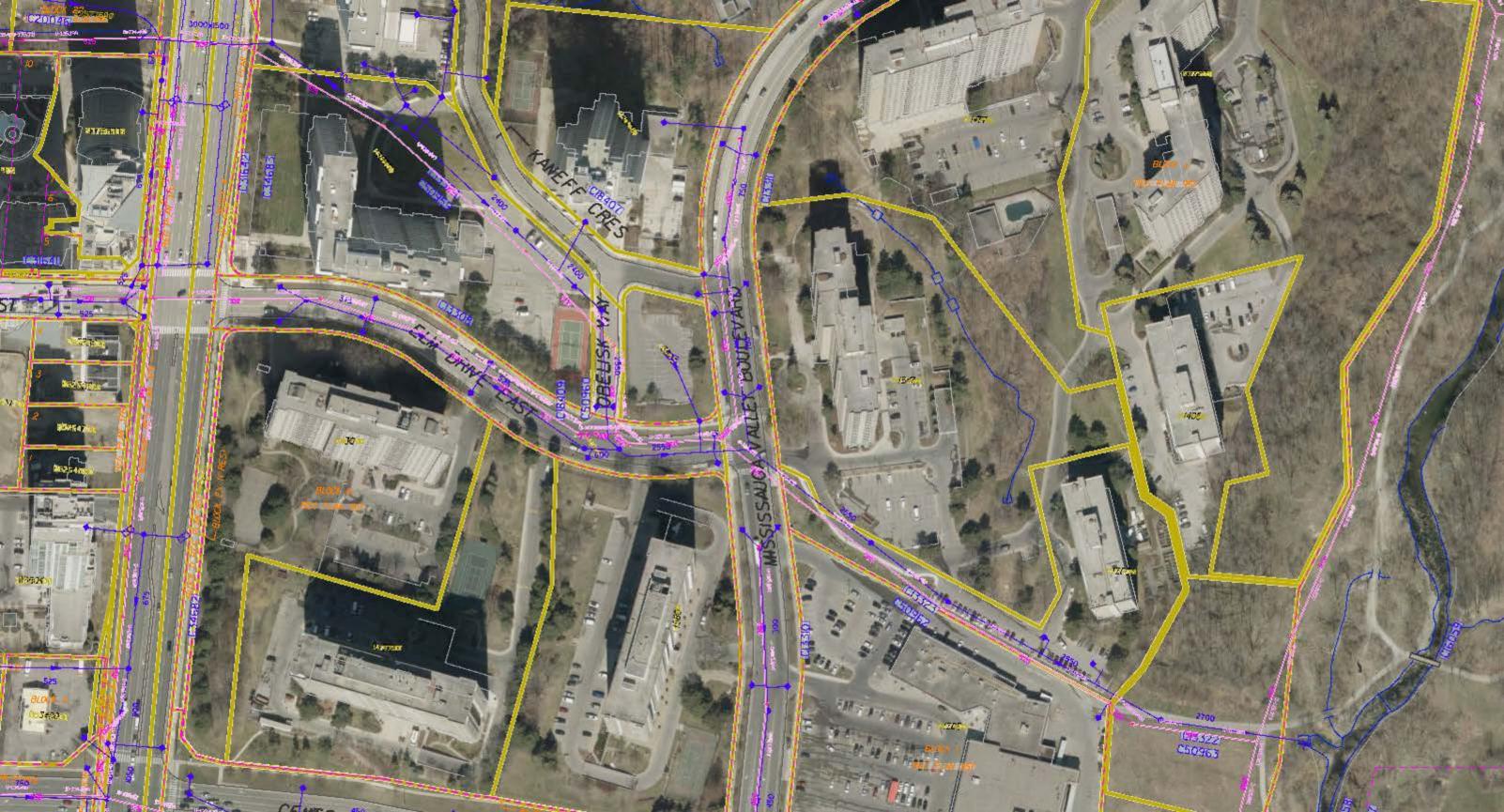
6. Erosion and Sediment Control

The erosion and sediment control plan for the site will be designed in conformance with the City of Mississauga and Credit Valley Conservation Authority guidelines. The existing site access will be used for construction access. Preliminary details are provided in **Drawing 3 – Demolition and ESC Plan**.

7. Conclusion

The proposed residential development at 3575 Kaneff Crescent can be serviced via the existing storm and sanitary sewers on Elm Drive and existing watermain on Mississauga Valley Boulevard. The development does not adversely impact any of the surrounding infrastructure or residential development, and the proposed stormwater management strategy will improve downstream conditions by limiting the release rates from the site to the existing, 2-year flow.

Report Prepared by:


Urbantech® Consulting

Sanja Ivanovic, P. Eng. M.E.P.P Senior Water Resource Engineer

Appendix A:

Background Drawings and Information

		LIME OF FLOW IN SECTION	min	NA	AN									
		TIME OF ELOW, IN SECTION	E	Z	Z		Z	Z	Z		Z	Z	\dashv	
3/24/2015		н. М МАЗЯТЅИМОТ ТА ТЯЭКИІ ЭНГЕ	٤	133.60	132.19	130.50	128.80	126.90	126.40	125.35	123.80	122.52	120.50	118.49
3/2	2.19	.н.м мазятся та тязумі зчы		134.01	132.60	131.34	129.50	127.80	126.80	126.30	124.50	123.10	121.52	119.50
DATE	S.Eng.	САРАСІТУ ОF РІРЕ FLOWING FULL	m³/Sec	25.33	27.87	23.37	26.50	27.89	28.69	29.10	27.55	31.61	25.67	39.67
2	Brian Greck. P.Eng. Eware	EFOMING ENTE NEFOCILX OE EFOM MILH BIBE	0,	5.97	6.47	5.62	6.20	5.77	5.87	5.95	5.78	6.46	5.50	4.23
OF	Brian ftware	геиетн оғ ѕестіои	Ε	36.9	39.7	74.6	57.9	62.0	12.2	60.7	73.3	45.9	122	68.4
H	MM So.	DIAMETER	шш	2438	2438	2438	2438	2591	2591	2591	2591	2591	2591	2743
ō.	ED B D BY SWN	SLOPE	%	1.1	1.4	1.0	1.2	1.5	3.3	1.6	1.0	1.3	0.8	1.4
SHEET NO.	STORM DRAINAGE DESIGN CHART DESIGNED BY Brian FOR CIRCULAR DRAINS FLOWING FULL CHECKED BY eet used to present flow calculations prepared using PCSWMM Software	СОЕЬНСІЕИД МЪИМІМС, 2 ВОПСЕНИЕ 22	_	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
S	C or or	TYPE OF PIPE		CONC.	CONC.	CONC.	CONC.	CONC,	CONC,	CONC.	CONC,	CONC.	CONC.	CÓNC.
orks	ART FULL IS prepa	ACCOMMODATED IN SECTION	m³/Sec	19.50 C	19.51 C	19.87 C	19.87 C	20.08 C	20.08 C	20.08 C	21.49 C	21.50 C	22.08 C	23.41 C
d Š	CHA IG	QUANTITY OF FLOW TO BE		15	15	16	ij	7(7(7(2.	2:	2.	73
MISSISSAUGA Transportation and Works	STORM DRAINAGE DESIGN CHART FOR CIRCULAR DRAINS FLOWING FU eet used to present flow calculations p	INTENSITY OF RAINFALL	mm/hr	NA	NA									
SSA	AINS F	TIME OF CONCENTRATION UPSTREAM END OF SECTION	min	NA	NA									
SSI	AR DRA	INITIAL TIME OF CONCENTRATION AT EXTREME UPSTREAM INL.	min	Ν	NA	NA								
3 5	cur,	EXTREME UPSTREAM INLET	min	ΑN	NA	NA NA								
	CIR CIR Sed	FLOW TIME TO SECTION FROM						-			-		\dashv	
	ST.	ACCUMULATED AREA TIMES RUNOFF		NA	NA									
	AND ASSOCIATES LTD 100 years storm note: Design sh	SECTION ACCUMULATED AREA DRAINED BY	ha	135.1	136.4	136.4	137.2	137.2	137.2	142.4	142.4	145	151.9	152.7
늬	. De	AREA TIMES RUNOFF COEFFICIENT		ΑN	NA	NA								
EMEN	S LTD	RUNOFF COEFFICIENT		0.92	0.93	NA	0.93	NA I	NA I	0.93	NA I	0.87	0.75	0.57
EPLAC	OCIATE s storm	АБІАСЕИТ СОИТRІВИТОRY AREA		135.1 0	1.34 0	0	0.77 0	0	0	5.22 0	0	2.55 0	6.87 0	0.89 0
K R	ASS(ij	1	_	0			2	_	2	9	
STORM TRUNK REPLACEMENT	GRECK AND ASSOCIATES LTD 100 years storm note	то ромизтвеам	~	Η.	2	3	4	2	9	2	8	6	10	OUTFALL
STOR	GREC	РЕВОМ ПРЅТВЕРМ	#HW	ST3	1	2	3	4	2	9	7	8	6	10
DEVELOPMENT	CONSULTANT MAJOR DRAINAGE AREA	LOCATION OF SITE	HURONTARIO					390						COOKSVILLE CREEK

		_	_		ار		_	_1	_	_	_		
	TIME OF FLOW IN SECTION	min	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N A
3/24/2015	н.м мазятгимод та тязииі эчіч.	Е	133.60	132.19	130.50	128.80	126.90	126.40	125.35	123.80	122.52	120.50	118.49
3/2/	.H.M MAЭЯТСЯ ТА ТЯЭVИІ ЭЧІР		134.01	132.60	131.34	129.50	127.80	126.80	126.30	124.50	123.10	121.52	119.50
DATE P.Eng.	CAPACITY OF PIPE FLOWING FULL	m³/Sec	25.24	27.72	23.24	26.21	28.00	28.55	29.13	27.41	31.90	25.92	39.69
2 DATE Greck. P.Eng.	VELOCITY OF FLOW WITH PIPE	m/Sec	5.56	6.01	5.27	5.77	5.36	5.45	5.51	5.39	5.99	5.16	3.53
OF Brian (ГЕИСТН ОЕ SECTION	ш	36.9	39.7	74.6	57.9	62.0	12.2	60.7	73.3	45.9	122	68.4
2 Y M Sof	ріАметек	шш	2438	2438	1.0 2438	2438	2591	2591	2591	2591	2591	2591	2743
10. ED BY D BY	SLOPE	%	1.1	1.4	1.0	1.2	1.5	3.3	1.6	1.0	1.3	0.8	1.4
SHEET NO. DESIGNED BY CHECKED BY sing PCSWMN	COEFFICIENT COEFFICIENT	u	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
ared us	TYPE OF PIPE		CONC.	CONC.	CONC.	CONC.	CONC.	CONC.	CONC	CONC.	CONC.	CONC.	CONC.
A Works CHART NG FULL	ACCUMULATED AREA TIMES RUNOFF COEFFICIENT FOR SECTION EXTREME UPSTREAM INLET EXTREME UPSTREAM INLET COEFFICIENT COEFF	m³/Sec	14.13	14.14	14.41	14.41	14.56	14.56	14.56	15.62	15.63	16.07	17.07
and and lien of Lowing	INTENSITY OF RAINFALL	mm/hr	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SA attion E DES	UPSTREAM END OF SECTION	min	, VA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Transportation and STORM DRAINAGE DESIGN OR CIRCULAR DRAINS FLOWIN tused to present flow calculat	INITIAL TIME OF CONCENTRATION AT EXTREME UPSTREAM INL.	min	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ran PR CULA	EXTREME UPSTREAM INLET	min	ΑN	NA	NA	NA	NA	NA	NA	NA	NA	NA	A N
In MISSISSAUGA Transportation and W STORM DRAINAGE DESIGN CHA FOR CIRCULAR DRAINS FLOWING et used to present flow calculations	PCCUMULATED AREA TIMES RUNOFF COEFFICIENT FOR SECTION COEFFICIENT FOR SECTION FROM TIME TO SECTION FROM		ΑN	NA	NA	NA	NA	NA	NA	NA	NA	NA	A A
	ACCUMULATED AREA DRAINED BY SECTION	-	135.1	136.4	136.4	137.2	137.2	137.2	142.4	142.4	145	151.9	152.7
□ □	AREA TIMES RUNOFF COEFFICIENT		AN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CEMEN ES LTD	ВОИОРЕ СОЕГЕІСІЕЙТ		0.92	0.93	NA I	0.93	NA I	NA	0.93	NA I	0.87	0.75	0.57
TRUNK REPLACEMENT AND ASSOCIATES LTD F 25 years storm note: Design she	АБІАСЕИТ СОИТВІВИТОВУ АВЕА	ha	135.1	1.34	0	0.77	0	0	5.22	0	2.55	6.87	0.89
STORM TRUNK REPLACEMENT GRECK AND ASSOCIATES LTD 25 years storm note: C	МАЗЯТЕМ ОТ	#HW	Н	2	3	4	5	9	7	8	6	10	OUTFALL
STORI	МАЗЯТЗЯО МОЯЗ	#HW	ST3	1	2	3	4	2	9	7	8	6	10
DEVELOPMENT CONSULTANT MAJOR DRAINAGE AREA	LOCATION OF SITE	HURONTARIO											COOKSVILLE CREEK

PCSWMM RESULTS: 25 YEAR STORM

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022)

```
CITY OF MISSISSAUGA
Square One Storm Trunk Sewer Assessement - Hydraulic Capacity Review
Prepared by: Greck and Associates Limited September 2014
NOTE: The summary statistics displayed in this report are
based on results found at every computational time step,
not just on results from each reporting time step.
******************
Analysis Options
Flow Units ..... CMS
Process Models:
 Rainfall/Runoff ...... YES
 Snowmelt ..... NO
 Groundwater ..... NO
 Flow Routing ..... YES
 Ponding Allowed ...... NO
 Water Quality ..... NO
Infiltration Method ..... CURVE NUMBER
Flow Routing Method ..... DYNWAVE
Starting Date ...... SEP-23-2014 00:00:00
Ending Date ..... SEP-24-2014 00:00:00
Antecedent Dry Days ..... 0.0
Report Time Step ...... 00:01:00
Wet Time Step ...... 00:05:00
Dry Time Step ...... 00:05:00
Routing Time Step ...... 5.00 sec
WARNING 01: wet weather time step reduced to recording interval for Rain Gage Chicago 3hr 25yr
******
Element Count
Number of rain gages ..... 1
Number of subcatchments ... 8
Number of nodes ........... 13
Number of links ...... 12
Number of pollutants ..... 0
Number of land uses ...... 0
******
Raingage Summary
                               Recording
                      Data
Name
              Data Source
                               Type
                                       Interval
Chicago 3hr 25yr Chicago 3hr 25yr INTENSITY
                                                   1 min.
******
```

Subcatchment Summary

Name	Area	a Width	%Imp	erv %SI	ope Rain Gage	Outlet
S1	0.89	80.00	25.00	0.5000	Chicago_3hr_25yr	HDW
S2	6.87	162.00	60.00	0.5000	Chicago_3hr_25yr	MH10
S3	2.55	50.00	80.00	0.5000	Chicago_3hr_25yr	MH9
S4	77.67	350.00	90.00	0.5000	Chicago_3hr_25yr	J6
S5	57.45	550.00	90.00	0.5000	Chicago_3hr_25yr	ST-3
S6	5.22	140.00	90.00	0.5000	Chicago_3hr_25yr	MH7
S7	0.77	85.00	90.00	0.5000	Chicago_3hr_25yr	MH4
S8	1.34	100.00	90.00	0.5000	Chicago_3hr_25yr	MH2

Node Summary

	Invert	Max. F	Ponded	External
Name	Туре	Elev. De	pth A	rea Inflow
J6	JUNCTION	135.20	1.82	0.0
MH1	JUNCTION	132.60	6.65	0.0
MH10	JUNCTION	119.50	5.00	0.0
MH2	JUNCTION	131.21	8.25	0.0
MH3	JUNCTION	129.50	7.20	0.0
MH4	JUNCTION	127.80	6.90	0.0
MH5	JUNCTION	126.80	5.72	0.0
MH6	JUNCTION	126.30	6.00	0.0
MH7	JUNCTION	124.50	5.81	0.0
MH8	JUNCTION	123.10	6.00	0.0
MH9	JUNCTION	121.52	6.06	0.0
ST-3	JUNCTION	134.01	5.38	0.0
HDW	OUTFALL	118.50	2.74	0.0

Link Summary

Name	From N	lode To N	lode Type	Length %Slope Roughness
C1	MH10	HDW	CONDUIT	68.4 1.4618 0.0140
C10	MH3	MH4	CONDUIT	57.9 1.2090 0.0140
C11	MH8	MH9	CONDUIT	45.9 1.2626 0.0140
C12	MH5	MH6	CONDUIT	12.2 3.2775 0.0250
C13	MH6	MH7	CONDUIT	60.7 1.5657 0.0170
C2	MH9	MH10	CONDUIT	122.0 0.8361 0.0140
C3	MH4	MH5	CONDUIT	62.0 1.4518 0.0170
C4	MH7	MH8	CONDUIT	73.3 0.9550 0.0140
C6	MH2	MH3	CONDUIT	74.6 0.9521 0.0140
C7	J6	ST-3	CONDUIT	12.2 5.6648 0.0160
C8	ST-3	MH1	CONDUIT	36.9 1.1106 0.0140
C9	MH1	MH2	CONDUIT	39.7 1.3603 0.0140

Cross Section Summary

Conduit	Full Shape	Full I Depth	Hyd. Area	Max. N Rad.	lo. of Width	Full Barre	els Flow
C1	CIRCULAR	2.74	5.91	0.69	2.74	1	39.69
C10	CIRCULAR	2.44	4.67	0.61	2.44	1	26.36
C11	CIRCULAR	2.59	5,27	0.65	2.59	1	31.69
C12	CIRCULAR	2.59	5.27	0.65	2.59	1	28.59

C13	CIRCULAR	2.59	5.27	0.65	2.59	1	29.06
C2	CIRCULAR	2.59	5.27	0.65	2.59	1	25.79
C3	CIRCULAR	2.59	5.27	0.65	2.59	1	27.98
C4	CIRCULAR	2.59	5.27	0.65	2.59	1	27.56
C6	CIRCULAR	2.44	4.67	0.61	2.44	1	23.39
C7	RECT_CLOSED	1.8	5.5	3 0.5	7 3.0	14	1 56.54
C8	CIRCULAR	2.44	4.67	0.61	2.44	1	25.27
C9	CIRCULAR	2.44	4.67	0.61	2.44	1	27.96

Runoff Quantity Continuity hectare-m	
*******	nm
Total Precipitation 9.064 59.339 Evaporation Loss 0.000 0.000 Infiltration Loss 0.645 4.225 Surface Runoff 8.149 53.344 Final Surface Storage 0.271 1.776 Continuity Error (%) -0.011	

*******	Volume	Volume
Flow Routing Continuity	hectare-	·m 10^6 ltr
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	8.149	81.487
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.390	3.903
External Outflow	8.512	85.121
Internal Outflow	0.000	0.000
Storage Losses	0.000	0.000
Initial Stored Volume	0.019	0.191
Final Stored Volume	0.039	0.388
Continuity Error (%)	0.084	

Time-Step Critical Elements

Link C12 (32.87%)

******** Highest Flow Instability Indexes

All links are stable.

Routing Time Step Summary

Minimum Time Step Average Time Step 1.06 sec 3.83 sec Maximum Time Step : 5.00
Percent in Steady State : 0.00 5.00 sec Average Iterations per Step: 2.01

Subcatchment Runoff Summary

Subcatchment	Total Precip	Total Runon mm	Total Evap mm	Total Infil mm	Total Runoff mm	Runoff	Peak Ri Runof 10^6 Itr	
S1 S2 S3 S4 S5 S6 S7 S8	59.34 59.34 59.34 59.34 59.34 59.34 59.34	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	25.24 14.35 6.84 3.69 3.43 3.19 3.03 3.07	32.80 43.58 51.01 53.70 54.28 54.65 54.86 54.82	0.29 2.99 1.30 41.71 31.18 2.85 0.42 0.74	0.14 1.26 0.50 6.48 7.83 1.26 0.33 0.50	0.553 0.734 0.860 0.905 0.915 0.921 0.925 0.924

Node Depth Summary

	Average Depth	Maxim Depth		ximum 7 . Occuri	ime of Max
Node	N-1 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	HE IN HARD DO			lays hr:min
J6	JUNCTION	0.09	0.39	135.59	0 01:15
MH1	JUNCTION	0.32	1.23	133.83	0 01:13
MH10	JUNCTION	1.60	2.44	121.94	0 - 00:00
MH2	JUNCTION	0.35	1.38	132.59	0 01:12
MH3	JUNCTION	0.33	1.29	130.79	0 01:13
MH4	JUNCTION	0.34	1.33	129.13	0 01:12
MH5	JUNCTION	0.34	1.31	128.11	0 01:13
MH6	JUNCTION	0.34	1.30	127.60	0 01:12
MH7	JUNCTION	0.35	1.40	125.90	0 01:12
MH8	JUNCTION	0.33	1.29	124.39	0 01:12
MH9	JUNCTION	0.37	1.48	123.00	0 01:12
ST-3	JUNCTION	0.34	1.30	135.31	0 01:13
HDW	OUTFALL	2.62	2.62	121.12	0 00:00

Node Inflow Summary

						840
	Maximu	m Maxin	num	Late	ral Tota	al
	Lateral	Total T	ime of Ma	x Inflo	w Inflow	<u> </u>
	Inflow	Inflow (Occurrence	e Volui	ne Volu	ıme
Node	Type	CMS	CMS days	s hr:min	10^6 Itr	10^6 ltr
J6	JUNCTION	6.482	6.482 0	01:17	41.705	41.706
MH1	JUNCTION	0.000	14.134	0 01:13	0.000	72.887
MH10	JUNCTION	1.259	17.065	0 01:12	2.994	85.120
MH2	JUNCTION	0.496	14.409	0 01:12	0.737	73.624
MH3	JUNCTION	0.000	14.410	0 01:12	0.000	73.623
MH4	JUNCTION	0.328	14.561	0 01:13	0.423	74.045
MH5	JUNCTION	0.000	14.560	0 01:13	0.000	74.045
MH6	JUNCTION	0.000	14.560	0 01:13	0.000	74.045
MH7	JUNCTION	1.258	15.618	0 01:12	2.853	76.897
MH8	JUNCTION	0.000	15.623	0 01:12	0.000	76.897
MH9	JUNCTION	0.496	16.073	0 01:12	1.301	78.211

ST-3 JUNCTION 7.827 14.131 0 01:13 31.184 72.889 HDW OUTFALL 0.141 17.125 0 01:11 0.292 89.024

Node Surcharge Summary

No nodes were surcharged.

Node Flooding Summary

No nodes were flooded.

Link Flow Summary

			of Max Manna		 Max/ Full	/ Max/
Link	50000	CMS day	0 4 5	m/sec	Flow	Depth
C1	CONDUIT	17.067	0 01:11	3.53	0.43	0.92
C10	CONDUIT	14.414	0 01:13	5.77	0.55	0.53
C11	CONDUIT	15.630	0 01:12	5.99	0.49	0.50
C12	CONDUIT	14.560	0 01:13	5.45	0.51	0.51
C13	CONDUIT	14.564	0 01:13	5.51	0.50	0.50
C2	CONDUIT	16.072	0 01:12	5.16	0.62	0.57
C3	CONDUIT	14.560	0 01:13	5.36	0.52	0.51
C4	CONDUIT	15.623	0 01:12	5.39	0.57	0.54
C6	CONDUIT	14.410	0 01:12	5.27	0.62	0.57
C7	CONDUIT	6.483	0 01:17	4.63	0.11	0.33
C8	CONDUIT	14.134	0 01:13	5.56	0.56	0.53
C9	CONDUIT	14.139	0 01:13	6.01	0.51	0.50

Flow Classification Summary

Appendix B:

Storm and SWM calculations and PC SWMM Output

www.urbantech.com

Existing Schematic Legend Junctions Outfalls Conduits Subcatchments S2 0.0773 Major_System COM_Trunk

25 m

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.013)

Element Count

Number	of	rain gages	4
Number	of	subcatchments	2
Number	of	nodes	4
Number	of	links	2
Number	of	pollutants	0
Number	of	land uses	0

Name	Data Source	Data Type	Recording Interval
Chicago_3h_100yrCO	M Chicago_3h_100yrCOM	INTENSITY	5 min.
Chicago_3h_2yr	Chicago_3h	INTENSITY	5 min.
Chicago_4h_100yr_com	Chicago_4h_100yr_com	INTENSITY	5 min.
Chicago 4h 2yr com	Chicago 4h 2yr com	INTENSITY	5 min.

Subcatchment Summary

Name Width %Imperv %Slope Rain Gage Outlet Area 0.5000 Chicago_4h_2yr_com S1 0.19 86.36 68.00 2CB S2 0.08 70.27 0.00 14.0000 Chicago_4h_2yr_com Major_System

Node Summary

Name	Туре	Invert Elev.	Max. Depth	Ponded Area	External Inflow
2CB	JUNCTION	128.13	4.03	0.0	
MH11	JUNCTION	127.80	3.16	0.0	
COM_Trunk	OUTFALL	127.71	0.38	0.0	

Major System OUTFALL 130.79 0.00 0.0

Link Summary

Name From Node To Node %Slope Roughness Type Length С1 2CB MH11 CONDUIT 29.4 1.1216 0.0130 C2 10.1 0.8869 MH11 0.0100 COM Trunk CONDUIT

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.		No. of Barrels	Full Flow
C1	CIRCULAR	0.30	0.07	0.07	0.30	1	0.10
C2	CIRCULAR	0.38	0.11	0.09	0.38	1	0.21

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

* * * * * * * * * * * * * * * *

Analysis Options *******

Flow Units CMS

Process Models:

Rainfall/Runoff YES
RDII NO
Snowmelt NO
Groundwater NO
Flow Routing YES
Ponding Allowed YES
Water Quality NO

Infiltration Method MODIFIED GREEN AMPT

Flow Routing Method DYNWAVE Surcharge Method EXTRAN

Antecedent Dry Days	0.0
Report Time Step	00:00:30
Wet Time Step	00:01:00
Dry Time Step	00:01:00
Routing Time Step	5.00 sec
Variable Time Step	YES
Maximum Trials	8
Number of Threads	1
Head Tolerance	0.001500 m

**************************************	Volume hectare-m	Depth mm

Total Precipitation	0.009	33.450
Evaporation Loss	0.000	0.000
Infiltration Loss	0.003	12.328
Surface Runoff	0.005	20.429
Final Storage	0.000	0.725
Continuity Error (%)	-0.098	
*******	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr
* * * * * * * * * * * * * * * * * * * *		
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.005	0.055
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.005	0.055
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	0.000	

****** Time-Step Critical Elements ******

Link C2 (1.70%)

All links are stable.

Minimum Time Step : 2.61 sec

Average Time Step : 4.98 sec

Maximum Time Step : 5.00 sec

Maximum Time Step : 5.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 2.00
Percent Not Converging : 0.00

Subcatchment	Total Precip mm	Total Runon mm	Total Evap mm	Total Infil mm	Imperv Runoff mm	Perv Runoff mm	Total Runoff mm	Total Runoff 10^6 ltr	Peak Runoff CMS	Runoff Coeff
\$1 \$2	33.45 33.45	0.00	0.00	7.74 23.60	21.75 0.00	2.97 9.88	24.72 9.88	0.05 0.01	0.04 0.01	0.739 0.295

Reported Average Maximum Maximum Time of Max Depth Depth HGL Occurrence Max Depth Meters Meters days hr:min Node Type Meters 2CB JUNCTION 0.01 0.14 128.27 0 01:25 0.13 0.01 0.12 127.92 0 01:25 MH11 JUNCTION 0.12 0.00 0.11 127.82 0 01:25 COM Trunk OUTFALL 0.11 Major System OUTFALL 0.00 0.00 130.79 0 00:00 0.00

 * * * * * * * * * * * * * * * * * * *

Node	Туре	Maximum Lateral Inflow CMS	Maximum Total Inflow CMS	0ccu	of Max rrence hr:min	Lateral Inflow Volume 10^6 ltr	Total Inflow Volume 10^6 ltr	Flow Balance Error Percent
2CB MH11 COM_Trunk Major_System	JUNCTION JUNCTION OUTFALL OUTFALL	0.039 0.000 0.000 0.008	0.039 0.039 0.039 0.008	0 0 0 0	01:25 01:25 01:25 01:30	0.047 0 0 0 0.00765	0.047 0.047 0.047 0.00765	-0.007 0.007 0.000 0.000

No nodes were surcharged.

No nodes were flooded.

Outfall Node	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
	Pcnt	CMS	CMS	10^6 ltr
COM_Trunk	19.07	0.003	0.039	0.047
Major_System	4.59	0.002	0.008	
System	11.83	0.005	0.008	0.055

Link	Туре	Flow	Time of Max Occurrence days hr:min	Maximum Veloc m/sec	Max/ Full Flow	Max/ Full Depth
C1 C2	CONDUIT CONDUIT	0.039	0 01:25 0 01:25	1.32 1.33	0.38	0.43

******* Flow Classification Summary *******

	Adjusted			Fract	ion of	Time	in Flo	w Clas	s	
	/Actual		Up			-	-			Inlet
Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd	Ctrl
C1	1.00	0.00	0.00	0.00	0.81	0.19	0.00	0.00	0.61	0.00
C2	1.00	0.00	0.00	0.00	0.81	0.18	0.00	0.00	0.82	0.00

****** Conduit Surcharge Summary *****

No conduits were surcharged.

Analysis begun on: Fri Apr 10 13:55:40 2020 Analysis ended on: Fri Apr 10 13:55:41 2020 Total elapsed time: 00:00:01

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.013)

Element Count

Number o	ſ	rain gages	4
Number o	f	subcatchments	2
Number o	f	nodes	4
Number o	f	links	2
Number o	f	pollutants	0
Number o	ſ	land uses	0

Name	Data Source	Data Type	Recording Interval
Chicago_3h_2yr	M Chicago_3h_100yrCOM Chicago_3h Chicago_4h_100yr_com Chicago_4h_2yr_com	INTENSITY INTENSITY INTENSITY INTENSITY	5 min. 5 min. 5 min. 5 min.

Name	Area	Width	%Imperv	%Slope Rain Gage	Outlet
S1	0.19	86.36	68.00	0.5000 Chicago_4h_100yr_com	2CB
\$2	0.08	70.27	0.00	14.0000 Chicago 4h 100yr com	Major System

Node Summary

Name	Type	Invert Elev.	Max. Depth	Ponded Area	External Inflow
2CB	JUNCTION	128.13	4.03	0.0	
MH11	JUNCTION	127.80	3.16	0.0	
COM Trunk	OUTFALL	127.71	0.38	0.0	

Major System OUTFALL 130.79 0.00 0.0

Link Summary

Name From Node To Node %Slope Roughness Type Length С1 2CB MH11 CONDUIT 29.4 1.1216 0.0130 C2 10.1 0.8869 MH11 0.0100 COM Trunk CONDUIT

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.		No. of Barrels	Full Flow
C1	CIRCULAR	0.30	0.07	0.07	0.30	1	0.10
C2	CIRCULAR	0.38	0.11	0.09	0.38	1	0.21

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

* * * * * * * * * * * * * * * *

Analysis Options *******

Flow Units CMS

Process Models:

Rainfall/Runoff YES
RDII NO
Snowmelt NO
Groundwater NO
Flow Routing YES
Ponding Allowed YES
Water Quality NO

Infiltration Method MODIFIED GREEN AMPT

Flow Routing Method DYNWAVE Surcharge Method EXTRAN

Antecedent Dry Days	0.0
Report Time Step	00:00:30
Wet Time Step	00:01:00
Dry Time Step	00:01:00
Routing Time Step	5.00 sec
Variable Time Step	YES
Maximum Trials	8
Number of Threads	1
Head Tolerance	0.001500 m

**************************************	Volume hectare-m	Depth mm
Total Precipitation Evaporation Loss Infiltration Loss Surface Runoff Final Storage Continuity Error (%)	0.021 0.000 0.004 0.017 0.000 -0.129	79.436 0.000 14.738 64.075 0.725
**************************************	Volume hectare-m	Volume 10^6 ltr
Dry Weather Inflow	0.000 0.017 0.000 0.000 0.000 0.017 0.000 0.000 0.000 0.000	0.000 0.171 0.000 0.000 0.000 0.171 0.000 0.000 0.000 0.000

****** Time-Step Critical Elements ******

Link C2 (4.38%)

All links are stable.

Minimum Time Step : 2.25 sec
Average Time Step : 4.95 sec
Maximum Time Step : 5.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 2.00
Percent Not Converging : 0.01

Subcatchment	Total Precip mm	Total Runon mm	Total Evap mm	Total Infil mm	Imperv Runoff mm	Perv Runoff mm	Total Runoff mm	Total Runoff 10^6 ltr	Peak Runoff CMS	Runoff Coeff
\$1 \$2	79.44 79.44	0.00	0.00	9.23 28.27	53.08 0.00	16.20 51.28	69.28 51.28	0.13	0.11 0.05	0.872

Reported Average Maximum Maximum Time of Max Depth Depth HGL Occurrence Max Depth Meters Meters days hr:min Node Type Meters 2CB JUNCTION 0.01 0.41 128.54 0 01:24 0.40 0.01 0.24 128.04 0 01:25 MH11 JUNCTION 0.24 0.01 0.19 127.90 0 01:25 0.19 COM Trunk OUTFALL Major System OUTFALL 0.00 0.00 130.79 0 00:00 0.00

Node	Туре	Maximum Lateral Inflow CMS	Maximum Total Inflow CMS	0ccu	of Max rrence hr:min	Lateral Inflow Volume 10^6 ltr	Total Inflow Volume 10^6 ltr	Flow Balance Error Percent
2CB MH11 COM_Trunk Major_System	JUNCTION JUNCTION OUTFALL OUTFALL	0.111 0.000 0.000 0.047	0.111 0.111 0.110 0.047	0 0 0	01:25 01:25 01:25 01:25	0.132 0 0 0.0396	0.132 0.132 0.132 0.0396	-0.001 -0.001 0.000 0.000

****** Node Surcharge Summary *********

Surcharging occurs when water rises above the top of the highest conduit.

			Max. Height	Min. Depth
		Hours	Above Crown	Below Rim
Node	Type	Surcharged	Meters	Meters
2CB	JUNCTION	0.02	0.113	3.617

***** Node Flooding Summary *********

No nodes were flooded.

****** Outfall Loading Summary *******

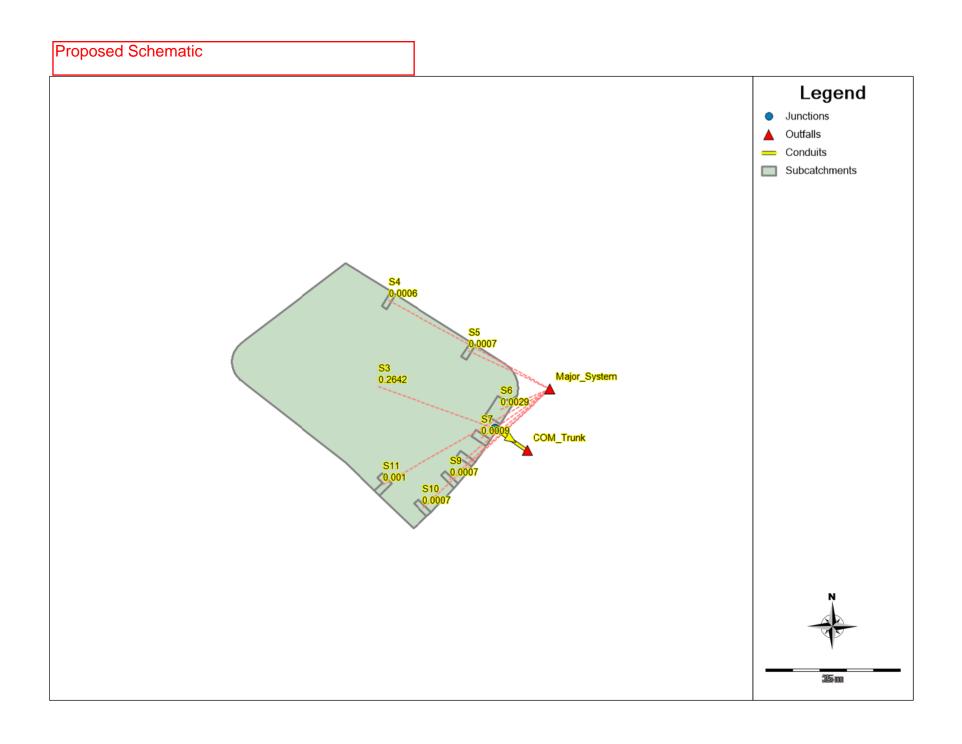
Outfall Node	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
	Pcnt	CMS	CMS	10^6 ltr
COM_Trunk	20.12	0.010	0.110	0.132
Major_System	12.54	0.005	0.047	

System 16.33 0.016 0.047 0.171

Link	Type	Flow	Time of Max Occurrence days hr:min	Veloc	Max/ Full Flow	Max/ Full Depth
C1	CONDUIT	0.111	0 01:25	1.66	1.08	0.89
C2	CONDUIT	0.110	0 01:25	1.71	0.51	

Adjusted ------ Fraction of Time in Flow Class -----
/Actual Up Down Sub Sup Up Down Norm Inlet

Conduit Length Dry Dry Crit Crit Crit Crit Ltd Ctrl


C1 1.00 0.00 0.00 0.00 0.80 0.20 0.00 0.61 0.00

C2 1.00 0.00 0.00 0.80 0.20 0.00 0.00 0.82 0.00

Analysis begun on: Thu May 21 16:07:26 2020 Analysis ended on: Thu May 21 16:07:26 2020

Total elapsed time: < 1 sec

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.013)

Element Count

Number of rain gages 4
Number of subcatchments . . 9
Number of nodes 3
Number of links 1
Number of pollutants 0
Number of land uses 0

Name	Data Source	Data Type	Recording Interval
<u> </u>	Chicago_3h_100year Chicago 3h	INTENSITY INTENSITY	5 min. 5 min.
Chicago_4h_100yr_com	Chicago_4h_100yr_com	INTENSITY	5 min.
Chicago 4h 2yr com	Chicago 4h 2yr com	INTENSITY	5 min.

Name	Area	Width	%Imperv	%Slope Rain Gage	Outlet
S10	0.00	1.40	100.00	0.5000 Chicago 4h 2yr com	Major System
S11	0.00	2.00	100.00	0.5000 Chicago 4h 2yr com	Major System
s3	0.26	52.84	83.30	0.5000 Chicago 4h 2yr com	MH11
S4	0.00	1.20	100.00	0.5000 Chicago 4h 2yr com	Major System
S5	0.00	1.40	100.00	0.5000 Chicago 4h 2yr com	Major System
S6	0.00	5.80	100.00	0.5000 Chicago 4h 2yr com	Major System
S7	0.00	1.80	100.00	0.5000 Chicago 4h 2yr com	Major System
S8	0.00	1.40	100.00	0.5000 Chicago 4h 2yr com	Major System
S9	0.00	1.40	100.00	0.5000 Chicago 4h 2yr com	Major System

* * * * * * * * * * *

Node Summary

Name	Type	Invert Elev.	Max. Depth	Ponded Area	External Inflow
MH11	JUNCTION	127.80	3.16	0.0	
COM_Trunk	OUTFALL	127.71	0.38	0.0	
Major_System	OUTFALL	130.79	0.00	0.0	

Link Summary

Name	From Node	To Node	Type	Length	%Slope Ro	ughness
C2	MH11	COM Trunk	CONDUIT	13.7	0.6569	0.0130

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
C2	CIRCULAR	0.38	0.11	0.09	0.38	1	0.14

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

* * * * * * * * * * * * * * * *

Analysis Options ********

Flow Units CMS

Process Models:

Rainfall/Runoff YES
RDII NO
Snowmelt NO
Groundwater NO
Flow Routing YES
Ponding Allowed YES
Water Quality NO

Infiltration Method MODIFIED GREEN AMPT

El Dantin m Mathad	DUNITIATU	
Flow Routing Method	DYNWAVE	
Surcharge Method	EXTRAN	
Starting Date	03/22/2020	00:00:00
Ending Date	03/23/2020	00:00:00
Antecedent Dry Days		
Report Time Step	00:00:30	
Wet Time Step	00:01:00	
Dry Time Step	00:01:00	
Routing Time Step	5.00 sec	
Variable Time Step	YES	
Maximum Trials	8	
Number of Threads	1	
Head Tolerance	0.001500 m	

******** Runoff Quantity Continuity *******	Volume hectare-m	Depth mm
Total Precipitation Evaporation Loss Infiltration Loss Surface Runoff Final Storage Continuity Error (%)	0.009 0.000 0.001 0.008 0.000 -0.070	33.450 0.000 3.941 28.274 1.258
**************************************	Volume hectare-m	Volume 10^6 ltr
Dry Weather Inflow Wet Weather Inflow Groundwater Inflow RDII Inflow External Inflow	0.000 0.008 0.000 0.000 0.000	0.000 0.077 0.000 0.000 0.000
External Outflow Flooding Loss Evaporation Loss Exfiltration Loss Initial Stored Volume Final Stored Volume	0.008 0.000 0.000 0.000 0.000	0.077 0.000 0.000 0.000 0.000 0.000

0.000

Continuity Error (%)

None

All links are stable.

Routing Time Step Summary **********

Minimum Time Step : 2.88 sec
Average Time Step : 5.00 sec
Maximum Time Step : 5.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 2.00
Percent Not Converging : 0.00

Subcatchment	Total Precip mm	Total Runon mm	Total Evap mm	Total Infil mm	Imperv Runoff mm	Perv Runoff mm	Total Runoff mm	Total Runoff 10^6 ltr	Peak Runoff CMS	Runoff Coeff
S10	33.45	0.00	0.00	0.00	32.01	0.00	32.01	0.00	0.00	0.957
S11	33.45	0.00	0.00	0.00	32.01	0.00	32.01	0.00	0.00	0.957
S3	33.45	0.00	0.00	4.06	26.63	1.52	28.16	0.07	0.06	0.842
S 4	33.45	0.00	0.00	0.00	32.01	0.00	32.01	0.00	0.00	0.957
S5	33.45	0.00	0.00	0.00	32.01	0.00	32.01	0.00	0.00	0.957
S6	33.45	0.00	0.00	0.00	32.01	0.00	32.01	0.00	0.00	0.957
S7	33.45	0.00	0.00	0.00	32.01	0.00	32.01	0.00	0.00	0.957
S8	33.45	0.00	0.00	0.00	32.01	0.00	32.01	0.00	0.00	0.957
S 9	33.45	0.00	0.00	0.00	32.01	0.00	32.01	0.00	0.00	0.957

Node	Type	Depth Meters	Depth Meters	HGL Meters	Occurrence days hr:min	Max Depth Meters
MH11	JUNCTION	0.01	0.18	127.98	0 01:25	0.18
COM_Trunk	OUTFALL	0.01	0.17	127.88	0 01:25	0.17
Major System	OUTFALL	0.00	0.00	130.79	0 00:00	0.00

Node	Туре	Maximum Lateral Inflow CMS	Maximum Total Inflow CMS	Time of Max Occurrence days hr:min	Lateral Inflow Volume 10^6 ltr	Total Inflow Volume 10^6 ltr	Flow Balance Error Percent
MH11	JUNCTION	0.058	0.058	0 01:25	0.0744	0.0744	-0.001
COM_Trunk	OUTFALL	0.000	0.058	0 01:25	0	0.0744	0.000
Major System	OUTFALL	0.002	0.002	0 01:25	0.00262	0.00262	0.000

No nodes were surcharged.

No nodes were flooded.

Flow Avg Max Total Freq Flow Flow Volume Outfall Node Pcnt CMS CMS 10^6 ltr

COM_Trunk Major System	22.34 13.58	0.004	0.058 0.002	0.074
System	17.96	0.004	0.002	0.077

Link	Туре	Flow	Time of Max Occurrence days hr:min	Veloc		Max/ Full Depth
C2	CONDUIT	0.058	0 01:25	1.15	0.41	0.47

	Adjusted			Fract	ion of	Time	in Flo	w Clas	s	
Conduit	/Actual Length		-			_	-			Inlet Ctrl
C2	1.00	0.00	0.00	0.00	0.93	0.07	0.00	0.00	0.80	0.00

No conduits were surcharged.

Analysis begun on: Thu May 21 16:11:36 2020 Analysis ended on: Thu May 21 16:11:36 2020

Total elapsed time: < 1 sec

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.013)

Element Count

Number of rain gages 4
Number of subcatchments . . 9
Number of nodes 3
Number of links 1
Number of pollutants . . . 0
Number of land uses 0

Name	Data Source	Data Type	Recording Interval
Chicago 3h 100year	Chicago 3h 100year	INTENSITY	5 min.
Chicago 3h 2yr	Chicago 3h	INTENSITY	5 min.
Chicago_4h_100yr_com	Chicago_4h_100yr_com	INTENSITY	5 min.
Chicago 4h 2yr com	Chicago 4h 2yr com	INTENSITY	5 min.

Name	Area	Width	%Imperv	%Slope Rain Gage	Outlet
\$10	0.00	1.40	100.00	0.5000 Chicago 4h 100yr com	Major System
S11	0.00	2.00	100.00	0.5000 Chicago 4h 100yr com	
\$3	0.26	52.84	83.30	0.5000 Chicago 4h 100yr com	MH11
S4	0.00	1.20	100.00	0.5000 Chicago 4h 100yr com	
S5	0.00	1.40	100.00	0.5000 Chicago 4h 100yr com	
S6	0.00	5.80	100.00	0.5000 Chicago_4h_100yr_com	Major_System
S7	0.00	1.80	100.00	0.5000 Chicago_4h_100yr_com	Major_System
S8	0.00	1.40	100.00	0.5000 Chicago_4h_100yr_com	Major_System
S9	0.00	1.40	100.00	0.5000 Chicago 4h 100yr com	Major System

* * * * * * * * * * * *

Node Summary

Name	Type	Invert Elev.	Max. Depth	Ponded Area	External Inflow
MH11	JUNCTION	127.80	3.16	0.0	
COM_Trunk	OUTFALL	127.71	0.38	0.0	
Major_System	OUTFALL	130.79	0.00	0.0	

Link Summary

Name	From Node	To Node	Type	Length	%Slope Ro	ughness
C2	MH11	COM Trunk	CONDUIT	13.7	0.6569	0.0130

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
C2	CIRCULAR	0.38	0.11	0.09	0.38	1	0.14

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

* * * * * * * * * * * * * * * *

Analysis Options ********

Flow Units CMS

Process Models:

Rainfall/Runoff YES
RDII NO
Snowmelt NO
Groundwater NO
Flow Routing YES
Ponding Allowed YES
Water Quality NO

Infiltration Method MODIFIED GREEN AMPT

Flow Routing Method	DYNWAVE	
Surcharge Method	EXTRAN	
Starting Date	03/22/2020	00:00:00
Ending Date	03/23/2020	00:00:00
Antecedent Dry Days	0.0	
Report Time Step	00:00:30	
Wet Time Step	00:01:00	
Dry Time Step		
Routing Time Step	5.00 sec	
Variable Time Step	YES	
Maximum Trials		
Number of Threads	1	
Head Tolerance	0.001500 m	

****	Volume	Depth
Runoff Quantity Continuity ************************************	hectare-m	mm
Total Precipitation	0.022	79.436
Evaporation Loss	0.000	0.000
Infiltration Loss	0.001	4.695
Surface Runoff	0.020	73.555
Final Storage	0.000	1.258
Continuity Error (%)	-0.091	
******	Volume	Volume
	hectare-m	10^6 ltr
Flow Routing Continuity	nectare-m	10 0 101
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.020	0.200
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.020	0.200
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000

0.000

Continuity Error (%)

Link C2 (1.34%)

All links are stable.

Minimum Time Step : 2.83 sec
Average Time Step : 4.99 sec
Maximum Time Step : 5.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 2.00
Percent Not Converging : 0.01

Subcatchment	Total Precip mm	Total Runon mm	Total Evap mm	Total Infil mm	Imperv Runoff mm	Perv Runoff mm	Total Runoff mm	Total Runoff 10^6 ltr	Peak Runoff CMS	Runoff Coeff
S10	79.44	0.00	0.00	0.00	78.08	0.00	78.08	0.00	0.00	0.983
S11	79.44	0.00	0.00	0.00	78.08	0.00	78.08	0.00	0.00	0.983
S3	79.44	0.00	0.00	4.84	64.98	8.43	73.41	0.19	0.16	0.924
S 4	79.44	0.00	0.00	0.00	78.08	0.00	78.08	0.00	0.00	0.983
S5	79.44	0.00	0.00	0.00	78.08	0.00	78.08	0.00	0.00	0.983
S6	79.44	0.00	0.00	0.00	78.08	0.00	78.08	0.00	0.00	0.983
S7	79.44	0.00	0.00	0.00	78.08	0.00	78.08	0.00	0.00	0.983
S8	79.44	0.00	0.00	0.00	78.08	0.00	78.08	0.00	0.00	0.983
S 9	79.44	0.00	0.00	0.00	78.08	0.00	78.08	0.00	0.00	0.983

Node	Type	Depth Meters	Depth Meters	HGL Meters	Occurrence days hr:min	Max Depth Meters
MH11	JUNCTION	0.01	0.46	128.26	0 01:25	0.46
COM_Trunk	OUTFALL	0.01	0.38	128.08	0 01:23	0.38
Major_System	OUTFALL	0.00	0.00	130.79	0 00:00	0.00

Node		Maximum Lateral Inflow	Maximum Total Inflow CMS	Time of Max Occurrence days hr:min	volume	Total Inflow Volume 10^6 ltr	Flow Balance Error Percent
Node	Type 	CMS	CMS	days nr:min	10.0 10.	10.0 10.	Percent
MH11	JUNCTION	0.158	0.158	0 01:25		0.194	0.002
COM_Trunk	OUTFALL	0.000	0.158	0 01:25	0	0.194	0.000
Major System	OUTFALL	0.006	0.006	0 01:25	0.0064	0.0064	0.000

0.086

2.699

Surcharging occurs when water rises above the top of the highest conduit.

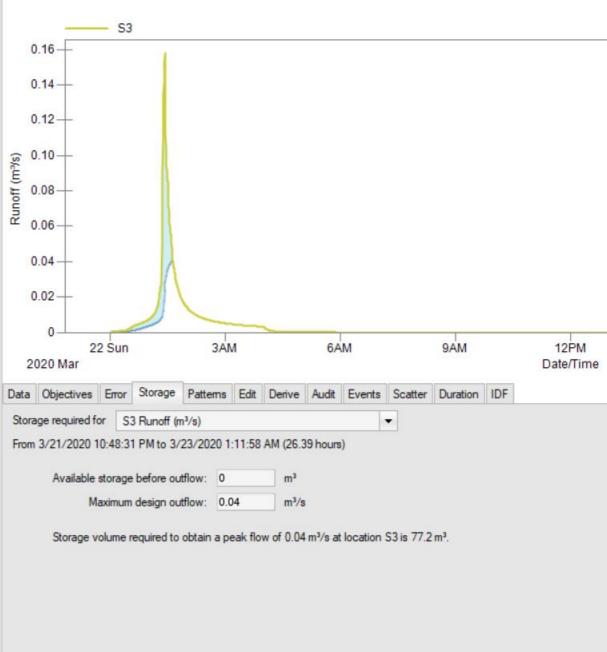
0.03

Max. Height Min. Depth
Hours Above Crown Below Rim
Node Type Surcharged Meters Meters

JUNCTION

MH11

No nodes were flooded.


	Flow	Avg	Max	Total		
	Freq	Flow	Flow	Volume		
Outfall Node	Pcnt	CMS	CMS	10^6 ltr		
COM_Trunk	23.19	0.011	0.158	0.194		
Major_System	16.43	0.001	0.006	0.006		
System	19.81	0.011	0.006	0.200		

Link	Туре	Flow	Time of Max Occurrence days hr:min	Veloc		Max/ Full Depth
C2	CONDUIT	0.158	0 01:25	1.43	1.11	1.00

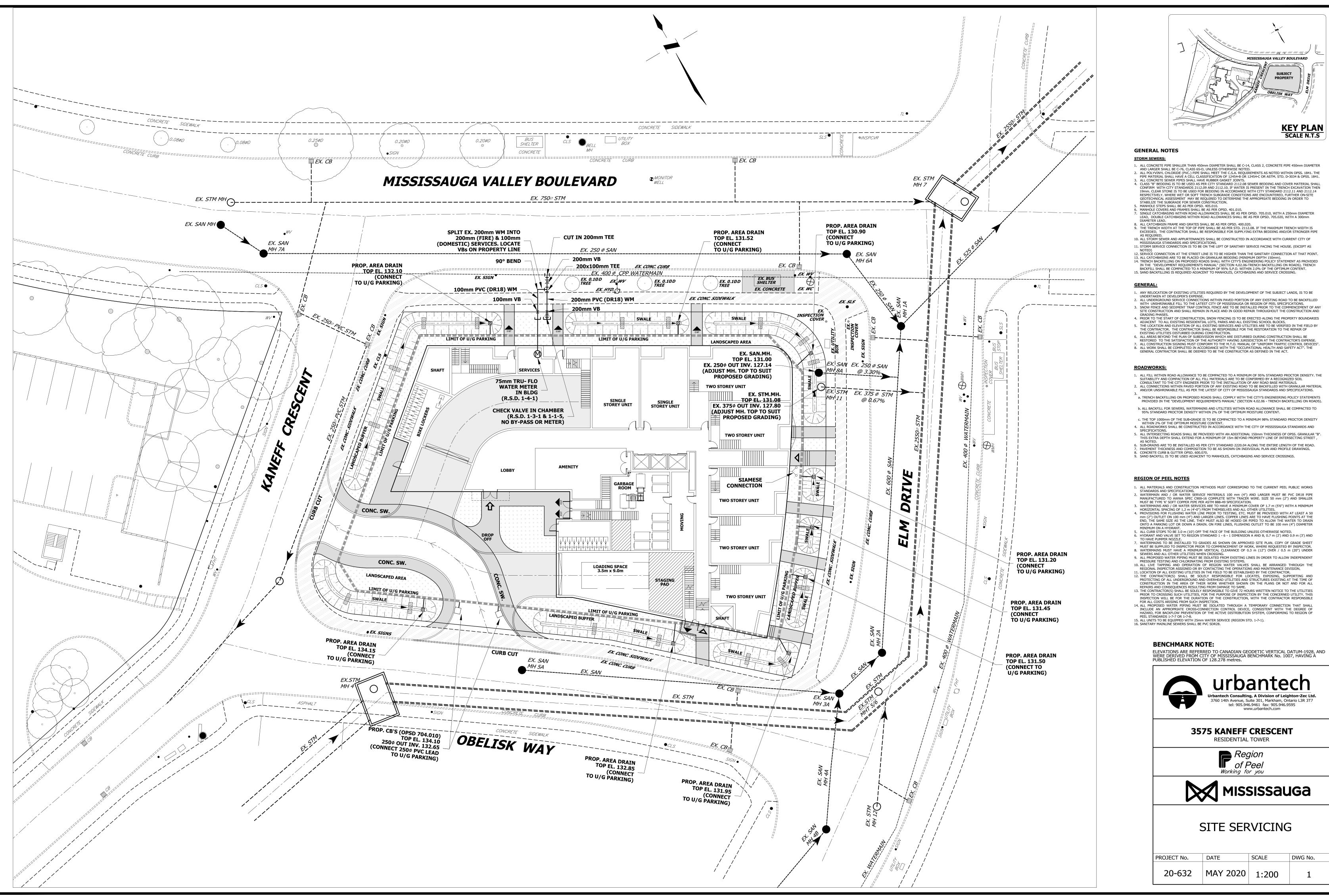
	Adjusted			Fract	ion of	Time	in Flo	w Clas	s		
Conduit	/Actual Length		-			_	-			Inlet Ctrl	
C2	1.00	0.00	0.00	0.00	0.86	0.14	0.00	0.00	0.79	0.00	

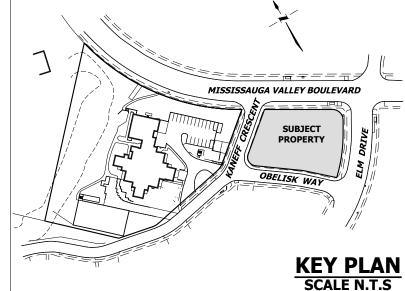
				 Hours	Hours
Conduit				Above Full Normal Flow	1 1
C2	0.03	0.03	0.03	0.03	0.03

Analysis begun on: Mon Apr 13 11:00:36 2020 Analysis ended on: Mon Apr 13 11:00:36 2020 Total elapsed time: < 1 sec

Drawings

Drawing 1 - Site Servicing Plan


Drawing 2 – Site Grading Plan


Drawing 3 – Demolition and ESC Plan

Drawing 4 – Pre-Development Drainage Plan

Drawing 5 – Post- Development Drainage Plan

Drawing 6 – Sanitary Drainage Plan

- ALL CONCRETE PIPE SMALLER THAN 450mm DIAMETER SHALL BE C-14, CLASS 2, CONCRETE PIPE 450mm DIAMETER AND LARGER SHALL BE C-76, CLASS 65-D, UNLESS OTHERWISE NOTED. 2. ALL POLYVINYL CHLORIDE (PVC.) PIPE SHALL MEET THE C.S.A. REQUIREMENTS AS NOTED WITHIN OPSS. 1841. THE PIPE MATERIAL SHALL HAVE A CELL CLASSIFICATION OF 12454-B OR 12454-C OR ASTM. STD. D-3034 & OPSS. 1841.

 ALL CONCRETE SEWER PIPES SHALL HAVE RUBBER GASKET JOINTS. 3. ALL CONCRETE SEWER PIPES SHALL HAVE ROBBER GASNET JOINTS.
 4. CLASS "B" BEDDING IS TO BE USED AS PER CITY STANDARD 2112.08 SEWER BEDDING AND COVER MATERIAL SHALL CONFIRM WITH CITY STANDARDS 2112.09 AND 2112.10. IF WATER IS PRESENT IN THE TRENCH EXCAVATION THEN 19mm, CLEAR STONE IS TO BE USED FOR BEDDING IN ACCORDANCE WITH CITY STANDARD 2112.11 AND 2112.14 RESPECTIVELY, WHERE WET OR SOFT TRENCH SUBGRADE CONDITIONS ARE ENCOUNTERED, FURTHER ON-SITE
- 3. ALL CATCHBASIN FRAME AND GRATES SHALL BE AS PER OPSD, 400,020.
 9. THE TRENCH WIDTH AT THE TOP OF PIPE SHALL BE AS PER STD. 2112.08. IF THE MAXIMUM TRENCH WIDTH IS
- EXCEEDED, THE CONTRACTOR SHALL BE RESPONSIBLE FOR SUPPLYING EXTRA BEDDING AND/OR STRONGER PIPE
- 12. SERVICE CONNECTION AT THE STREET LINE IS TO BE HIGHER THAN THE SANITARY CONNECTION AT THAT POINT. 13. ALL CATCHBASINS ARE TO BE PLACED ON GRANULAR BEDDING (MINIMUM DEPTH 150mm).

 14. TRENCH BACKFILLING ON PROPOSED ROADS SHALL WITH CITY'S ENGINEERING POLICY STATEMENT AS PROVIDED IN THE "DEVELOPMENT REQUIREMENTS MANUAL" (SECTION 4.02.06-TRENCH BACKFILLING ON ROADS), TRENCH
- 1. ANY RELOCATION OF EXISTING UTILITIES REQUIRED BY THE DEVELOPMENT OF THE SUBJECT LANDS, IS TO BE UNDERTAKEN AT DEVELOPER'S EXPENSE. ONDERTAREN AT DEVELOPER'S EXPENSE.

 2. ALL UNDERGROUND SERVICE CONNECTIONS WITHIN PAVED PORTION OF ANY EXISTING ROAD TO BE BACKFILLED WITH UNSHRINKABLE FILL TO THE LATEST CITY OF MISSISSAUGA OR REGION OF PEEL SPECIFICATIONS.

 3. SNOW FENCE AND SEDIMENT TRAP CONTROL FENCE ARE TO BE INSTALLED PRIOR TO THE COMMENCEMENT OF ANY SITE CONSTRUCTION AND SHALL REMAIN IN PLACE AND IN GOOD REPAIR THROUGHOUT THE CONSTRUCTION AND GRADING PHASES.
 4. PRIOR TO THE START OF CONSTRUCTION, SNOW FENCING IS TO BE ERECTED ALONG THE PROPERTY BOUNDARIES
- 6. ALL AREAS BEYOND THE PLAN OF SUBDIVISION WHICH ARE DISTURBED DURING CONSTRUCTION SHALL BE RESTORED TO THE SATISFACTION OF THE AUTHORITY HAVING JURISDICTION AT THE CONTRACTOR'S EXPENSE.

 7. ALL CONSTRUCTION SIGNING MUST CONFORM TO THE M.T.O. MANUAL OF "UNIFORM TRAFFIC CONTROL DEVICES".
- SUITABILITY AND COMPACTION OF ALL FILL MATERIALS ARE TO BE CONFIRMED BY A RECOGNIZED SOIL CONSULTANT TO THE CITY ENGINEER PRIOR TO THE INSTALLATION OF ANY ROAD BASE MATERIALS.

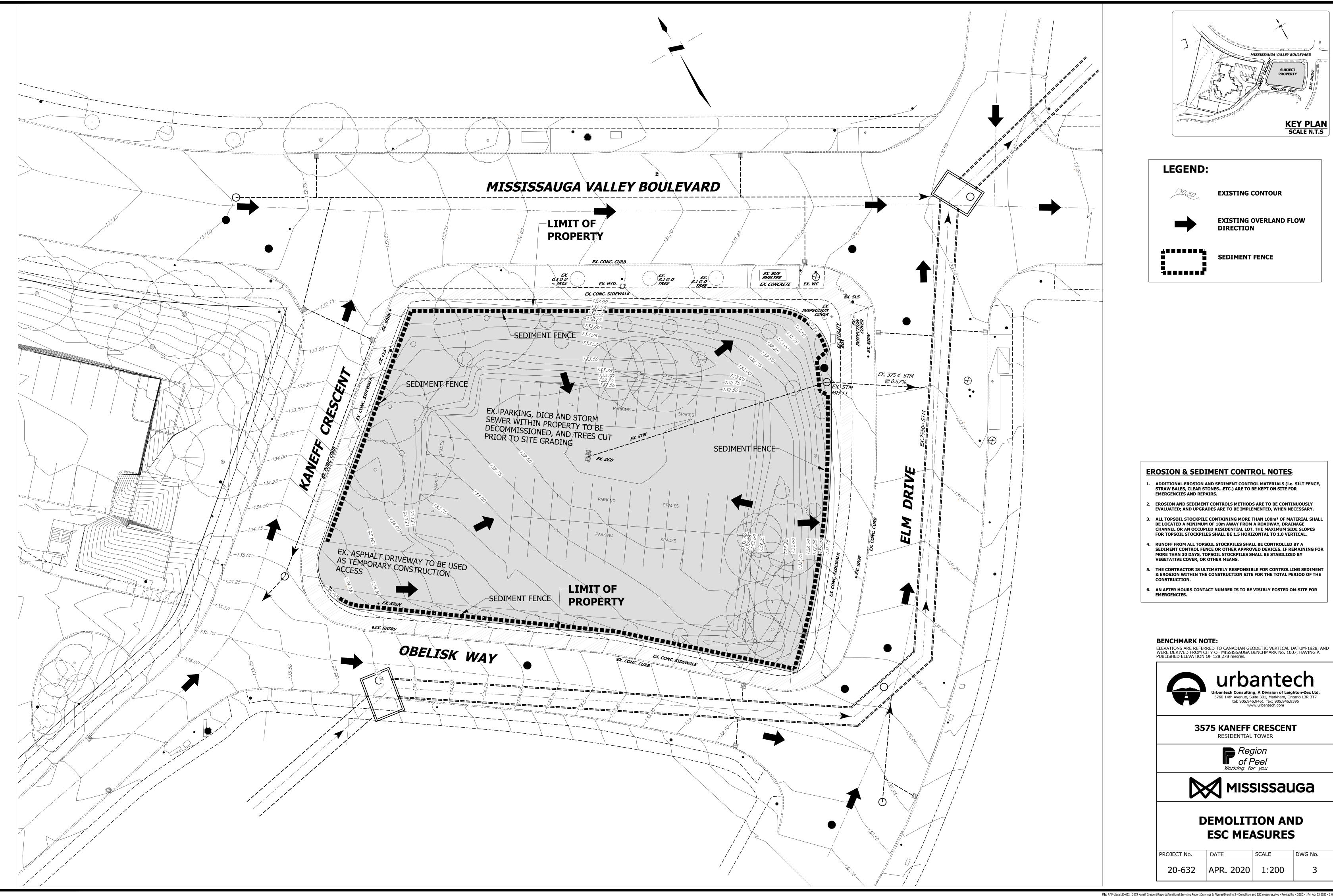
 2. ALL CONNECTIONS WITHIN PAVED PORTION OF ANY EXISTING ROAD TO BE BACKFILLED WITH GRANULAR MATERIAL
- a. TRENCH BACKFILLING ON PROPOSED ROADS SHALL COMPLY WITH THE CITY'S ENGINEERING POLICY STATEMENTS PROVIDED IN THE "DEVELOPMENT REQUIREMENTS MANUAL" (SECTION 4,02,06 - TRENCH BACKFILLING ON ROADS).
- b. ALL BACKFILL FOR SEWERS, WATERMAINS AND UTILITIES WITHIN ROAD ALLOWANCE SHALL BE COMPACTED TO 95% STANDARD PROCTOR DENSITY WITHIN 2% OF THE OPTIMUM MOISTURE CONTENT.
- 4. ALL ROADWORKS SHALL BE CONSTRUCTED IN ACCORDANCE WITH THE CITY OF MISSISSAUGA STANDARDS AND THIS EXTRA DEPTH SHALL EXTEND FOR A MINIMUM OF 15m BEYOND PROPERTY LINE OF INTERSECTING STREET , AS NOTED.

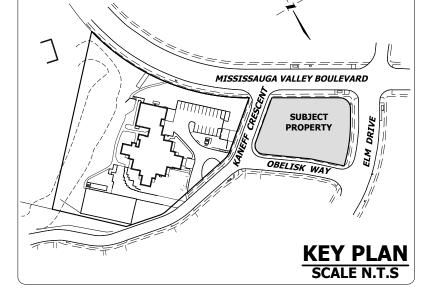
 5. SUB-DRAINS ARE TO BE INSTALLED AS PER CITY STANDARD 2220.04 ALONG THE ENTIRE LENGTH OF THE ROAD.
- ALL MATERIALS AND CONSTRUCTION METHODS MUST CORRESPOND TO THE CURRENT PEEL PUBLIC WORKS STANDARDS AND SPECIFICATIONS.
 WATERMAIN AND / OR WATER SERVICE MATERIALS 100 mm (4") AND LARGER MUST BE PVC DR18 PIPE MANUFACTURED TO AWWA SPEC C900-16 COMPLETE WITH TRACER WIRE. SIZE 50 mm (2") AND SMALLER MUST BE TYPE 'K' SOFT COPPER PIPE PER ASTM B88-49 SPECIFICATION.

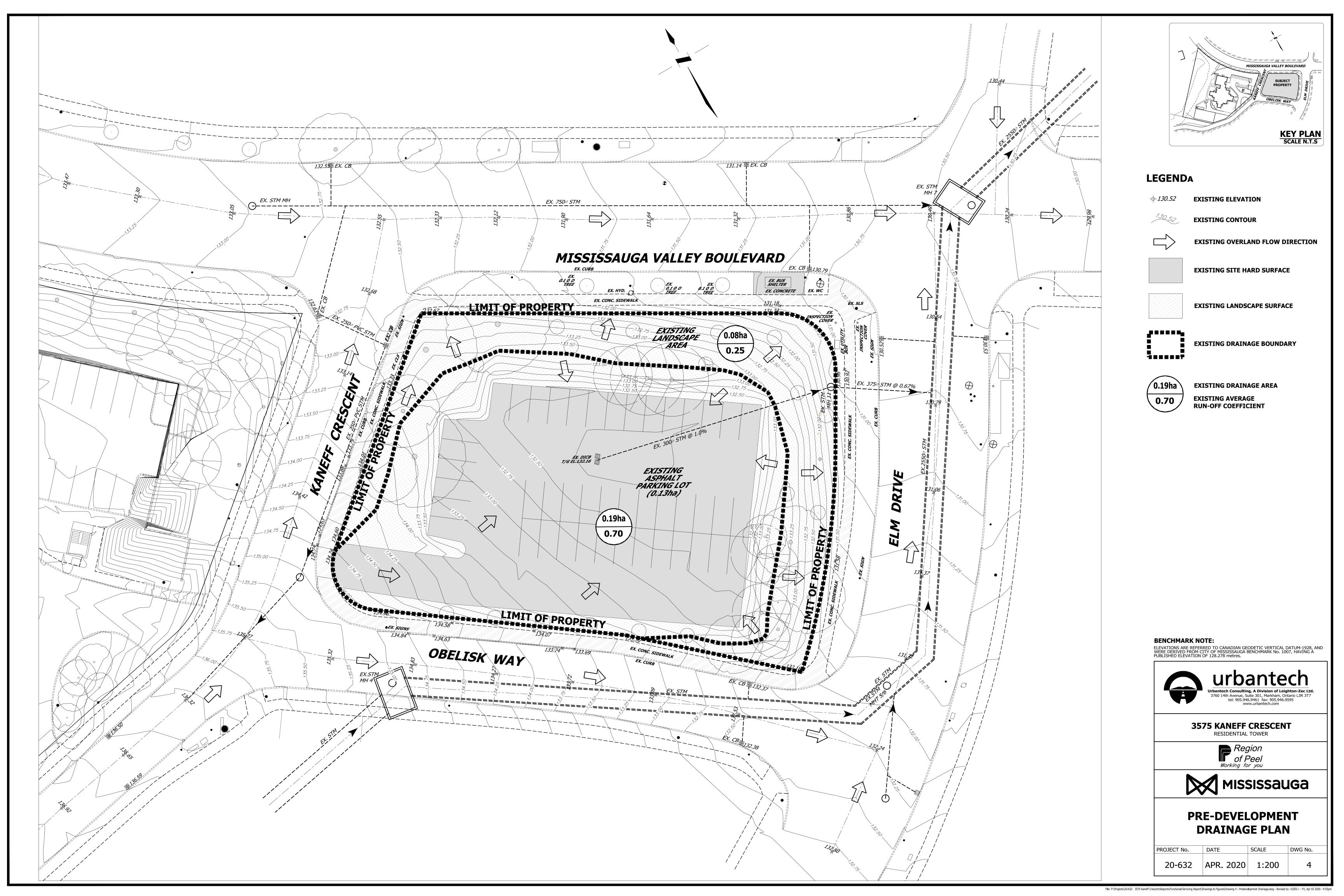
 3. WATERMAINS AND / OR WATER SERVICES ARE TO HAVE A MINIMUM COVER OF 1.7 m (5'6") WITH A MINIMUM HORIZONTAL SPACING OF 1.2 m (4'-0") FROM THEMSELVES AND ALL OTHER UTILITIES.

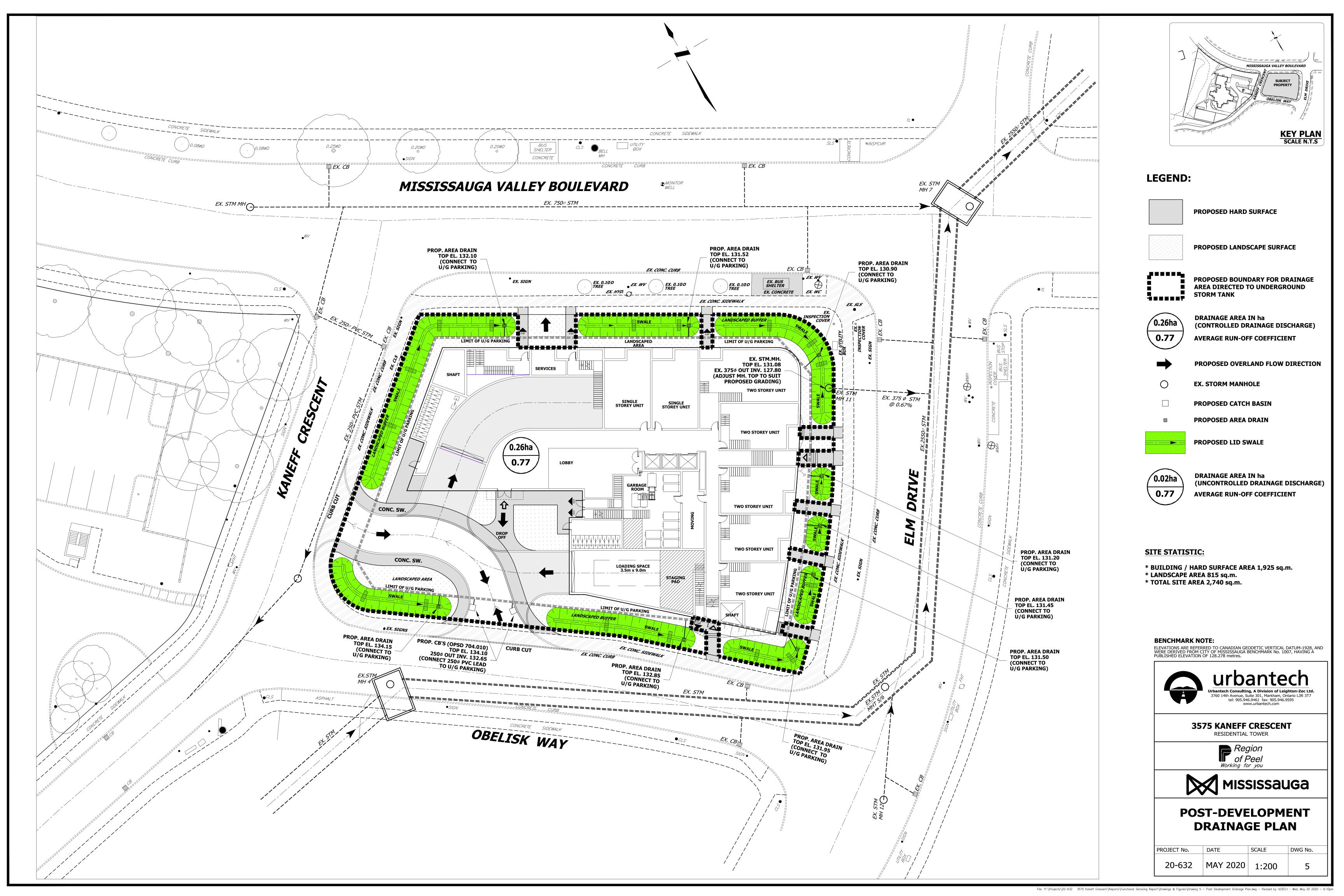
 4. PROVISIONS FOR FLUSHING WATER LINE PRIOR TO TESTING, ETC. MUST BE PROVIDED WITH AT LEAST A 50 mm (2") OUTLET ON 100 mm (4") AND LARGER LINES, COPPER LINES ARE TO HAVE FLUSHING POINTS AT THE
- SEWERS AND ALL OTHER UTILITIES WHEN CROSSING.


 9. ALL PROPOSED WATER PIPING MUST BE ISOLATED FROM EXISTING LINES IN ORDER TO ALLOW INDEPENDENT
- 12. THE CONTRACTOR(S) SHALL BE SOLELY RESPONSIBLE FOR LOCATES, EXPOSING, SUPPORTING AND PROTECTING OF ALL UNDERGROUND AND OVERHEAD UTILITIES AND STRUCTURES EXISTING AT THE TIME OF CONSTRUCTION IN THE AREA OF THEIR WORK WHETHER SHOWN ON THE PLANS OR NOT AND FOR ALL
- INCLUDE AN APPROPRIATE CROSS-CONNECTION CONTROL DEVICE, CONSISTENT WITH THE DEGREE OF HAZARD, FOR BACKFLOW PREVENTION OF THE ACTIVE DISTRIBUTION SYSTEM, CONFORMING TO REGION OF PEEL STANDARDS 1-7-7 OR 1-7-8.






SITE SERVICING


DWG No.

