FUNCTIONAL SERVICING & PRELIMINARY STORMWATER MANAGEMENT REPORT

1840 – 1850 BLOOR STREET EAST

CITY OF MISSISSAUGA REGION OF PEEL

PREPARED FOR:

RANEE MANAGEMENT

PREPARED BY:

C.F. CROZIER & ASSOCIATES INC. 2800 HIGH POINT DRIVE, SUITE 100 MILTON, ON L9T 6P4

FEBRUARY 19, 2020

CFCA FILE NO. 1788-5378

The material in this report reflects best judgment in light of the information available at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. C.F. Crozier & Associates Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Revision Number	Date	Comments
Rev.0	February 14, 2020	Issued for 1 st Submission
Rev. 1	February 19, 2020	Re-Issued for 1 st Submission

TABLE OF CONTENTS

1.0	INTRODUCTION1
2.0	SITE DESCRIPTION1
3.0	WATER SERVICING1
3. 3.	
3. 3.	
4.0	SANITARY SERVICING
4.	.1 Existing Sanitary Servicing
4.	
4.	
5.0	DRAINAGE CONDITIONS4
5.	.1 Existing Drainage4
5.	
6.0	STORMWATER MANAGEMENT7
6.	.1 Stormwater Quantity Control7
6.	-
6.	•
6.	
7.0	CONCLUSIONS AND RECOMMENDATIONS9

LIST OF TABLES

- Table 1:
 Equivalent Population Estimate
- Table 2:
 Existing/ Proposed Domestic Water Demand
- Table 3:
 Estimated Fire Flow Demand
- Table 4:
 Existing/Proposed Sanitary Design Flows
- Table 5:Summary of Peak Flows and Storage Volumes (Catchment 203)
- Table 6:
 Water Balance Storage Requirements

LIST OF APPENDICES

- Appendix A: Water Demand Calculations
- Appendix B: Sanitary Sewerage Demand Calculations
- Appendix C: Stormwater Management Calculations

LIST OF FIGURES

- Figure 1:Preliminary Site Servicing
- Figure 2: Preliminary Site Grading
- Figure 3: Pre-Development Drainage Plan
- Figure 4: Post-Development Drainage Plan

1.0 Introduction

C.F. Crozier & Associates Inc. (Crozier) was retained by Ranee Management to prepare a Functional Servicing & Preliminary Stormwater Management Report to support the Official Plan and Zoning By-Law Amendment applications for the proposed infill development located at 1840 – 1850 Bloor Street East in the City of Mississauga, Regional Municipality of Peel (Peel Region).

This report provides information about the water and sanitary servicing as well as stormwater management according to the applicable standards and requirements of the City of Mississauga, Peel Region and TRCA.

2.0 Site Description

The subject property in its entirety is approximately 3.93 ha and currently consists of two (2) 14-storey residential apartment buildings with associated underground and surface parking areas, as well as landscaped areas. The site is bound by:

- Bloor Street to the North
- A residential apartment complex to the East beyond a servicing easement
- Commercial/ Industrial buildings to the South
- A Hydro Corridor to the West

The proposed development is an infill in the back of the property. Envisioned for the development are two (2) 18-storey residential towers connected with a 4-storey podium, one level of underground parking and a 3-storey above grade parking structure. The proposed residential development will have an individual municipal address. In addition to the construction of the new buildings, the existing internal roadway, surface parking and associated landscaping will be modified as required to accommodate the development and improve traffic flow.

3.0 Water Servicing

The Region of Peel is responsible for the operation and maintenance of the public water supply and treatment system in the City of Mississauga. Any local water supply system will connect to the Region's municipal water network.

3.1 Existing Water Servicing

A review of City of Mississauga and Peel Region as-constructed drawings indicate that there is an existing 300mm diameter PVC watermain on the north-side of Bloor Street (Peel Region drawing 57349-D dated as-recorded Oct. 24, 2017).

Review of the Subsurface Utility Plan prepared (Onsite Locates, December 16, 2019) shows that existing Building A and B both have individual water connections to the 300mm PVC watermain along Bloor Street. The plan also shows one (1) fire hydrant located on site, approximately half-way between Building A and B, south of the entrance road connecting the two surface parking lots.

3.2 Design Water Demand

The Region of Peel Linear Infrastructure Sanitary Sewer Manual (March 2017) was used to determine the equivalent population estimate for the existing and proposed buildings. Table 1 uses a unit rate occupancy density of 2.7 persons/unit to determine the equivalent population for each building. The detailed calculations are provided in Appendix A.

Туре	Building	Number of Units	Total Persons
Evicting	A	167	451
Existing	В	167	451
Proposed	C & D	433	1169
Site Total		767	2071

Table 1: Equivalent Population Estimate

The total population for the proposed buildings is 1169 persons which brings the site total to 2071 including the existing buildings.

The Region of Peel Linear Infrastructure Watermain Design Criteria (June 2010) was used to determine the maximum domestic water demand generated by the proposed development based on the equivalent population estimate. An average daily water demand of 280 L/cap/day was used. Table 2 summarizes the estimated design water demand. Appendix A contains detailed water demand calculations.

Standard	Building	Average Daily Demand (L/s)	Maximum Daily Demand (L/s)	Peak Hourly Demand (L/s)
Region of Peel Public Works Design,	Existing Buildings A and B	2.92	5.85	8.77
Specification & Procedures Manual – Linear Infrastructure Watermain Design Criteria (June 2010)	Proposed Buildings C and D	3.79	7.58	11.37
	Entire Site Total	6.71	13.42	20.13

Table 2: Existing/ Proposed Domestic Water Demand

Note: Site total domestic water demand is the sum of the existing buildings and proposed buildings.

For this application, the domestic water service for proposed building C & D will be designed to convey a water demand equivalent to the peak hourly demand shown in Table 2.

3.3 Fire Flow Demand

The Fire Underwriters Survey (FUS) method was used to estimate the fire flow demand for each building within the proposed development area. This calculation estimates the preliminary watermain size required to service each building for fire protection and does not provide a recommendation for fire protection. We assume the towers have non-combustible construction and therefore, a construction coefficient of 0.8 was applied to the fire flow calculations (Water Supply for Public Fire Protection by Fire Underwriters Survey, 1999). We assume the proposed residential buildings will be equipped with automatic sprinkler systems which reduces the initial fire flow demand of each building by up to 50%. Each automated sprinkler system is to be designed by the Mechanical Engineer; therefore, the detailed design of the system is not included in this report. Table 3 summarizes the required fire flow demand and duration of flow required for the proposed buildings C & D.

Table 3: Estimated Fire Flow Demand

Method	Demand Flow (L/s)	Duration (h)
Water Supply for Public Fire Protection by Fire Underwriters Survey (1999)	116.7	2.0

Note: Floor area was determined by the largest floor plus 25% of each of the two immediately adjoining floors

As shown in Table 3, the proposed fire line is required to accommodate a fire flow demand of 116.7 L/s for a duration of 2.0 hours. This is based on the fire flow demand of Level 08, with floor area of 1953.6 m² and 25% of the adjoining floors, for total area of 2930.4 m².

Refer to Appendix A for detailed calculations of the proposed fire flow.

3.4 Proposed Water Servicing

The proposed development will have a single connection into the existing 300mm diameter PVC watermain on the north-side of Bloor Street. The connection will split at the property line into an individual 100mm diameter domestic water service and individual 200mm diameter fire line. The services will extend to the underground parking limit for the new buildings. The existing buildings will continue to use their existing water connections.

The proposed water servicing plan is shown on Figure 1 – Preliminary Site Servicing. The Mechanical Engineer will design the internal private water system including the internal sprinkler system within the building and underground parking structure.

4.0 Sanitary Servicing

Peel Region is responsible for the operation and maintenance of the public sewage collection and treatment system in the City of Mississauga. Any local sewage system will connect to the Region's municipal sanitary sewage network.

4.1 Existing Sanitary Servicing

A review of City of Mississauga and Peel Region as-constructed drawings indicate that there is an existing 375mm diameter PVC sanitary sewer running east-west on the north-side of Bloor Street and an existing 825mm concrete sanitary sewer running north-south adjacent to the property, according to Peel Region drawing 57349-D dated as-recorded Oct. 24, 2017. The 825mm concrete sewer is shown on the as-constructed drawing C-6460, dated December 8, 1964.

Review of the Subsurface Utility Plan prepared by Onsite Locates and dated December 16, 2019 shows that existing Building A and B both have individual sanitary connections. Building A outlets to a manhole at the property line within the site's driveway, which ultimately outlets to the 375mm sanitary sewer on Bloor Street. Building B is assumed to outlet to a manhole adjacent to the surface parking lot, this manhole conveys sanitary flows to the north-south 825mm sanitary sewer in the easement adjacent to the property.

4.2 Design Sanitary Flow

The sanitary design flow for the subject property was calculated using the Region of Peel Public Works Design, Specifications & Procedures Manual – Linear Infrastructure Sanitary Sewer Manual (March 2017) and the equivalent population estimate described in Section 3.2. A unit sewage flow of 302.8 L/cap/d was used, and infiltration flow and a peaking factor were applied to the unit sewage flow to obtain the total estimated design sewage flow.

A summary of the results is presented in 4, and detailed calculations are provided in Appendix B.

Standard	Building	Average Flow (L/s)	*Peaking Factor	Peak Flow (L/s)	Infiltration Flow (L/s)	Total Flow (L/s)
Region of Peel Public Works Design, Specification & Procedures Manual – Linear Infrastructure Sanitary Sewer	Existing Buildings A and B	3.16	3.83	12.10	0.35	12.45
	Proposed Buildings C and D	4.10	3.76	15.39	0.36	15.75
Manual (March 2017)	Entire Site Total	7.26	-	27.49	0.71	28.19

Table 4: Existing/Proposed Sanitary Design Flows

Note: Site total sanitary flow is the sum of the existing buildings and proposed buildings.

The proposed sanitary service for Buildings C and D must convey a total design sanitary demand according to the total flow indicated in Table 4.

4.3 Proposed Sanitary Servicing

The development is proposed to be serviced by a 200mm diameter sanitary sewer at a slope of 2% which has a capacity of 46 L/s. The service lateral capacity exceeds the sanitary design flow and therefore is sufficient to convey the flow. The service lateral with extend from the underground parking structure to the existing 825mm concrete sanitary sewer in the easement. The existing buildings A and B will continue to use their respective individual connections. The proposed sanitary servicing plan is shown on Figure 1 – Preliminary Site Servicing. The internal building plumbing will be designed by the Mechanical Engineer's details and specifications.

5.0 Drainage Conditions

5.1 Existing Drainage

The subject property currently consists of two (2) 14-storey residential apartment buildings with associated underground and surface parking areas, as well as landscaped areas.

According to the Subsurface Utility Plan prepared (Onsite Locates, December 16, 2019) the following storm sewers exist in proximity to the site:

- A 1350mm diameter storm sewer conveys stormwater between Bridgewood Drive and Bloor Street
- A 525mm diameter storm sewers existing on the south side of Bloor Street to convey stormwater east along Bloor Street
- A 375mm diameter storm sewer exists from the site to the existing 525mm storm sewer on Bloor Street

According to the topographic survey completed by Speight, Van Nostrand & Gibson Limited (Ref No. 1-775 PEEL) the existing topography splits the stormwater flows into the following catchments:

- Catchments UC01 and UC02 (0.14ha total): No minor system controls. Conveys major system drainage uncontrolled to the Bloor Street right-of-way
- Catchments 101 and 102 (2.11 ha): Minor system drainage is collected in internal storm sewer networks with respective connections to Bloor Street municipal storm sewer. Major system drainage is conveyed overland to a low-point of 127.31 along the north-east property line and is ultimately conveyed through the easement.
- Catchment UC03: No minor system controls. Conveys major system drainage overland to a low-point of 127.31 along the north-east property line and is ultimately conveyed through the easement
- Catchment UC04: No minor system controls. Conveys major system drainage overland to the south-east property line

A subsurface utility locate survey prepared by Onsite Locates (December 2019) indicates that each existing building has its own individual internal storm sewer network complete with area drains and catch basins. Each building's network has an individual storm outlet to a municipal storm sewer in the Bloor Street R.O.W. Building A (Catchment 101) conveys stormwater from a property line manhole through a 375mm diameter sewer to an existing storm manhole within the Bloor Street R.O.W. Stormwater is then conveyed east through an existing 525mm diameter sewer. Building B (Catchment 102) conveys stormwater via a property line manhole through a 525mm diameter sewer to an existing storm manhole within the Bloor Street R.O.W. Stormwater is then conveyed east through an existing 525mm diameter sewer. Building B (Catchment 102) conveys stormwater via a property line manhole through a 525mm diameter sewer to an existing storm manhole within the Bloor Street R.O.W. Stormwater is then conveyed east through an existing storm manhole through a 525mm diameter sewer to an existing storm manhole within the Bloor Street R.O.W. Stormwater is then conveyed east through an existing storm manhole within the Bloor Street R.O.W. Stormwater is then conveyed east through an existing storm manhole within the Bloor Street R.O.W. Stormwater is then conveyed east through an existing storm manhole within the Bloor Street R.O.W. Stormwater is then conveyed east through an existing 600mm diameter sewer.

The existing drainage conditions are illustrated on Figure 3 – Pre- Development Drainage Plan.

5.2 Proposed Drainage

The proposed development, as described in Section 2.0 is a residential tower infill complete with two (2) 18-storey residential towers connected with a 4-storey podium, one level of underground parking and a 3-storey above grade parking structure. In addition to the construction of the new buildings, the existing internal roadway, surface parking and associated landscaping will be modified as required to accommodate the development and improve traffic flow.

The proposed drainage design generally maintains the site elevations and the general drainage divide, however due to the new roadway layout and new curbs for the entire site, Catchment 203, as shown on Figure 2 - Post-Development Drainage Plan, will accept stormwater from the existing building catchments now 201 and 202, for Building A and Building B, respectively. A portion of the uncontrolled flow from UC03 will be reduced as it is to be captured in Catchment 203. The uncontrolled areas UC01 and UC02 at the top of the site fronting Bloor Street will remain unchanged. The main overland flow route for the site will continue to utilize the outlet on the east side to the easement adjacent to the property.

The grading of the site results in the following catchments:

- Catchments UC01 and UC02 (0.14ha total): Maintains existing drainage pattern, conveys major system drainage uncontrolled to the Bloor Street right-of-way
- Catchment UC03 (0.24): Maintains existing drainage pattern but reduced catchment area, conveys major system drainage overland to a low-point of 127.31 along the north-east property line and is ultimately conveyed through the easement
- Catchment 201 (0.63 ha) Maintains existing drainage pattern. Minor system flows are conveyed from Building A through internal storm system and discharge controlled to a 525mm sewer in the Bloor Street R.O.W. Catchment has been reduced in post-development scenario due to site grading.
- Catchment 202 (1.10 ha) Maintains existing drainage pattern. Minor system flows are conveyed from Building B through internal storm system and discharge controlled to a 600mm sewer in the Bloor Street R.O.W. Catchment has been reduced in post-development scenario due to site grading.
- Catchment 203 (1.81 ha) Conveys minor system stormwater flows controlled to the existing 525mm storm sewer located in Bloor Street R.O.W. Catchment receives a portion of drainage from existing catchments 101 and 102 due to grading (now 201 and 202, respectively). Major system drainage is maintained, stormwater still flows overland to a low-point of 127.31 along the north-east property line and is ultimately conveyed through the easement.

The proposed conditions are illustrated on Figure 4 – Post-Development Drainage Plan. As shown in Figure 4, stormwater runoff from the proposed development, catchment 203 will be captured in catch basins and area drains located throughout the roadway and parking surfaces. A swale and ditch inlet catch basin will be utilized along the back of the building to collect stormwater. Minor system drainage will be conveyed to a stormwater tank located within the underground parking structure. From the stormwater tank, stormwater will be conveyed via the proposed internal storm sewer system to a property line manhole which will then outlet to a storm manhole in the Bloor Street R.O.W., ultimately discharging into the existing 525mm concrete sewer.

6.0 Stormwater Management

Upon reviewing the Toronto and Region Conservation Authority (TRCA) Regulation Mapping, we found that the site is located within the Etobicoke Creek watershed but is outside TRCA regulated area. Due to the site's proximity to Etobicoke Creek however, the stormwater management quantity control criteria are governed by the 'Etobicoke Creek Stormwater Management Quantity Control Release Rates' document. The site stormwater management criteria for the proposed development will abide by the City of Mississauga standards and the Etobicoke Creek Stormwater Management criteria for the proposed development and the Etobicoke Creek Stormwater Management criteria for the proposed development will abide by the City of Mississauga standards and the Etobicoke Creek Stormwater management criteria include:

Water Quantity Control

Peak flows from the post-development will be controlled to the unit flow rates provided by the TRCA in the Etobicoke Creek Stormwater Management Quantity Control Release Rates, Table 11 for City of Mississauga Catchment ID No. 213.

Water Quality Control

Private stormwater discharging from the proposed development must achieve Ontario Ministry of the Environment, Conservation and Parks (MOECP) Enhanced Level of protection (80% total suspended solids (TSS) removal) for water quality control prior to discharging to the City's storm sewer network.

<u>Water Balance</u>

Retention of the first 5 mm of rainfall for private development areas is required by the City of Mississauga Development Requirements Manual (September 2016) to achieve the water balance criteria.

6.1 Stormwater Quantity Control

The subject site requires that the TRCA's Etobicoke Creek Stormwater Management Quantity Control Release Rates be used to calculate the target release rates for the site. The predicted unit peak runoff rates for Catchment ID No. 213 were used. The pre-development run-off was calculated using the 1.81ha catchment area created in the post-development scenario. This catchment is for the new Buildings C and D, and accepts some drainage that used to be captured in the catchments for Buildings A and B.

Using the City of Mississauga intensity-duration frequency data (IDF), the Modified Rational Method was used to determine the post-development peak flow rates for stormwater runoff for Catchment 203. The amount of on-site storage was determined by comparing the post-development peak flow rates to the maximum allowable release rates for each storm event.

Stormwater runoff for Catchment 203 is proposed to discharge to the municipal storm sewer in Bloor Street via a proposed 300mm diameter storm sewer at a 1% slope that extends from the underground parking for Buildings C and D.

The stormwater runoff from Catchments UC01 and UC02 will remain unchanged, and runoff from Catchments 201, 202 and UC03 will be reduced from their pre-development conditions. Since these catchments are unchanged or reduced from the pre-development scenario, no stormwater management controls were included or revised for these areas.

	Catchment 203 Peak Flow Rate (L/s)			
Storm Event	Post Development		Storage Required with 100mm Orifice (m ³)	
(Year)	Allowable Release Rate ¹	Provided Release Rate (100mm orifice)		
2	31.49	20.72	271.88	
5	48.15	24.64	375.10	
10	61.178	27.75	469.82	
25	83.80	31.63	603.83	
50	98.46	35.33	747.53	
100	113.67	38.31	875.00	

Table 5: Summary	y of Peak Flows and S	torage Volumes ((Catchment 203)	

1 Based on Etobicoke Creek Unit Flow Rates

As shown in Table 5, using a 100mm orifice tube, the pre-development peak stormwater flows for Catchment 203 are controlled to below the allowable release rate based on the Etobicoke Creek Unit Flow Rates. 875 m³ of on-site storage is required during the 100-year post-development storm event to meet the Etobicoke Creek Unit Flow Rates. The storage volume will be provided through an orifice tube downstream of an underground stormwater tank. The underground stormwater tank, built into the underground parking structure, will be sized to hold the required storage volume. Detailed tank sizing will be provided by the Architect during detailed design when the underground parking structure design is finalized. Appendix C contains the orifice sizing calculations.

6.2 Stormwater Quality Control

Stormwater quality controls for the site must incorporate measures to provide an Enhanced Level of Protection (Level 1) according to the MOECP (March 2003) guidelines. Enhanced water quality protection involved the removal of at least 80% of TSS from 90% of the annual runoff volume. Water quality control will be provided using an oil/grit separator (OGS).

A treatment train approach including an OGS and LID measures will be used to achieve the stormwater quality control criteria. A Stormceptor EF8 will be provided downstream of the underground stormwater tank and orifice tube, to provide quality control for Buildings C and D prior to discharging to the City's storm sewer network.

The new Stormceptor EF/EFO model's sized for 60% removal of the ETV PSD is comparable to sizing for 80% removal of the Stormceptor Fine PSD. The sizing results in Appendix C reflects this qualification. A technical bulletin explaining the equivalency is included in Appendix C.

In addition, the roof drains will be directed towards a bioswale at the rear of the building. The bioswale will provide pre-treatment of stormwater runoff prior to entering the internal storm sewer network. The bioswale will be detailed during detailed design but will include an underdrain and a flat bottom.

6.3 Water Balance

As stated by the City of Mississauga Development Requirements Manual (September 2016), the minimum requirement to promote water balance is retention of the 5 mm rainfall event. The water balance retention volume was calculated considering initial abstraction of runoff based on impervious areas. Table 6 describes the dead storage volume required below the invert of each underground tank to satisfy the water balance criteria.

Standard	Criteria	Impervious Area (ha)	Storage Required (m³)		
City of Mississauga Development Requirements Manual (September 2016)	Retention of first 5mm	1.81	90.50		

Table 6: Water Balance Storage Requirement

Once the final plan area of the underground stormwater tank has been established during detailed design, a depth will be indicated to achieve the required volume. Water in dead storage can be reused throughout the development as grey water or for irrigation purposes. On-site LID's illustrated can also be used for water balance and will be detailed in the detailed design stage.

6.4 Sustainable Stormwater Management

Low Impact Development (LID) strategies will be considered for use throughout the proposed development during the detailed design stage. The following LID strategies may be applicable for this site:

- **Rainwater Harvesting**: With minimal pretreatment, the captured rainwater within the underground storage tanks can be used for outdoor non-potable water uses such as irrigation, or in the buildings as gray water.
- **Green Roofs**: This method is beneficial due to its water quality, water balance, and peak flow control benefits. In addition to water resource management, green roofs improve energy efficiency, reduce urban heat island effects, and create greenspace for passive recreation.
- Enhanced Grass Swale and Bioretention: Enhanced grass swales are designed to convey, treat and attenuate stormwater runoff. This feature slows the water to allow sedimentation, filtration through the soil matrix, evapotranspiration, and infiltration into the underlying native soil. Bioretention methods, such as rain gardens and stormwater planters, allow to temporarily store, treat and infiltrate runoff. It is typically designed to capture small storm events. Where underground parking facilities exists, infiltration is not a feasible option.
- **Permeable Pavement**: Porous asphalt, pervious concrete, permeable paver and plastic grid filled with gravel can be used for driveways and walkways to reduce the amount of impervious area throughout the site. This approach encourages infiltration and reduces runoff volumes. Again, where underground parking facilities exists, infiltration is not an option.
- Enhanced Topsoil: Enhanced topsoil provides water quality benefits in addition to water balance storage which will reduce the infrastructure required to store the required water balance volume.

LID strategies and an overall treatment train approach, where possible, will be specified during detailed design.

7.0 Conclusions and Recommendations

The proposed development can be serviced for water, sanitary, and stormwater in accordance with the City of Mississauga and TRCA requirements and standards. Our conclusions and recommendations include:

1. Existing buildings A and B will maintain their existing water, storm, and sanitary servicing schemes. Drainage catchments for the existing buildings will be reduces as a result of the site grading.

- 2. Water demand for proposed Buildings C and D will be provided using a 200 mm diameter fire line and 100 mm diameter domestic line extending from the existing 300mm diameter watermain located in the Bloor Street R.O.W.
- 3. Sanitary servicing for Buildings C and D will be provided with a 200mm diameter sanitary sewer at a slope of 1% extending from the existing 825mm concrete sanitary sewer in the easement adjacent to the property.
- 4. Stormwater runoff from Catchment 203 will flow controlled per the TRCA Unit Flow Rates and will outlet to the 525mm storm sewer located in the Bloor Street R.O.W. Quantity control has been provided using an underground stormwater tank and an orifice tube to match the Etobicoke Creek Unit Flow rates.
- 5. Water quality for Catchment 203 will be provided through a treatment train approach including a bioswale and an OGS (Stormceptor Model EF8 or equivalent) to achieve enhanced protection (80% TSS removal).
- 6. Water balance for the Site will be provided through the retention of the 5 mm rainfall event as dead storage below the invert in each stormwater tank.

Based on the above conclusions we support the proposed development application from the perspective of water supply, sanitary servicing, and stormwater management.

Respectfully submitted,

C.F. CROZIER & ASSOCIATES INC.

Nicole Segal, M.M.Sc., E.I.T. Land Development

DD/ns

I:\1700\1788 - Ranee Management\5378 - 1840 - 1850 Bloor St\Reports\1788-5378_FSR_2020.02.14.docx

C.F. CROZIER & ASSOCIATES INC.

Daniel Doherty, E.I.T. Land Development

APPENDIX A

Water Demand Calculations

Connection Demand Table

WATER CONNECTION

Connection point ³⁾				
Pressure zone of connection poi	nt	2		
Total equivalent population to be	e serviced ¹⁾	1169		
Total lands to be serviced		1.81 ha		
Hydrant flow test				
Hydrant flow test location				
	Pressure (kPa)	Flow (in l/s)	Time	
Minimum water pressure				
Maximum water pressure				

No.	Water demands – Phase 1					
NO.	Demand type	Demand	Units			
1	Average day flow	3.79	l/s			
2	Maximum day flow	7.58	l/s			
3	Peak hour flow	11.73	l/s			
4	Fire flow ²⁾	116.70	l/s			
Anal	Analysis					
5	Maximum day plus fire flow	139.80	l/s			

WASTEWATER CONNECTION

Phase 2

Conr	nection point ⁴⁾	
Total	equivalent population to be serviced	1169 persons
Total	lands to be serviced	1.81 ha
6	Wastewater sewer effluent (in I/s)	15.75

¹⁾ Please refer to design criteria for population equivocates

²⁾ Please reference the Fire Underwriters Survey Document

³⁾ Please specify the connection point ID

⁴⁾ Please specify the connection point (wastewater line or manhole ID) Also, the "total equivalent population to be serviced" and the "total lands to be serviced" should reference the connection point. (the FSR should contain one copy of Site Servicing Plan)

Please include the graphs associated with the hydrant flow test information table Please provide Professional Engineer's signature and stamp on the demand table All required calculations must be submitted with the demand table submission.

Project: 1840 - 1850 Bloor Street East Address: 1840 - 1850 Bloor Street East Project No.: 1788-5378 Date: 02.14.2020 Revised: -Design: DD Check: NS

	Ex	isting Population	Estimate
Existing Buildings	Residentio	al (# of units)	
Building A		167	
Building B		167	
TOTAL	÷	334	
<u>Residential Population:</u> Apartment:	2.7	persons/unit	Source: Peel Region Public Works Design
Residential Population:	902 persons		Criteria Manual - Sanitary Sewer, Modified March 2017.
EXISTING POPULATION	902	persons	
I:\1700\1788 - Ranee Management\53 Estimates	378 - 1840 - 1850	Bloor \$t\Design\Civil_	Water\[5378_Ex_Prop Wtr_San Demand_v2.xlsx]Population

Project: 1840 - 1850 Bloor Street East Address: 1840 - 1850 Bloor Street East Project No.: 1788-5378

Date: 02.14.2020 Revised: -Design: DD Check: NS

Proposed Population Estimate Residential (# of units) Proposed Buildings 218 **Building** C Building D 215 TOTAL 433 Residential Population: Apartment: 2.7 persons/unit Source: Peel Region Public Works Design Residential Population: 1169 Criteria Manual - Sanitary Sewer, persons Modified March 2017. PROPOSED POPULATION: 1169 persons I:\1700\1788 - Ranee Management\5378 - 1840 - 1850 Bloor St\Design\Civil_Water\[5378_ Ex_Prop Wtr_San Demand.xlsx]Population Estimates

	1840 - 1850 Bloor Street East 1840 - 1850 Bloor Street East 1788-5378	Date: 02.14.2020 Revised: - Design: DD Check: NS
Existing	Water Demand - Builings A and B	
Population Estimate: Residential: 902	persons	
Design Criteria: Average Consumption Rate: Maximum Daily Demand Peaking Factor: Maximum Hourly Demand Peaking Factor:	0.280 m ³ /cap.day 2.00 3.00	Source: Peel Region Public Works Watermain Design Criteria, June 2010.
Residential Demand:		
Average Daily Demand:	252.50 m ³ /day 2.92 L/s	
Maximum Daily Demand:	505.01 m³/day 5.85 L/s	
Maximum Hourly Demand:	757.51 m ³ /day 8.77 L/s	
Existing Average Daily Demand: Existing Maximum Daily Demand: Existing Maximum Hourly Demand:	2.92 L/s 5.85 L/s 8.77 L/s	

L I:\1700\1788 - Ranee Management\5378 - 1840 - 1850 Bloor \$t\Design\Civil_Water\[5378_ Ex_Prop Wtr_San Demand_v2.xlsx]Sanitary

CROZIER &ASSOCIATES Consulting Engineers Address: Project No.:		Date: 02.14.2020 Revised: - Design: DD Check: NS
Proposed	Water Demand - Buildings C and	D
Population Estimate: Residential: 1169	persons	
<u>Design Criteria:</u>		
Average Consumption Rate: Maximum Daily Demand Peaking Factor: Maximum Hourly Demand Peaking Factor:	0.280 m ³ /cap.day 2.00 3.00	Source: Peel Region Public Works Watermain Design Criteria, June 2010.
Residential Demand:		
Average Daily Demand:	327.35 m ³ /day 3.79 L/s	
Maximum Daily Demand:	654.70 m ³ /day 7.58 L/s	
Maximum Hourly Demand:	982.04 m ³ /day 11.37 L/s	
Proposed Average Daily Demand: Proposed Maximum Daily Demand: Proposed Maximum Hourly Demand:	3.79 L/s 7.58 L/s 11.37 L/s	

I:\1700\1788 - Ranee Management\5378 - 1840 - 1850 Bloor St\Design\Civil_Water\[5378_ Ex_Prop Wtr_San Demand_v2.xlsx]Sanitary

EROZIER &ASSOCIATES Consulting Engineers	Project: 1840 - 1850 Bloor Street East Project No.: 1788-5378		Date: 01.20.2020 Designed By: DD Checked By: NS	
	Buildings C and D - Fire	e Flow Calculations - Fire Unde	rwriters Survey Method	
2.) The building is assumed to hav	999) hary construction (C-value = 1.0). e no automatic sprinkler protection. w hazard occupancy as per the appendix (of the Water Supply for Public B	ire Protection (1999) by FIIS	
		uide for Determination of Requ		
1 An estimate of fire flow require	d for a given area may be determined by th	· · ·		
	$F = 220 * C * \sqrt{A}$			
C = c = = = = = A = T	ne required fire flow in litres per minute oefficient related to the type of construction 1.5 for wood frame construction (structure 1.0 for ordinary construction (brick or other 1 0.8 for non-combustible construction (unpro 0.6 for fire-resistive construction fully protection to total floor area in square metres (includin 0 percent below grade) in the building const	essentially all combustible) masonry walls, combustible flo otected metal structural comp ted frame, floors, roof) ig all storeys, but excluding ba:	onents)	
Proposed Development				
<u>0.8</u> C	-Value Large (Plus 25% of Adjoining		n	
Therefore F =	9,500 L/min	2930.4 sq.r		
Fire flow determine	ed above shall not exceed: 30,000 L/min for wood frame constr 30,000 L/min for ordinary constructio 25,000 L/min for non-combustible c 25,000 L/min for fire-resistive constru	on onstruction		
	be reduced by as much as 25% for occupar charge for occupancies having a high fire h		azard or may	
Non-Combustible Limited Combustible Combustible	-25% Free E -15% Rapid E 0% (No change)	Burning 15% Burning 25%		
=	-15% Reduction(%) -1,425 L/min reduction			
Subtotal =	8,075 L/min			
Note: Flow determined shall no	ot be less than 2,000 L/min			
 Sprinklers - The value obtaine protection. 	d in No. 2 above may be reduced by up to Assume complete automation -4,038 L/min reduction			

r Supply for Public Fire Protection - 1999 nderwriters Survey							
-	I	Part II - Guide fo	r Determination of R	equired Fire Flow			
4. Exposure - To the value obtained in No. 2, a p	percentage should	be added for stru	ictures exposed with	in 45 metres			
by the fire area under consideration. The per	•						
building(s) being exposed, the separation, or							
the provision of automatic sprinklers and/or o	о ,	0.77	· ·				
exposed building(s) and the effect of hillside							
Separation Charge	Separation	Charge	1				
0 to 3 m 25%	20.1 to 30 m	10%	-				
3.1 to 10 m 20%	30.1 to 45 m	5%					
10.1 to 20 m 15%	>45 m	0%					
	10111	0,0	1				
Exposed buildings	1	1	1	1			
Name	Distance (m)	Charge	Surcharge (L/min)				
North	30	10%	808				
East South	n.a 12	0%	0				
West	n/a	0%	0				
	ni, a	Total Surcharge					
					1 🗆	Required Durat	1
Determine Required Fire Flow] F	Flow Required	Duration
-	9.500					Flow Required (L/min)	Duration (hours)
No.1)				Flow Required (L/min) 2,000 or less	Duration (hours) 1.00
No.1 No.2	-1,425					Flow Required (L/min) 2,000 or less 3,000	Duration (hours) 1.00 1.25
No.1 No.2 No.3	2 -1,425 3 -4,038) 5 reduction 3 reduction				Flow Required (L/min) 2,000 or less 3,000 4,000	Duration (hours) 1.00 1.25 1.50
No.1 No.2	2 -1,425 3 -4,038					Flow Required (L/min) 2,000 or less 3,000 4,000 5,000	Duration (hours) 1.00 1.25 1.50 1.75
No.1 No.2 No.3	2 -1,425 3 -4,038 4 2,019) 5 reduction 3 reduction				Flow Required (L/min) 2,000 or less 3,000 4,000	Duration (hours) 1.00 1.25 1.50
No. 1 No. 2 No. 3 No. 4	2 -1,425 3 -4,038 4 2,019 6,056) 5 reduction 3 reduction 9 surcharge	or	116.7 L/s		Flow Required (L/min) 2,000 or less 3,000 4,000 5,000 6,000	Duration (hours) 1.00 1.25 1.50 1.75 2.00
No.1 No.2 No.3 No.4 Required Flow:	2 -1,425 3 -4,038 4 2,019 6,056	2 5 reduction 3 reduction 5 surcharge 5 L/min		116.7 L/s 1,848.0 USGPM		Flow Required (L/min) 2,000 or less 3,000 4,000 5,000 6,000 8,000 8,000	Duration (hours) 1.00 1.25 1.50 1.75 2.00 2.00
No.1 No.2 No.3 No.4 Required Flow:	2 -1,425 3 -4,038 4 2,019 6,056	2 5 reduction 3 reduction 5 surcharge 5 L/min				Flow Required (L/min) 2,000 or less 3,000 4,000 5,000 6,000 8,000 10,000 12,000 14,000	Duration (hours) 1.00 1.25 1.50 1.75 2.00 2.00 2.00 2.50 3.00
No.1 No.2 No.3 No.4 Required Flow: Rounded to nearest 1000 L/min:	2 -1,425 3 -4,038 4 2,019 6,056	2 5 reduction 3 reduction 5 surcharge 5 L/min				Flow Required (L/min) 2,000 or less 3,000 4,000 5,000 6,000 8,000 10,000 12,000	Duration (hours) 1.00 1.25 1.50 1.75 2.00 2.00 2.00 2.50
No.1 No.2 No.3 No.4 Required Flow: Rounded to nearest 1000 L/min:	2 -1,425 3 -4,038 4 2,019 6,056	2 5 reduction 3 reduction 5 surcharge 5 L/min				Flow Required (L/min) 2,000 or less 3,000 4,000 5,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000	Duration (hours) 1.00 1.25 1.50 1.75 2.00 2.00 2.00 2.50 3.00 3.50 4.00
No.1 No.2 No.3 No.4 Required Flow: Rounded to nearest 1000 L/min:	2 -1,425 3 -4,038 4 2,019 6,056	2 5 reduction 3 reduction 5 surcharge 5 L/min				Flow Required (L/min) 2,000 or less 3,000 4,000 5,000 6,000 10,000 12,000 14,000 16,000 18,000 20,000	Duration (hours) 1.00 1.25 1.50 1.75 2.00 2.00 2.50 3.00 3.50 4.00 4.50
No.1 No.2 No.3 No.4 Required Flow: Rounded to nearest 1000 L/min:	2 -1,425 3 -4,038 4 2,019 6,056	2 5 reduction 3 reduction 5 surcharge 5 L/min				Flow Required (L/min) 2,000 or less 3,000 4,000 5,000 6,000 10,000 10,000 12,000 14,000 14,000 18,000 20,000 22,000	Duration (hours) 1.00 1.25 1.50 1.75 2.00 2.00 2.00 2.50 3.00 3.50 4.00 4.50 5.00
No.1 No.2 No.3 No.4 Required Flow: Rounded to nearest 1000 L/min:	2 -1,425 3 -4,038 4 2,019 6,056	2 5 reduction 3 reduction 5 surcharge 5 L/min				Flow Required (L/min) 2,000 or less 3,000 4,000 5,000 6,000 8,000 10,000 12,000 14,000 14,000 16,000 18,000 20,000 22,000 24,000	Duration (hours) 1.00 1.25 1.50 1.75 2.00 2.00 2.00 2.50 3.00 3.50 4.00 4.50 5.50
No.1 No.2 No.3 No.4 Required Flow: Rounded to nearest 1000 L/min:	2 -1,425 3 -4,038 4 2,019 6,056	2 5 reduction 3 reduction 5 surcharge 5 L/min				Flow Required (L/min) 2,000 or less 3,000 4,000 5,000 6,000 8,000 10,000 12,000 14,000 14,000 14,000 18,000 20,000 22,000 24,000 26,000	Duration (hours) 1.00 1.25 1.50 1.75 2.00 2.00 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00
No.1 No.2 No.3 No.4 Required Flow: Rounded to nearest 1000 L/min:	2 -1,425 3 -4,038 4 2,019 6,056	2 5 reduction 3 reduction 5 surcharge 5 L/min				Flow Required (L/min) 2,000 or less 3,000 4,000 5,000 6,000 10,000 12,000 14,000 14,000 16,000 18,000 20,000 22,000 24,000 26,000 28,000	Duration (hours) 1.00 1.25 1.50 1.75 2.00 2.00 2.50 3.00 2.50 3.00 4.50 5.50 6.00 6.50
No.1 No.2 No.3 No.4 Required Flow: Rounded to nearest 1000 L/min:	2 -1,425 3 -4,038 4 2,019 6,056	2 5 reduction 3 reduction 5 surcharge 5 L/min				Flow Required (L/min) 2,000 or less 3,000 4,000 5,000 6,000 10,000 12,000 14,000 14,000 18,000 20,000 22,000 24,000 26,000 28,000 30,000	Duration (hours) 1.00 1.25 1.50 1.75 2.00 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00
No.1 No.2 No.3 No.4 Required Flow: Rounded to nearest 1000 L/min:	2 -1,425 3 -4,038 4 2,019 6,056	2 5 reduction 3 reduction 5 surcharge 5 L/min				Flow Required (L/min) 2,000 or less 3,000 4,000 5,000 6,000 10,000 10,000 12,000 14,000 14,000 16,000 22,000 22,000 24,000 24,000 28,000 30,000 32,000	Duration (hours) 1.00 1.25 1.50 1.75 2.00 2.00 2.00 2.50 3.00 3.50 4.00 4.50 5.50 6.00 6.50 7.00 7.50
No.1 No.2 No.3 No.4 Required Flow: Rounded to nearest 1000 L/min:	2 -1,425 3 -4,038 4 2,019 6,056	2 5 reduction 3 reduction 5 surcharge 5 L/min				Flow Required (L/min) 2,000 or less 3,000 4,000 5,000 8,000 10,000 12,000 14,000 14,000 14,000 16,000 22,000 24,000 24,000 26,000 28,000 30,000 32,000 34,000	Duration (hours) 1.00 1.25 1.50 1.75 2.00 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00
No.1 No.2 No.3 No.4 Required Flow: Rounded to nearest 1000 L/min:	2 -1,425 3 -4,038 4 2,019 6,056	2 5 reduction 3 reduction 5 surcharge 5 L/min				Flow Required (L/min) 2,000 or less 3,000 4,000 5,000 6,000 10,000 10,000 12,000 14,000 14,000 16,000 22,000 22,000 24,000 24,000 28,000 30,000 32,000	Duration (hours) 1.00 1.25 1.50 1.75 2.00 2.00 2.00 2.00 2.50 3.00 3.50 4.00 4.50 5.50 6.00 6.50 7.00 7.50

APPENDIX B

Sanitary Sewage Demand Calculations

Project: 1840 - 1850 Bloor Street East Address: 1840 - 1850 Bloor Street East Project No.: 1788-5378 Date: 02.14.2020 Revised: -Design: DD Check: NS

	Ex	isting Population	Estimate
Existing Buildings	Residentio	al (# of units)	
Building A		167	
Building B		167	
TOTAL	÷	334	
<u>Residential Population:</u> Apartment:	2.7	persons/unit	Source: Peel Region Public Works Design
Residential Population:	902 persons		Criteria Manual - Sanitary Sewer, Modified March 2017.
EXISTING POPULATION	902	persons	
I:\1700\1788 - Ranee Management\53 Estimates	378 - 1840 - 1850	Bloor \$t\Design\Civil_	Water\[5378_Ex_Prop Wtr_San Demand_v2.xlsx]Population

Project: 1840 - 1850 Bloor Street East Address: 1840 - 1850 Bloor Street East Project No.: 1788-5378

Date: 02.14.2020 Revised: -Design: DD Check: NS

Proposed Population Estimate Residential (# of units) Proposed Buildings 218 **Building** C Building D 215 TOTAL 433 Residential Population: Apartment: 2.7 persons/unit Source: Peel Region Public Works Design Residential Population: 1169 Criteria Manual - Sanitary Sewer, persons Modified March 2017. PROPOSED POPULATION: 1169 persons I:\1700\1788 - Ranee Management\5378 - 1840 - 1850 Bloor St\Design\Civil_Water\[5378_ Ex_Prop Wtr_San Demand.xlsx]Population Estimates

CROZIER & ASSOCIATES Consulting Engineers	Project: 1840 - 1850 Bloor Street East Address: 1840 - 1850 Bloor Street East Project No.: 1788-5378	Date: 02.14.2020 Revised: - Design: DD Check: NS
	Existing Sanitary Flow - Buildings A and B	
Infiltration Area: 1.73 H	na	
Residential: TOTAL POPULATION:	902persons902persons	
<u>Design Criteria:</u> Unit Sewage Flow: Infiltration: Peaking Factor:	0.3028 m ³ /cap.day 0.200 L/s/ha $M = 1 + \frac{14}{4 + \sqrt{Pe}}$	Source: Peel Region Sanitary Sewer Design Criteria, March 2017. Standard Drawing 2-9-2
<u>Residential Sanitary Flow:</u> Average Dry Weather Flow:	273.07 m³/day 3.16 L/s	
Existing Dry Weather Sanitary Flow: Peaking Factor: Existing Peak Sanitary Flow: Inflow/Infiltration Allowance: Existing Design Sanitary Flow:	3.16 L/s 3.83 12.10 L/s 0.35 L/s 12.45 L/s	

I:\1700\1788 - Ranee Management\5378 - 1840 - 1850 Bloor St\Design\Civil_Water\[5378_Ex_Prop Wtr_San Demand_v2.xlsx]Sanitary

CROZIER & ASSOCIATES Consulting Engineers	Project: 1840 - 1850 Bloor Street East Address: 1840 - 1850 Bloor Street East Project No.: 1788-5378	Date: 02.14.2020 Revised: - Design: DD Check: NS
I	roposed Sanitary Flow - Buildings C and D	
Infiltration Area: 1.81 H	na	
Population Estimates:		
Residential:	1169 persons	
TOTAL POPULATION:	1169 persons	
Design Criteria:		
Unit Sewage Flow:	0.3028 m³/cap.day	
Infiltration:	0.200 L/s/ha	Source: Peel Region Sanitary Sewer Design Criteria, March 2017.
Peaking Factor:	$\frac{\text{Modified Harmon Formula}}{M = 1 + \frac{14}{4 + \sqrt{Pe}}}$	Standard Drawing 2-9-2
Residential Sanitary Flow:		
Average Dry Weather Flow:	354.00 m³/day	
	4.10 L/s	
Proposed Dry Weather Sanitary Flow:	4.10 L/s	
Peaking Factor:	3.76	
Proposed Peak Sanitary Flow:	15.39 L/s	
Inflow/Infiltration Allowance:	0.36 L/s	
Proposed Design Sanitary Flow:	15.75 L/s	

I:\1700\1788 - Ranee Management\5378 - 1840 - 1850 Bloor St\Design\Civil_Water\[5378_ Ex_Prop Wtr_San Demand_v2.xlsx]Sanitary

APPENDIX C

Stormwater Management Calculations

Modified Rational Calculations - Input Parameters

Storm Data: Mississauga

1450

Time of Concer	ntration:	T _c =	15	min	(per city of Mississauga standards)
Return Period	А	В	С	l (mm/hr)	
2 yr	610	4.6	0.78	59.89	
5 yr	820	4.6	0.78	80.51	
10 yr	1010	4.6	0.78	99.17	
25 yr	1160	4.6	0.78	113.89	
50 yr	1300	4.7	0.78	127.13	

0.78

140.69

Pre - Development Conditions (Catchment 103)					
Land Use	Area (ha)	Area (m²)	С	Weighted Average C ¹	
Pervious	1.09	10,947	0.25	0.20	
Impervious	0.29	2,883	0.90	0.19	
Total Site	1.38	13,830	-	0.39	

4.9

Post - Development Conditions (Catchment 203)						
Land Use	Area (ha)	Area (m²)	С	Weighted Average C		
Pervious	0.54	5,400	0.25	0.07		
Impervious	1.27	12,700	0.90	0.63		
Total Site	1.81	18,100	-	0.71		

Equations:

100 yr

Peak Flow $Q_{post} = 0.0028 \cdot C_{post} \cdot i(T_d)$

Intensity $i(T_d) = A / (T + B)^C$

Note: For city of Mississauga apply adjusment factor to RC as follows

10-year	1.00
25-year	1.10
50-year	1.20
100-year	1.25

Modified Rational Calculations - Peak Flows Summary

Unit Flow Rates from Etobicoke Creek Stormwater Management Quantity Control Release Rates (TRCA)							
Return Period	Site Area (ha) Unit Flow Rate Target Peak (L/s/ha) Flow (L/s) Flow (m						
2 yr		17.4	31.5	0.03			
5 yr		26.6	48.1	0.05			
10 yr	1.81	33.8	61.2	0.06			
25 yr	1.81	46.3	83.8	0.08			
50 yr		54.4	98.5	0.10			
100 yr		62.8	113.7	0.11			

	Post-Development Peak Flows (L/s)							
Return Period	urn Period Adjustment Factor Adjusted RC Q _{target*} Q _{orifice} Q ₂₀₃							
2 yr	1.00	0.71	31.5	20.7	214.3			
5 yr	1.00	0.71	48.1	24.6	288.1			
10 yr	1.00	0.71	61.2	27.7	354.9			
25 yr	1.10	0.78	83.8	31.6	448.3			
50 yr	1.20	0.85	98.5	35.3	545.9			
100 yr	1.25	0.88	113.7	38.3	629.3			

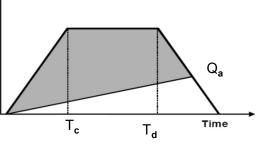
*Note Target based on Unit Flow Rates fro Catchment #213 from the Etobicoke Creek Stormwater Management Quantity Control Release Rates

Equations:

Modified Rational Calculations - 2-Year Storm Event

Control Criteria

2 yr: Control Post-Development Peak Flows to Unit Flow Rate


2 yr: Uncontrolled Post-Development Flow:

Q_{post}= 214.32 L/s

2 yr: Unit Flow Rate Target

Q_{orifice} = 20.72 L/s Q_{unit flow} = 31.49 L/s

	Storage Vo	olume Dete	ermination		
T _d	i	T _d	Q _{Uncont}	S _d]
min)	(mm/hr)	(sec)	(m ³ /s)	(m ³)	
5	104.51	300	0.374	99.76	
10	75.36	600	0.270	146.26	1
15	59.89	900	0.214	174.24	1
20	50.16	1200	0.180	193.66	1 t
25	43.42	1500	0.155	208.22	Discharge
30	38.45	1800	0.138	219.67	1
35	34.60	2100	0.124	228.96	
40	31.54	2400	0.113	236.68	1 /
45	29.03	2700	0.104	243.19	
50	26.94	3000	0.096	248.76	
55	25.16	3300	0.090	253.55	
60	23.62	3600	0.085	257.71	Т,
65	22.29	3900	0.080	261.34]
70	21.12	4200	0.076	264.52]
75	20.07	4500	0.072	267.30]
80	19.14	4800	0.068	269.74]
85	18.30	5100	0.065	271.88]
uired Sta	orage Volume:			271.88	1

Peak Flow	Storage
$Q_{post} = 0.0028 \cdot C_{post} \cdot i(T_d)$	$S_d = Q_{post} \cdot T_d - Q_{target} (T_d + T_c) / 2$

Qa

Time

Modified Rational Calculations - 5-Year Storm Event

Control Criteria

5 yr: Control Post-Development Peak Flows to Unit Flow Rate

5 yr: Uncontrolled Post-Development Flow:

Q_{post} = 288.10 L/s

5 yr: Unit Flow Rate Target

$Q_{\text{orifice}} =$	24.64	L/s
$Q_{unit flow} =$	48.15	L/s

T _d	i	T _d	Q _{Uncont}	S _d	
(min)	(mm/hr)	(sec)	(m ³ /s)	(m ³)	
5	140.49	300	0.503	136.03	
10	101.30	600	0.362	199.02	
15	80.51	900	0.288	237.11	
20	67.43	1200	0.241	263.70	↑
25	58.37	1500	0.209	283.75	Discharge
30	51.68	1800	0.185	299.62	1
35	46.52	2100	0.166	312.60	
40	42.40	2400	0.152	323.45	
45	39.02	2700	0.140	332.69	1 /
50	36.21	3000	0.130	340.65	
55	33.82	3300	0.121	347.58	
60	31.76	3600	0.114	353.65	T _c
65	29.96	3900	0.107	359.01	
70	28.38	4200	0.102	363.76	
75	26.98	4500	0.097	367.98	
80	25.73	4800	0.092	371.75	
85	24.60	5100	0.088	375.10	

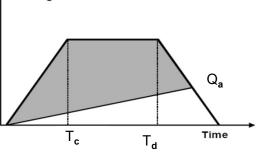
Peak Flow	Storage
$Q_{post} = 0.0028 \cdot C_{post} \cdot i(T_d)$	$S_d = Q_{post} \cdot T_d - Q_{target} (T_d + T_c) / 2$

_ _

Modified Rational Calculations - 10-Year Storm Event

Control Criteria

10 yr: Control Post-Development Peak Flows to Unit Flow Rate


10 yr: Uncontrolled Post-Development Flow

Q_{post} = 354.85 L/s

10 yr: Unit Flow Rate Target

Q_{orifice} = 27.75 L/s $Q_{\text{unit flow}} = 61.18$ L/s

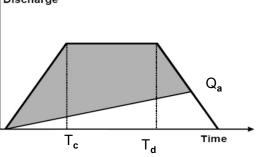
Storage Volume Determination					
T _d	i	T _d	Q _{Uncont}	S _d	1
(min)	(mm/hr)	(sec)	(m ³ /s)	(m ³)	
5	173.04	300	0.619	169.11	
10	124.77	600	0.446	247.08]
15	99.17	900	0.355	294.39	1
20	83.06	1200	0.297	327.53	↑
25	71.90	1500	0.257	352.62	Discharge
30	63.66	1800	0.228	372.56	1
35	57.30	2100	0.205	388.93	11
40	52.22	2400	0.187	402.69	1 /
45	48.07	2700	0.172	414.46	1 /
50	44.60	3000	0.160	424.65	1 /
55	41.65	3300	0.149	433.58	
60	39.11	3600	0.140	441.45	1
65	36.91	3900	0.132	448.44	1
70	34.96	4200	0.125	454.68	1
75	33.24	4500	0.119	460.27]
80	31.69	4800	0.113	465.30]
85	30.31	5100	0.108	469.82]
quired St	orage Volum	e:		469.82	7

Peak Flow	Storage
$Q_{post} = 0.0028 \cdot C_{post} \cdot i(T_d)$	$S_d = Q_{post} \cdot T_d - Q_{target} (T_d + T_c) / 2$

Modified Rational Calculations - 25-Year Storm Event

Control Criteria

25 yr: Control Post-Development Peak Flows to Unit Flow Rate


25 yr: Uncontrolled Post-Development Flow

Q_{post}= 448.31 L/s

25 yr: Unit Flow Rate Target

Q_{orifice} = 31.63 L/s Q_{unit flow} = 83.80 L/s

	siolage v	olume Dete	·····		1
T _d	i	T _d	Q _{Uncont}	Sd	
(min)	(mm/hr)	(sec)	(m ³ /s)	(m ³)	
5	198.74	300	0.782	215.71	
10	143.31	600	0.564	314.73	
15	113.89	900	0.448	375.01	
20	95.40	1200	0.376	417.38	↑
25	82.58	1500	0.325	449.59	Discharge
30	73.11	1800	0.288	475.30]
35	65.80	2100	0.259	496.50	11
40	59.98	2400	0.236	514.40	1 /
45	55.21	2700	0.217	529.78	
50	51.22	3000	0.202	543.17	
55	47.84	3300	0.188	554.96	
60	44.92	3600	0.177	565.42	1
65	42.39	3900	0.167	574.76]
70	40.15	4200	0.158	583.16	
75	38.17	4500	0.150	590.73]
80	36.40	4800	0.143	597.60]
85	34.81	5100	0.137	603.83]
auired St	orage Volume	e:	•	603.83	1

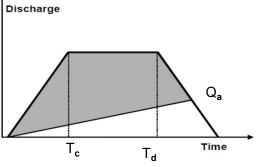
Peak Flow	Storage
$Q_{post} = 0.0028 \cdot C_{post} \cdot i(T_d)$	$S_d = Q_{post} \cdot T_d - Q_{target} (T_d + T_c) / 2$

Modified Rational Calculations - 50-Year Storm Event

Control Criteria

.....

50 yr: Control Post-Development Peak Flows to Unit Flow Rate


50 yr: Uncontrolled Post-Development Flow

 $Q_{post} = 545.92$ L/s

50 yr: Unit Flow Rate Target

$Q_{\text{orifice}} =$	35.33	L/s
Q _{unit flow} =	98.46	L/s

Storage Volume Determination				
T _d	i	T _d	Q _{Uncont}	S _d
(min)	(mm/hr)	(sec)	(m ³ /s)	(m ³)
5	220.93	300	0.949	263.42
10	159.75	600	0.686	385.09
15	127.13	900	0.546	459.54
20	106.57	1200	0.458	512.06
25	92.30	1500	0.396	552.11
30	81.75	1800	0.351	584.18
35	73.60	2100	0.316	610.72
40	67.10	2400	0.288	633.20
45	61.77	2700	0.265	652.59
50	57.32	3000	0.246	669.54
55	53.54	3300	0.230	684.51
60	50.28	3600	0.216	697.86
65	47.45	3900	0.204	709.83
70	44.95	4200	0.193	720.64
75	42.74	4500	0.184	730.45
80	40.76	4800	0.175	739.37
85	38.97	5100	0.167	747.53
Required Sto	orage Volum	e:		747.53

Peak Flow	Storage		
$Q_{post} = 0.0028 \cdot C_{post} \cdot i(T_d)$	$S_d = Q_{post} \cdot T_d - Q_{target} (T_d + T_c) / 2$		

Modified Rational Calculations - 100-Year Storm Event

Control Criteria

100 yr: Control Post-Development Peak Flows to Unit Flow Rate

100 yr: Uncontrolled Post-Development Flow

Q_{post} = 629.31 L/s

100 yr: Unit Flow Rate Target

 $Q_{\text{orifice}} = 38.31 \text{ L/s}$ $Q_{\text{unit flow}} = 113.67 \text{ L/s}$

Storage Volume Determination					
T _d	i	T _d	Q _{Uncont}	S _d	1
(min)	(mm/hr)	(sec)	(m ³ /s)	(m ³)	
5	242.53	300	1.085	302.47]
10	176.31	600	0.789	444.45]
15	140.69	900	0.629	531.89]
20	118.12	1200	0.528	593.81] f
25	102.41	1500	0.458	641.15	Discharge
30	90.77	1800	0.406	679.14]
35	81.77	2100	0.366	710.65	
40	74.58	2400	0.334	737.41	
45	68.68	2700	0.307	760.53	
50	63.75	3000	0.285	780.80	
55	59.56	3300	0.266	798.75	
60	55.95	3600	0.250	814.79	
65	52.81	3900	0.236	829.22]
70	50.03	4200	0.224	842.29	
75	47.58	4500	0.213	854.18	
80	45.38	4800	0.203	865.04	
85	43.39	5100	0.194	875.00	
uired St	orage Volume	e:		875.00]

Peak Flow	Storage		
$Q_{post} = 0.0028 \cdot C_{post} \cdot i(T_d)$	$S_d = Q_{post} \cdot T_d - Q_{target} (T_d + T_c) / 2$		

 Project:
 1840-1850 Bloor St

 Project No.:
 1788-5378

 Created By:
 DD/HL

 Checked By:
 NS

 Date:
 2020.02.13

 Updated:
 2/14/2020

Orifice Design - 100 mm

Depth Increment (m) =	0.05
Inlet Elevation (m) =	125.11

Orifice: Q=CA(2gH) ^{^0.5}	Orifice 1
Discharge Coef., Cd=	0.80
Orifice Diameter (mm) =	100
Area of Orifice (m ²) =	0.0079
Orifice (Side/Bottom) =	Side
Invert (m) =	125.11

	Storage Rating Curve					
	Water Elev.	Depth	Head 1	Volume	Orifice1 Q	
	(m)	(m)	(m)	(m3)	(Side) L/s	
Bottom of Tank (125.11)	125.11	0.00	0.00	0.00	0.00	
	125.16	0.05	0.00	22.50	0.00	
	125.21	0.10	0.05	45.00	6.22	
	125.26	0.15	0.10	67.50	8.80	
	125.31	0.20	0.15	90.00	10.78	
	125.36	0.25	0.20	112.50	12.45	
	125.41	0.30	0.25	135.00	13.92	
	125.46	0.35	0.30	157.50	15.24	
	125.51	0.40	0.35	180.00	16.47	
	125.56	0.45	0.40	202.50	17.60	
	125.61	0.50	0.45	225.00	18.67	
	125.66	0.55	0.50	247.50	19.68	
	125.71	0.60	0.55	270.00	20.64	
	125.76	0.65	0.60	292.50	21.56	
	125.81	0.70	0.65	315.00	22.44	
	125.86	0.75	0.70	337.50	23.29	
	125.91	0.80	0.75	360.00	24.10	
	125.96	0.85	0.80	382.50	24.89	
	126.01	0.90	0.85	405.00	25.66	
	126.06	0.95	0.90	427.50	26.40	
	126.11	1.00	0.95	450.00	27.13	
	126.16	1.05	1.00	472.50	27.83	
	126.21	1.10	1.05	495.00	28.52	
	126.26	1.15	1.10	517.50	29.19	
	126.31	1.20	1.15	540.00	29.85	
	126.36	1.25	1.20	562.50	30.49	
	126.41	1.30	1.25	585.00	31.12	
	126.46	1.35	1.30	607.50	31.73	
	126.51	1.40	1.35	630.00	32.34	
	126.56	1.45	1.40	652.50	32.93	
	126.61	1.50	1.45	675.00	33.51	
	126.66	1.55	1.50	697.50	34.09	
	126.71	1.60	1.55	720.00	34.65	
	126.76	1.65	1.60	742.50	35.20	
	126.81	1.70	1.65	765.00	35.75	
	126.86	1.75	1.70	787.50	36.29	
	126.91	1.80	1.75	810.00	36.82	
	126.96	1.85	1.80	832.50	37.34	
	127.01	1.90	1.85	855.00	37.85	
	127.06	1.95	1.90	877.50	38.36	
	127.11	2.00	1.95	900.00	38.86	
Top of Tank (127.13)	127.13	2.02	1.97	909.00	39.06	

Project: 1840-1850 Bloor St Project No.: 1788-5378 Date: 2020.02.14 Created By: DD/HL Checked By: NS

Water Balance Volume Requirement

Water Balance criteria is 5mm across catchment area Site Area: 1

Volume Required: 90.50

1.81 ha 90.50 m³

Province:	Ontario		Project Na	ne:	1840-1850 Bloor	Street East
City:	Mississauga		Project Nu	Project Number: 1788-5378		
Nearest Rainfall Station:	TORONTO LESTER B. PEA	RSON INT'L	Designer N	ame:	Daniel Doherty	
NCDC Rainfall Station Id:	AP 8733		Designer C	ompany:	Crozier & Associ	ates
Years of Rainfall Data:	44		Designer E	mail/Phone:	ddoherty@cfcro	zier.ca
rears of Rainfall Data:	44		EOR Name			
Site Name:			EOR Comp	any:		
Drainage Area (ha):	1.81		EOR Email/	Phone:		
	0.71					
						I Sediment
Particle Size Distribution:	CA ETV					l Reduction Summary
Target TSS Removal (%):	60.0				Stormceptor	TSS Removal
Require Hydrocarbon Spill Cap	ture?	No			Model	Provided (%)
Upstream Flow Control?		No			EF4 EF6	48 56
Required Water Quality Runof	f Volume Capture (%):	90.00			EF8	61
Estimated Water Quality Flow	Rate (L/s):	47.82			EF10	63
Peak Conveyance (maximum)	Flow Rate (L/s):				EF12	65
Site Sediment Transport Rate	(kg/ha/yr):					
		•				
			Recom	mended St	ormceptor EF	[:] Model: E
	Estima	ited Net A	Annual Sed	iment (TSS) Load Reduct	tion (%): (
		,	Water Oua	litv Runoff	Volume Capt	ture (%): >
				•	•	

THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

PERFORMANCE

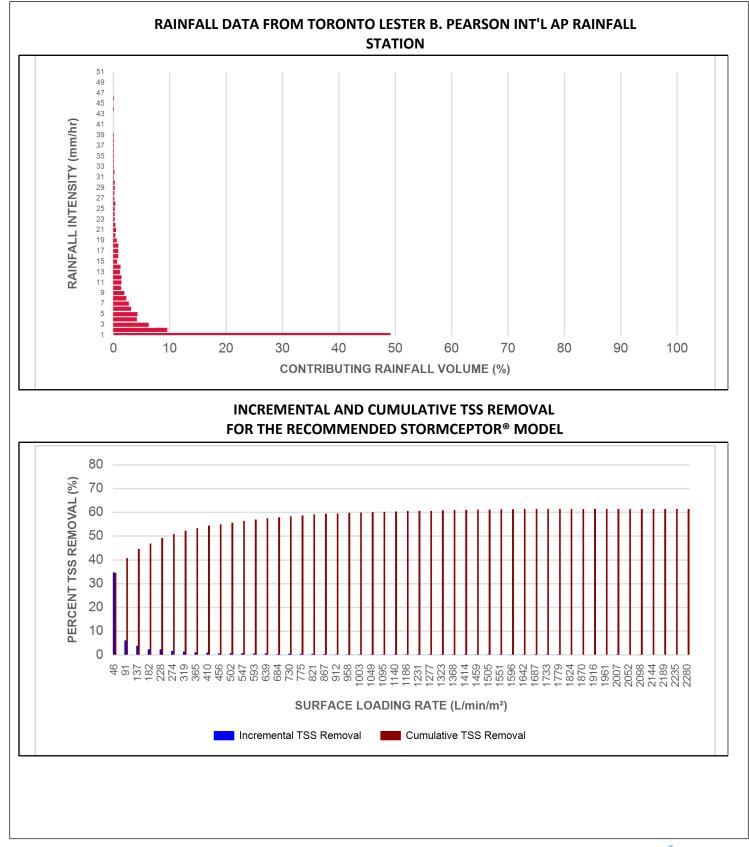
► Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patentpending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including highintensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterwavs.

PARTICLE SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators** for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Dorsont
Size (µm)	Than	Fraction (µm)	Percent
1000	100	500-1000	5
500	95	250-500	5
250	90	150-250	15
150	75	100-150	15
100	60	75-100	10
75	50	50-75	5
50	45	20-50	10
20	35	8-20	15
8	20	5-8	10
5	10	2-5	5
2	5	<2	5

Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
1	49.2	49.2	3.57	214.0	46.0	70	34.6	34.6
2	9.6	58.8	7.15	429.0	91.0	63	6.1	40.7
3	6.3	65.1	10.72	643.0	137.0	60	3.8	44.5
4	4.2	69.3	14.29	857.0	182.0	56	2.3	46.8
5	4.3	73.6	17.86	1072.0	228.0	53	2.3	49.1
6	3.2	76.8	21.44	1286.0	274.0	52	1.7	50.8
7	2.8	79.6	25.01	1500.0	319.0	50	1.4	52.2
8	2.3	81.9	28.58	1715.0	365.0	49	1.1	53.3
9	2.0	83.9	32.15	1929.0	410.0	48	1.0	54.3
10	1.4	85.3	35.73	2144.0	456.0	48	0.7	54.9
11	1.5	86.8	39.30	2358.0	502.0	47	0.7	55.6
12	1.5	88.3	42.87	2572.0	547.0	47	0.7	56.3
13	1.2	89.5	46.44	2787.0	593.0	46	0.6	56.9
14	1.3	90.8	50.02	3001.0	639.0	46	0.6	57.5
15	0.7	91.5	53.59	3215.0	684.0	46	0.3	57.8
16	0.9	92.4	57.16	3430.0	730.0	45	0.4	58.2
17	0.9	93.3	60.73	3644.0	775.0	45	0.4	58.6
18	0.9	94.2	64.31	3858.0	821.0	45	0.4	59.0
19	0.6	94.8	67.88	4073.0	867.0	45	0.3	59.3
20	0.4	95.2	71.45	4287.0	912.0	44	0.2	59.5
21	0.5	95.7	75.02	4501.0	958.0	44	0.2	59.7
22	0.4	96.1	78.60	4716.0	1003.0	44	0.2	59.9
23	0.3	96.4	82.17	4930.0	1049.0	45	0.1	60.0
24	0.3	96.7	85.74	5145.0	1095.0	45	0.1	60.1
25	0.3	97.0	89.31	5359.0	1140.0	46	0.1	60.3



Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
26	0.4	97.4	92.89	5573.0	1186.0	46	0.2	60.5
27	0.2	97.6	96.46	5788.0	1231.0	47	0.1	60.6
28	0.2	97.8	100.03	6002.0	1277.0	47	0.1	60.6
29	0.3	98.1	103.60	6216.0	1323.0	48	0.1	60.8
30	0.3	98.4	107.18	6431.0	1368.0	49	0.1	60.9
31	0.1	98.5	110.75	6645.0	1414.0	49	0.0	61.0
32	0.2	98.7	114.32	6859.0	1459.0	47	0.1	61.1
33	0.1	98.8	117.90	7074.0	1505.0	46	0.0	61.1
34	0.1	98.9	121.47	7288.0	1551.0	44	0.0	61.2
35	0.1	99.0	125.04	7502.0	1596.0	43	0.0	61.2
36	0.1	99.1	128.61	7717.0	1642.0	42	0.0	61.3
37	0.1	99.2	132.19	7931.0	1687.0	41	0.0	61.3
38	0.1	99.3	135.76	8145.0	1733.0	40	0.0	61.3
39	0.1	99.4	139.33	8360.0	1779.0	39	0.0	61.4
40	0.0	99.4	142.90	8574.0	1824.0	38	0.0	61.4
41	0.0	99.4	146.48	8789.0	1870.0	37	0.0	61.4
42	0.0	99.4	150.05	9003.0	1916.0	36	0.0	61.4
43	0.0	99.4	153.62	9217.0	1961.0	35	0.0	61.4
44	0.1	99.5	157.19	9432.0	2007.0	34	0.0	61.4
45	0.0	99.5	160.77	9646.0	2052.0	33	0.0	61.4
46	0.1	99.6	164.34	9860.0	2098.0	33	0.0	61.4
47	0.0	99.6	167.91	10075.0	2144.0	32	0.0	61.4
48	0.0	99.6	171.48	10289.0	2189.0	31	0.0	61.4
49	0.0	99.6	175.06	10503.0	2235.0	31	0.0	61.4
50	0.0	99.6	178.63	10718.0	2280.0	30	0.0	61.4
		•	-	Estimated Net	Annual Sedim	ent (TSS) Loa	ad Reduction =	61 %

FORTERRA

Maximum Pipe Diameter / Peak Conveyance									
Stormceptor EF / EFO	Model Diameter		Min Angle Inlet / Outlet Pipes	Max Inlet Pipe Diameter		Max Outlet Pipe Diameter		Peak Conveyance Flow Rate	
	(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60
EF10 / EFO10	3.0	10	90	1828	72	1828	72	2830	100
EF12 / EF012	3.6	12	90	1828	72	1828	72	2830	100

SCOUR PREVENTION AND ONLINE CONFIGURATION

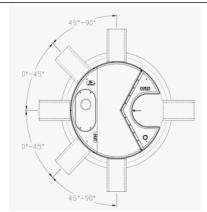
Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.

DESIGN FLEXIBILITY

► Stormceptor[®] EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION

► While Stormceptor® EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor® EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators** Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.



INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

0° - 45° : The inlet pipe is 1-inch (25mm) higher than the outlet pipe.

45° - 90° : The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

Pollutant Capacity												
Stormceptor EF / EFO	Model Diameter		Depth (Outlet Pipe Invert to Sump Floor)		Oil Volume		Oil Volume Recommended Sediment Maintenance Depth *		Maximum Volur		Maxin Sediment	-
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)
EF4 / EFO4	1.2	4	1.52	5.0	197	52	203	8	1190	42	1904	5250
EF6 / EFO6	1.8	6	1.93	6.3	348	92	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	545	144	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	874	231	610	24	17790	628	28464	78500
EF12 / EFO12	3.6	12	3.89	12.8	1219	322	610	24	31220	1103	49952	137875

Pollutant Capacity

*Increased sump depth may be added to increase sediment storage capacity ** Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft³)

Feature Benefit Feature Appeals To Patent-pending enhanced flow treatment Superior, verified third-party Regulator, Specifying & Design Engineer and scour prevention technology performance Third-party verified light liquid capture Proven performance for fuel/oil hotspot Regulator, Specifying & Design Engineer, and retention for EFO version locations Site Owner Functions as bend, junction or inlet Design flexibility Specifying & Design Engineer structure Minimal drop between inlet and outlet Site installation ease Contractor Large diameter outlet riser for inspection Easy maintenance access from grade Maintenance Contractor & Site Owner and maintenance

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef
STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

Table of TSS Removal vs Surface Loading Rate Based on Third-Party Test Results Stormcentor® FF

			Stormeep					
SLR (L/min/m²)	TSS % REMOVAL							
1	70	660	46	1320	48	1980	35	
30	70	690	46	1350	48	2010	34	

Stormceptor[®]

60	67	720	45	1380	49	2040	34	
90	63	750	45	1410	49	2070	33	
120	61	780	45	1440	48	2100	33	
150	58	810	45	1470	47	2130	32	
180	56	840	45	1500	46	2160	32	
210	54	870	45	1530	45	2190	31	
240	53	900	45	1560	44	2220	31	
270	52	930	44	1590	43	2250	30	
300	51	960	44	1620	42	2280	30	
330	50	990	44	1650	42	2310	30	
360	49	1020	44	1680	41	2340	29	
390	48	1050	45	1710	40	2370	29	
420	48	1080	45	1740	39	2400	29	
450	48	1110	45	1770	39	2430	28	
480	47	1140	46	1800	38	2460	28	
510	47	1170	46	1830	37	2490	28	
540	47	1200	47	1860	37	2520	27	
570	46	1230	47	1890	36	2550	27	
600	46	1260	47	1920	36	2580	27	
630	46	1290	48	1950	35			

STANDARD EF FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREAMENT DEVICE

PART1 - GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators.**

1.3 SUBMITTALS

1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.

1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.

1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 – PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The **<u>minimum</u>** sediment & petroleum hydrocarbon storage capacity shall be as follows:

2.1.1 4ft (1219mm) Diameter OGS Units: 6ft (1829mm) Diameter OGS Units: 8ft (2438mm) Diameter OGS Units: 10ft (3048mm) Diameter OGS Units: 12ft (3657mm) Diameter OGS Units: 1.19m3 sediment / 265L oil 3.48m3 sediment / 609Ll oil 8.78m3 sediment / 1,071L oil 17.78m3 sediment / 1,673L oil 31.23m3 sediment / 2,476L oil

PART 3 – PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall

remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing shall be determined using historical rainfall data and a sediment removal performance curve derived from the actual third-party verified laboratory testing data. The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m2.

TECHNICAL BULLETIN

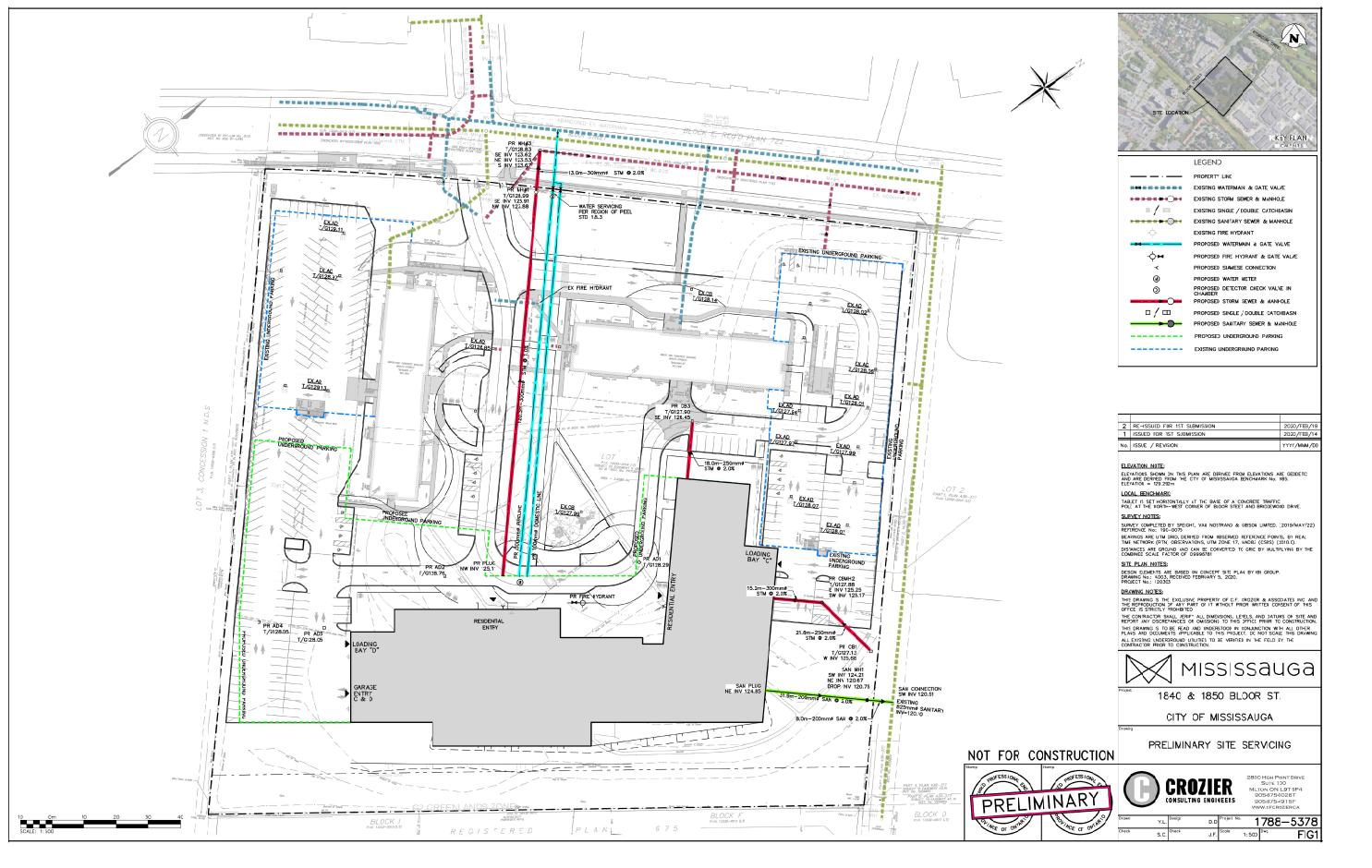
Sizing Stormceptor[®] EF/EFO for Removal of Canadian ETV and Stormceptor Fine Particle Size Distributions

(Issued April 23, 2018)

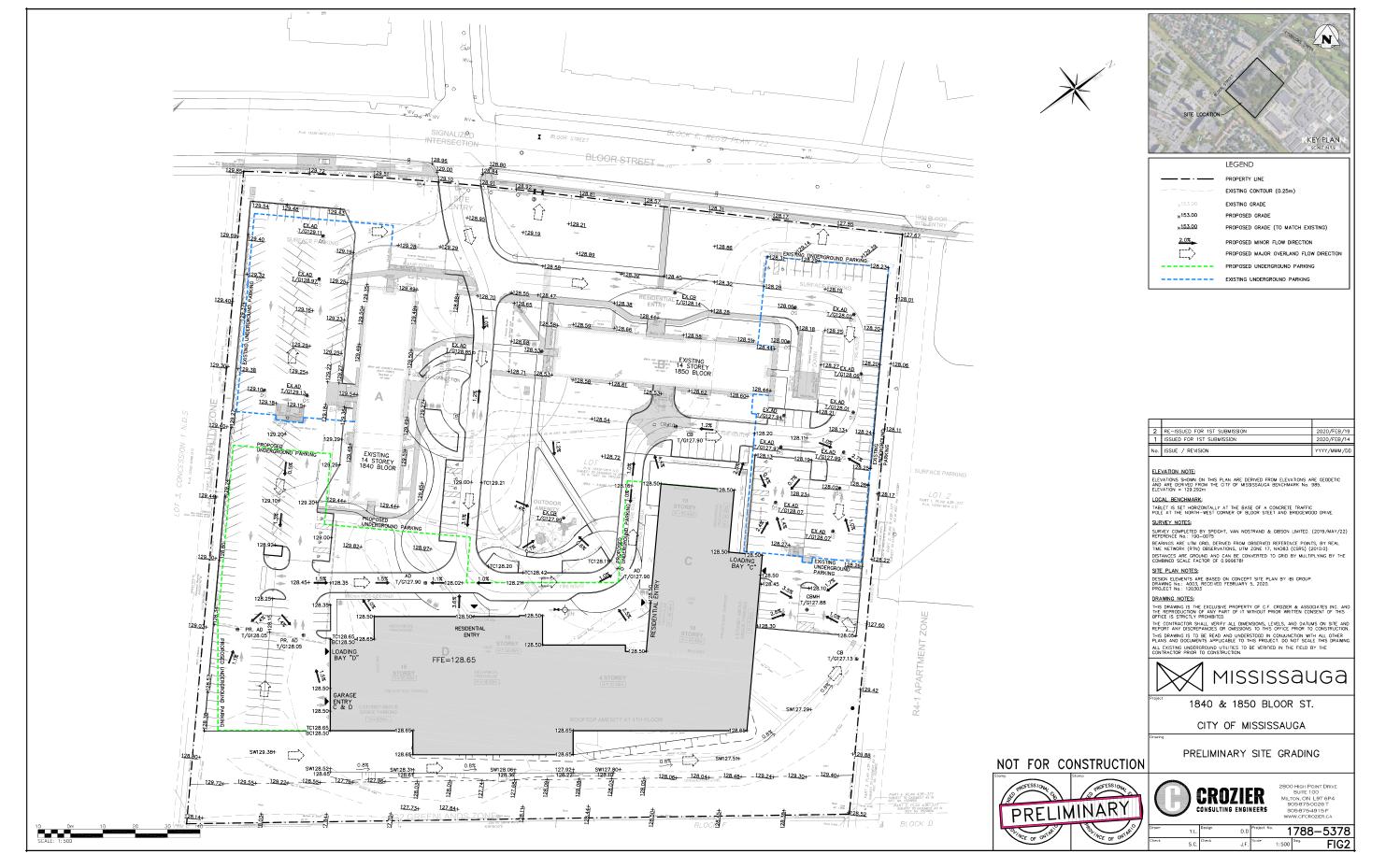
The Canadian ETV Particle Size Distribution ("ETV PSD", shown in Table 1 below) is reasonably representative of the PSD of particulates found in typical urban stormwater runoff, and was used in sediment removal and scour performance testing of Stormceptor[®] EF/EFO in compliance with the provisions of the Canadian ETV protocol titled *Procedure for Laboratory Testing of Oil-Grit Separators*. Municipalities across Canada are increasingly adopting the sediment removal target of 60% removal of the ETV PSD when sizing an oil-grit separator for pretreatment of stormwater runoff, replacing former sediment removal targets that were based on removal of coarser particle size distributions.

Imbrium Systems supports and recommends adoption of 60% removal of the ETV PSD as a Canada-wide standard for sizing of Stormceptor® EF/EFO. However, it is recognized that in some areas there may continue to be sediment removal targets that are based on removal of coarser particle size distributions. Imbrium engineers have performed extensive sizing analyses to determine the estimated removal efficiency of various coarser PSDs as compared to 60% removal of the ETV PSD. Removal efficiencies were calculated for a wide range of influent flow rates, utilizing Stokes' Law for particle settling and the dimensions and hydraulic capacities of each Stormceptor model size.

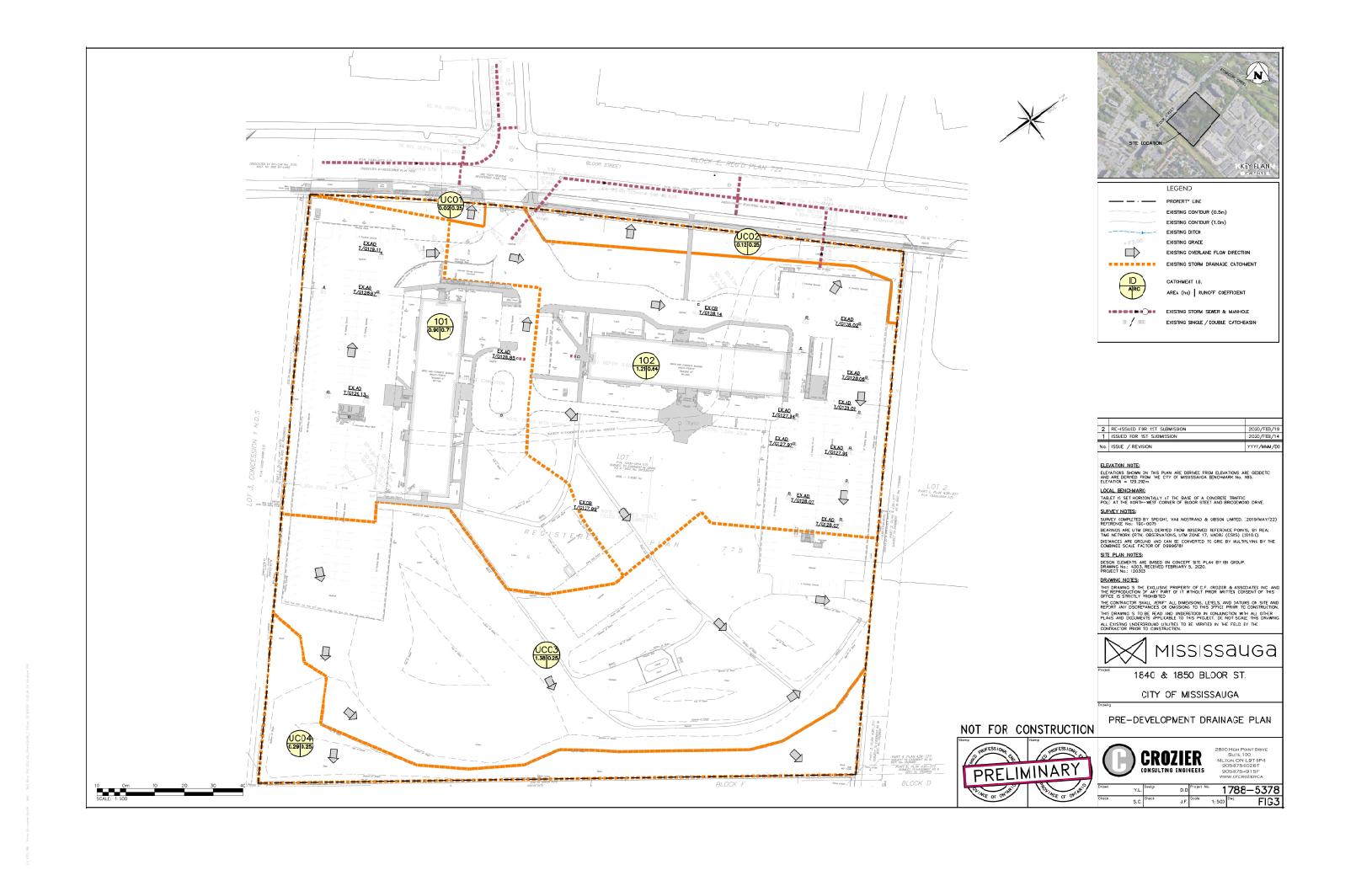
Based on these analyses, sizing Stormceptor[®] EF/EFO for 60% removal of the ETV PSD is comparable to sizing for 80% removal of the Stormceptor Fine PSD.

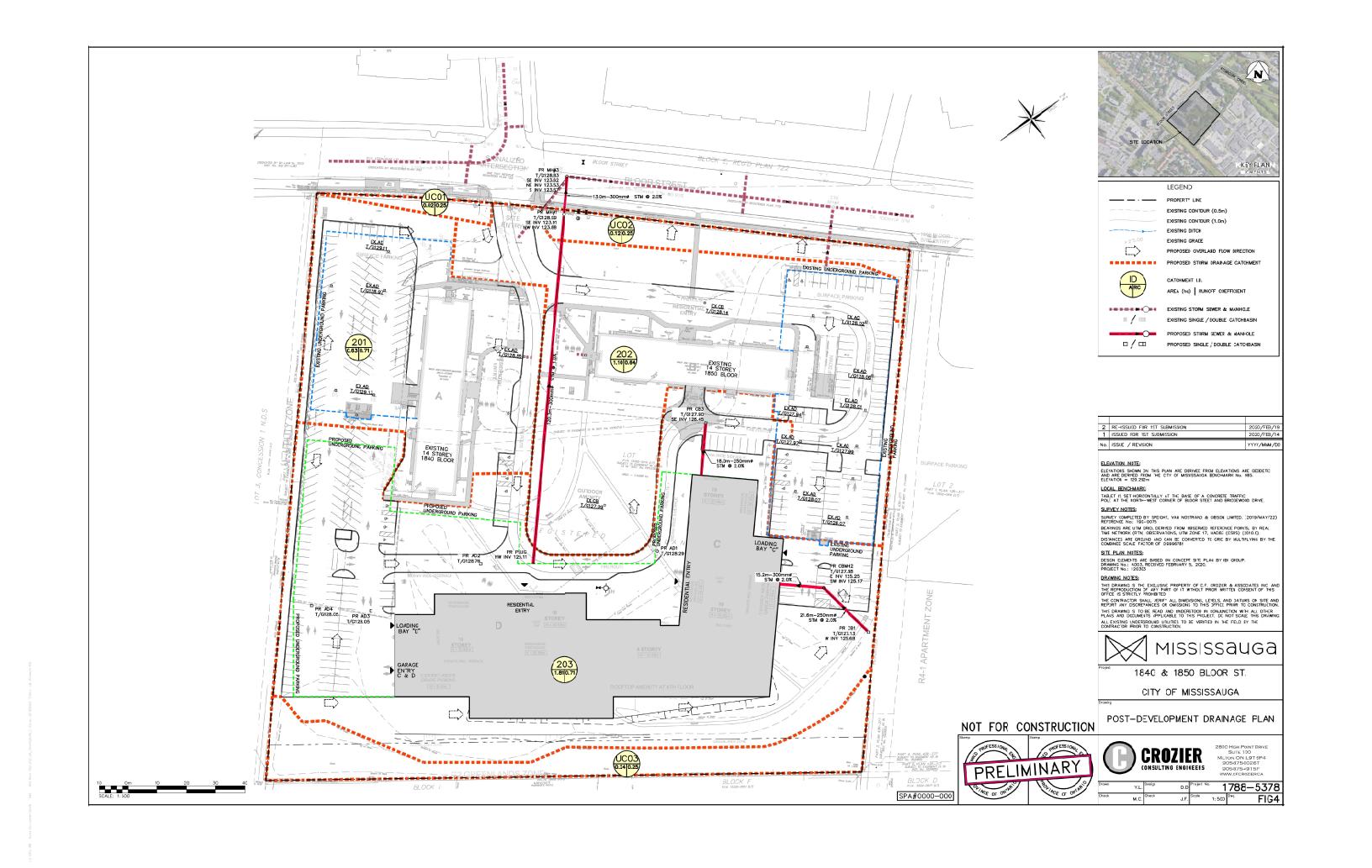


Particle	Percent Less	Particle Size	Deveent
Size (µm)	Than	Fraction (µm)	Percent
1000	100	500-1000	5
500	95	250-500	5
250	90	150-250	15
150	75	100-150	15
100	60	75-100	10
75	50	50-75	5
50	45	20-50	10
20	35	8-20	15
8	20	5-8	10
5	10	2-5	5
2	5	<2	5


Table 1:	Particle Size	Distribution	of Test Sediment
TUDIC I.	i un title Size	Distribution	of rest scunnent

The particle size distribution shown in Table 1 above is the Canadian ETV Particle Size Distribution ("ETV PSD") specified in the Canadian ETV protocol titled *Procedure for Laboratory Testing of Oil-Grit Separators*.


FIGURES



STE LOCATION	
	KEY FLAN CALENTS
	LEGEND
<u> </u>	PROPERTY LINE
	EXISTING WATERMAIN & GATE VALVE
*****	EXISTING STORM SEWER & MANHOLE
" / "	EXISTING SINGLE / DOUBLE CATCHBASIN
•••••••	EXISTING SANITARY SEWER & MANHOLE
-Ò-	EXISTING FIRE HYDRANT
→	PROPOSED WATERMAIN & GATE VALVE
- Ģ ∙₩	PROPOSED FIRE HYDRANT & GATE VALVE
~	PROPOSED SIAMESE CONNECTION
3	PROPOSED WATER NETER
٥	PROPOSED DETECTOR CHECK VALVE IN CHAMBER
)_	PROPOSED STORM SEWER & MANHOLE
□/Ⅲ	PROPOSED SINGLE / DOUBLE CATCHBASN
── ► ○ ─	PROPOSED SANITARY SEWER & MANHOLE
	PROPOSED UNDERGROUND PARKING
	EXISTING UNDERGROUND PARKING

	KEY PLAN SCALE N.T.S.
	LEGEND
·	PROPERTY LINE
	EXISTING CONTOUR (0.25m)
×153.00	EXISTING GRADE
×153.00	PROPOSED GRADE
×153.00	PROPOSED GRADE (TO MATCH EXISTING)
2.0%	PROPOSED MINOR FLOW DIRECTION
\Box	PROPOSED MAJOR OVERLAND FLOW DIRECTION
	PROPOSED UNDERGROUND PARKING
	EXISTING UNDERGROUND PARKING

