FUNCTIONAL SERVICING & PRELIMINARY STORMWATER MANAGEMENT REPORT

1575 HURONTARIO STREET

CITY OF MISSISSAUGA REGION OF PEEL

PREPARED FOR:

DREAM MAKER DEVELOPMENTS INC.

PREPARED BY:

C.F. CROZIER & ASSOCIATES INC. 211 YONGE STREET, SUITE 301 TORONTO, ON M5B 1M4

OCTOBER 2019

CFCA FILE NO. 1110-4677

The material in this report reflects best judgment in light of the information available at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. C.F. Crozier & Associates Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Revision Number	Date	Comments
Rev.0	September 14, 2017	Issued for OPA & ZBA (Not Submitted)
Rev.1	December 6, 2017	Issued for OPA & ZBA
Rev.2	October 9, 2019	Issued for OPA & ZBA

TABLE OF CONTENTS

1.0		1
2.0	SITE DESCRIPTION	1
3.0	WATER SERVICING	1
3. 3. 3. 3.	2 Design Water Demand 3 Fire Flow Demand	1 2
4.0 4. 4. 4.	2 Design Sanitary Flow	2 3
5.0	DRAINAGE CONDITIONS	3
5. 5.		
6.0	STORMWATER MANAGEMENT	5
6. 6. 6.	2 Stormwater Quality Control	7
7.0	EROSION AND SEDIMENT CONTROLS DURING CONSTRUCTION	B
8.0		B

LIST OF TABLES

- Table 1:Estimated Design Water Demand
- Table 2:
 Estimated Fire Demand Flows
- Table 3:
 Estimated Sanitary Design Flows
- Table 4:
 Pre-Development Land Areas, Runoff Coefficients, and Peak Flow Rates
- Table 5:
 Adjusted Runoff Coefficients
- Table 6:
 Post-Development Land Areas, Runoff Coefficients, and Peak Flow Rates

LIST OF APPENDICES

- Appendix A: Water Demand Calculations
- Appendix B: Sanitary Flow Calculations
- Appendix C: Stormwater Management Calculations
- Appendix B: External Reports

LIST OF FIGURES

- Figure 1: Pre-Development Drainage Plan
- Figure 2: Post-Development Drainage Plan

LIST OF DRAWINGS

- Drawing C01: Removals Plan, Erosion & Sediment Control Plan
- Drawing C02: Site Servicing Plan
- Drawing C03: Site Grading Plan
- Drawing C04: Construction Notes & Details

1.0 Introduction

C.F. Crozier & Associates Inc. (Crozier) has been retained by Dream Maker Developments Inc. (Dream Maker) to prepare a Functional Servicing and Preliminary Stormwater Management Report to support the Official Plan Amendment (OPA) and Zoning By-Law Amendment (ZBA) for the property known as 1575 Hurontario Street in the City of Mississauga in the Region of Peel.

The purpose of this report is to demonstrate that the proposed site can be developed in accordance with the City of Mississauga and Region of Peel guidelines from a functional servicing and preliminary stormwater management perspective.

2.0 Site Description

The subject property covers an area of approximately 0.36 ha and is located in a mixed residential and commercial area in the City of Mississauga. The site currently consists of a vacant asphalt parking lot, a concrete building foundation, and landscaped areas. The property is bound by commercial properties to the north and south, residential properties and Glenview Drive to the east, and Hurontario Street to the west. The proposed development consists of two stacked townhouse blocks with 21 units each, built above an underground parking garage. A main access road extends east from Hurontario Road through the site and provides access to the proposed underground parking garage.

3.0 Water Servicing

3.1 Existing Water Servicing

A review of the approved Site Grading and Servicing Plan prepared by Charlton Engineering Limited, dated April 2003, indicates that there is an existing 450 mm diameter concrete watermain on Hurontario Street and a 150 mm diameter watermain on Maplewood Road. There is an existing fire hydrant on the east side of Hurontario Street, approximately 7 m south of the south-west corner of the site. An overview of the existing water services is shown in **Drawing C02**.

3.2 Design Water Demand

The Region of Peel Watermain Design Criteria was referenced to estimate the proposed water demands for domestic purposes. An average daily water demand of 280 L/capita/day was used with a population density of 3.5 people per unit (ppu) as designated by the Region of Peel. A summary of the results is presented in **Table 1**, with detailed calculations provided in **Appendix A**.

Standard	Ave	rage Daily De (L/s)	emand	Maximum Daily	Peak Hourly Demand	
	Existing Proposed		Increase	Demand (L/s)	(L/s)	
Region of Peel	0.0	0.48	0.48	0.95	1.43	

Table 1: Estimated Design Water Demand

Using the Region of Peel Design Criteria for domestic water demand, the estimated daily demand and peak hour demand for the development will be 0.48 L/s and 1.43 L/s, respectively.

3.3 Fire Flow Demand

The Fire Underwriters Survey method was used to estimate the fire flow requirements for the proposed development. This calculation estimates the preliminary watermain size required to service the development and is based on a gross floor area (GFA) of 3,898 m² as provided by Kirkor Architects. The proposed townhouse development is assumed to be of combustible construction and have no sprinkler system. **Table 2** summarizes the required fire flow and duration to meet fire protection for the proposed development.

Method	Demand Flow (L/s)	Duration (h)
Fire Underwriters Survey (1999)	283.3	4.0

Table 2: Estimated Fire Demand Flows

The proposed fire service is required to accommodate a fire flow of 283.3 L/s for a duration of 4 hours. **Appendix A** contains the Fire Underwriters Survey calculations. The building architect and the mechanical engineer will confirm the estimated fire flow demand.

Please note that the Fire Underwriters Survey value is a conservative estimate for comparison purposes only. The Mechanical Engineer for this development will complete the required analyses for fire protection and the architect will design fire separation methods per the determined fire flow rate, in order to meet municipally available flows and pressures.

3.4 Proposed Water Servicing

The proposed development will be serviced through a water service connection to the existing 450 mm diameter watermain on the east side of Hurontario Street. The proposed 150 mm diameter watermain will split at the property line into a 150 mm diameter fire connection, and a 100 mm diameter domestic water service (refer to **Drawing C02**). The proposed water service and fire line will be equipped with a property line valve and box, and connect inside the mechanical room of the building, per mechanical design and specifications. A water meter with backflow preventer will be installed inside the mechanical room located in the underground parking garage structure, per mechanical design and specifications. The connection will adhere to Region of Peel standards.

4.0 Sanitary Servicing

4.1 Existing Sanitary Servicing

A review of the approved Site Grading and Servicing Plan prepared by Charlton Engineering Limited, dated April 2003, indicates that there is an existing 250 mm diameter sanitary sewer on Hurontario Street and an existing 250 mm diameter sanitary sewer on Glenview Drive.

4.2 Design Sanitary Flow

The Region of Peel Sanitary Sewer Design Criteria was referenced to estimate the sanitary design flows generated by the proposed development. A unit sewage flow of 302.8 L/capita/day was used with a population density of 3.5 people per unit (ppu) for the 42-unit development. Infiltration flow and a peaking factor were applied to the unit sewage flow to obtain the total estimated design sewage flow. A summary of the results is presented in **Table 3**, with detailed sanitary design flow calculations provided in **Appendix B**.

			Estimated	bannary Des	ginnows		
	Average	Peaking	Peak	Infiltration		Difference (L/s)	
Standard	Flow	Factor	Flow	Flow	Existing	Proposed	
	(L/s)		(L/s)	(L/s)	(L/s)	(L/s)	(L/s)
Region of Peel	0.52	4.19	2.16	0.07	0.00	2.23	2.23

Table 3: Estimated Sanitary Design Flows

The proposed sanitary service was sized to convey a peak sanitary flow of 2.24 L/s for the development, as determined by the Region of Peel Sanitary Sewer Design Criteria.

4.3 Proposed Sanitary Servicing

The proposed development will be serviced through a sanitary service connection to an existing manhole on the existing 250 mm diameter sanitary sewer on Glenview Drive (refer to **Drawing C02**). A 150 mm diameter PVC sanitary sewer at 2.0% will connect from the existing manhole to a proposed property line manhole. The sanitary sewer will enter through the wall of the underground parking garage structure and the internal sanitary system of the buildings will be designed by the Mechanical Engineer to ensure the required connection for each townhouse block.

5.0 Drainage Conditions

5.1 Existing Drainage

Based on a review of the existing topographic survey prepared by Tom A. Senkus, dated June 8th, 2015, the development area currently consists of a vacant asphalt parking lot and landscaped areas. The site generally slopes downgrade eastward from Hurontario Street to the south-east corner of the property at Maplewood Road and Glenview Drive. An existing catch basin is located at the south-east corner of the asphalt area and is assumed to connect to the existing double catch basin at the south property line, which is located within an existing stormwater easement and drains to the existing 750 mm diameter storm sewer on Maplewood Road. Further, an existing stormwater easement and eventually to the storm sewer on Maplewood Road.

Based on a discussion with the City of Mississauga staff, the existing drainage condition, which allows surface drainage to be conveyed from the northern adjacent property to the existing stormwater easement at the south property line, will be maintained in the proposed drainage condition. The City of Mississauga staff also provided an existing drainage plan for the area, which is included in **Appendix D** and was used to complete the Pre-Development Drainage Plan (**Figure 1**). A portion of

the site flows overland directly to Hurontario Street. This condition will be maintained following the development of the site. Based on the existing drainage plan, the site encompasses 0.34 ha (Catchment 101) of an existing 2.76 ha drainage area (Catchment 102), with a total predevelopment runoff coefficient of 0.42. In the existing condition, the 0.34 ha site area drains through the existing double catch basin to the 750 mm diameter storm sewer on Maplewood Road.

A summary of the pre-development catchment area characteristics is shown in **Table 4**, with detailed calculations provided in **Appendix C**.

Catchment Area	Pervious Area (ha) (RC = 0.25)	Impervious Area (ha) (RC = 0.90)	Total Area (ha)	Weighted Runoff Coefficient (RC)	Design Storm Event	Peak Flow Rate (L/s)
				(10)	0	
					2	30.4
	0.20				5	40.9
101 (Site)		0.15	0.34	0.53	10	50.3
					25	57.8
					50	64.5
					100	71.4
		0.56	2.41	0.40	2	162.0
					5	217.7
102	1.86				10	268.1
(External)	1.00				25	308.0
					50	343.8
					100	380.5
					2	192.4
					5	258.6
Entire	0.10	0 / /	0.7/	0.40	10	318.5
Catchment	2.12	0.64	2.76	0.42	25	365.8
					50	408.3
					100	451.9

5.2 Proposed Drainage

Under post-development conditions, the site is divided into two drainage catchment areas. The drainage catchments are described below in detail and summarized in **Table 6**, with detailed calculations provided in **Appendix C**.

It should be noted that the site area increased in the post development condition from 0.34 ha to 0.36 ha in order to include drainage from the drive aisle up to the property line along Hurontario Street.

Catchment 201:

The site (0.36 ha) will drain to three proposed catchbasins within the proposed paved and landscaped areas. These catchbasins will outlet to the proposed Triton S-29 underground storage chamber. The runoff will be controlled to below the allowable release rate and then released by gravity flow into the storm sewer system on Maplewood Road as described in Section 6.0.

Catchment 202:

Catchment 202 comprises the existing external drainage catchment with a runoff coefficient of 0.40, as indicated by the existing drainage plan. As previously indicated, the existing drainage condition which allows surface drainage to be conveyed from the northern adjacent property to the existing stormwater easement at the south property line, will be maintained in the post-development drainage plan through a proposed municipal easement located across the eastern end of the property.

The City of Mississauga requires adjustment factors be applied to the site's runoff coefficient for each storm event above the 10-year storm event. This is to account for the increase in runoff due to the saturation of the ground that occurs during larger storm events. The City of Mississauga adjustment factors and the associated pre- and post-development runoff coefficients for the site are shown in **Table 5**.

Storm	Adjustment Factor	Adjusted Pre-Development Runoff Coefficient	Adjusted Post-Development Runoff Coefficient
2-year	1.0	0.4	0.72
5-year	1.0	0.4	0.72
10-year	1.0	0.4	0.72
25-year	1.1	0.44	0.79
50-year	1.2	0.48	0.86
100-year	1.25	0.50	0.89

Table 5: Adjusted Runoff Coefficients

6.0 Stormwater Management

The stormwater management for the site includes controlling the stormwater from the subject property in accordance with the standards set out by the 'Development Requirements Manual' (City of Mississauga Transportation and Works, September 2016) and the 'Stormwater Management Criteria' (Credit Valley Conservation (CVC), August 2012). As the site is located within the Mary Fix Creek subwatershed and the ultimate storm sewer outlet is the existing 750 mm diameter storm sewer on Maplewood Road, the SWM objectives for the proposed SWM Plan were based on CVC and Ministry of Environment and Climate Change (MOECC) criteria as follows:

Quantity Control

Control 10-yr post-development peak flows to 2-yr pre-development peak flow levels.

Quality Control

Enhanced levels of protection per MOECC Standards (80% TSS Removal).

<u>Water Balance</u>

Retain runoff from a small rainfall event of 5 mm across the entire site.

MTO

The site is located within a Ministry of Transportation (MTO) regulated area. The MTO criteria for quantity control states that post-development peak flow rates for all storms up to and including the 100-year event must be controlled to pre-development levels using only surface storage (rooftop and subsurface systems are not considered in the calculations). Based on the existing site conditions (site grade slopes at an average 4% from Hurontario Street to Maplewood Road), surface storage is not feasible.

Additionally, stormwater from this site drains away from MTO lands in the pre-development and postdevelopment condition towards an existing 750 mm trunk sewer on Maplewood Road. As such, MTO drainage remains unaffected by this development.

6.1 Stormwater Quantity Control

Water quantity objectives will be achieved by reducing post-development peak flow rates to target rates through a 125 mm diameter orifice tube, which will be installed downstream of a proposed underground storage chamber.

The Modified Rational Method was used to determine the pre-development and post-development peak flow rates for the site using Mississauga rainfall intensities, individual catchment areas, and calculated runoff coefficients. The site runoff entering the storm sewer on Maplewood Road must be controlled from the 10-year post-development design storm event (71.9 L/s) to the 2-year pre-development design storm event (30.4 L/s).

To control the 10-year flow from Catchment 201 to the above target, an 82.9 m³ underground stormwater storage chamber (Triton S-29 or approved equivalent) will be installed upstream of a 125 mm diameter orifice tube. The stormwater chamber will gravity drain to the existing 750 mm diameter storm sewer on Maplewood Road.

Although the site area discharging to Maplewood Road increases from 0.34 ha to 0.36 ha following development, the 10-year post development peak flow rate is controlled to the 2-year predevelopment flow rate with the pre-development area. As such, there is a decrease in flow to this sewer following development and it is assumed that there is adequate capacity in the existing 750 mm diameter storm sewer on Maplewood Road. Refer to **Table 6** for a summary of the post-development design storm event peak flows. Detailed calculations of the Modified Rational Method, storage requirements and orifice tube sizing are provided in **Appendix C**.

Catchment Area	Pervious Area (ha) (RC = 0.25)	Impervious Area (ha) (RC = 0.90)	Total Area (ha)	Weighted RC	Design Storm Event	Peak Flow Rate (L/s)
					2	43.4
201 (Site –					5	58.4
	0.10	0.26	0.37	0.72	10	71.9
controlled)	0.10	0.20	0.07	0.72	25	82.6
					50	92.2
					100	102.0
	1.86	0.56	2.41	0.40	2	162.0
					5	217.7
202 (External)					10	268.1
202 (Exiemal)					25	308.0
					50	343.8
					100	380.5
					2	205.4
					5	276.1
Entire	1.98	0.82	2.81	0.44	10	340.0
Catchment	1.70	0.02	2.01	0.44	25	390.5
					50	435.9
					100	482.4

 Table 6: Post-Development Land Areas, Runoff Coefficients, and Peak Flow Rates

6.2 Stormwater Quality Control

An oil and grit separator (OGS) located downstream of the underground stormwater storage chamber will be used to provide stormwater quality control for the site. As shown in **Appendix C**, preliminary sizing calculations have found a Stormceptor Model 750 or approved equal will provide 85% removal of suspended solids from the site, as required by the MOECC and the City of Mississauga.

6.3 Water Balance

A storage volume of 20.0 m³ will be provided below the outlet elevation of the proposed storage chamber. This storage volume is necessary to comply with the water balance criteria of retaining the first 5 mm of runoff from the site. The associated required volume is 17.9 m³ (3573 m² x 0.005 m), and as such, the provided 20.0 m³ dead storage volume within the chamber is adequate to meet the City's water balance criteria.

7.0 Erosion and Sediment Controls During Construction

Erosion and sediment controls will be installed prior to the beginning of any construction activities. They will be maintained until the site is stabilized or as directed by the Site Engineer and/or the City of Mississauga. The Preliminary Erosion & Sediment Control Plan (**Drawing C01**) identifies the location of the recommended controls. Controls will be inspected after each significant rainfall event and maintained in proper working condition.

The following erosion and sediment controls will be included during construction on the site:

Heavy Duty Silt Fencing

Silt fencing will be installed along the perimeter of the site to intercept sheet flow. Additional silt fence may be added based on field decisions by the Site Engineer and Owner, prior to, during and following construction.

Rock Mud Mat

A rock mud mat will be installed at the entrance to the construction zone to prevent mud tracking from the site onto surrounding lands and the perimeter roadway network. All construction traffic will be restricted to this access only.

Sediment Control Devices

A silt sack shall be installed on the top of existing storm sewer catch basins located on Hurontario Street, Glenview Drive, and Maplewood Road during construction and on the top of new catch basins and area drains until the finished surfaces are stabilized.

8.0 Conclusions and Recommendations

Based on the information offered in this report, we offer the following conclusions:

- Water servicing is proposed via a 150 mm service tying into the existing 450 mm diameter watermain on Hurontario Street, which will split into a 150 mm diameter fire connection and a 100 mm diameter domestic water service
- The 100 mm diameter domestic water service will provide an average daily flow of 0.48 L/s, and peak hourly flow of 1.43 L/s
- A fire flow demand of 283.3 L/s for a duration of 4 hours will be provided by the proposed hydrant on site
- The site will be serviced by a proposed 150 mm diameter sanitary service which connects to the existing 250 mm diameter sanitary sewer on Maplewood Road
- Stormwater management will control the runoff from the post-development site to below the allowable release rate of 30.4 L/s through a gravity-fed minor system including a 89.2 m³ detention basin to the receiving storm sewer on Maplewood Road

- Peak flow matching 10-year post-development to 2-year pre-development was achieved through a 125 mm diameter orifice and approximately 62.9 m³ of active storage
- Approximately 20.0 m³ of "dead storage" is provided within the underground detention basin to account for the water balance requirement of 5 mm
- Water quality requirements of 80% TSS removal were achieved through the use of a Stormceptor STC 750 oil and grit separator

Based on the above conclusions, we recommend the approval of the Official Plan Amendment and Zoning By-Law Amendment from the perspective of functional servicing and preliminary stormwater management.

Respectfully submitted, C.F. CROZIER & ASSOCIATES INC.

the still

Katrina Weel, B. Eng. Land Development EIT

C.F. CROZIER & ASSOCIATES INC.

Ashish Shukla, P. Eng. Associate

/as

N:\1100\1110-Dream Suites\4677-1575 Hurontario St\Reports\2019.10.01\FSR-SWM Report.docx

APPENDIX A

Water Demand Calculations

 Project:
 1575 Hurontario Street
 Created By:
 KW
 Date:
 2019-09-26

 CROZIER
 Project No.:
 1110-4677
 Checked By:
 AS
 Updated:
 2019-10-08

Domestic Water Demand

Site Area: Population Density: Number of Units: Population:	0.3573 3.5 42 147	ha persons/unit		Notes & References Note 1: Stacked townhome population density of 2.54 ppu and back-to-back townhome population density of 3.5 as recommended by Regional correspondence, dated March 13, 2017 and 3.5 has been used for conservative.
Design Parameters				
Average Demand (L/c	capita/d)			1
280				Note 2: Average Consumption Rate, Max day Factor
Water Demand:		_		andPeak Hour Factor each determined from Table #1 - Typical Water Demand Criteria, Region of Peel Public Works Watermain Design Criteria.
Average Daily	/ Demand =	41160	L/day	1
		0.48	L/s	1 1
5.4	· _ /			
Peak	ing Factors			
r	Max Day = Peak Hour =			1
F	reak nour =	3.0		
Ave	erage Day =	0.48	L/s	
	Max Day =	0.95	L/s	Max Day = Average Day Demand * Max Day
F	Peak Hour =	1.43	L/s	Peak Hour = Average Day Demand * Peak Hour
Municipality	Average Daily Water Demand (L/s)	Max Day Demand (L/s)	Peak Hourly Demand (L/s)	
Region of Peel	0.48	0.95	1.43]

9980 Derry Road Fire Protection Volume Calculation CFCA File: 1588-5193

Date: 2019-10-08 Design: KW Check: AS

ater Supply fo re Underwrite	or Public Fire Protection - 1999 ers Survey
	Part II - Guide for Determination of Required Fire Flow
1. An estimate	of fire flow required for a given area may be determined by the formula:
	F = 220 * C * sqrt A
where	F = the required fire flow in litres per minute
	C = coefficient related to the type of construction:
	 1.5 for wood frame construction (structure essentially all combustible) 1.0 for ordinary construction (brick or other masonry walls, combustible floor and interior 0.8 for non-combustible construction (unprotected metal structural components) 0.6 for fire-resistive construction (fully protected frame, floors, roof)
	A = The total floor area in square metres (including all storeys, but excluding basements at least 50 percent below grade) in the building considered.
Proposed Bu	vildings
	Building Area = 3,898 sq.m
C =	1.0 Assume combustable construction
There	fore F = 14,000 L/min
Fir	e flow determined above shall not exceed: 30,000 L/min for wood frame construction 30,000 L/min for ordinary construction 25,000 L/min for non-combustible construction 25,000 L/min for fire-resistive construction
	ined in No. 1 may be reduced by as much as 25% for occupancies having low contents fire hazard or may d by up to 25% surcharge for occupancies having a high fire hazard.
Non-Com	bustible -25% Free Burning 15%
Limited Com Com	bustible -15% Rapid Burning 25% bustible 0% (No Change)
Limited Corr	
	-2,100 L/min reduction 11,900 L/min
Note: Flow c	determined shall not be less than 2,000 L/min
The credit fo	The value obtained in No. 2 above maybe reduced by up to 50% for complete automatic sprinkler protection. or the system will be a maximum of 30% for an adequately designed system conforming to NFPA 13 and other er standards.
	s part of this analysis, building is assumed to have no sprinkler protection (0% reduction),
As	

9980 Derry Road Fire Protection Volume Calculation CFCA File: 1588-5193

Date: 2019-10-08

Designed By: KW Checked By: AS

Page 2

. Exposur	writers Survey						
		Part II - G	uide for Dete	mination	of Required Fir	e Flow	
	e - To the value obtaine	d in No. 2 a ne	ercentage sho	uld be a	dded for struct	ures exposed within 45 metre	.c
by the f						it, area, and construction of t	
						ength and height of exposur	e,
	vision of automatic sprin d building(s) and the eff					ed, the occupancy of the	
expose	a poliaing(s) and the eff	ect of minside ic	calions on in	e possible	e spreda or nre		
	Separation	Charge	Separation		Charge		
	0 to 3 m	25%	20.1 to 30 m		10%		
	3.1 to 10 m	20%	30.1 to 45 m	5	5%		
	10.1 to 20 m	15%					
_							
Expose	d buildings		Charge Sur	charge			
Name		Distance (m)	(%) (L/s	-			
North	Adjacent Dwelling	10	20%	2380.0			
South East	Adjacent Dwelling Adjacent Dwelling	15 31	15% 5%	1785.0 595.0			
West	Adjucent Dwelling	>45	0%	0.0			
11031		10	070		L/min Surcharg	e	
						Required Duration of	of Fire Flow
Determi	ine Required Fire Flow						ration
							hours)
	No.1	,				2,000 or less	1.0
	No. 2 No. 3	,) reduction) reduction			3,000 4,000	1.2 1.5
	No. 4) surcharge			5,000	1.7
			. 0			6,000	2.0
	Required Flow:		L/min			8,000	2.0
Rounde	ed to nearest 1000 L/min	17,000	L/min or		283.3 L/s	10,000	2.0
					4,491 USGPN	12,000 14,000	2.5 3.0
						16,000	3.5
						18,000	4.0
						20,000	4.5
						22,000	5.0
						24,000	5.5
						26,000 28,000	6.0 6.5
						30,000	6.3 7.0
						,	
						32,000	/ !
						32,000 34,000	
							7.5 8.0 8.5
						34,000	8.0

APPENDIX B

Sanitary Flow Calculations

Project:1575 Hurontario StreetCreated By:KWDate:2019-09-26CONSULTING ENGINEERSProject No.:1110-4677Checked By:ASUpdated:2019-10-08

Domestic Sanitary Design Flow

					,
	Site Area:	0.3573	ha		Notes & References Note 1: Stacked townhome population density of
Populati	on Density:	3.5	persons/unit		2.54 ppu and back-to-back townhome population
•	ber of Units:	42	poroono, and		density of 3.5 as recommended by Regional
	Population:	147	persons		correspondence, dated March 13, 2017 and 3.5
	r opulation.	147	persons		has been used for conservative.
Design Para	meters				
Average	e Flow (L/ca	pita/d)			1 1 1
	302.8				Note 2: Average Sanitary Flow - 302.8 L/cap/d
Sanitary Des	ign Flow:				Region of Peel Public Works Criteria Manual - Std. Dwg. 2-9-2
	Average	Daily Flow =	302.8	L/floor ha/d	Average Daily Flow = Average Daily Flow (L/floor
	•	Daily Flow =	0.52		ha/day) * Gross Floor Area / 86400
		,			
Harmon Peak	Factor:	M =	4.19		Note 3: Peaking Factor = Harmon Formula
		Peak Flow =	2.16	L/s	
Infiltration Flo	w:	Infiltration =	0.20	L/ha/s	Note 3: Infiltration = 0.2 L/ha/s Section 2.3
		Infiltration =	0.07		Region of Peel Public Works Criteria Manual -
					Sanitary Sewer
	Total	Peak Flow =	2.23	L/s	Total Peak Flow = Peak Flow + Total Infiltration
Summary Ta	ble				1 1 1
Average			Infiltration	Total Peak	1
Daily Flow	Peaking Easter	Peak Flow	Flow	Flow	
(Ľ/s)	Factor	(L/s)	(L/s)	(L/s)	
0.52	4.19	2.16	0.07	2.23	ļ
					1 1
					I

1

APPENDIX C

Stormwater Management Calculations

Modified Rational Calculations - Input Parameters

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Storm Data: City of Mississauga

Time of Concen	tration:	T _c =	15	min
Return Period	A	В	С	l (mm/hr)
2 yr	610	4.6	0.7800	59.89
5 yr	820	4.6	0.7800	80.51
10 yr	1010	4.6	0.7800	99.17
25 yr	1160	4.6	0.7800	113.89
50 yr	1300	4.7	0.7800	127.13
100 yr	1450	4.9	0.7800	140.69

Pre - Development Conditions								
Catchment	Land Use	Area (ha)	Area (m²)	C	Weighted Average C			
101 (Site)	Pervious	0.20	1956	0.25	0.14			
	Impervious	0.15	1471	0.9	0.39			
	Total	0.34	3427	-	0.53			
	Pervious	1.86	18563	0.25	0.19			
102 (External)	Impervious	0.56	5574	0.9	0.21			
	Total	2.41	24137	_	0.40			
Total S	Site	2.76	27564	-	0.42			

Post - Development Conditions								
Catchment	Land Use	Area (ha)	Area (m ²)	C	Weighted Average C			
201 (Site)	Pervious	0.10	964	0.25	0.07			
	Impervious	0.26	2609	0.9	0.66			
	Total	0.36	3573	-	0.72			
	Pervious	1.86	18563	0.25	0.19			
203 (External)	Impervious	0.56	5574	0.9	0.21			
	Total	2.41	24137	-	0.40			
Total	Site	2.77	27710	-	0.44			

Equations:

Peak Flow					
$Q_{post} = 0.0028 \cdot C_{post} \cdot i(T_d) \cdot A$					

Intensity	
i(T _d) = A / (T + B)^C	

_ _ _ _ _ _ _ _ _ _

Project: 1575 Hurontario Street

_ _ _ _ _ _ _ .

Project No.: 1110-4677

Created By: KW Checked By: AS

> **Date:** 2019-09-27 **Updated:** 2019-10-08

Modified Rational Calculations - Peak Flows Summary

Peak Flows (m ³ /s)							
Return Period	C _{pre(adjusted)}	C _{post(adjusted)}	Q _{pre}	Q _{post}			
2 yr	0.42	0.72	0.030	0.043			
5 yr	0.42	0.44	0.041	0.058			
10 yr	0.42	0.44	0.050	0.072			
25 yr	0.46	0.49	0.058	0.083			
50 yr	0.50	0.53	0.065	0.092			
100 yr	0.52	0.55	0.071	0.102			

Equations:

Project: 1575 Hurontario Street Project No.: 1110-4677

Created By: KW Checked By: AS

Date: 2019-09-27 Updated: 2019-10-08

Modified Rational Calculations - 10-Year to 2-Year Storm Event

Control Criteria

10 yr: Control Post-Development Peak Flows to 2 yr: Pre-Development Peak Flow

10 yr: Uncontrolled Post-Development Flow:

 Q_{post} = 0.072 m³/s

2 yr: Post-Development Orifice Tube Flowrate:

$$Q_{pre} = 0.025 \text{ m}^3/\text{s}$$

T _d	:	Τ _d		S _d	-
			Q_{Uncont} (m ³ /s)		
(min)	(mm/hr)	(sec)	· · ·	(m ³)	_
5	173.04	300	0.125	22.6	
10	124.77	600	0.090	35.5	
15	99.17	900	0.072	42.2	
20	83.06	1200	0.060	46.0	Discharge
25	71.90	1500	0.052	48.2	
30	63.66	1800	0.046	49.3	
35	57.30	2100	0.042	49.7	
40	52.22	2400	0.038	49.6	
45	48.07	2700	0.035	49.1	, a la l
50	44.60	3000	0.032	48.2	
55	41.65	3300	0.030	47.1	T _c T _l Time
60	39.11	3600	0.028	45.8	
65	36.91	3900	0.027	44.3	
70	34.96	4200	0.025	42.7	
75	33.24	4500	0.024	40.9	
80	31.69	4800	0.023	39.0	
85	30.31	5100	0.022	37.0	7
wired Store	age Volume:	-		49.7	

Peak Flow	
$Q_{post} = 0.0028 \cdot C_{post} \cdot i(T_d) \cdot A$	$S_d = Q_{post} \cdot T_d - Q_{target} (T_d + T_c) / 2$

Project: 1575 Hurontario Street Project No.: 1110-4677

Created By: KW Checked By: AS

Date: 2019-09-27

Updated: 2019-10-08 -----

Modified Rational Calculations - Summary _____

	Р			
Storm Event (yr)	2-Year Pre- Development		Post-Development ¹ (L/s)	
	(L/s)	Uncontrolled Controlled		
10	0.030	0.072	0.025	49.7

Project: 1575 Hurontario Street Project No: 1588-5193 Created By: KW Checked By: AS Date: 2019-07-20 Updated: 2019-10-08

ORIFICE RATING CURVE

Orifice Tube

Discharge, Q = CA x sqrt(2gh)

Orifice Parameters

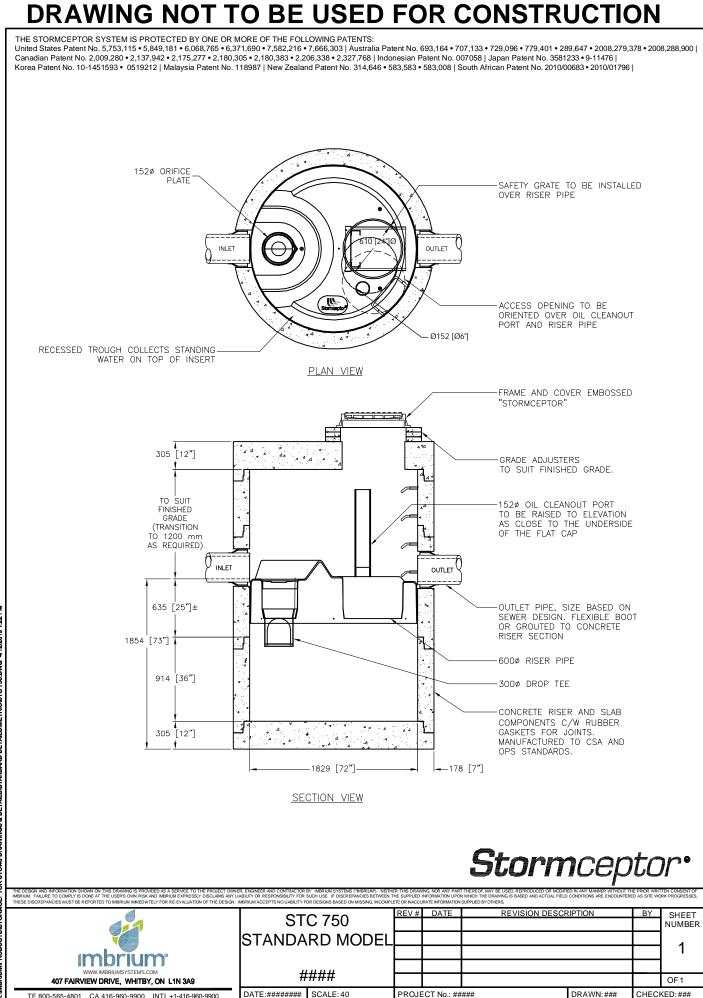
Diameter \emptyset (m) = 0.125 Area (A) (m²) = 0.0123 Coefficient (C) = 0.82 Orifice Invert= 199.24 Centroid (h)= 199.30

A. Rating Table

levation	Discharge	Active Storage Volume	
т	m³/s	m ³	
199.24	0.000	0	ORIFICE INVERT
199.41	0.015	23.22	2 yr
199.48	0.019	32.33	5 yr
199.61	0.025	49.72	10 yr
199.60	0.024	49.50	25 yr
199.66	0.027	56.72	50 yr
199.70	0.028	63.09	100 yr
200.15	0.041	92.4	TOP OF STORAGE TANK

<u>Triton Storage Calculator</u> Rectangular Footprint, Including Perimeter Stone

Units: Metric (user can change units in the "Reference" tab, below)


<u>User Input:</u>			
Triton Chamber Model	S-29		
Number of Rows	1		
Number of Chambers/Row	75		System minimums are
Base of Stone Elevation	92.56	m	automatically populated by default. The defaults can
Depth of Stone Above Chambers	152.0	mm	be overwritten if desired.
Depth of Stone Below Chambers	152.0	mm	Red cells indicate that the
End Stone	305.0	mm	minimums have not been
Side Stone	305.0	mm	met and must be revised,
Distance Between Legs of Chambers	190.0	mm	while green cells indicate
Voids in Stone (porosity)	40%		values larger than the
			minimums.
Calculated Values:			
Number of Chambers	75		
Number of End Caps	2		
System Width	2.11	m	
System Length	64.42	m	
System Depth	1.218	m	
System Footprint	135.9	m²	
Volume of Stone Required	107.4	m³	
System Storage Volume	101.1	m³	
<u>Constants:</u>			
Chamber Width at Legs	1499	mm	
Chamber Height	914.0	mm	
Chamber Length at Overlap	847.00	mm	
End Cap Length at Overlap	142.00	mm	
Min. Depth of Stone Above Chambers	152	mm	
Min. Depth of Stone Below Chambers	152	mm	
Min. End Stone	305	mm	
Min. Side Stone	305	mm	
Min. Distance Between Legs of Chambers	190.0	mm	
Layup Chamber Volume	0.774	M³	
Layup End Cap Volume	0.029	m³	
Incremental Storage Output:			
Cumulative			
Height of Chamber & Cumulative	Cumulative		
Sustem End Cap Stone Void	System	Elevation	

Incremental Storage Output:

[mm]m ³(m ³)(m)0.00.00.00.092.5625.00.01.41.492.5950.00.02.72.792.6175.00.04.14.192.64100.00.05.45.492.66125.00.06.86.892.69150.00.08.28.292.71177.02.18.810.992.74202.02.110.112.292.76227.04.110.714.892.79252.06.211.217.492.81277.08.311.820.092.84302.010.312.322.692.86327.016.314.030.392.94402.018.314.532.892.96352.014.313.427.792.91377.016.314.030.393.06502.026.216.843.093.01477.024.216.240.593.04502.026.216.843.093.06527.028.117.445.593.09520.018.650.593.14602.034.618.953.593.14602.034.618.953.593.14602.034.618.953.593.14602.034.618.953.593.14602.034.6 </th <th>Height of System</th> <th>Cumulative Chamber & End Cap Volume</th> <th>Cumulative Stone Void Volume</th> <th>Cumulative System Volume</th> <th>Elevation</th> <th></th>	Height of System	Cumulative Chamber & End Cap Volume	Cumulative Stone Void Volume	Cumulative System Volume	Elevation	
25.0 0.0 1.4 1.4 92.59 50.0 0.0 2.7 2.7 92.61 75.0 0.0 5.4 5.4 92.66 125.0 0.0 6.8 6.8 92.67 152.0 0.0 8.2 8.2 92.71 152.0 0.0 8.3 8.3 92.74 202.0 2.1 10.1 12.2 92.74 202.0 2.1 10.1 12.2 92.74 202.0 2.1 10.1 12.2 92.74 202.0 2.1 10.1 12.2 92.74 227.0 4.1 10.7 14.8 92.79 252.0 6.2 11.2 17.4 92.81 37.0 16.3 14.0 30.3 92.94 402.0 18.3 14.5 32.8 92.99 452.0 22.3 15.6 37.9 93.01 477.0 24.2 16.2 40.5 93.04 502.0 26.2 16.8 43.0 93.14 <	(mm)	(m³)	(m³)	(m³)	(m)	
50.0 0.0 2.7 2.7 92.61 75.0 0.0 4.1 4.1 92.64 100.0 0.0 5.4 5.4 92.66 125.0 0.0 6.8 6.8 92.67 150.0 0.0 8.2 8.2 92.71 152.0 0.0 8.3 8.3 92.74 202.0 2.1 10.1 12.2 92.76 227.0 4.1 10.7 14.8 92.79 252.0 6.2 11.2 17.4 92.84 302.0 10.3 12.3 22.6 92.84 302.0 10.3 12.3 22.6 92.84 402.0 18.3 14.5 32.8 92.94 402.0 18.3 14.5 32.8 92.94 402.0 18.3 14.5 32.8 92.94 402.0 18.3 14.5 32.8 92.94 402.0 18.3 14.5 32.8 92.96 427.0 20.3 15.1 35.4 93.04	0.0	0.0	0.0	0.0	92.56	
75.0 0.0 4.1 4.1 92.64 100.0 0.0 5.4 5.4 92.66 125.0 0.0 8.2 8.2 92.71 152.0 0.0 8.3 8.3 92.71 177.0 2.1 8.8 10.9 92.74 2020.0 2.1 10.1 12.2 92.76 227.0 4.1 10.7 14.8 92.79 252.0 6.2 11.2 17.4 92.81 277.0 8.3 11.8 20.0 92.84 302.0 10.3 12.3 22.6 92.86 327.0 12.3 12.8 25.2 92.86 325.0 14.3 13.4 27.7 92.91 377.0 16.3 14.5 32.8 92.96 420.0 18.3 14.5 32.8 92.92 452.0 22.3 15.6 37.9 93.01 477.0 24.2 16.2 40.5 93.04 502.0 26.2 16.8 43.0 93.11 <	25.0	0.0	1.4	1.4	92.59	
100.00.05.45.492.66125.00.06.86.892.69150.00.08.28.292.71152.00.08.38.392.71177.02.18.810.992.74202.02.110.112.292.76227.04.110.714.892.79252.06.211.217.492.81277.08.311.820.092.84302.010.312.322.692.86327.012.313.427.792.91377.016.314.030.392.94402.018.314.532.892.96427.020.315.637.993.01477.024.216.240.593.04502.026.216.843.093.06527.028.117.445.593.09552.030.018.048.093.11577.031.918.650.593.14662.037.320.557.893.21677.039.121.260.393.24702.040.821.862.693.26727.045.823.969.793.34802.047.424.672.093.34802.051.727.078.793.44802.051.727.078.793.44802.051.727.078.793.44	50.0	0.0	2.7	2.7	92.61	
125.00.06.86.892.69150.00.08.28.292.71152.00.08.38.392.71177.02.18.810.992.74202.02.110.112.292.76227.04.110.714.892.79252.06.211.217.492.81277.08.311.820.092.84302.010.312.322.692.86327.012.312.825.292.89352.014.313.427.792.91377.016.314.030.392.94402.018.314.532.892.96427.020.315.135.492.99452.022.315.637.993.01477.024.216.240.593.04502.026.216.843.093.11577.031.918.650.593.14622.037.320.557.893.21677.039.121.260.393.24702.040.821.862.693.26772.042.522.565.093.29752.044.223.267.493.31777.045.823.969.793.34802.047.424.672.093.36777.045.823.969.793.34802.050.426.276.593.41<	75.0	0.0	4.1	4.1	92.64	
150.00.08.28.292.71152.00.08.38.392.71177.02.18.810.992.74202.02.110.112.292.76227.04.110.714.892.79252.06.211.217.492.81277.08.311.820.092.84302.010.312.322.692.86327.012.312.825.292.89352.014.313.427.792.91377.016.314.030.392.94402.018.314.532.892.96452.022.315.135.493.04502.026.216.843.093.06527.028.117.445.593.09552.030.018.048.093.11577.031.918.650.593.14602.034.618.953.593.16627.035.519.955.493.21677.039.121.260.393.24702.040.821.862.693.26777.045.823.969.793.34802.047.424.672.093.34802.047.424.672.093.34802.050.426.276.593.41877.051.727.078.793.44802.053.327.880.893.44 <td>100.0</td> <td>0.0</td> <td>5.4</td> <td>5.4</td> <td>92.66</td> <td></td>	100.0	0.0	5.4	5.4	92.66	
152.00.08.38.392.71177.02.18.810.992.74202.02.110.112.292.76227.04.110.714.892.79252.06.211.217.492.81277.08.311.820.092.84302.010.312.322.692.86327.012.312.825.292.89352.014.313.427.792.91377.016.314.030.392.94402.018.314.532.892.96427.020.315.135.492.99452.022.315.637.993.01477.024.216.240.593.04502.026.216.843.093.06527.028.117.445.593.09552.030.018.048.093.11577.031.918.650.593.14602.034.618.953.593.16627.035.519.955.493.19652.037.320.557.893.21677.039.121.260.393.24702.040.821.862.693.26727.042.522.565.093.24702.040.821.862.693.26727.042.522.565.093.31777.045.823.969.793.34	125.0	0.0	6.8	6.8	92.69	
177.02.18.810.992.74202.02.110.112.292.76227.04.110.714.892.79252.06.211.217.492.81277.08.311.820.092.84302.010.312.322.692.86327.012.312.825.292.89352.014.313.427.792.91377.016.314.532.892.94402.018.314.532.892.96427.020.315.135.492.99452.022.315.637.993.01477.024.216.240.593.04502.026.216.843.093.06527.028.117.445.593.09552.030.018.048.093.11577.031.918.650.593.14662.037.320.557.893.21677.039.121.260.393.24702.040.821.862.693.26727.042.522.565.093.29752.044.223.267.493.31777.045.823.969.793.34802.047.424.672.093.36827.048.925.474.393.39852.050.426.276.593.41877.051.727.078.793.44 </td <td>150.0</td> <td>0.0</td> <td>8.2</td> <td>8.2</td> <td>92.71</td> <td></td>	150.0	0.0	8.2	8.2	92.71	
202.02.110.112.292.76227.04.110.714.892.79252.06.211.217.492.81277.08.311.820.092.84302.010.312.322.692.86327.012.312.825.292.89352.014.313.427.792.91377.016.314.030.392.94402.018.314.532.892.96477.020.315.135.492.99452.022.315.637.993.01477.024.216.240.593.04502.026.216.843.093.06527.028.117.445.593.09552.030.018.048.093.11577.031.918.650.593.14602.034.618.953.593.16627.035.519.955.493.24702.040.821.862.693.24702.042.522.565.093.24702.042.522.565.093.34802.047.424.672.093.36827.048.925.474.393.39852.050.426.276.593.41877.051.727.078.793.44902.053.027.880.893.46922.053.027.880.893.46	152.0	0.0	8.3	8.3	92.71	
227.04.110.714.892.79252.06.211.217.492.81277.08.311.820.092.84302.010.312.322.692.86327.012.312.825.292.89352.014.313.427.792.91377.016.314.030.392.94402.018.314.532.892.96477.020.315.135.492.99452.022.315.637.993.01477.024.216.240.593.04502.026.216.843.093.06527.028.117.445.593.09552.030.018.048.093.11577.031.918.650.593.14602.035.519.955.493.19652.037.320.557.893.21677.039.121.260.393.24702.040.821.862.693.26727.042.522.565.093.29752.044.223.267.493.31777.045.823.969.793.34802.047.424.672.093.36827.048.925.474.393.39852.050.426.276.593.41877.051.727.078.793.44902.053.027.880.893.4	177.0	2.1	8.8	10.9	92.74	
252.0 6.2 11.2 17.4 92.81 277.0 8.3 11.8 20.0 92.84 302.0 10.3 12.3 22.6 92.86 327.0 12.3 12.8 25.2 92.89 352.0 14.3 13.4 27.7 92.91 377.0 16.3 14.0 30.3 92.94 402.0 18.3 14.5 32.8 92.96 427.0 20.3 15.1 35.4 92.99 452.0 22.3 15.6 37.9 93.01 570.0 26.2 16.8 43.0 93.04 502.0 26.2 16.8 43.0 93.04 502.0 26.2 16.8 43.0 93.11 577.0 31.9 18.6 50.5 93.14 602.0 37.3 20.5 57.8 93.21 652.0 37.3 20.5 57.8 93.21 677.0 39.1 21.2 60.3 93.24 702.0 44.2 23.2 67.7 93.34 802.0 47.4 24.6 72.0 93.36 827.0 48.9 25.4 74.3 93.39 852.0 50.4 26.2 76.5 93.44 902.0 53.0 27.8 80.8 93.46 927.0 55.3 29.6 84.9 93.51	202.0	2.1	10.1	12.2	92.76	
277.0 8.3 11.8 20.0 92.84 302.0 10.3 12.3 22.6 92.86 327.0 12.3 12.8 25.2 92.89 352.0 14.3 13.4 27.7 92.91 377.0 16.3 14.0 30.3 92.94 402.0 18.3 14.5 32.8 92.96 427.0 20.3 15.1 35.4 92.99 452.0 22.3 15.6 37.9 93.01 477.0 24.2 16.2 40.5 93.04 502.0 26.2 16.8 43.0 93.06 527.0 28.1 17.4 45.5 93.09 552.0 30.0 18.0 48.0 93.11 577.0 31.9 18.6 50.5 93.14 602.0 34.6 18.9 53.5 93.16 627.0 35.5 19.9 55.4 93.19 652.0 37.3 20.5 57.8 93.21 677.0 39.1 21.2 60.3 93.24 702.0 40.8 21.8 62.6 93.26 727.0 42.5 22.5 65.0 93.29 752.0 44.2 23.2 67.4 93.31 777.0 45.8 23.9 69.7 93.34 802.0 47.4 24.6 72.0 93.36 827.0 48.9 25.4 74.3 93.39 852.0 50.4 26.2 76.5	227.0	4.1	10.7	14.8	92.79	
302.0 10.3 12.3 22.6 92.86 327.0 12.3 12.8 25.2 92.89 352.0 14.3 13.4 27.7 92.91 377.0 16.3 14.0 30.3 92.94 402.0 18.3 14.5 32.8 92.96 427.0 20.3 15.1 35.4 92.99 452.0 22.3 15.6 37.9 93.01 477.0 24.2 16.2 40.5 93.04 502.0 26.2 16.8 43.0 93.06 527.0 28.1 17.4 45.5 93.09 552.0 30.0 18.0 48.0 93.11 577.0 31.9 18.6 50.5 93.14 602.0 34.6 18.9 53.5 93.12 677.0 39.1 21.2 60.3 93.24 702.0 40.8 21.8 62.6 93.26 727.0 42.5 22.5 65.0 93.29 752.0 44.2 23.2 67.4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
327.012.312.825.292.89352.014.313.427.792.91377.016.314.030.392.94402.018.314.532.892.96427.020.315.135.492.99452.022.315.637.993.01477.024.216.240.593.04502.026.216.843.093.06527.028.117.445.593.09552.030.018.048.093.11577.031.918.650.593.14602.034.618.953.593.16627.035.519.955.493.24702.040.821.862.693.26727.042.522.565.093.24702.044.223.267.493.31777.045.823.969.793.34802.047.424.672.093.36827.048.925.474.393.39852.050.426.276.593.41877.051.727.078.793.44902.053.027.880.893.46927.054.228.782.993.49952.055.329.684.993.51	277.0	8.3	11.8	20.0	92.84	
352.014.313.427.792.91377.016.314.030.392.94402.018.314.532.892.96427.020.315.135.492.99452.022.315.637.993.01477.024.216.240.593.04502.026.216.843.093.06527.028.117.445.593.09552.030.018.048.093.11577.031.918.650.593.14602.034.618.953.593.16627.035.519.955.493.19652.037.320.557.893.24702.040.821.862.693.26727.042.522.565.093.29752.044.223.267.493.31777.045.823.969.793.34802.047.424.672.093.36827.048.925.474.393.39852.050.426.276.593.41877.051.727.078.793.41877.051.727.078.793.44902.053.027.880.893.4692.055.329.684.993.51	302.0	10.3	12.3	22.6	92.86	
377.016.314.030.392.94402.018.314.532.892.96427.020.315.135.492.99452.022.315.637.993.01477.024.216.240.593.04502.026.216.843.093.06527.028.117.445.593.09552.030.018.048.093.11577.031.918.650.593.14602.034.618.953.593.16627.035.519.955.493.19652.037.320.557.893.21677.039.121.260.393.24702.040.821.862.693.26727.042.522.565.093.31777.045.823.969.793.34802.047.424.672.093.36827.048.925.474.393.39852.050.426.276.593.41877.051.727.078.793.44902.053.027.880.893.46927.054.228.782.993.49952.055.329.684.993.51	327.0	12.3	12.8	25.2	92.89	
402.018.314.532.892.96427.020.315.135.492.99452.022.315.637.993.01477.024.216.240.593.04502.026.216.843.093.06527.028.117.445.593.09552.030.018.048.093.11577.031.918.650.593.14602.034.618.953.593.16627.035.519.955.493.21652.037.320.557.893.21677.039.121.260.393.24702.040.821.862.693.29752.044.223.267.493.31777.045.823.969.793.34802.047.424.672.093.36827.048.925.474.393.39852.050.426.276.593.41877.051.727.078.793.44902.053.027.880.893.46927.054.228.782.993.49952.055.329.684.993.51	352.0	14.3	13.4	27.7	92.91	
427.020.315.135.492.99452.022.315.637.993.01477.024.216.240.593.04502.026.216.843.093.06527.028.117.445.593.09552.030.018.048.093.11577.031.918.650.593.14602.034.618.953.593.16627.035.519.955.493.19652.037.320.557.893.21677.039.121.260.393.24702.040.821.862.693.26727.042.522.565.093.31777.045.823.969.793.34802.047.424.672.093.36827.048.925.474.393.39852.050.426.276.593.41877.051.727.078.793.44902.053.027.880.893.46927.054.228.782.993.49952.055.329.684.993.51	377.0	16.3	14.0	30.3	92.94	
452.022.315.637.993.01477.024.216.240.593.04502.026.216.843.093.06527.028.117.445.593.09552.030.018.048.093.11577.031.918.650.593.14602.034.618.953.593.16627.035.519.955.493.19652.037.320.557.893.21677.039.121.260.393.24702.040.821.862.693.26727.042.522.565.093.31777.045.823.969.793.34802.047.424.672.093.36827.048.925.474.393.39852.050.426.276.593.41877.051.727.078.793.44902.053.027.880.893.46927.054.228.782.993.49952.055.329.684.993.51	402.0	18.3	14.5	32.8	92.96	
477.024.216.240.593.04502.026.216.843.093.06527.028.117.445.593.09552.030.018.048.093.11577.031.918.650.593.14602.034.618.953.593.16627.035.519.955.493.19652.037.320.557.893.21677.039.121.260.393.24702.040.821.862.693.26727.042.522.565.093.29752.044.223.267.493.31777.045.823.969.793.34802.047.424.672.093.36827.048.925.474.393.39852.050.426.276.593.41877.051.727.078.793.44902.053.027.880.893.46927.054.228.782.993.49952.055.329.684.993.51	427.0	20.3	15.1	35.4	92.99	
502.026.216.843.093.06527.028.117.445.593.09552.030.018.048.093.11577.031.918.650.593.14602.034.618.953.593.16627.035.519.955.493.19652.037.320.557.893.21677.039.121.260.393.24702.040.821.862.693.26727.042.522.565.093.31777.045.823.969.793.34802.047.424.672.093.36827.048.925.474.393.39852.050.426.276.593.41877.051.727.078.793.44902.053.027.880.893.46927.054.228.782.993.49952.055.329.684.993.51	452.0	22.3	15.6	37.9	93.01	
527.028.117.445.593.09552.030.018.048.093.11577.031.918.650.593.14602.034.618.953.593.16627.035.519.955.493.19652.037.320.557.893.21677.039.121.260.393.24702.040.821.862.693.26727.042.522.565.093.29752.044.223.267.493.31777.045.823.969.793.34802.047.424.672.093.36827.048.925.474.393.39852.050.426.276.593.41877.051.727.078.793.44902.053.027.880.893.46927.054.228.782.993.49952.055.329.684.993.51	477.0	24.2	16.2	40.5	93.04	
552.030.018.048.093.11577.031.918.650.593.14602.034.618.953.593.16627.035.519.955.493.19652.037.320.557.893.21677.039.121.260.393.24702.040.821.862.693.26727.042.522.565.093.29752.044.223.267.493.31777.045.823.969.793.34802.047.424.672.093.36827.048.925.474.393.39852.050.426.276.593.41877.051.727.078.793.44902.053.027.880.893.46927.054.228.782.993.51	502.0	26.2	16.8	43.0	93.06	
577.031.918.650.593.14602.034.618.953.593.16627.035.519.955.493.19652.037.320.557.893.21677.039.121.260.393.24702.040.821.862.693.26727.042.522.565.093.31777.045.823.969.793.34802.047.424.672.093.36852.050.426.276.593.41877.051.727.078.793.44902.053.027.880.893.46927.054.228.782.993.51	527.0	28.1	17.4	45.5	93.09	
602.034.618.953.593.16627.035.519.955.493.19652.037.320.557.893.21677.039.121.260.393.24702.040.821.862.693.26727.042.522.565.093.29752.044.223.267.493.31777.045.823.969.793.34802.047.424.672.093.36852.050.426.276.593.41877.051.727.078.793.44902.053.027.880.893.46927.054.228.782.993.49952.055.329.684.993.51	552.0	30.0	18.0	48.0	93.11	
627.035.519.955.493.19652.037.320.557.893.21677.039.121.260.393.24702.040.821.862.693.26727.042.522.565.093.29752.044.223.267.493.31777.045.823.969.793.34802.047.424.672.093.36852.050.426.276.593.41877.051.727.078.793.44902.053.027.880.893.46927.054.228.782.993.49952.055.329.684.993.51	577.0	31.9	18.6	50.5	93.14	
652.037.320.557.893.21677.039.121.260.393.24702.040.821.862.693.26727.042.522.565.093.29752.044.223.267.493.31777.045.823.969.793.34802.047.424.672.093.36827.048.925.474.393.39852.050.426.276.593.41877.051.727.078.793.44902.053.027.880.893.46927.054.228.782.993.49952.055.329.684.993.51	602.0	34.6	18.9	53.5	93.16	
677.039.121.260.393.24702.040.821.862.693.26727.042.522.565.093.29752.044.223.267.493.31777.045.823.969.793.34802.047.424.672.093.36827.048.925.474.393.39852.050.426.276.593.41877.051.727.078.793.44902.053.027.880.893.46927.054.228.782.993.49952.055.329.684.993.51	627.0	35.5	19.9	55.4	93.19	
702.040.821.862.693.26727.042.522.565.093.29752.044.223.267.493.31777.045.823.969.793.34802.047.424.672.093.36827.048.925.474.393.39852.050.426.276.593.41877.051.727.078.793.44902.053.027.880.893.46927.054.228.782.993.49952.055.329.684.993.51	652.0	37.3	20.5	57.8	93.21	
727.042.522.565.093.29752.044.223.267.493.31777.045.823.969.793.34802.047.424.672.093.36827.048.925.474.393.39852.050.426.276.593.41877.051.727.078.793.44902.053.027.880.893.46927.054.228.782.993.49952.055.329.684.993.51	677.0	39.1	21.2	60.3	93.24	
752.044.223.267.493.31777.045.823.969.793.34802.047.424.672.093.36827.048.925.474.393.39852.050.426.276.593.41877.051.727.078.793.44902.053.027.880.893.4697.054.228.782.993.49952.055.329.684.993.51	702.0	40.8	21.8	62.6	93.26	
777.045.823.969.793.34802.047.424.672.093.36827.048.925.474.393.39852.050.426.276.593.41877.051.727.078.793.44902.053.027.880.893.46927.054.228.782.993.49952.055.329.684.993.51	727.0	42.5	22.5	65.0	93.29	
802.047.424.672.093.36827.048.925.474.393.39852.050.426.276.593.41877.051.727.078.793.44902.053.027.880.893.46927.054.228.782.993.49952.055.329.684.993.51	752.0	44.2		67.4	93.31	
827.048.925.474.393.39852.050.426.276.593.41877.051.727.078.793.44902.053.027.880.893.46927.054.228.782.993.49952.055.329.684.993.51	777.0	45.8	23.9	69.7	93.34	
852.050.426.276.593.41877.051.727.078.793.44902.053.027.880.893.46927.054.228.782.993.49952.055.329.684.993.51	802.0	47.4	24.6	72.0	93.36	
877.051.727.078.793.44902.053.027.880.893.46927.054.228.782.993.49952.055.329.684.993.51		48.9	25.4	74.3	93.39	
902.053.027.880.893.46927.054.228.782.993.49952.055.329.684.993.51	852.0	50.4	26.2	76.5	93.41	
927.054.228.782.993.49952.055.329.684.993.51	877.0	51.7	27.0	78.7	93.44	
952.0 55.3 29.6 84.9 93.51	902.0		27.8		93.46	
	927.0	54.2	28.7	82.9	93.49	
977.0 56.3 30.6 86.9 93.54	952.0	55.3	29.6	84.9	93.51	
	977.0	56.3	30.6	86.9	93.54	

Incremental Storage Output:

Height of System	Cumulative Chamber & End Cap Volume	Cumulative Stone Void Volume	Cumulative System Volume	Elevation
(mm)	(m³)	(m³)	(m³)	(m)
1002.0	57.1	31.6	88.7	93.56
1027.0	57.7	32.7	90.4	93.59
1052.0	58.0	34.0	92.0	93.61
1066.0	58.1	34.7	92.8	93.63
1091.0	0.0	36.0	94.2	93.65
1116.0	0.0	37.4	95.5	93.68
1141.0	0.0	38.7	96.9	93.70
1166.0	0.0	40.1	98.3	93.73
1191.0	0.0	41.5	99.6	93.75
1216.0	0.0	42.8	101.0	93.78
1218.0	0.0	42.9	101.1	93.78

PRODUCTSISTORMCEPTOR STC40 DRAWINGS & DETAILSISTANDARD DETAILSIMETRICISTC 750.DWG 4/122019 1:22 PM

Detailed Stormceptor Sizing Report – 1575 Hurontario

Project Information & Location							
Project Name 1575 Hurontario		Project Number	20057				
City Mississauga		State/ Province	Ontario				
Country	Canada	Date	10/9/2019				
Designer Information)	EOR Information (optional)					
Name	Katrina Weel	Name					
Company CF Crozier & Associates		Company					
Phone # 416-477-3392		Phone #					
Email kweel@cfcrozier.ca		Email					

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	
Recommended Stormceptor Model	STC 750
Target TSS Removal (%)	80.0
TSS Removal (%) Provided	85
PSD	Fine Distribution
Rainfall Station	TORONTO CENTRAL

The recommended Stormceptor model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary					
Stormceptor Model	% TSS Removal Provided				
STC 300	76				
STC 750	85				
STC 1000	86				
STC 1500	87				
STC 2000	89				
STC 3000	90				
STC 4000	92				
STC 5000	93				
STC 6000	94				
STC 9000	96				
STC 10000	96				
STC 14000	97				
StormceptorMAX	Custom				

Stormceptor

The Stormceptor oil and sediment separator is sized to treat stormwater runoff by removing pollutants through gravity separation and flotation. Stormceptor's patented design generates positive TSS removal for each rainfall event, including large storms. Significant levels of pollutants such as heavy metals, free oils and nutrients are prevented from entering natural water resources and the re-suspension of previously captured sediment (scour) does not occur. Stormceptor provides a high level of TSS removal for small frequent storm events that represent the majority of annual rainfall volume and pollutant load. Positive treatment continues for large infrequent events, however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load.

Design Methodology

Stormceptor is sized using PCSWMM for Stormceptor, a continuous simulation model based on US EPA SWMM. The program calculates hydrology using local historical rainfall data and specified site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to achieve a defined water quality objective. The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load. The Stormceptor's unit process for TSS removal is settling. The settling model calculates TSS removal by analyzing:

- Site parameters
- · Continuous historical rainfall data, including duration, distribution, peaks & inter-event dry periods
- · Particle size distribution, and associated settling velocities (Stokes Law, corrected for drag)
- TSS load
- · Detention time of the system

Hydrology Analysis

PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of Stormceptor are based on the average annual removal of TSS for the selected site parameters. The Stormceptor is engineered to capture sediment particles by treating the required average annual runoff volume, ensuring positive removal efficiency is maintained during each rainfall event, and preventing negative removal efficiency (scour). Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section.

Rainfall Station							
State/Province Ontario Total Number of Rainfall Events 2719							
Rainfall Station Name TORONTO CENTRAL		Total Rainfall (mm)	13185.4				
Station ID # 0100		Average Annual Rainfall (mm)	732.5				
Coordinates	43°37'N, 79°23'W	Total Evaporation (mm)	923.8				
Elevation (ft) 328		Total Infiltration (mm)	3673.9				
Years of Rainfall Data 18		Total Rainfall that is Runoff (mm)	8587.7				

Notes

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.

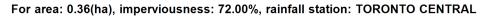
• For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

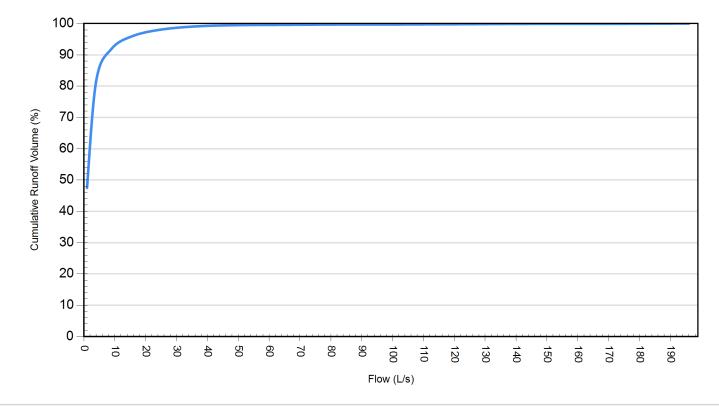
FORTERRA

Drainage Area	Up Stream Storage				
Total Area (ha)	0.36	Storage (ha-m) Discharge (cms)		e (cms)	
Imperviousness %	72.00	0.000	0.00	00	
Water Quality Objective	;	Up Stream	Flow Diversion	۱	
TSS Removal (%)	80.0	Max. Flow to Stormce	otor (cms)		
Runoff Volume Capture (%)		Desi	gn Details		
Oil Spill Capture Volume (L)		Stormceptor Inlet Inve	rt Elev (m)		
Peak Conveyed Flow Rate (L/s)		Stormceptor Outlet Invert Elev (m)			
Water Quality Flow Rate (L/s)		Stormceptor Rim Elev (m)			
		Normal Water Level Ele	evation (m)		
		Pipe Diameter (r	nm)		
		Pipe Materia	l		
		Multiple Inlets ((/N)	No	
		Grate Inlet (Y/	N)	No	
Particle Size Distribution (PSD)					

Removing the smallest fraction of particulates from runoff ensures the majority of pollutants, such as metals, hydrocarbons and nutrients are captured. The table below identifies the Particle Size Distribution (PSD) that was selected to define TSS removal for the Stormceptor design.

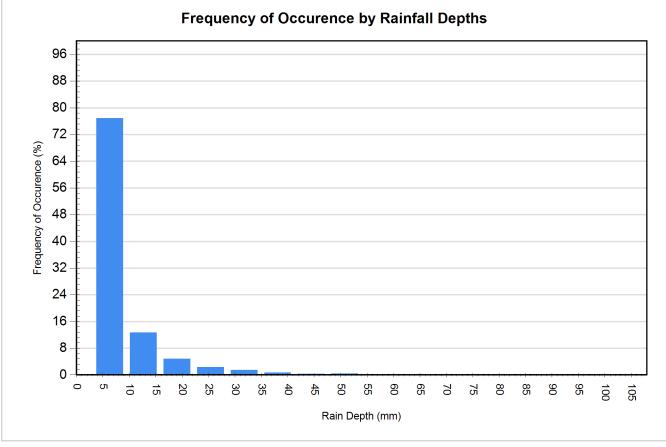
Fine Distribution						
Particle Diameter (microns)	Distribution %	Specific Gravity				
20.0	20.0	1.30				
60.0	20.0	1.80				
150.0	20.0	2.20				
400.0	20.0	2.65				
2000.0	20.0	2.65				


Site Name						
Site Details						
Drainage Area		Infiltration Parameters				
Total Area (ha)	0.36	Horton's equation is used to estimate infiltration				
Imperviousness %	72.00	Max. Infiltration Rate (mm/hr)61.98				
Surface Characteristics	5	Min. Infiltration Rate (mm/hr)10.16				
Width (m)	120.00	Decay Rate (1/sec) 0.00055				
Slope %	2	Regeneration Rate (1/sec)0.01				
Impervious Depression Storage (mm)	0.508	Evaporation				
Pervious Depression Storage (mm)	5.08	Daily Evaporation Rate (mm/day)2.54				
Impervious Manning's n	0.015	Dry Weather Flow				
Pervious Manning's n	0.25	Dry Weather Flow (lps) 0				
Maintenance Frequency	у	Winter Months				
Maintenance Frequency (months) >	12	Winter Infiltration0				
	TSS Loading	g Parameters				
TSS Loading Function						
Buildup/Wash-off Parame	eters	TSS Availability Parameters				
Target Event Mean Conc. (EMC) mg/L		Availability Constant A				
Exponential Buildup Power		Availability Factor B				
Exponential Washoff Exponent		Availability Exponent C				
		Min. Particle Size Affected by Availability (micron)				

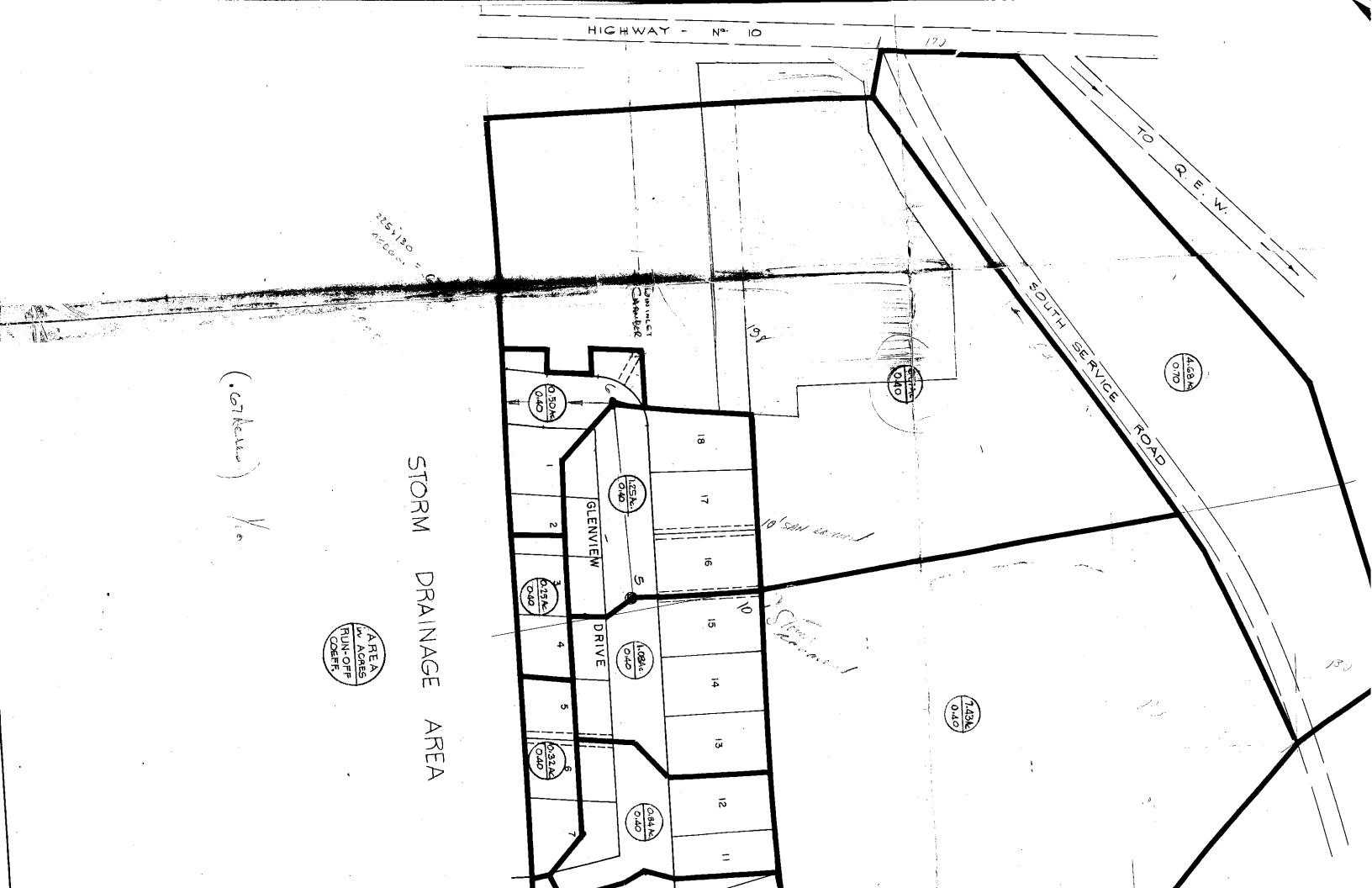

FORTERRA[®]

FORTERRA

Cumulative Runoff Volume by Runoff Rate						
Runoff Rate (L/s)	Runoff Volume (m ³)	Volume Over (m ³)	Cumulative Runoff Volume (%)			
1	14818	16381	47.5			
4	25525	5673	81.8			
9	28696	2502	92.0			
16	29994	1204	96.1			
25	30610	588	98.1			
36	30906	292	99.1			
49	31027	171	99.5			
64	31068	130	99.6			
81	31097	101	99.7			
100	31118	80	99.7			
121	31137	61	99.8			
144	31158	40	99.9			
169	31180	18	99.9			
196	31196	2	100.0			


Cumulative Runoff Volume by Runoff Rate

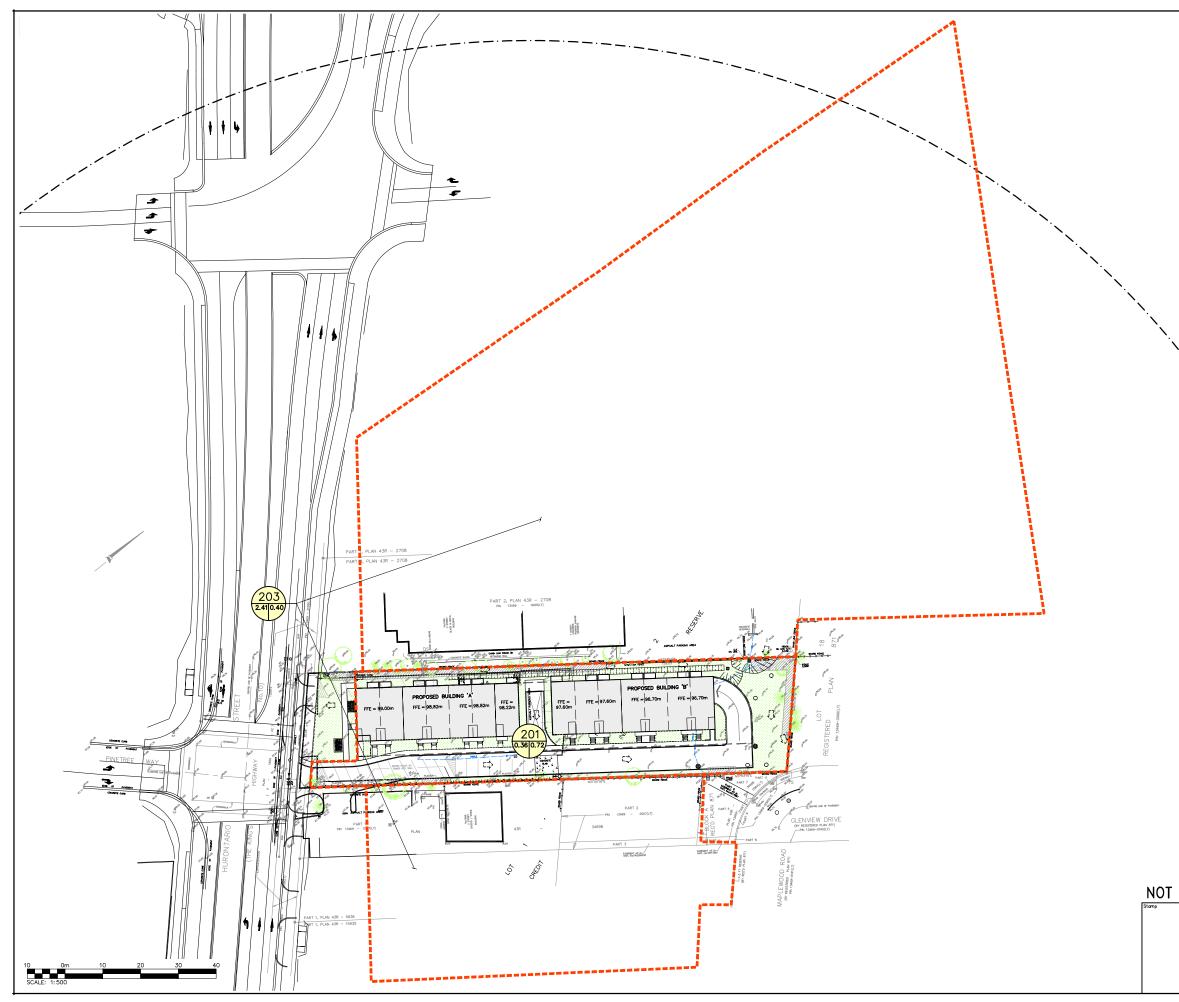
FORTERRA"


Rainfall Event Analysis					
Rainfall Depth (mm)	No. of Events	Percentage of Total Events (%)	Total Volume (mm)	Percentage of Annual Volume (%)	
6.35	2091	76.9	3344	25.4	
12.70	345	12.7	3201	24.3	
19.05	131	4.8	2062	15.6	
25.40	63	2.3	1358	10.3	
31.75	42	1.5	1185	9.0	
38.10	20	0.7	678	5.1	
44.45	9	0.3	377	2.9	
50.80	11	0.4	521	4.0	
57.15	3	0.1	159	1.2	
63.50	1	0.0	61	0.5	
69.85	0	0.0	0	0.0	
76.20	1	0.0	73	0.6	
82.55	1	0.0	80	0.6	
88.90	1	0.0	85	0.6	
95.25	0	0.0	0	0.0	
101.60	0	0.0	0	0.0	

For Stormceptor Specifications and Drawings Please Visit: http://www.imbriumsystems.com/technical-specifications

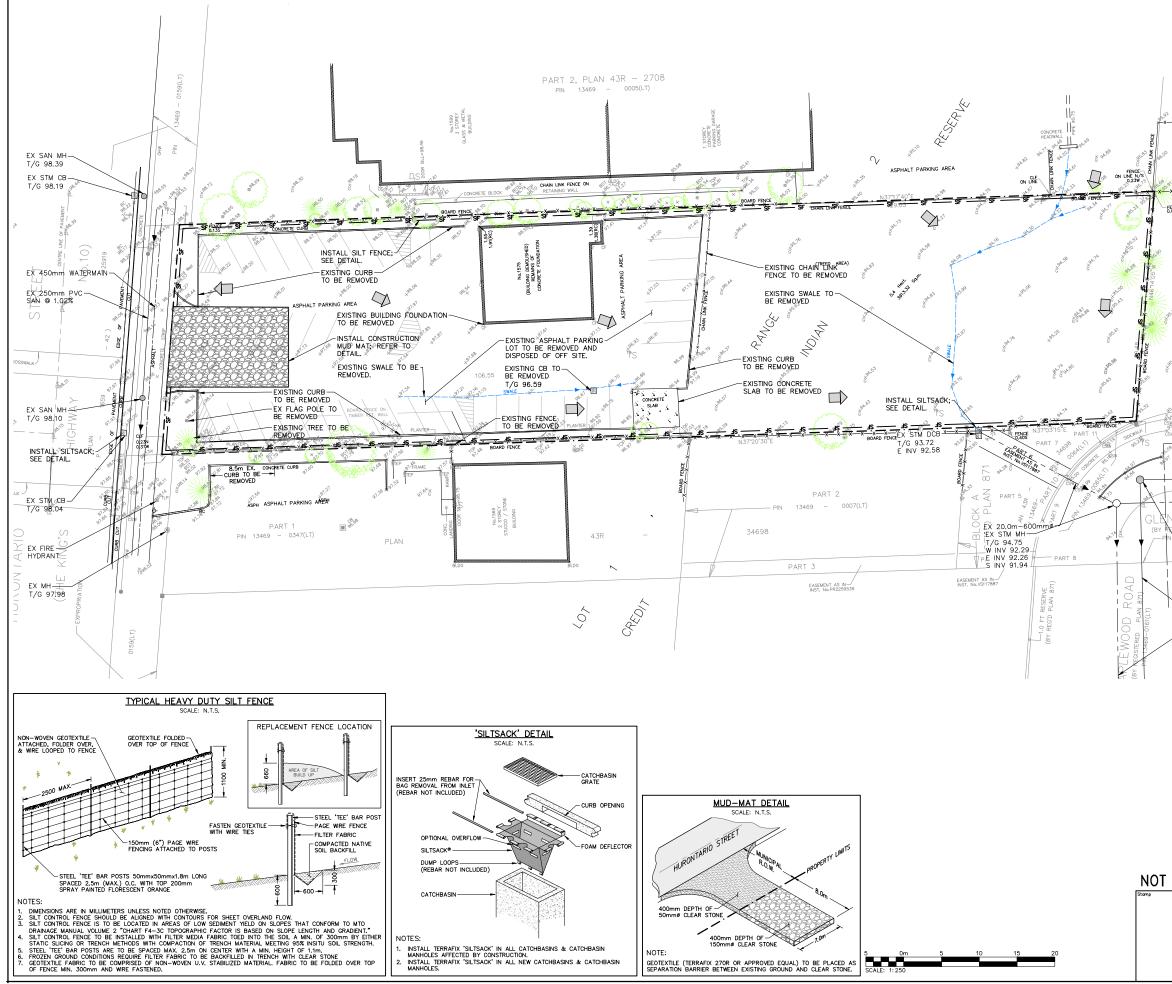
APPENDIX D

Existing Reports

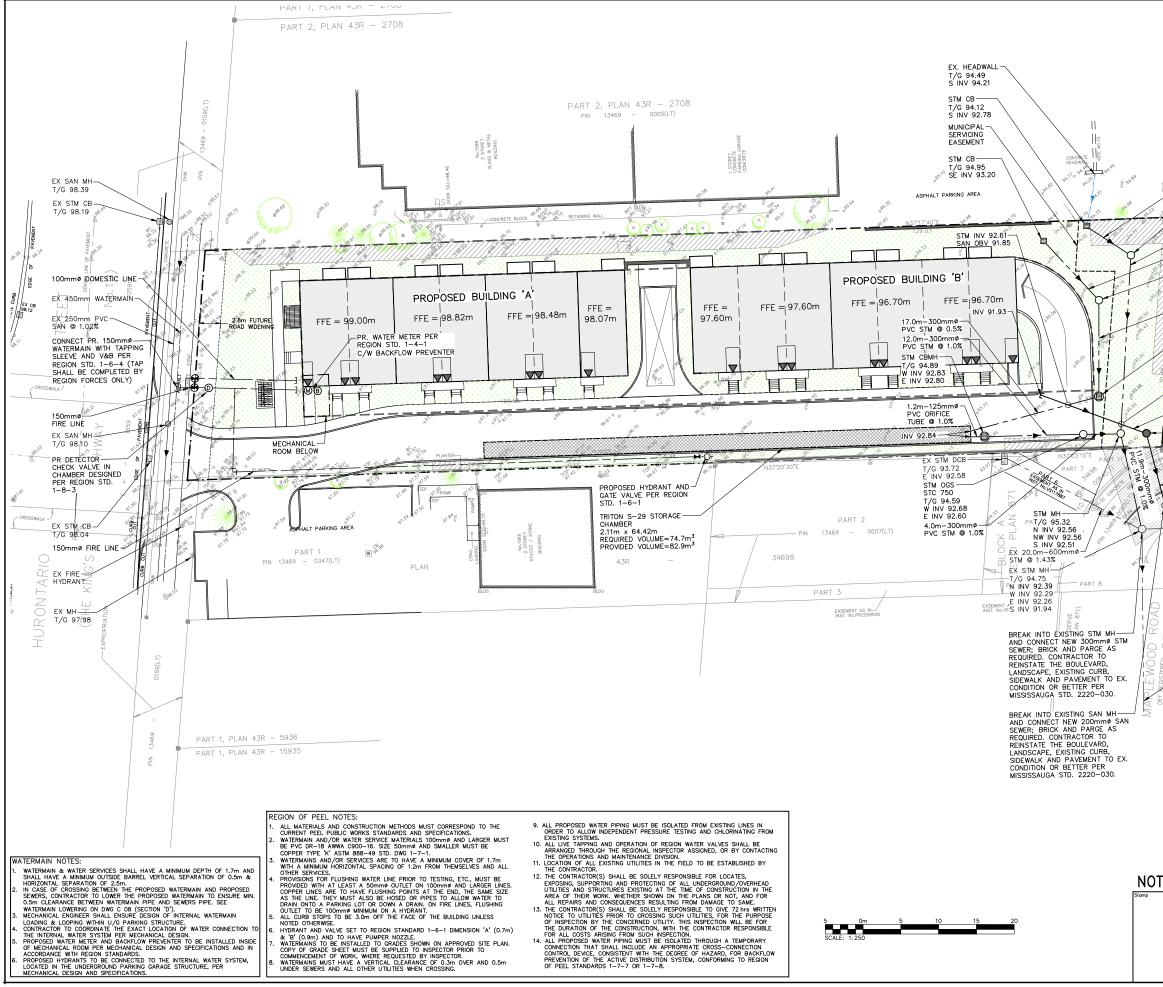

FIGURES

	_	-				
		2 ISSUED FOR C 1 ISSUED FOR F			2019/0CT/11	
	-	-			2017/DEC/06	
	N	Io. ISSUE / REVIS	SION		YYYY/MMM/DD	
	E	LEVATION NOTE: LEVATIONS SHOWN SENCHMARK NO. 709 LEVATION = 98.279		RIVED FROM THE CITY C	F MISSISSAUGA	
	<u>s</u>	SURVEY NOTES:				
	R	REFERENCE No.: 02-	39C GRID, DERIVED FROM R	NTARIO LAND SURVEYOR. TN OBSERVATIONS	. (2015/JUNE/08)	
	DC	OISTANCES ARE GROU COMBINED SCALE FA	JND AND CAN BE CON CTOR OF 0.9996781	VERTED TO GRID BY MU	LTIPLYING BY THE	
	S	SITE PLAN NOTES:				
	D	PESIGN ELEMENTS AF PRAWING No.: 17-09 PROJECT No.: SP 01		N BY KIRKOR ARCHITEC	TS + PLANNERS.	
	D	RAWING NOTES:				
	т	THIS DRAWING IS THE EXCLUSIVE PROPERTY OF C.F. CROZIER & ASSOCIATES INC. AND THE REPRODUCTION OF ANY PART OF IT WITHOUT PRIOR WRITTEN CONSENT OF THIS OFFICE IS STRICTLY PROHIBITED.				
	T	THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS, LEVELS, AND DATUMS ON SITE AND REPORT ANY DISCREPANCIES OR OMISSIONS TO THIS OFFICE PRIOR TO CONSTRUCTION.				
	т	THIS DRAWING IS TO BE READ AND UNDERSTOOD IN CONJUNCTION WITH ALL OTHER PLANS AND DOCUMENTS APPLICABLE TO THIS PROJECT, DO NOT SCALE THIS DRAWING.				
	A	ALL EXISTING UNDERGROUND UTILITIES TO BE VERIFIED IN THE FIELD BY THE CONTRACTOR PRIOR TO CONSTRUCTION.				
	Pro	oject				
		157	75 HURON1	fario stre	ET	
		(CITY OF MI	SSISSAUGA		
	Dro	awing	PRE-DEVE			
	STRUCTION	DRAINAGE PLAN				
1 1	A SHUKLA 100188284		CROZIE	Suite Toronto, O 416-47	ge Street e 301 N MSB 1M4 7-3392 T crozier.ca	
	DROLINCE OF ONTARI	awn K.W.	Design K.W.	Project No. 111	0-4677	
		eck S.T.T.	Check A.S.	Scale 1:500 Dwg.	FIG 1	

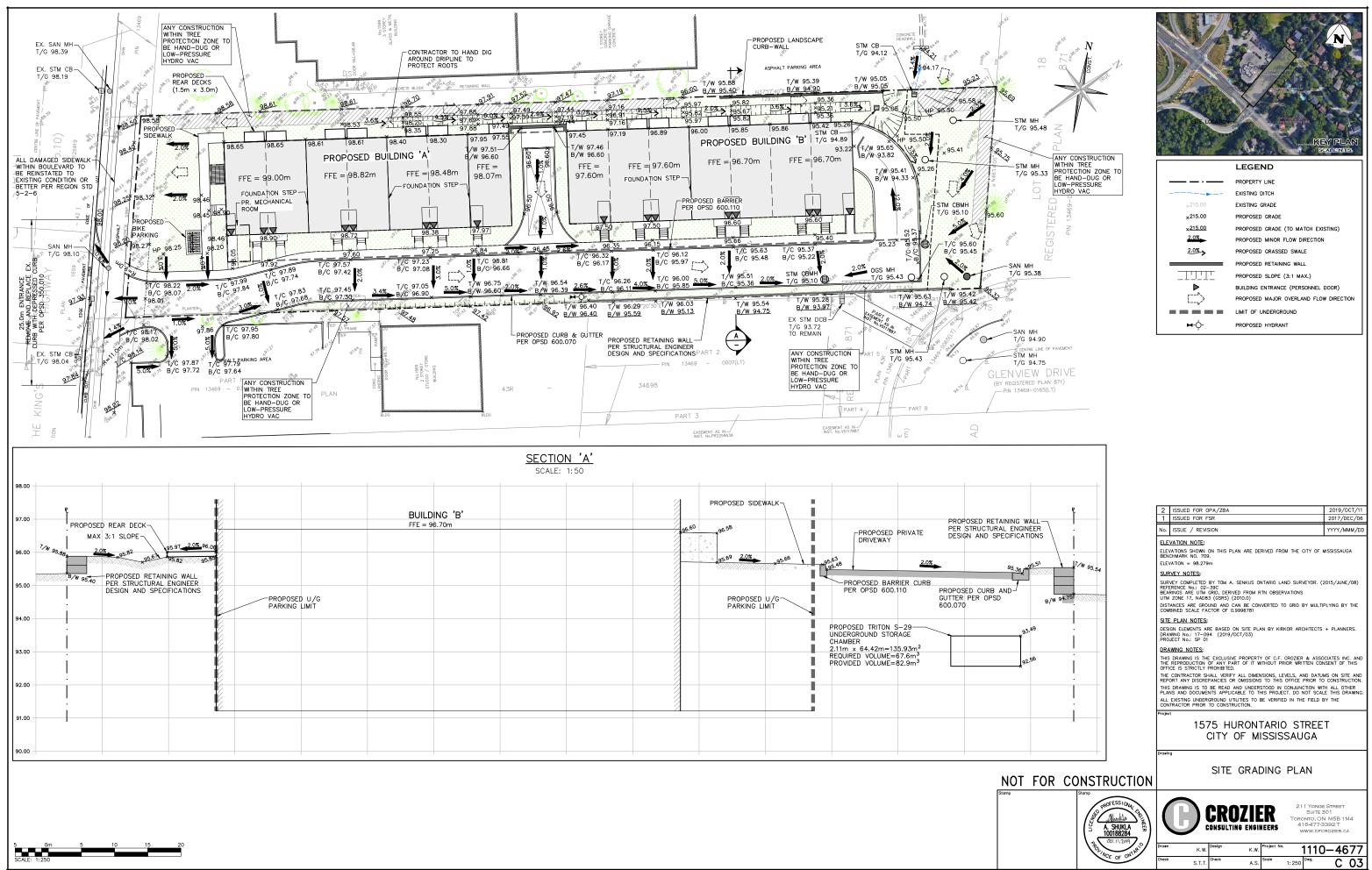
KEY P LEGEND ----- PROPERTY LINE EXISTING CONTOUR (0.5m) EXISTING CONTOUR (1.0m) EXISTING DITCH EXISTING GRADE \square EXISTING OVERLAND FLOW DIRECTION STORM DRAINAGE CATCHMENT CATCHMENT I.D. AREA (ha) RUNOFF COEFFICIENT



			PROPERTY LINE	
			EXISTING CONTOUR (0.5m)	
			EXISTING CONTOUR (1.0m)	
			EXISTING DITCH	
		× 215.00	EXISTING GRADE	
		[×>	PROPOSED OVERLAND FLOW	DIRECTION
		L	STORM DRAINAGE CATCHMEN	
			CATCHMENT I.D.	
			AREA (ha) RUNOFF COEFF	FICIENT
				0010 /007 ///
	N.	2 ISSUED FOR OPA/ZB/ 1 ISSUED FOR FSR	A	2019/0CT/11 2017/DEC/06
		No. ISSUE / REVISION ELEVATION NOTE:		
		ELEVATION NOTE: ELEVATIONS SHOWN ON THIS BENCHMARK NO, 709. ELEVATION 982.79m SURVEY NOTES: SURVEY COMPLETED BY TOM REFERENCE NO: 02-39C 00 BURNESS ARE UNE: 02-39C 00 UN 20KE 17. ND83 (GSRS DISTANCES ARE GROUND AND COMBINED SCALE FACTOR OF SITE PLAN NOTES: DESINO ELEMENTS ARE DASA PROJECT No: SP 01 DRAWING NOTES: THIS DRAWING IS THE EXCLU THE REPRODUCTION SFALL VE REPORT ANY DISCREPANCIES THIS DRAWING IS THE EXCLU THE REPRODUCTION SFALL VE REPORT ANY DISCREPANCIES THIS DRAWING IS THE EXCLU THE CONTRACTOR SHALL VE REPORT ANY DISCREPANCIES THIS DRAWING IS THE EXCLU THE CONTRACTOR SHALL VE REPORT ANY DISCREPANCIES THIS DRAWING IS TO RE TAC PLANS AND DOCUMENTS APP ALL EXISTING UNDERGOUND CONTRACTOR PHIOR TO CONS Project) CAN BE CONVERTED TO GRID BY 0.9996781 D ON SITE PLAN BY KIRKOR ARCH 9/OCT/O3) SIVE PROPERTY OF C.F. CROZIER & PART OF IT WITHOUT PROR WRITT ED. WITY ALL DIMENSIONS, LEVELS, AND OR OMSSIONS TO THIS OFFICE PR UND AND ENDERTODO IN CONJUNCT UCABLE TO THIS PROJECT, DO NO UNDITIEST SO BE VERIFIED IN THE	Y OF MISSISSAUGA YOR. (2015/JUNE/08) MULTIPLYING BY THE ITECTS + PLANNERS. & ASSOCIATES INC. AND EN CONSENT OF THIS IN DATUMS ON SITE AND MOR TO CONSTRUCTION. ION WITH ALL OTHER TOSALE THIS DRAWING. FIELD BY THE REET
FOR CO	ONSTRUCTION	ELEVATION NOTE: ELEVATIONS SHOWN ON THIS BENCHMARK NO. 709. ELEVATION 982.79m SURVEY NOTES: SURVEY COMPLETED BY TOM REFERENCE AND 20-30C BEARINGS ARE UTM GRD, DE UTM ZONE 17. NABB3 (GSSS DISTANCES ARE GROUND AND COMBINED SCALE FACTOR OF SITE PLAN NOTES: DESGN ELEMENTS ARE BASE DESGN ARY DESGN ELEMENTS ARE DESGN ARY DESGN ELEMENTS ARE DESGN ARY DESGN ELEMENTS ARE DESGN ARY	A. SENKUS ONTARIO LAND SURVE RIVED FROM RTN OBSERVATIONS (2010.0) 0 CAN BE CONVERTED TO GRID BY 0.0996781 D ON STE PLAN BY KIRKOR ARCH 9/OCT/O3) SIVE PROPERTY OF C.F. GROZIER & PART OF IT WITHOUT PRIOR WRITT ED. OR OMISSIONS TO THIS OFFICE PR D AND UNDERSTOOD IN CONJUNC OR OMISSIONS TO THIS OFFICE PR D AND UNDERSTOOD IN CONJUNC OR OMISSIONS TO THIS OFFICE PR D AND UNDERSTOOD IN CONJUNC STRUCTION.	Y OF MISSISSAUGA YOR. (2015/JUNE/08) MULTIPLYING BY THE ITECTS + PLANNERS. & ASSOCIATES INC. AND EN CONSETNO. THIS ICON TO CONSTRUCTION. TO SOLUTION WITH ALL OTHER IT SCALE THIS DRAWING. FIELD BY THE REET SA
FOR CO	A SHUKLA	LEVATION NOTE: ELEVATIONS SHOWN ON THIS BENCHMARK NO, 709. ELEVATION 982.79m SURVEY NOTES: SURVEY COMPLETED BY TOM REFERENCE NO: 02-30° CO BEARINGS ARE UNAGRIC, DE UNAZONE 71, NAB33 (GRSC DISTANCES ARE GROUND AND COMBINED SCALE FACTOR OF SITE PLAN NOTES: DESIGN ELEMENTS ARE BASE DESIGN ELEMENTS ARE BASE DESIGN ELEMENTS ARE DATA PROJECT NO: 50 OF RECORD ROTES: THIS DRAWING IS THE EXCLU THE CREPROLICITOR SHALL WE REPORT ANY DISCREPANCIES THIS DRAWING IS THE EXCLU THE CONTRACTOR SHALL WE REPORT ANY DISCREPANCIES THIS DRAWING IS THE EXCLU THE CONTRACTOR SHALL WE REPORT ANY DISCREPANCIES THIS DRAWING IS THE EXCLU THE CONTRACTOR SHALL WE REPORT ANY DISCREPANCIES THIS DRAWING IS THE EXCLU THE ORTRACTOR SHALL WE REPORT ANY DISCREPANCIES THIS DRAWING TO COMP CONTRACTOR PHIOR TO COMP Project TOTATION DOWNING DO	A. SENKUS ONTARIO LAND SURVE RIVED FROM RTN OBSERVATIONS (2010.0) D CAN BE CONVERTED TO GRID BY 0.09996781 D ON SITE PLAN BY KIRKOR ARCH 9/OCT/03) SIVE PROPERTY OF C.F. CROZIER A PART OF IT WITHOUT PROF. WRITT ED. SIVE PROPERTY OF C.F. CROZIER A PART OF IT WITHOUT PROF. WRITT ED. SIVE PROPERTY OF C.F. CROZIER A PART OF IT WITHOUT PROF. WRITT ED. SIVE PROPERTY OF C.F. CROZIER A D ON SITE PLAN BY KIRKOR ARCH 9/OCT/03) THING IN SUBJECT DO IN AUD UNDERSTOON IN CONJUNCT UCABLE TO THIS PROJECT. DO INO UTULITES TO BE VERIFIED IN THE STRUCTION. STUDENT OF MISSISSAUCC ST—DEVELOPMEN RAINAGE PLAN STRUCTION. STUDENT OF MISSISSAUCC ST—DEVELOPMEN RAINAGE PLAN 211 ° STORMET STRUCTION. 211 ° STORMET STRUCTION. 211 ° STORMET STRUCTION. STRUC	Y OF MISSISSAUGA YOR. (2015/JUNE/08) MULTIPLYING BY THE ITECTS + PLANNERS. & ASSOCIATES INC. AND INC TO CONSTRUCTION. IN WITH ALL OTHER T SCALE THIS DRAWING. FIELD BY THE REET SA T Yonge Street Site 301 0, ON MS 1M4 -477-3392 T w.cfcr2ie.ca
FOR CO	A SHUKLA	ELEVATION NOTE: ELEVATIONS SHOWN ON THIS BENCHMARK NO. 709. ELEVATION 982.79m SURVEY NOTES: SURVEY COMPLETED BY TOM REFERENCE AND 20-30C BEARINGS ARE UTM GRD, DE UTM ZONE 17. NABB3 (GSSS DISTANCES ARE GROUND AND COMBINED SCALE FACTOR OF SITE PLAN NOTES: DESGN ELEMENTS ARE BASE DESGN ARY DESGN ELEMENTS ARE DESGN ARY DESGN ELEMENTS ARE DESGN ARY DESGN ELEMENTS ARE DESGN ARY	A. SENKUS ONTARIO LAND SURVE RIVED FROM RTN OBSERVATIONS (2010.0) D CAN BE CONVERTED TO GRID BY 0.09996781 D ON SITE PLAN BY KIRKOR ARCH 9/OCT/03) SIVE PROPERTY OF C.F. CROZIER A PART OF IT WITHOUT PROF. WRITT ED. SIVE PROPERTY OF C.F. CROZIER A PART OF IT WITHOUT PROF. WRITT ED. SIVE PROPERTY OF C.F. CROZIER A PART OF IT WITHOUT PROF. WRITT ED. SIVE PROPERTY OF C.F. CROZIER A D ON SITE PLAN BY KIRKOR ARCH 9/OCT/03) THING IN SUBJECT DO IN AUD UNDERSTOON IN CONJUNCT UCABLE TO THIS PROJECT. DO INO UTULITES TO BE VERIFIED IN THE STRUCTION. STUDENT OF MISSISSAUCC ST—DEVELOPMEN RAINAGE PLAN STRUCTION. STUDENT OF MISSISSAUCC ST—DEVELOPMEN RAINAGE PLAN 211 ° STORMET STRUCTION. 211 ° STORMET STRUCTION. 211 ° STORMET STRUCTION. STRUC	Y OF MISSISSAUGA YOR. (2015/JUNE/08) MULTIPLYING BY THE ITECTS + PLANNERS. & ASSOCIATES INC. AND EN CONSETN OF THIS INC TO CONSTRUCTION. INCON WITH ALL OTHER T SCALE THIS DRAWING. FIELD BY THE REET SA T Yonge Street JUTE 301 4.077–3392 T M.CFORZIER.CO T10-4677



DRAWINGS



		TION		
NVIEW DRIVE Accistered Plan 871) PN 3469-0165(LT) EX SAN MH T/G 94,90 E INV 91.41 S INV 91.28	2 ISSUED FOR OPA/ZBA	2019/0CT/11		
3 111 51.25	1 ISSUED FOR FSR No. ISSUE / REVISION	2017/DEC/06		
EX 45.4m-250mmø PVC SAN	ELEVATION NOTE:			
✓ EX. 45.0m−750mmø	ELEVATIONS SHOWN ON THIS PLAN ARE DERIVED FROM THE CITY OF BENCHMARK NO. 709. ELEVATION = 98.279m	MISSISSAUGA		
PVC STM @ 0.87%	SURVEY NOTES: SURVEY COMPLETED BY TOM A. SENKUS ONTARIO LAND SURVEYOR. (2015/JUNE/08) REFERENCE NOI: 02-39C BEARINGS ARE UTN QRID, DERIVED FROM RTN OBSERVATIONS UTM ZONE 17, NABB3 (CSRS) (2010.0) DISTANCES ARE GROUND AND CAN BE CONVERTED TO GRID BY MULTIPLYING BY THE COMBINED SCALE FACTOR 00.9999781 SITE PLAN NOTES: DESIGN ELEMENTS ARE BASED ON SITE PLAN BY KIRKOR ARCHITECTS + PLANNERS. DRAMING NOITES: DRAMING NOTES: DRAMING NOTES: DRAMING NOTES: DRAMING NOTES: THE DRAWING IS THE EXCLUSIVE PROPERTY OF C.F. CROZER & ASSOCIATES INC. AND OFFICE IS STRICTLY PROHIBITED. THE CONTRACTOR SHALL VERY ALL DIMENSIONS. LEVELS, AND DATIVES ON SITE AND REFORT ANY DISCREPANCES OR OMISSIONS TO THIS OFFICE PRIOR TO CONSTRUCTION. THE DRAWING IS TO BE ADD AND UNDERSTOOD IN COMJUNCTION WITH ALL OTHER REPORT ANY DISCREPANCES OR OMISSIONS TO THIS OFFICE PRIOR TO CONSTRUCTION. THE DRAWING IS TO BE ADD ADD UNDERSTOOD IN CONJUNCTION WITH ALL OTHER REPORT AND DOCUMEET RAPPLICABLE TO THIS PROJECT. DO NOT SCALE THIS DRAWING, ALL EXISTING UNDER READ AND UNDERSTOOD IN CONJUNCTION WITH ALL OTHER PLANE AND DOCUMEET RAPPLICABLE TO THIS PROJECT. DO NOT SCALE THIS DRAWING, ALL EXISTING UNDERREAD AND UNDERSTOOD IN CONJUNCTION WITH ALL OTHER PLANE AND DOCUMEET RAPPLICABLE TO THIS PROJECT. DO NOT SCALE THIS DRAWING, ALL EXISTING UNDERREAD AND UNDERSTOOD IN CONSTRUCTION. THE DRAWING IS TO BE TRADA AND UNDERSTOOD IN CONSTRUCTION THE STRICT DESTINGTION ONDER READ AND UNDERSTOOD IN CONSTRUCTION. THE DRAWING IS TO BE TRADAD AND UNDERSTOOD IN CONSTRUCTION THE ALL OTHER PLANE AND DOCUMERSTOR THE STODE WERE THE DIA THE FIELD BY THE CONTRACTOR FRICH TO CONSTRUCTION. PROJED			
	CITY OF MISSISSAUGA			
	REMOVALS PLAN EROSION & SEDIMENT CONTRO	DL PLAN		
	CONSULTING ENGINEERS	301 I M5B 1M4 -3392 T		

5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1		E ASIN HOLE LVE L (XXmmø) VALVE OLE IBASIN	
SAN MH T/G 95.32 NW INV 91.64 S INV 91.56 S EX 150mmø W/M B.9m-150mm PVC SAN @ 2.0% EX 47.9m-250mmø o'SAN @ 1.35% Centre Line or PAtHENT CENTRE LINE OF PATHENT EX 74.0m-600mmø STM @ 1.28% CLINIC KEW DRIVE (BY ACISTERED PLAN 871) PN V3469-0165(LT) EX SAN MH T/G 94.90 N INV 91.38	2 ISSUED FOR OPA/ZBA 1 ISSUED FOR FSR	2019/0CT/11 2017/DEC/06	
E INV 91.41 S INV 91.28 EX 45.4m-250mmø PVC SAN EX. 45.0m-750mmø PVC STM @ 0.87%	No. ISSUE / REVISION YYY/MMM/DD ELEVATION NOTE: ELEVATION NOTE: ELEVATION NOTE: ELEVATION NOTE: ELEVATION NOTE: ELEVATION NOTE: SURVEY COMPLETED BY TOM A. SENKUS ONTARIO LAND SURVEYOR. (2015/JUNE/08) REFERENCE NO: 20.390 BURYEY NOTES: SURVEY COMPLETED BY TOM A. SENKUS ONTARIO LAND SURVEYOR. (2015/JUNE/08) REFERENCE NO: 20.390 DESIGN (CAN BE CONVERTED TO GRID BY MULTIPLYING BY THE COMBRED SCALE FACTOR OF 0.9996781 SITE PLAN NOTES: DISTANCES ARE GROUND AND CAN BE CONVERTED TO GRID BY MULTIPLYING BY THE COMBRED SCALE FACTOR OF 0.9996781 DISTANCES: DISTANCES: DISTON LELEVENTS ARE BASED ON SITE PLAN BY KIRKOR ARCHITECTS + PLANNERS. PROJECT No: 17-094 (2019/0CT/03) PROJECT NO: 17-096 (2019/0CT/03) PROJECT NO: 17-0		
	SITE SERVICING PLAN		
Stomp PROFESSIONAL A SHUKLA FIT 100188284 CCT, 11/2019 CCT, 11/2019	CONSULTING ENGINEERS 211 YONGE SUITE 3 TORONTOON Droam K.W. Perigen K.W. Perigen No. 11100 Check S.T.T. Offeck A.S. Scole 1:250 Dags	01 M5B 1M4 392 T	

Ν

