U Lithos

May 2020 UD17-094

Functional Servicing and

Stormwater Management Report (Phase I)

Project: 1444-1458 Cawthra Road

2530173 Ontario Corporation

Lithos Group Inc. 150 Bermondsey Road Toronto, ON M4A-1Y1 Tel: (416) 750-7769 Email: info@LithosGroup.ca

Functional Servicing and Stormwater Management Report (Phase II)

PREPARED BY:

John Pasalidis, P.E., M.A.Sc. Project Designer

REVIEWED BY:

Angelos Andreadis, P.E., M.A.Sc. Project Design Manager

AUTHORIZED FOR ISSUE BY:

LITHOS GROUP INC.

Nick Moutzouris, P.Eng., M.A.Sc. Principal

Issues and Revisions Registry

Identification	Date	Description of issued and/or revision
FSR/SWM Report (Phase I)	September 28 th , 2018	Issued for Rezoning Application
FSR/SWM Report (Phase I)	April 15 th , 2019	Re - Issued for Rezoning Application
FSR/SWM Report (Phase I)	December 19 th , 2019	Re - Issued for Rezoning Application
FSR/SWM Report (Phase II)	May 12 th , 2020	Re - Issued for Site Plan Application

Statement of Conditions

This Report / Study (the "Work") has been prepared at the request of, and for the exclusive use of, the Owner / Client, the City of Mississauga and its affiliates (the "Intended User"). No one other than the Intended User has the right to use and rely on the Work without first obtaining the written authorization of Lithos Group Inc. and its Owner. Lithos Group Inc. expressly excludes liability to any party except the intended User for any use of, and/or reliance upon, the work.

Neither possession of the Work, nor a copy of it, carries the right of publication. All copyright in the Work is reserved to Lithos Group Inc. The Work shall not be disclosed, produced or reproduced, quoted from, or referred to, in whole or in part, or published in any manner, without the express written consent of Lithos Group Inc. and the Owner.

Executive Summary

Lithos Group Inc. (Lithos) was retained by 2530173 Ontario Corporation (the "Owner") to prepare a Functional Servicing and Stormwater Management (FSR-SWM) Report (Phase II), in support of a Site Plan Application, for a proposed residential use development to be located at 1444-1458 Cawthra Road, in the City of Mississauga (the "City"). The following summarizes our conclusions:

Storm Drainage

Under post-development conditions, during a 100-year storm event, storm runoff drained from the north portion of the property towards Cawthra Road, will be less than the 2-year pre-development conditions. Moreover, for the south portion, all storm runoff will be contained on site for events up to a 100-year event. Therefore, this development will not adversely affect flow conditions downstream, the existing infrastructure on Cawthra Road will be adequate to service this development and a new storm sewer lateral connection will not be required for the proposed development. In order to achieve the target flows and meet the City's Storm Water Quantity Control requirements, quantity controls will be utilized and up to 277.98 m³ of storage will be required. The stormwater management (SWM) system will be designed to provide enhanced level (Level 1) protection as specified by the Ministry of Environment, Conservation and Parks (MECP). Quality control will be provided for the subject site for a minimum total suspended solids (TSS) removal of 80%.

Sanitary Sewers

Sixteen (16) separate ownerships will comprise the proposed development, one for each townhouse unit and one for each detached dwelling. In order to provide separate connection for each residential dwelling and townhouse development, an easement will be incorporated during the detailed design stage. The proposed development, will connect to the existing 250 mm sanitary sewer on Cawthra Road, via a 150mm diameter sanitary lateral. The additional net discharge flow from the proposed buildings, is anticipated at approximately 0.63 L/s, which represents less than 1% of the full flow capacity of the existing 250mm diameter sanitary sewer along Cawthra Road, therefore it is considered negligible. Following that fact, the existing infrastructure can support the proposed development.

Water Supply

The proposed development will be comprised by sixteen (16) separate ownerships. Similarly to sanitary connections, each ownership will connect to the proposed water service which will be located within the proposed easement. The proposed water service will connect to the existing 300 mm diameter watermain located on the south side of Cawthra Road. It is anticipated that a total design flow of 83.42 L/s will be required to support the proposed development. The results of the hydrant flow test reveal the existing water infrastructure can support the proposed development.

Site Grading

The proposed grades will improve the existing drainage conditions to meet the City's/Regional requirements. Grades will be maintained along the property line wherever feasible and emergency overland flow will continue draining according to the existing draining pattern.

Table of Contents

1.0	Intro	oduction1
2.0	Site	Description1
3.0	Site	Proposal1
4.0	Tern	ns of Reference and Methodology2
	4.1.	Terms of Reference2
	4.2.	Methodology: Stormwater Drainage and Management2
	4.3.	Methodology: Sanitary Discharge2
	4.4.	Methodology: Water Usage3
5.0	Stor	mwater Management and Drainage3
	5.1.	Existing Conditions
	5.2.	Stormwater Management4
	5.3. 5.3.1 5.3.2	
	5.4.	Stormwater Runoff Volume Reduction6
	5.5.	Quality Controls
	5.6.	Proposed Storm Connection
6.0	Sani	tary Drainage System
	6.1.	Existing Sanitary Drainage System7
	6.2.	Existing and Proposed Sanitary Flows7
	6.3.	Proposed Sanitary Connection
7.0	Wat	er Supply System
	7.1.	Existing System8
	7.2.	Proposed Water Supply Requirements8
	7.3.	Proposed Watermain Connection9
8.0	Site	Grading9
	8.1.	Existing Grades9
	8.2.	Proposed Grades9
9.0	Cond	clusions and Recommendations10

LIST OF FIGURES

Figure 1 - Location Plan Figure 2 - Aerial Plan

LIST OF TABLES

Table 4-1 – Sanitary Flows	2
Table 4-2 – Water Usage	3
Table 5-1 – Target Input Parameters	3
Table 5-2 – Target Peak Flows	4
Table 5-3 – Post-development Input Parameters	4
Table 5-4 – Post-development Quantity Control as per City Requirements (South Portion of the Site)	5
Table 5-5 – Post-development Quantity Control as per City Requirements (North Portion of the Site)	6
Table 5-6 - Water Balance Analysis Results	6
Table 5-7- Site TSS Removal	7
Table 7-1 – Fire Flow Input Parameters	9

APPENDICES

Appendix A – Site Photographs Appendix B – Background Information Appendix C – Storm Analysis Appendix D – Sanitary Data Analysis Appendix E – Water Data Analysis

1.0 Introduction

Lithos Group Inc. (Lithos) was retained by 2530173 Ontario Corporation (the "Owner") to prepare a Functional Servicing and Stormwater Management Report (Phase II), in support of a Site Plan Application for a proposed residential development, located at 1444-1458 Cawthra Road in the City of Mississauga (City).

The purpose of this report is to provide site-specific information for the City's review with respect to infrastructure required to support the proposed development regarding storm drainage, sanitary sewers, and water supply.

We contacted the City's engineering department to obtain existing information in preparation of this report. The following documents were available for our review:

- Plan and profile drawings of Cawthra Road, Drainage and Utilities, drawing No.
 - 8313 D, dated May 1985;
 - 8315 D, dated May 1985;
 - 8325 D, dated May 1985;
 - C 5966, dated March 1963;
- Site Plan and Statistics prepared by KFA Architects and Planners Inc., dated August 13, 2019; and,
- Topographical Survey prepared by Tom A. Senkus, dated March 30, 2017.

2.0 Site Description

The existing site is approximately 0.536 hectares of residential-use land. It is currently occupied by four (4) detached residential dwellings, outdoor paved parking area and landscaped area, as indicated by the topographic survey in **Appendix B**. The site is bound by Cawthra Road to the north and residential dwellings to the south, east and west. Refer to **Figures 1** and **2** following this report and site photographs in **Appendix A**.

3.0 Site Proposal

The proposed development will include two (2) blocks of two-storey stacked townhouses as well as four (4) two-storey detached residential dwellings and it will be comprised of sixteen (16) ownerships, one for each of the proposed townhouses and single residential dwellings. The proposed development will include approximately a total 3,304 m² of Gross Floor Area (GFA). Please refer to **Appendix B** for the proposed site plan and site statistics.

Note that there is approximate portion of 0.015 ha on the north side of the property, which will be conveyed to the City (future extension of Cawthra Road). Therefore, the future private property will be 0.521 ha. Please refer to **Appendix B** for the proposed site plan and site statistics.

UD17-094 (May 2020)

4.0 Terms of Reference and Methodology

4.1. Terms of Reference

The Terms of Reference used for the scope of this report were based on:

- City of Mississauga Development Requirements Manual, revised September 2016;
- Region of Peel Watermain Design Criteria, revised June 2010;
- Region of Peel Sanitary Sewer Design Criteria, revised March 2017;
- Ministry of Environment: Guidelines for the Design of Sanitary Sewage Works 2008;
- Ministry of Environment: Design Guidelines for Drinking Water Systems 2008;
- Ministry of Environment: Stormwater Management Planning and Design Manual 2003; and
- Ontario Building Code 2012 (O.B.C.)

4.2. Methodology: Stormwater Drainage and Management

This report provides a detailed Stormwater Management (SWM) review of the pre-development and post-development conditions and comments on opportunities to reduce peak flows. This is illustrated on a proposed servicing connection plan.

The proposed development will be designed to meet the Region's and the standards of the Province of Ontario as set out in the Ministry of the Environment, Conservation and Park (MECP) 2003 Stormwater Management Planning and Design Manual (SWMPD). The following design criteria will be reviewed:

- Post-development peak flow for the 100-year event from the site should be controlled to the two (2)-year target flow according to the Credit Valley Conservation (CVC) Flood Control Criteria of Cooksville Creek;
- A specified rainfall depth of 5 mm is to be retained on-site as required by the City of Mississauga Development Requirements Manual for stormwater runoff volume reduction;
- A safe overland flow will be provided for all flows in excess of the 100-year storm event.

4.3. Methodology: Sanitary Discharge

The sanitary sewage discharge from the site will be determined using sanitary sewer design sheets that incorporate the land use and building statistics as supplied by the design team. The calculated values provide peak sanitary flow discharge that considers infiltration.

The estimated sanitary discharge flows from the proposed site will be calculated based on the criteria shown in **Table 4-1**.

Usage	Design Flow	Units	Population Equivalent	
Desidential	202.9	Litros / conito / dou	Single & Semi-detached dwellings = 4.15 ppu	
Residential 302.8		Litres / capita / day	Townhouses = 3.5 ppu	

Table 4-1 – Sanitary Flows

Based on the calculated peak flows, the adequacy of the existing infrastructure to support the proposed development will be discussed.

4.4. Methodology: Water Usage

The domestic water usage was calculated based on the City's design criteria outlined in **Table 4-2**.

Usage	Water Demand	Units	
Typical Residential Water Demand	280	Litres / capita / day	

Pressure and flow testing have been conducted on the existing hydrants located near the site along Cawthra Road to obtain existing flows, residual and static pressure.

5.0 Stormwater Management and Drainage

5.1. Existing Conditions

The property is currently occupied by four (4) detached residential dwellings, outdoor paved parking area and landscaped area. According to available records, there is an existing 1050 mm diameter storm sewer along Cawthra Road running south-east. In addition, according to our review along the property limits of the existing site, there is no external storm flow from the adjacent lands draining towards our site under pre-development conditions.

There are two (2) internal drainage areas in the existing site:

- 1. A1 Pre Uncontrolled storm runoff from the south portion of the site, draining towards the rear yards, south-west of the existing dwellings;
- 2. A2 Pre Uncontrolled storm runoff from the east portion of the site, which comprises mainly by runoff from the outdoor parking area and buildings' rooftops, discharged into the City's storm network along Cawthra Road.

Table 5-1 shows the input parameters which are illustrated on the pre-development drainage area planin **Figure DAP-1** in **Appendix C**.

Catchment	Drainage Area (ha)	с	Tc (min.)
A1 Pre	0.370	0.34	15
A2 Pre	0.151	0.50	15

Table 5-1 – Target Input Parameters

Peak flows calculated for the existing conditions are shown in **Table 5-2** below. Detailed calculations are in **Appendix C**.

Catchment	Peak Flow Rational Method (L/s)			
	2-year	5-year	10-year	100-year
A1 Pre	20.9	28.1	34.7	49.2
A2 pre	12.6	16.9	20.8	29.5

Table 5-2 – Target Peak Flows

As shown in **Table 5-2**, the post-development flows will need to be controlled to the target flow of 20.9 L/s and 12.6 L/s for the areas draining towards the east portion of the site and Cawthra Road, respectively.

5.2. Stormwater Management

In order to meet the City's Storm Design requirements, the development flow rate is to be controlled to the two (2)-year target flow established in **Section 5.1**.

The site has been separated into two (2) internal drainage areas:

- 1. A1 Post Storm runoff from the rooftops, the driveway area and the landscape areas, controlled into an underground infiltration gallery (trench).
- 2. A2 Post Uncontrolled storm runoff from the north portion of the site, flowing towards Cawthra Road.

The post-development drainage areas and runoff coefficients are indicated on **Figure DAP-2**, located in **Appendix C** and summarized in **Table 5-3** below.

Drainage Area	Drainage Area (ha)	Runoff Coefficient for 2,5,10-Year Return Period "c"	Runoff Coefficient for 100-Year Return Period "c"	Tc (min.)
A1 Post	0.466	0.64	0.80	15
A2 Post	0.055	0.40	0.50	15

Table 5-3 – Post-development Input Parameters

As per City's stormwater management guidelines, in order to account for increase in storm runoff due to saturation of the catchment surface, an adjustment factor of 1.25 will be used for the 100-year storm.

5.3. Quantity Controls

As mentioned on **Section 5.1**, storm runoff from the south portion of the existing property is draining towards the south-west corner of the site while the north portion is draining towards Cawthra Road. Therefore, a quantity control analysis has been prepared for each drainage area adjacent to the site in order to assess the pre to post development impacts on each area.

5.3.1. Post Development Flows – South Portion of the Site

Using the City's intensity-duration-frequency (IDF) data, modified rational method calculations were undertaken to determine the maximum storage required during each storm event. Results for the 2, 5, 10 and 100-year storm events are provided in **Table 5-4** below. The detailed post-development quantity control calculations are provided in **Appendix C**.

Drainage Areas	Storm Event	Maximum Storm Runoff (L/s)	Required Storage Volume in Infiltration Trench (m ³)	Provided Storage Volume in Infiltration Trench (m ³)	Controlled Site Release Rate (L/s)	Uncontrolled Flow (L/s)	Total Site Release Rate (L/s)
	2-year	52.7	93.67	93.67			
A1 Post	5-year	70.8	125.92	125.92			
(Controlled)	10-year	87.2	155.10	155.10	0	0	0
	100-year	146.5	277.98	277.98			

 Table 5-4 – Post-development Quantity Control as per City Requirements (South Portion of the Site)

According to our calculations, the storm runoff volume for the south portion (A1 Post) of the site reaches 277.98 m³ after 180 minutes from the beginning of the 100-year storm event. Based on this information and given that under existing conditions, storm runoff from this area is draining towards the south-west portion of the adjacent dwellings, we can accept that at least 277.98 m³ of storage will be adequate to accommodate all post-development flows up to a 100-year event.

Quantity control for the proposed development will be achieved by the implementation of three (3) underground infiltration trenches, with a total area of 413.51 m^2 and a tota¹ storage capability of 277.98 m^3 .

More specifically, storm runoff from the rooftops, the driveway area, the landscaped areas and walkways south of the site will be gravity driven into the proposed three underground infiltration trenches located east, west and south of the property.

To conclude, there will be no post-development release rate from the south portion of the site and all post-development flows will be controlled/utilized on site.

Underground Infiltration Trenches

Three underground infiltration trenches are proposed to meet the quantity control requirements, set forth by the City's guidelines. Controlled stormwater flows from the south site area will be driven into the infiltration trenches. Assuming the infiltration trenches have 40% void space, their size has to be at least 2.5 times the water volume required to be stored. Therefore, the infiltration trenches must have a minimum storage depth of 1.76 m with a total storage capacity of 291.21 m³ (1.68m of active storage depth, accounting for a quantity control storage of 277.98 m³ and another 0.08m for the water balance requirement, accounting 13.23 m³ of storage), during the hundred-year storm event.

5.3.2. Post Development Flows – North Portion of the Site

Using the City's intensity-duration-frequency (IDF) data, modified rational method calculations were undertaken to determine the maximum storage required during each storm event. Results for the 2, 5, 10 and 100-year storm events are provided in **Table 5-5** below. The detailed post-development quantity control calculations are provided in **Appendix C**.

Drainage Areas	Storm Event	Target Flow (L/s)	Post-Development Uncontrolled Flow (L/s)	
A2 Post (Uncontrolled)	2-year		3.7	
	5-year	12.0	5.0	
	10-year	12.6	6.1	
	100-year		10.8	

As shown on **Table 5-5** above, under post-development conditions, uncontrolled flow towards Cawthra Road during a 100-year storm event is smaller than the two (2)-year pre-development target flow, therefore, no stormwater storage is required.

5.4. Stormwater Runoff Volume Reduction

As required by the City's guidelines, a rainfall depth of 5 mm must be retained over the entire parcel area. A 5 mm rainfall over the entire site equates to a required water balance volume of 26.05 m³. Based on the initial abstraction values, the site will provide 14.25 m³ of initial abstraction in post-development conditions. The remaining 11.80 m³ will be provided through the proposed infiltration trenches, as mentioned in **Section 5.3**. Assuming the infiltration trenches have 40% void space, their size has to be at least 2.5 times the water volume required to be stored. Therefore, the infiltration trenches must have an additional minimum storage volume of (2.5x11.80=) 29.50 m³, for Water Balance purposes. The result of the water balance analysis is summarized in **Table 5-6** below.

Total Site Area (m²)	Depth of Rainfall (mm)	Water Balance Requirement (m³)	Water Balance Provided through Initial Abstraction (m ³)	Water Balance Provided in the Underground Infiltration Trenches (m ³)	Total Water Balance Volume Provided (m ³)
5,209.4	5.0	26.03	14.25	13.23	27.48

5.5. Quality Controls

Stormwater treatment must meet Enhanced Protection criteria as defined by the MECP 2003 SWMPD Manual, including a minimum 80% of total suspended solids removal (TSS). Stormwater discharged from the south areas that will not be polluted by car waste (rooftops, landscaped areas), is considered "clean" and will be directly driven into the underground infiltration trench. Polluted water from the driveway area will be directed towards the proposed Oil-Grit-Separator (Stormceptor EF04) before being discharged into the infiltration trench located south of the site.

The detailed quality control calculations and OGS sizing are provided in **Appendix C**. A summary of the site quality control is included in **Table 5-7** below.

Drainage Area	Drainage Area (ha)	Overall TSS Removal	Additional Quality Control Required
Rooftop/Terraces/Landscaped Area	0.176	80%	Inherent
Driveway Area	0.290	80%	Stormseptor EF04

Table 5-7- Site TSS Remo	val
--------------------------	-----

5.6. Proposed Storm Connection

A new storm sewer connection will not be required for the proposed development. Under postdevelopment conditions, during a 100-year storm event, storm runoff drained from the north portion of the property towards Cawthra Road, will be less than the 2-year pre-development conditions. Moreover, for the south portion, all storm runoff will be contained on site for events up to a 100-year event. Therefore, this development will not adversely affect flow conditions downstream and the existing infrastructure on Cawthra Road will be adequate to service this development.

6.0 Sanitary Drainage System

6.1. Existing Sanitary Drainage System

The existing site is currently occupied by four (4) residential dwellings, outdoor paved parking area and landscaped area. According to available records there is an existing 250mm diameter sanitary sewer fronting the property along Cawthra Road running south-east.

6.2. Existing and Proposed Sanitary Flows

The sanitary flow generated by the proposed residential use development at 1444-1458 Cawthra Road was compared to the existing flow in order to quantify the net increase in the sanitary sewer.

Using the design criteria outlined in **Section 4.3** and existing site information, the sanitary discharge flow from the existing residential dwellings is estimated at 0.36 L/s. Detailed calculations can be found in **Appendix D**.

Similarly, using the design criteria and the proposed development statistics, the new development will discharge 0.99 L/s into the City's infrastructure.

The additional flow will be considered within the sanitary discharge rate, therefore, there is an increase in sanitary flow of approximately 0.63 L/s, which represents less than 1% of the full flow capacity of the existing 250mm diameter sanitary sewer along Cawthra Road, therefore it is considered negligible. Following that fact, the existing infrastructure can support the proposed development.

6.3. Proposed Sanitary Connection

Sixteen (16) separate ownerships will comprise the proposed development, one for each townhouse unit and one for each detached residential dwelling. Each residential dwelling and townhouse development sanitary connection will be according to the City of Mississauga and Region of Peel criteria. Each ownership will connect into a proposed 150mm diameter sanitary sewer within the easement, which will discharge into the existing 250mm diameter sanitary sewer on the south side of Cawthra Road, at a minimum grade of 2.00% (or equivalent pipe design). Refer to engineering drawing "**SS-01**" (submitted separately) for details.

7.0 Water Supply System

7.1. Existing System

The existing watermain system consists of a 300 mm diameter watermain on the south side of Cawthra Road. Hydrant flow tests were carried out by Cole Engineering on April 11, 2018 along Cawthra Road Trail, to determine the flow and pressure in the existing water.

The results of the test indicate the existing static pressure is 441 KPa (64 psi) and 123.0 L/sec (1950 USPGM) of water is available with a residual pressure of 400 KPa (58 psi). The full detailed report is included in **Appendix E**.

7.2. Proposed Water Supply Requirements

The estimated water consumption was calculated based on the occupancy rates shown on **Table 4-2**, based on the Region's Watermain Design Criteria, revised June 2010. It is anticipated that an average consumption of approximately 0.14 L/s (12,096 L/day), a maximum daily consumption of 0.29 L/s (25,056 L/day) and a peak hourly demand of 0.43 L/s (1,548 L/hr) will be required to service this development with domestic water. Detailed calculations can be found in **Appendix E**.

The fire flow requirements were estimated using the method prescribed by the Fire Underwriters Survey (FUS) be undertaken to assess the minimum requirement for fire suppression. The fire flow calculation is normally conducted for the largest storey, by area, and for the two immediately adjacent storeys. For this development, we have selected the worst-case scenario for townhouse fire separation of 600m²/townhouse unit, according to the OBC requirements which translates to an equal separation of 200m²/floor for the three storey townhouse units. **Table 7-1** below illustrates the input parameters used for the FUS calculations. According to our calculations, a minimum fire suppression flow of approximately 83.13 L/s (1,317 USGPM) will be required. Refer to detailed calculations found in **Appendix E**.

			m mpacia				
			6		Separatio	on Distance	
Parameter	Frame used for Building	Combustibility of Contents	Presence of Sprinklers	North	West	South	East
Value according to FUS options	Ordinary Construction	Non- Combustible	No	10.1m- 20m	0.0m- 3.0m	20.0m- 3.0m	20.1m- 30m
Surcharge/reduction from base flow	1.0	25%	0%	15%	25%	25%	10%

Table 7-1 – Fire Flow Input Parameters

In summary, the required design flow is the sum of 'the minimum fire suppression flow' and 'maximum daily demand' (83.13+0.29 = 83.42 L/s, 1,322 USGPM).

The results of the hydrant flow test carried out by Cole Engineering on April 11, 2018 along Cawthra Road, indicate that 361.51 L/s (5750 USGPM) of water is available with a pressure of 138KPa (20.0 psi) revealing that the existing water infrastructure will support the proposed development. The hydrant flow tests can be found in **Appendix E**.

7.3. Proposed Watermain Connection

Sixteen (16) separate ownerships will comprise the proposed development, one for each townhouse unit and one for each detached residential dwelling. Similarly to sanitary connections, each residential dwelling and townhouse development watermain connection will be according to the City of Mississauga and Region of Peel criteria. Furthermore, a private hydrant is proposed within the driveway area of the site, as per Region of Peel standard drawing 1-8-2.

The proposed municipal water service will connect to the existing 300 mm diameter watermain located on the south side of Cawthra Road. Proposed townhouse developments residential dwellings will be serviced by 25mm diameter domestic services. For details, refer to engineering drawing "**SS-01**" (submitted separately).

8.0 Site Grading

8.1. Existing Grades

The existing property is currently occupied by four (4) residential dwellings, outdoor paved parking area and landscaped area. The existing site drains uncontrolled partially towards Cawthra Road and partially towards the rear yards, south-west of the existing dwellings.

8.2. Proposed Grades

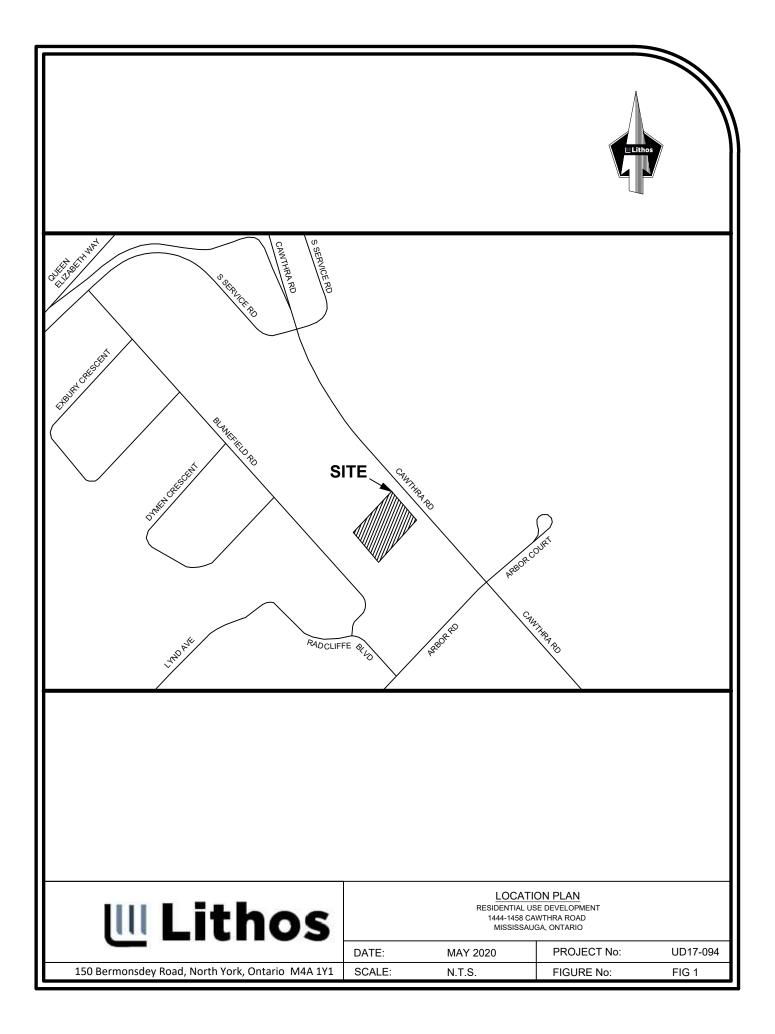
The proposed grades will improve the existing drainage patterns wherever feasible. Grades will be maintained along the property line to the extent possible.

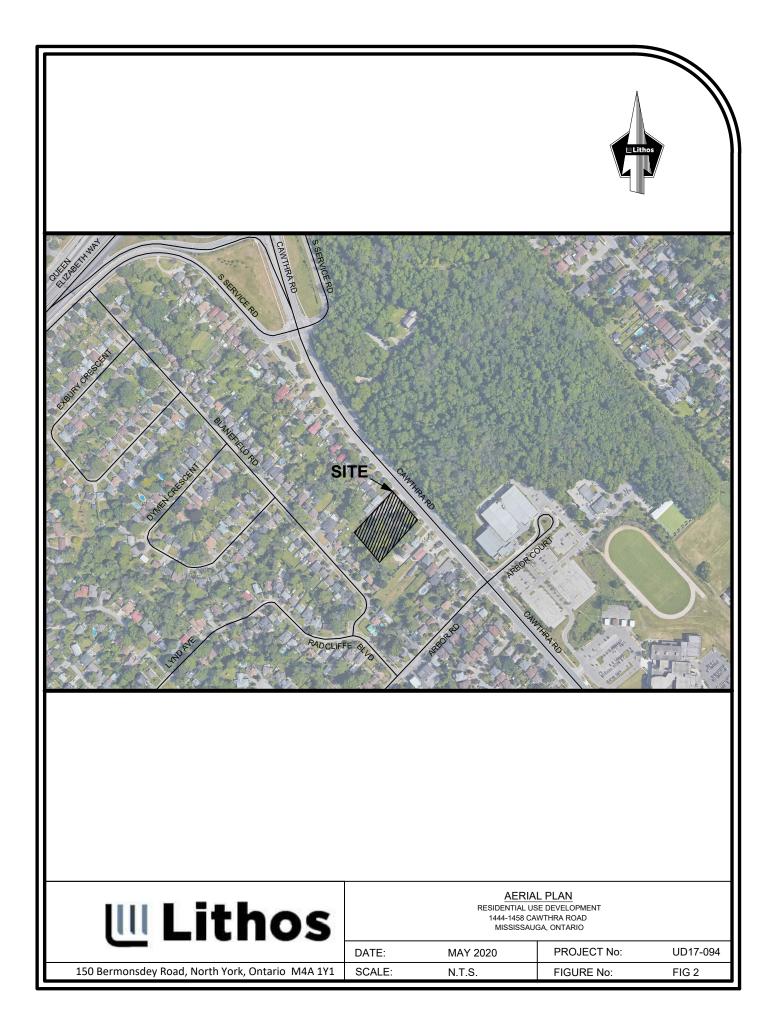
Stormwater consisting of the Cawthra Road access driveway and the adjacent landscape area will be directed towards the City's network along Cawthra Street. Storm runoff from the rest of the site will be directed towards the three proposed infiltration trenches. Overland flow for the proposed development will be maintained as is, however stormwater drainage conditions will be improved, due to the stormwater quantity controls described in **Section 5.3**.

9.0 Conclusions and Recommendations

Based on our investigations, we conclude the following:

Storm Drainage


Under post-development conditions, during a 100-year storm event, storm runoff drained from the north portion of the property towards Cawthra Road, will be less than the 2-year pre-development conditions. Moreover, for the south portion, all storm runoff will be contained on site for events up to a 100-year event. Therefore, this development will not adversely affect flow conditions downstream, the existing infrastructure on Cawthra Road will be adequate to service this development and a new storm sewer lateral connection will not be required for the proposed development. In order to achieve the target flows and meet the City's Storm Water Quantity Control requirements, quantity controls will be utilized and up to 277.98 m³ of storage will be required. The stormwater management (SWM) system will be designed to provide enhanced level (Level 1) protection as specified by the Ministry of Environment, Conservation and Parks (MECP). Quality control will be provided for the subject site for a minimum total suspended solids (TSS) removal of 80%.

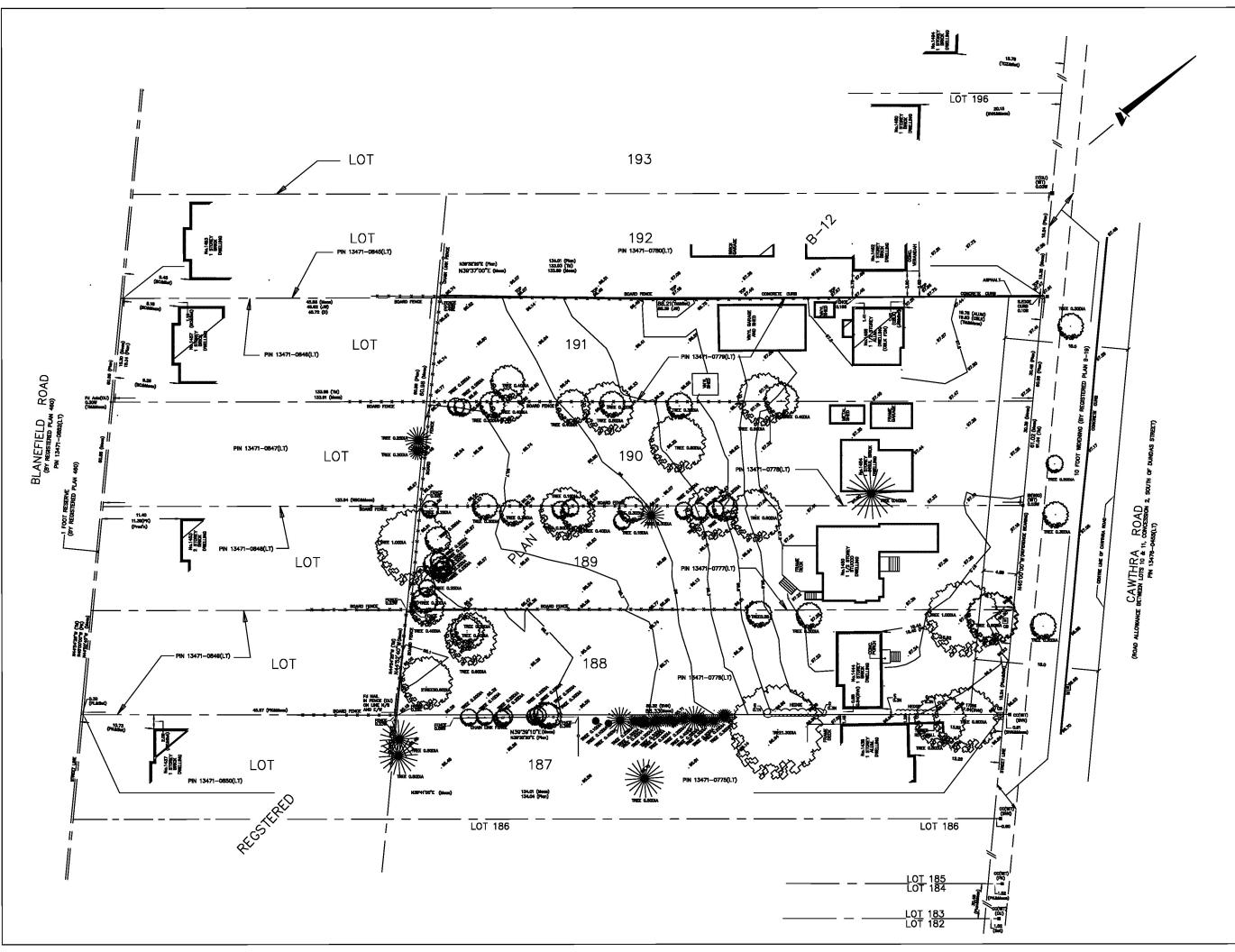

Sanitary Sewers

Sixteen (16) separate ownerships will comprise the proposed development, one for each townhouse unit and one for each detached dwelling. In order to provide separate connection for each residential dwelling and townhouse development, an easement will be incorporated during the detailed design stage. The proposed development, will connect to the existing 250 mm sanitary sewer on Cawthra Road, via a 150mm diameter sanitary lateral. The additional net discharge flow from the proposed buildings, is anticipated at approximately 0.63 L/s, which represents less than 1% of the full flow capacity of the existing 250mm diameter sanitary sewer along Cawthra Road, therefore it is considered negligible. Following that fact, the existing infrastructure can support the proposed development.

Water Supply

The proposed development will be comprised by sixteen (16) separate ownerships. Similarly to sanitary connections, each ownership will connect to the proposed water service which will be located within the proposed easement. The proposed water service will connect to the existing 300 mm diameter watermain located on the south side of Cawthra Road. It is anticipated that a total design flow of 83.42 L/s will be required to support the proposed development. The results of the hydrant flow test reveal the existing water infrastructure can support the proposed development.

APPENDIX A Site Photographs



South-east Corner of property along Cawthra Road facing north

North-east Corner of property along Cawthra Road facing south

APPENDIX B Background Information

SURVEYOR'S REAL PROPERTY REPORT AND TOPOGRAPHIC DETAIL PART 1) PLAN OF SURVEY OF PART OF LOTS 188, 189, 190 AND 191 REGISTERED PLAN B-19 CITY OF MISSISSAUGA REGIONAL MUNICIPLAITY OF PEEL SCALE 1:250 5m Om

COPYRIGHT 2017 Tom A. Senkus, O.L.S.

production, alternation, or use this Report, in whole or in part, t express permission of Tom A.Senkus, O.L.S., is STRICTLY PROHIBITED.

METRIC

DISTANCES SHOWN ON THIS PLAN ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048.

PART 2) PLAN REPORT

EASEMENTS AND/OR RIGHT-OF-WAYS NO REGISTERED EASEMENTS MONUMENTATION CORNERS MARKED/WITNESSED BY SURVEY MONUMENTICE SHOWN ON PLAN REMARKS BOUNDARIES DISTANCES AS MEASURED ARE IN GENERAL AGREEMENT WITH DIMENSIONS SHOWN ON REGISTERED PLAN. COMPLIANCE WITH ZONING BY-LAWS NO INVESTIGATION WAS MADE REGARDING MUNICIPAL ZONING BY-LAWS FOR SETBACK REQUIREMENTS.

THIS REPORT WAS PREPARED FOR: ATKINSON LAW AND THE UNDERSIGNED ACCEPTS NO RESPONSIBILITY FOR USE BY OTHER PARTIES. THIS REPORT REFLECTS CONDITIONS OF TIME OF SURVEY, UPDATING MAY BE REQUIRED TO ISSUE ADDITIONAL COPIES SUBSEQUENT TO DATE OF SURVEYOR'S CERTIFICATE.

NOTES AND LEGEND

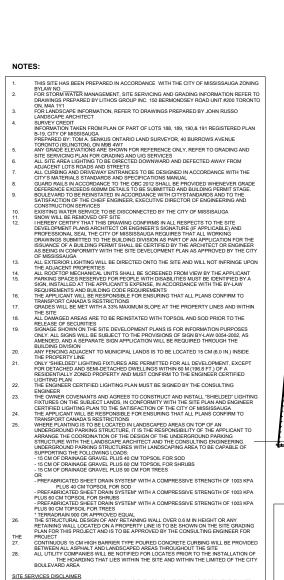
	DENOTES SURVEY MONUMENT PLANTED DENOTES SURVEY MONUMENT FOUND
SIB	DENOTES STANDARD IRON BAR DENOTES IRON BAR
ŴT	DENOTES WITNESS
OU	DENOTES ORIGIN UNKNOWN
RBC	DENOTES R.B. CODE, O.L.S. (MAY 21, 1948) DENOTES BROWNE, CAVELL, O.L.S. (NOV, 27, 1953)
PK	DENOTES PAUL KIDD, O.LS. (OCT. 20, 1999)
SWN	DENOTES SPEIGHT & VAN NOSTRAND , O.L.S. (JAN. 29, 1987)
JW	DENOTES JAMES & WANDABENSE, O.L.S. (NOV. 28, 1956)
Pian PL	DENOTES REGISTERED PLAN B-19 DENOTES REGISTERED PLAN 460
Ę	DENOTES CENTRE LINE
DIA	DENOTES DIAMETER
CB	DENOTES CATCH BASIN
TCZ	denotes tom czerwinski, O.L.S. (Nov. 3, 1987) Denotes Tarasick, memillan, O.L.S. (Nov. 4, 1996)
950	DENOTES CUNNINGHAM, MCCONNELL, O.L.S.
D	DENOTES INST. No. V813504
CBLK	denotes iron tube Denotes concrete block
FDN	DENOTES FOUNDATION
Fd	DENOTES FOUND

BEARING NOTE BEARINGS ARE ASTRONOMIC AND ARE REFERRED TO THE SOUTH WESTERLY LIMIT OF CAWTHRA ROAD AS SHOWN ON REGISTERED PLAN B-19 HAVING A BEARING OF NASYO'DO'W.

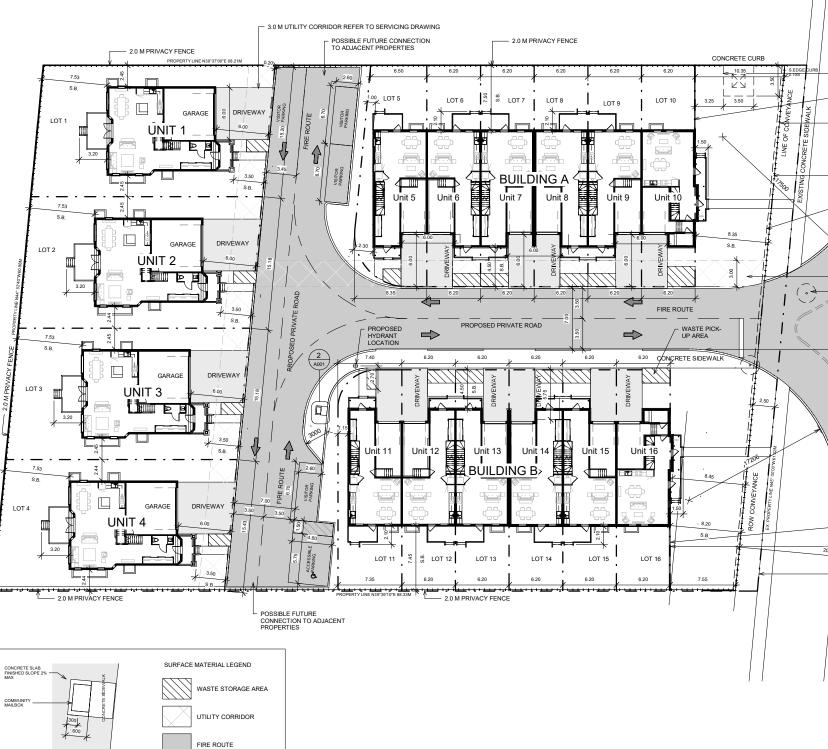
ELEVATION NOTE ELEVATIONS ARE REFERRED TO CITY OF MISSISSAUGA BENCHMARK NO. 75 ELEVATION 98.308 METRES . (NON GEODETC)

SURVEYOR'S CERTIFICATE

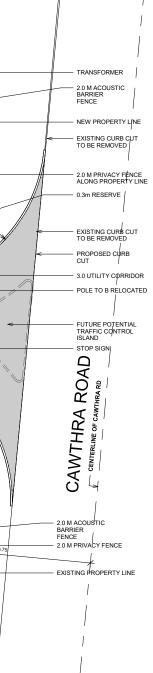
1. THIS SURVEY AND PLAN ARE CORRECT AND IN ACCORDANCE WITH THE SURVEYS ACT, THE SURVEYORS ACT AND THE LAND TITLES ACT


AND THE REGULATIONS MADE UNDER THEM 2. THE SURVEY WAS COMPLETED ON THE 28th DAY OF MARCH, 2017

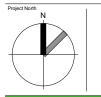
DATE: MARCH 30, 2017


T. A. SENKUS ONTARIO LAND SURVEYOR

TOM A. SENKUS ONTARIO LAND SURVEYOR 40 BURROWS AVENUE TORONTO (ISLINGTON), ONTARIO M9B 4W7 PHONE: (416) 237-189 E-MAIL: tomsenkus@rd


FILE 02-77A CAD FILE CAWTHRA-SRPR-TOPO

SITE SERVICES DISCLAIMER BE ADVISED THAT SHOULD ANY PARTY INCLUDING THE APPLICANT OR ANY SUBSEQUENT OWNER, APPL YFOR MORE THAN ONE CONDOMINUM CORPORATION ENCOMPASSING ANY OR ALL OF THIS DEVELOPMENT OR MAKE AN APPLICATION THAT RESULTS IN A LAND DIVISION, STAFF MAY REQUIRE LEGAL ASSURANCES, INCLUDING BUT NOT LIMITED TO EASEMENTS WITH RESPECT TO THE APPROVED SERVICES SUCH ASSURANCES WILL BE DETERMINED AT THE TIME OF THE APPLICATION FOR CONDOMINUM APPROVAL



Community Mailbox Plan

1444 1458 1444-1458 CAWTHRA ROAD MISSISSAUGA, ON

1 Issue to Consultants 2018.09 2 Issue for OP/RZ 2018.09 3 Issued for Review 2019.08	pe be so	hotocopying, recording or otherwise witho- ermission of KFA Architects and Planners e checked on site by the contractor. Draw caled, and any discrepancies are to be re efore proceeding with the work.	ings are not to be
2 13300101 01 112 2010.00			
3 Issued for Review 2019.08	1	Issue to Consultants	2018.09.12
	1		2018.09.12 2018.09.28

Project No:	16071
Scale:	As indicated
Date:	2017/04/05
Drawn by:	R.V.W.

Drawing Title

Site Plan

A001

Drawing Number

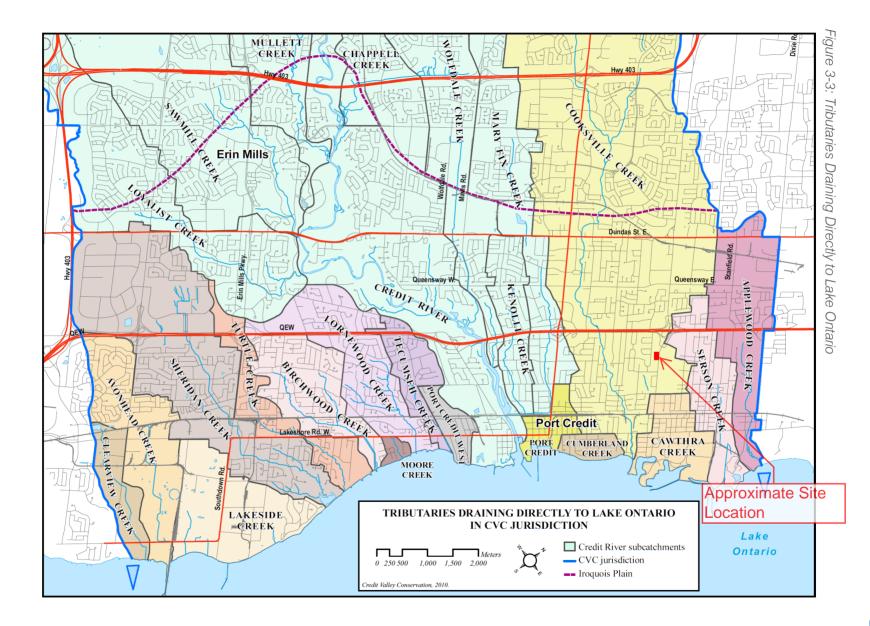
	444-14 CAWTHR	A	Date:	22-Apr-2020	Official Planning Design		tial Low Dei	nsity II			Calcu Buildi	ential Area lations by ng and Lot	Gross Construction Area (m2)	Garage	Basement	Gross Floor Area	Gross Floor Area (sq				Unit
Dev	elopment Sta	tistics			20mmg by-law 0225-200	7.113-1					N	umber	, , , , , , , , , , , , , , , , , , , ,			(m2)*	ft)*	1	1+Den	2	2+0
	Site	Area (a)		1	Site Area Breakdown Ta	able (m2)	Area														
m²	sq.ft	ha	acre		Paving		1300.4	25.0%			Detached	d Homes									
5362.9	57727.9	0.54	1.33		Soft Landscaping Area		2260.0	43.4%			Lot 1	Unit 1	346.7	38.0	89.0	219.7	2364.8				
5209.4*		Units/Ha	Units/Acre		Hard Landscape Area		184.8	3.5%			Lot 2	Unit 2	346.7	38.0	89.0	219.7	2364.8				
		30	12		Building Area (Lot Coverag	ge)	1464.2	28.1%			Lot 3	Unit 3	346.7	38.0	89.0	219.7	2364.8				
*Site Area per	new ROW Con	veyance									Lot 4	Unit 4	346.7	38.0	89.0	219.7	2364.8				
	General [evelopment Stat	isitics Table			Building	g Heights &	Setbacks (m)			Total		1386.8		-	878.8	9459.1	0	0	0	C
Total Number of	of Units			16.0	Building A	Height:	9.50	Detached Lot 1	Height:	9.00											
Average Unit S	ize Constructio	n Area (m²)		290.4		North	7.50		North	2.44	Building	A									
Average Unit S	ize Constructio	n Area (SF)		3126	Property Line setback:	East	8.34	Property Line setback:	East	6.00	Lot 5	Unit 5	271.4	20.0	48.9	202.4	2179				1
Gross Construc	tion Area (m ²)	. ,		4646.4	Property Line setback:	South	6.00	Property Line setback:	South	2.44	LOT 6	Unit 6	271.4	20.0	48.9	202.4	2179				1
						West	1.00		West	7.53	Lot 7	Unit 7	271.4	20.0	48.9	202.4	2179				1
í.	Zo	ning By-law 0225-	2007		Building B	Height:	9.50	Detached Lot 2	Height:	9.00	Lot 8	Unit 8	271.4	20.0	48.9	202.4	2179				1
FSI*				0.62		North	6.00		North	2.44	Lot 9	Unit 9	271.4	20.0	48.9	202.4	2179				1
					Descent of the earth and	East	8.22	Descent Line and and	East	6.00	Lot 10	Unit 10	273.0	21.6	50.7	200.7	2161				
Total GFA (m ²):	Residential ZBL	Definition*		3304	Property Line setback:	South	7.45	Property Line setback:	South	2.44	Total		1629.8			1212.8	13054.6	0	0	0	
						West	1.20		West	7.53			*							-	
*Calculated ex	cluding basem	ent and garage				1		Detached Lot 3	Height:	9.00	Building	В									
									North	2.44	Lot 11	Unit 11	271.4	20.0	48.9	202.4	2179				1
Gross Floor Area	a (GFA) - Reside	ntial - means the su	m of the areas of	each storey of				Property Line setback:	East	6.00	Lot 12	Unit 12	271.4	20.0	48.9	202.4	2179				1
		terior of outside w	alls but shall not i	include any part	Note: Building height mea	sured from estal	blished	Property Line setback:	South	2.44	Lot 13	Unit 13	271.4	20.0	48.9	202.4	2179				1
of the building u	ised for motor v	ehicle parking.			grade.				West	7.53	Lot 14	Unit 14	271.4	20.0	48.9	202.4	2179				1
								Detached Lot 4	Height:	9.00	Lot 15	Unit 15	271.4	20.0	48.9	202.4	2179				1
Gross Floor Area	a (GFA) - Infill R	esidential - means	he sum of the are	eas of each					North	2.44	Lot 16	Unit 16	273.0	21.6	50.7	200.7	2161				1
		ge grade, measure							East	6.00	Total		1629.8			1212.8	13054.6	0	0	0	6
		age and any part of	the building, abo	ve and below				Property Line setback:	South	2.44											
grade, used for I	motor vehicle p	arking.							West	7.53	Combined		4646.4			3304.4	35568.4	0.0	0.0	0.0	12

		KFA AR	CHITECT	S + PLAN	INERS										Date:	Fet	oruary 19, 2	020
						G TABLE												
								RM6 - To	wnhouses							RM6 - Deta	ched Home	
Zone Regulations	RM 6 Requirded	Proposed Draft ZBL (Exception)		Building D	,		Building B			Building C			Building A					
			Lot 5	Lot G	Lot 7	Lot 8	Lot 9	Lot 10	Lot 11	Lot 12	Lot 13	Lot 14	Lot 15	Lot 16	Lot 1	Lot 2	Lot 3	Lot
PERMITTED USES																		
Townhouses on a CEC - road	Townhouses	Townhouses & Detached homes						Town	nouses							Detache	d Homes	
MINIMUM LOT AREA																		
Interior lot	115 sq.m.	-	~	158.61	158.61	158.61	158.61			158.56	158.56	158.56	158.56	~	406.75	407.04	406.39	406
CEC - Corner Lot	190 sq.m.	185 sq.m.	187.72			-		158.61	203.43			-		158.56			-	
MINIMUM LOT FRONTAGE																		
Interior Lot	5.0 m	- 6.0 m		6.2 m	6.2 m	6.2 m	6.2 m	6.2 m		6.2 m	6.2 m	6.2 m	6.2 m	6.2 m	15.20	15.18	15.18	15
CEC - Corner Lot MINIMUM FRONT YARD	8.3 m	6.U M	8.3 m						7.4 m			~					-	
Interior Lot/CEC - Corner Lot	4.5 m		4.5 m	4.5 m	4.5 m	4.5 m	4.5 m	4.5 m	4.5 m	4.5 m	4.5 m	4.5 m	4.5 m	4.5 m	3.5 m	3.5 m	3.5 m	3.5
Minimum setback from a garage face to a street, CEC - road or CEC - sidewalk	6.0 m	-	6.0 m	6.0 m	6.0 m	6.0 m	6.0 m	6.0 m	6.0 m	6.0 m	6.0 m	6.0 m	6.0 m	6.0 m	6.00 m	6.00 m	6.00 m	6.0
MINIMUM EXTERIOR SIDE YARD																		
lot with an exterior side lot line that is a street line of a designated right of-way 20.0m or greater	7.5 m	÷									-							
lot with an exterior side lot line abutting a CEC – private road	4.5 m	1.3 m	1 m						1.2 m									
MINIMUM INTERIOR SIDE YARD																		
Unattached side	1.5 m	0.9 m	-	-	~	-	~	-	~	-	-	~	-	~	2.44 m	2.44 m	2.44 m	2.4
MAXIMUM HEIGHT	10.7 m and 3 storeys	9.5 m and 3 storeys								9.5 m an	d 3 storeys							
ENCROACHMENTS, PROJECTIONS AND SETBACKS																		
Maximum encroachment of a porch or deck inclusive of stairs located at and accessible from the first storey or below the first storey into the required front yard and exterios side yards	1.5 m	2.0 m	1.5 m	2.12 m	2.12 m	2.12 m	2.12 m	2.12 m	1.5 m	2.12 m	2.12 m	2.12 m	2.12 m	2.12 m	3.14 m	3.14 m	3.14 m	3.14
Maximum encroachment of an awning, window, chimney, pilaster or corbel, window well, and stairs with a maximum of three risers, into the required front and exteior side yards	0.6 m	1.75 m	3	-	-	-	3	-		Ξ.	a.	8	3	1.64 m	0.93 m		×	0.93
Minimum setback of a townhouse dwelling to a CEC – visitor parking space	3.3 m	2.0 m	2.69 m									~						
ATTACHED GARAGE, PARKING AND DRIVEWAY																		
Maximum driveway width	3.0 m	6.0 m	2.91	2.91	2.91	2.91	2.91	2.91	2.91	2.91	2.91	2.91	2.91	2.91	6.0 m	6.0 m	6.0 m	6.0

+Den	3	3+Den	4	4+De
				1
				1
				1
				1
0	0	0	0	4
1				
1				
1				
1				
1				
1				
6	0	0	0	0
1				-
1				
1				
1				
1				
1				
6	0	0	0	0
				0.
12.0	0.0	0.0	0.0	4.0

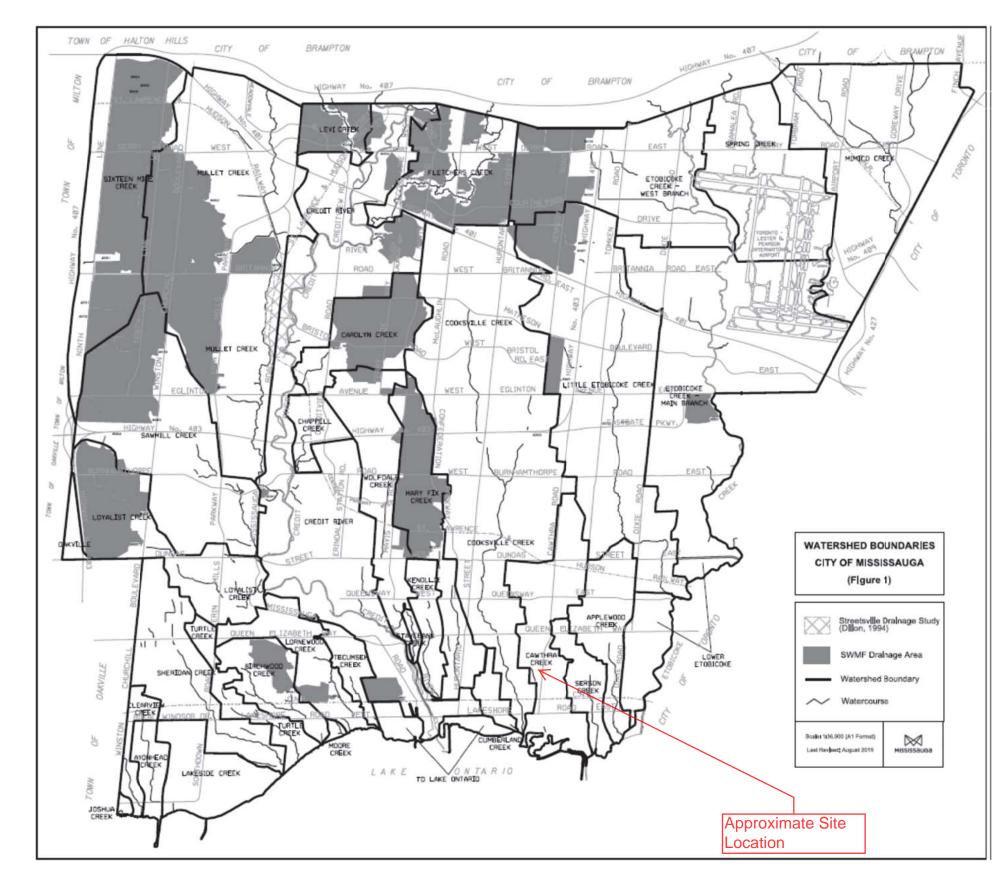
1444-1458 CAWTHRA ROAD MISSISSAUGA, ON

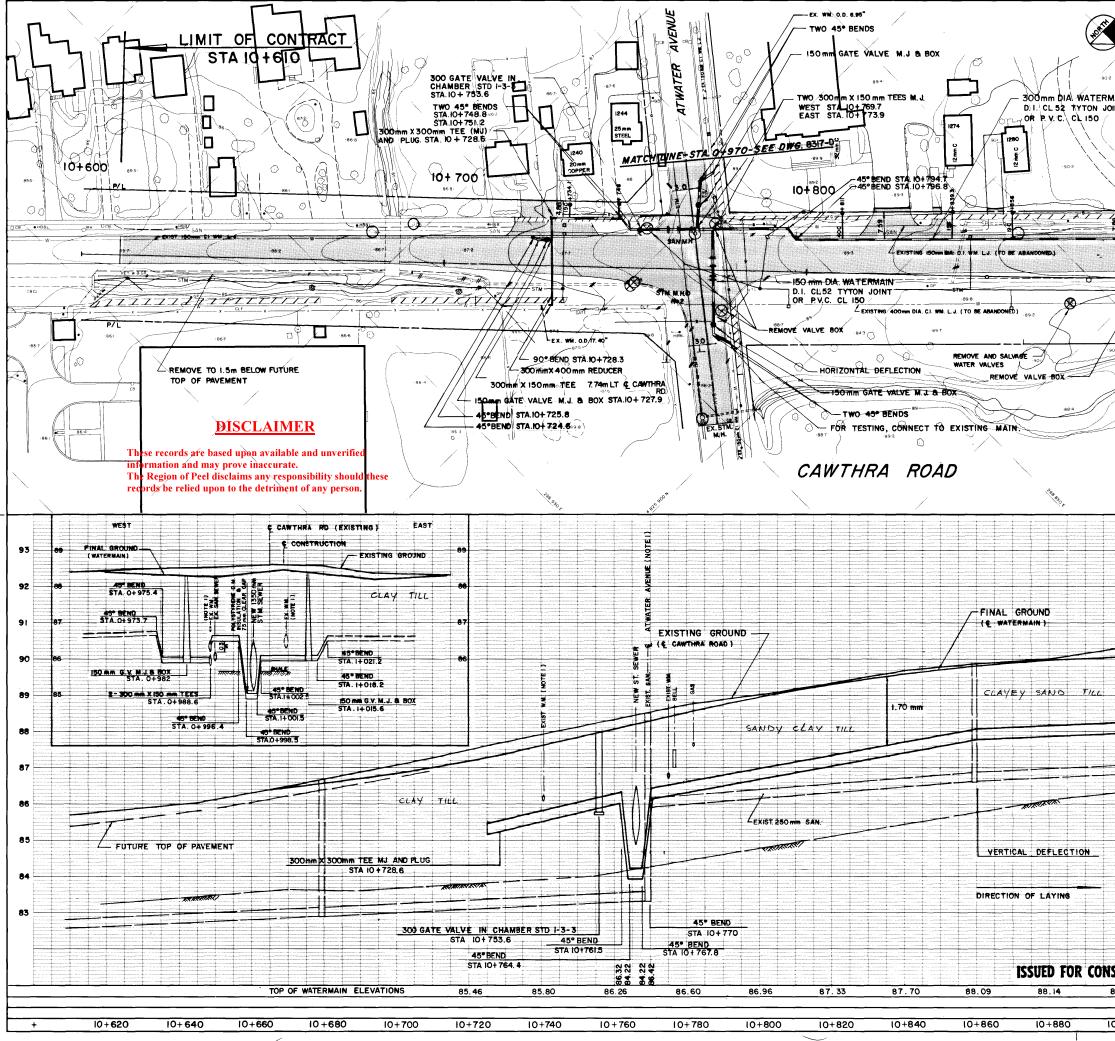
© Copyright KFA Architects and Planners Inc., all rights reserved. No part of this document whether printed form or supplied as digital data may be reproduced, short of a retriaval system or transmitted in any form or by any means, mechanical photocopying, recording or otherwise without the prior written permission of KFA Architects and Planners Inc., All dimensions to be checked on sticl by the contractor. Drawings are not to be seed, do my graviens are to be reported to the Architect before proceeding with the work.



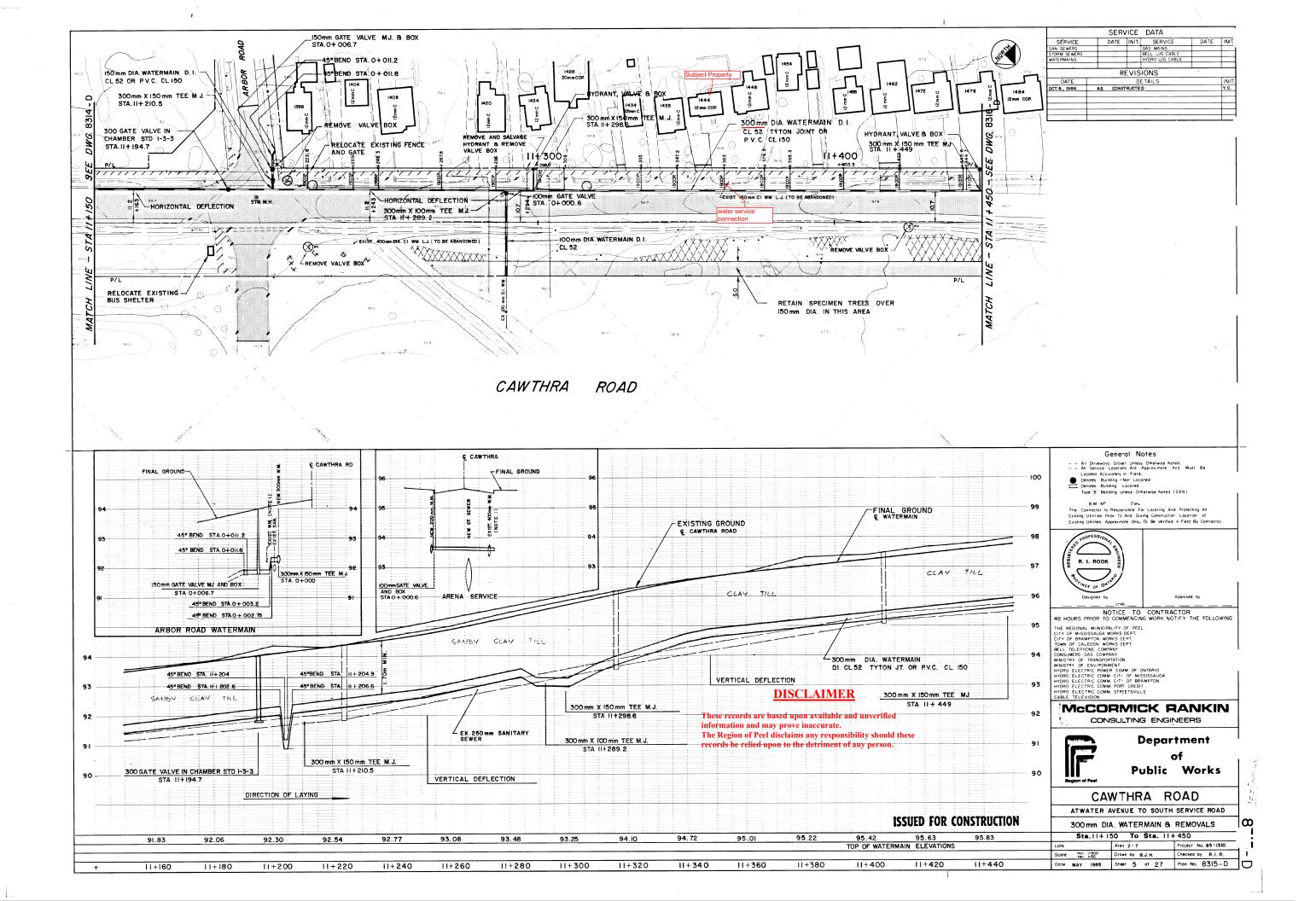
Drawing Title

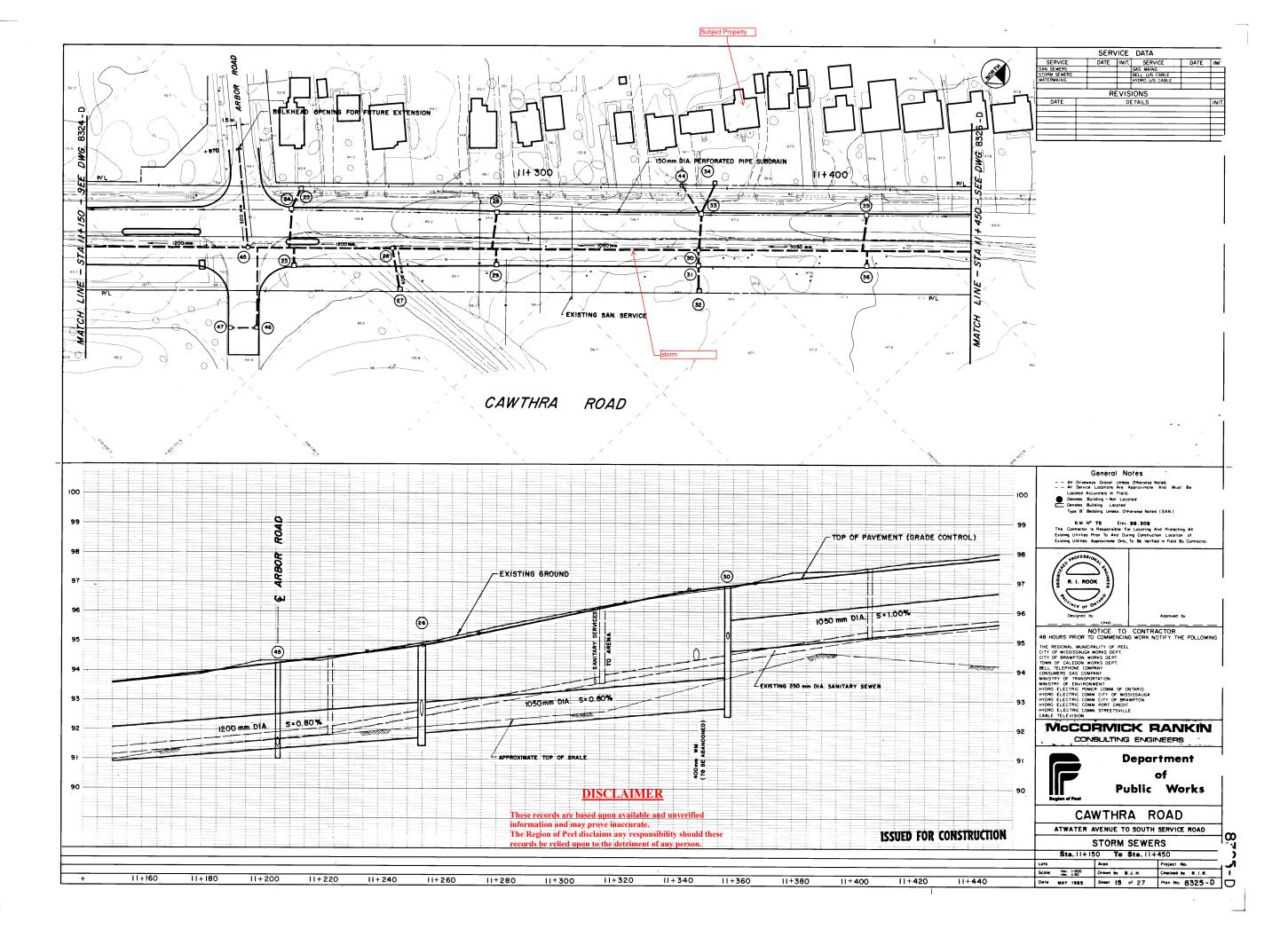
Development Statistics & Zoning Table

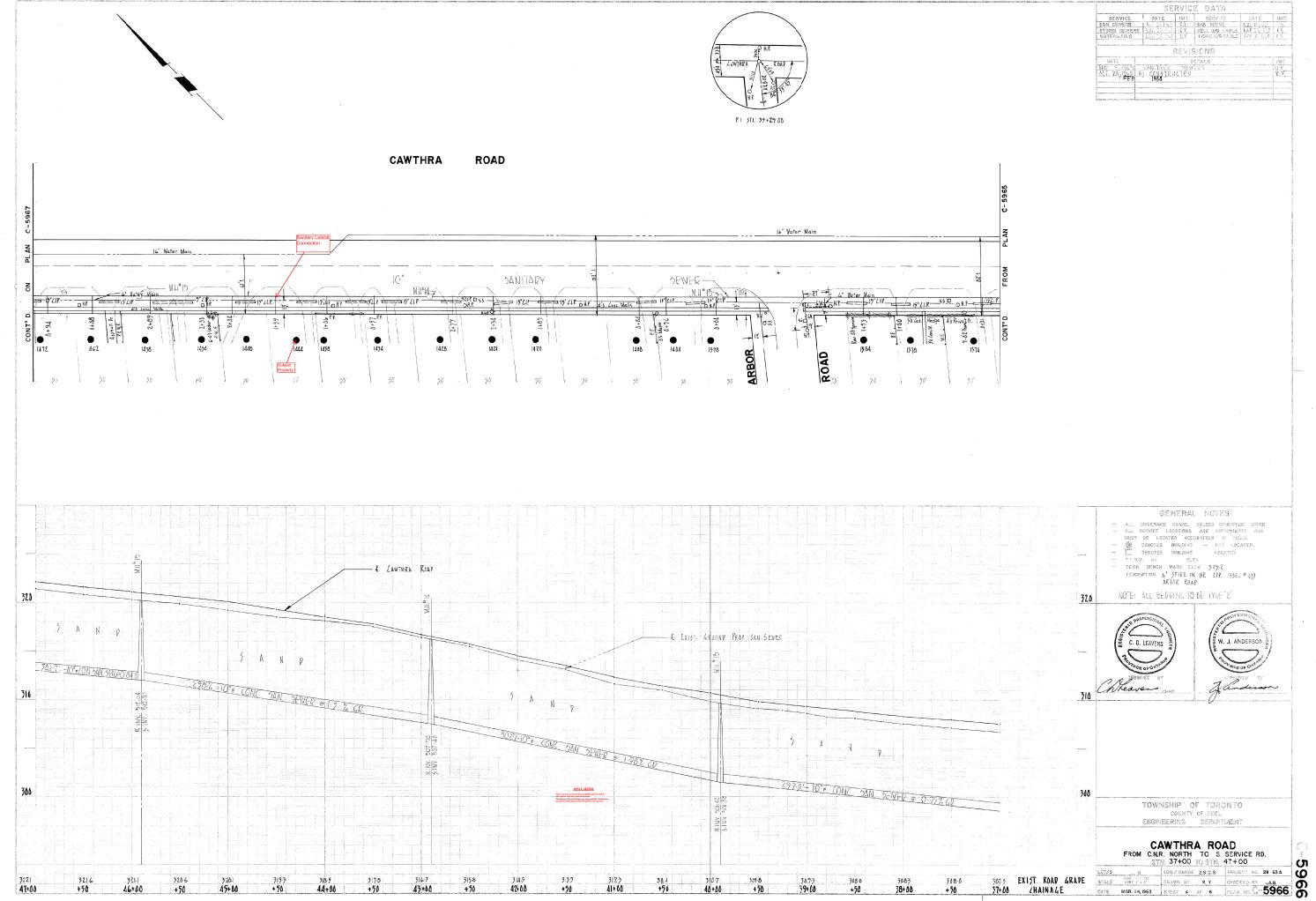

Drawing Number


A004

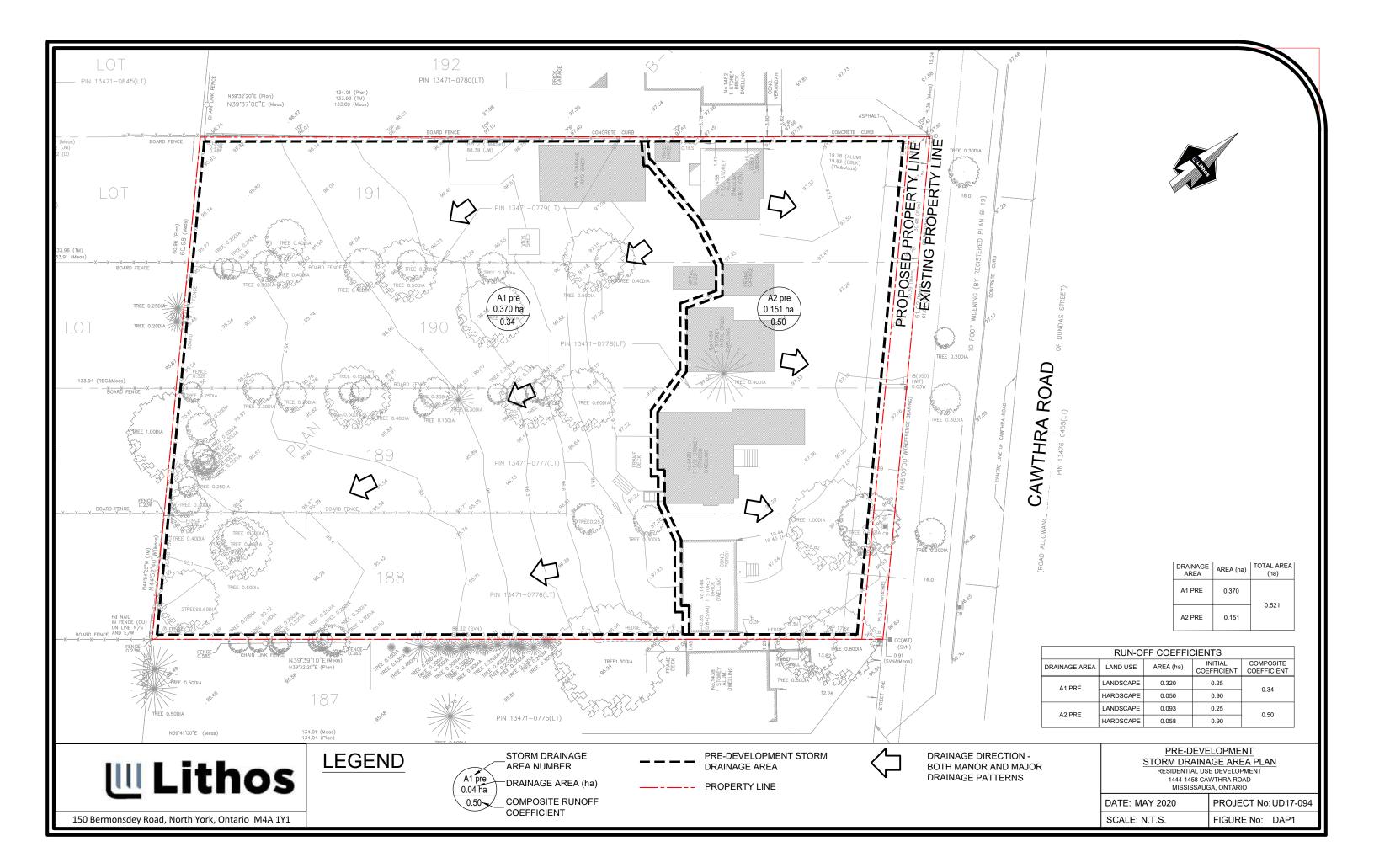
A-1 - Watershed Boundaries

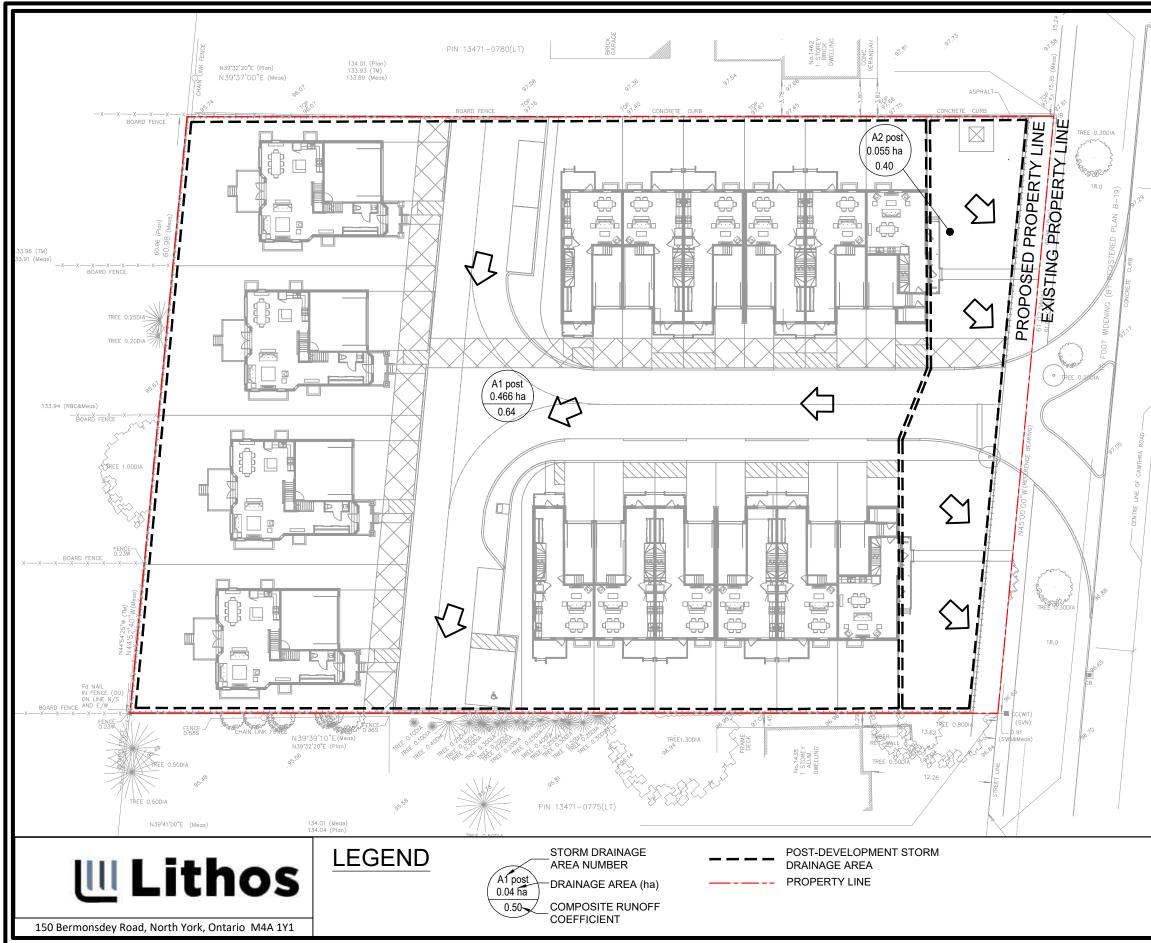



	· · · · · · · · · · · · · · · · · · ·		r	SERVIC	E DATA			
Ν	. /		SERVICE SAN SEWERS	DATE IN		Æ	DATE	INIT
V	/		STORM SEWERS		BELL U/G C/			1
1	,		·	PEVI	SIONS			
/ 2	-X	6	DATE		DETAILS			INIT.
	$\langle \alpha \rangle$		NOV. 6, 1986 AS	CONSTRUCTED				Y.C.
AIN	/ 0]	1 0						
NT	A	A						
	۰ (۱۹۹۹) -) ۱۹۹۹ -)			•				
	\ {	I GEN	ERAL NOTES					
\sim	-#	80 1.	Elevation and	location of e	xisting wat	ermains	and ser	vices
\mathbf{i}		6	are to be ver					
$\langle \rangle$	\sim	\& ℃	All 12 mm cop replaced with	19 mm coppe	r service f	rom the	propose	d
	PIL		watermain to curb stop and		e including	new m	ain stop,	
	S.	ST.	Connect 32 m		copper ser	vices to	the pro	-
Ŧ,	SAM	17	posed waterm					
	i0-3	206	The Contracto existing servi	ce connection	ns to the n	ew main	after th	
		17	main is tested the Region.	, nusned, d	norinated	111 8CC	prea py	
		5.	The Contracto					
_90=		E.	 blow offs for Stations for t 				-	•
æ	·90·4	1 St	Stations for t construction.	enus, t ees ,	etc., reier	to cent	10 91.	
	ने 🖗	μ ^{7.}	All salvaged 3190 Mavis Ro			all be re	sturned t	to
-2	P/L	₹.	All open ends			n shall	he sele	4
2			with concrete			Juan		-
\checkmark	\sim	6.	Prior to cons Region shall					
J		8	 staff can ens Skira's subdi 	ure the insta	llation of a			
-		1¥						
\square								
		7						
	/	/						
		* 828000	*					
		A 80						
			r	C				
			All Drive	General I ways Gravel Unk	ss Otherwise No	ted.	_	
		93	All Serv Locoled	ce Locations Are Accurately in Fie	Approximate d.	And Must	Be	
1			Denotes	Building – Not Lo Building Locate	1			
1		8	Type 'B' B.M.	Bedding Unless ((SAN)		
		92	The Contracto	N ^o Ele r is Responsible s Prior To And (For Locating Ar			
			Existing Utilitie	s Approximate Onl				
-		91	AND	SION				
			1 20					
		90	(g R. I. R	OOK I	1			
+				フリ				
-			ROVINCE O	+ 01 THE	1			
+		•• 89	Designed	by		Approved	Dy	
1				NOTICE T		CTOR		
		88	48 HOURS PRIOR THE REGIONAL MUN	TO COMMENC	ING WORK NO	TIFY TH	E FOLLOW	NG
ŧ			CITY OF MISSISSAU	GA WORKS DEPT.				
_			CITY OF BRAMPTON TOWN OF CALEDON BELL TELEPHONE C	OMPANY				
-		87	CONSUMERS GAS CO MINISTRY OF TRANS MINISTRY OF ENVIR	SPORTATION				
_			HYDRO ELECTRIC P	OWER COMM. OF	ISSISSAUGA			
		86	HYDRO ELECTRIC C HYDRO ELECTRIC C	OMM, CITY OF B OMM. PORT CREE	RAMPTON			
		1	HYDRO ELECTRIC C CABLE TELEVISION	OMM. STREETSVI			_	
		85	McC	JRMI	CK F		JKIN	J
+			10 .	DNSULTIN				_
-					De===	A	-	
+		84			Depar	TME	nt	
					•	of		
		83		Ρ	ublic	Wo	orks	
			Region of Pool				_	
			C	AWTH	RAR	OAD)	_
			<u> </u>	R AVENUE				 ,
TR	UCTION	ſ	L	DIA. WATE				
8.2	<u> </u>		Sta.		Sta. 10-		WALS	
ມ. 4						-		
			Lots	Area Z - 7		Project	No. 85-1310	
)+9			Lots Scole Her. 1:500 Ver. 1:50 Date MAY 1985	Ared 2 - 7 Drawn by Sheet 3	●.J.H. of 27	Checked		R


10+900

#	Subwatershed Name	Flood Control Criteria	References & Notes		
	Clearview Creek	100 Year Post to 2 Year Pre-development Control	Southdown District Master Drainage Plan dated August, 2000 by TSH		
	Avonhead Creek	100 Year Post to 2 Year Pre-development Control	Southdown District Master Drainage Plan dated August, 2000 by TSH		
	Lakeside Creek	100 Year Post to 2 Year Pre-development Control	Southdown District Master Drainage Plan dated August, 2000 by TSH		
	Sheridan Creek	100 Year Post to 2 Year Pre-development Control	-		
21	Turtle Creek	2 to 10 year – Post to Pre Control	-		
	Birchwood Creek	100 Year Post to 2 Year Pre-development Control	-		
	Moore Creek	2 to 10 year – Post to Pre Control	No floodline mapping study		
	Lornewood Creek	100 Year Post to 2 Year Pre-development Control	-		
	Tecumseh Creek	100 Year Post to 2 Year Pre-development Control	-		
	Cumberland Creek	2 to 10 year – Post to Pre Control	No floodline mapping study		
	Cooksville Creek	100 Year Post to 2 Year Pre-development Control	Revised development standards – Cooksville Creek from City of Mississauga		
22	Cawthra Creek	2 to 10 year – Post to Pre Control	Drainage diversion to Cooksville Creek and a very small area draining to creek.		
	Serson Creek	100 Year Post to 2 Year Pre-development Control	Large number of buildings (> 150) in the regulated flood plain		
	Applewood Creek	100 Year Post to 2 Year Pre-development Control	-		


Table 3-2: CVC Flood Control Criteria for Tributaries Draining Directly to Lake Ontario



APPENDIX C Storm Analysis

	_				Rational Method				
	i+I	20	6					Flow Calculation	
			3			1444-1458 Cawthra Road			
Prepared by: John Pasalidis, P.	.E., M.A.Sc.				File No. U City of Miss	sissauga			
Reviewed by: Nick Moutzouris,	P.Eng., M.A.Sc.						Date: Ma	y 2020	
nput Parameters									
Area Number	Area	с	Тс				Q = 0	0028 C I A	
	(ha)		(min.)			l			
A1 pre (Towards South - West corner of the Site)	0.370	0.34	15						
A2 pre (Towards Cawthra									
Road)	0.151	0.59	15						
Rational Method Calculation	on								
	Even	t 2 yr							
	IDF Data Se	t City of Mis							
	a = b =								
	c =								
Area Number	A (ha)	С	AC	Tc (min)	l (mm/b)	Q (m ³ /s)	Q		
A1 pre (Towards South -	(ha)			(min.)	(mm/h)	(11175)	(L/s)		
West corner of the Site) A2 pre (Towards Cawthra	0.370	0.34	0.13	15	59.9	0.021	20.9		
Road)	0.151	0.50	0.08	15	59.9	0.013	12.6		
	Even	t5yr						-	
	IDF Data Se	t City of Mis	•						
	a = b =								
	c =								
Area Number	Α	С	AC	Tc		Q	Q		
A1 pre (Towards South -	(ha)			(min.)	(mm/h)	(m³/s)	(L/s)		
West corner of the Site)	0.370	0.34	0.13	15	80.5	0.028	28.1		
A2 pre (Towards Cawthra Road)		0.50	0.08	15	80.5		16.0		
i toduj	0.151	0.50	0.08	15	C.U0	0.017	16.9	l	
	Even IDF Data Se	t 10 yr t Citv of Mis	sisaudo						
	IDF Data Se a =	: 1010	0						
	b = c =								
					1	-	1 - 1		
Area Number	A (ha)	С	AC	Tc (min.)	l (mm/h)	Q (m³/s)	Q (L/s)		
A1 pre (Towards South -		0.01	0.10						
West corner of the Site) A2 pre (Towards Cawthra	0.370	0.34	0.13	15	99.2	0.035	34.7		
Road)	0.151	0.50	0.08	15	99.2	0.021	20.8		
	Even	t 100 yr							
	IDF Data Se a =	t City of Mis							
	b =	4.9							
	c =	0.78							
Area Number	Α	С	AC	Tc		Q	Q		
A1 pre (Towards South -	(ha)			(min.)	(mm/h)	(m³/s)	(L/s)		
West corner of the Site)	0.370	0.34	0.13	15	140.7	0.049	49.2		
AQ mrs (Towards Couthrs)			1		1				
A2 pre (Towards Cawthra Road)	0.151	0.50	0.08	15	140.7	0.030	29.5		

CAWTHRA ROAD	PIN 13476-0455(LT)	RUN-O	A1	AINAGE POST ICIEN	0.466 0.055	a) TOTAL AREA (ha) 0.521
	DRAINAGE AREA	LAND USE	AREA (ha)	1	NITIAL FFICIENT	COMPOSITE COEFFICIENT
	A1 POST	LANDSCAPE HARDSCAPE	0.184		0.25	0.64
	A2 POST	LANDSCAPE	0.282	+	0.90	0.40
	AZ PUSI	HARDSCAPE	0.013		0.90	0.40
		DATE: M/	STORM DR RESIDEN 1444-1 MISS	RAINA FIAL US 458 CA	E DEVELOF WTHRA RO GA, ONTARI	EA PLAN PMENT AD
SCALE: N.T.S. FIGURE No: DAP2						
					1.001	

ULithos

Modified Rational Method - Two Year Storm Site Flow and Storage Summary 1444-1458 Cawthra Road File No. UD17-094 Date: May 2020

Prepared By: John Pasalidis, P.E., M.A.Sc.

eviewed By: Nick	Moutzouris, P.Eng	J., M.A.Sc.					
		Controlled - A1 Post			Infiltation Trench Design		
		Drainage Areas Area (A1) = "C" =	A1 Post 0.466 0.64	ha			
		AC1= Tc = Time Increment =	0.30 15.0 5.0	min min			
		Min. Storage =	93.67	m³	Maximum Storm Runoff=	49.9 L/s	
2-Year Des	sign Storm				Area of Porous Granular Base =	413.51 m ²	
a=	610.00	Туре	Area (ha)	"C"	Min. Storm Runoff Storage=	93.67 m ³	
b=	4.60	Landscaped	0.184	0.25	Min. Storage	0.57 m	
c=	0.78	Hardscaped	0.282	0.90	Granular Base Height =	0.07 11	
=	a (b + t) ^c	Total Area (A1)	0.466	0.64	1		
(4)	(0)	(0)	,	4)		(0)	
(1) Time	(2) Rainfall	(3) Storm		4) noff	(5) Total	(6) Storago	
rime	Rainfall	Runoff	Runoff Volume (A1 post)		iotai	Storage	
	Intensity	(A1 post)			Runoff Volume	Depth of Granular Bas	
(min)	(mm/hr)	(m ³ /s)		n ³)	(m ³)	(m)	
15.0	59.9	0.050		.89	44.89	0.27	
20.0	50.2	0.042		.13	50.13	0.27	
25.0	43.4	0.036	54.24		54.24	0.33	
30.0	38.4	0.032	57.63		57.63	0.35	
35.0	34.6	0.029	60.52		60.52	0.37	
40.0	31.5	0.026	63.04		63.04	0.38	
45.0	29.0	0.024	65	.28	65.28	0.39	
50.0	26.9	0.022	67	.29	67.29	0.41	
55.0	25.2	0.021	69	.13	69.13	0.42	
60.0	23.6	0.020	70	.82	70.82	0.43	
65.0	22.3	0.019	72	.39	72.39	0.44	
70.0	21.1	0.018	73	.85	73.85	0.45	
75.0	20.1	0.017		.22	75.22	0.45	
80.0	19.1	0.016		.52	76.52	0.46	
85.0	18.3	0.015		.74	77.74	0.47	
90.0	17.5	0.015		.90	78.90	0.48	
95.0	16.9	0.014		.00	80.00	0.48	
100.0	16.2	0.014		.05	81.05	0.49	
105.0	15.6	0.013		.06	82.06	0.50	
110.0	15.1	0.013		.03	83.03 83.96	0.50 0.51	
115.0 120.0	14.6 14.2	0.012 0.012		.96 .86	83.96 84.86	0.51	
120.0	14.2	0.012		.72	85.72	0.52	
130.0	13.3	0.011		.72	86.56	0.52	
135.0	13.0	0.011		.36	87.36	0.53	
140.0	12.6	0.010		.15	88.15	0.53	
145.0	12.3	0.010		.91	88.91	0.54	
150.0	12.0	0.010		.64	89.64	0.54	
155.0	11.7	0.010		.36	90.36	0.55	
160.0	11.4	0.009		.06	91.06	0.55	
165.0	11.1	0.009		.74	91.74	0.55	
170.0	10.9	0.009	92	.40	92.40	0.56	
175.0	10.6	0.009	93	.04	93.04	0.56	
180.0	10.4	0.009	93	.67	93.67	0.57	

ULithos

Modified Rational Method - Five Year Storm Site Flow and Storage Summary 1444-1458 Cawthra Road File No. UD17-094 Date: May 2020

Prepared By: John Pasalidis, P.E., M.A.Sc.

		Controlled - A1 Post			Infiltation Trench Design	
		Drainage Areas Area (A1) = "C" = AC1= Tc = Time Increment =	A1 Post 0.466 0.64 0.30 15.0 5.0	ha min min		
5-Year Des	ian Storm	Min. Storage =	125.92	m³	Maximum Storm Runoff=	67.0 L/s
					Area of Porous Granular Base =	413.51 m ²
a=	820.00	Туре	Area (ha)	"C"	Min. Storm Runoff Storage=	125.92 m ³
b=	4.60	Landscaped	0.184	0.25	Min. Storage	0.76 m
c=	0.78	Hardscaped	0.282	0.90	Granular Base Height =	
=	a (b + t) ^c	Total Area (A1)	0.466	0.64	4	
(1)	(2)	(3)	(4)	(5)	(6)
Time	Rainfall	Storm		noff	Total	Storage
	Intensity	Runoff (A1 post)		ume post)	Runoff Volume	Depth of Granular Base
(min)	(mm/hr)	(m ³ /s)	•	n ³)	(m ³)	(m)
15.0	80.5	0.067).34	60.34	0.36
20.0	67.4	0.056		7.39	67.39	0.41
25.0	58.4	0.049		2.92	72.92	0.44
30.0	51.7	0.043	77	7.47	77.47	0.47
35.0	46.5	0.039		1.35	81.35	0.49
40.0	42.4	0.035	84.74 84.74		0.51	
45.0	39.0	0.032		7.75	87.75	0.53
50.0	36.2	0.030).46	90.46	0.55
55.0	33.8	0.028		2.93	92.93	0.56
60.0	31.8	0.026		5.21 7.31	95.21	0.58 0.59
65.0 70.0	30.0 28.4	0.025 0.024		.31	97.31 99.28	0.60
75.0	27.0	0.024		1.12	101.12	0.61
80.0	25.7	0.021		2.86	102.86	0.62
85.0	24.6	0.020		4.50	104.50	0.63
90.0	23.6	0.020		6.06	106.06	0.64
95.0	22.7	0.019		7.54	107.54	0.65
100.0	21.8	0.018		8.96	108.96	0.66
105.0	21.0	0.018		0.31	110.31	0.67
110.0	20.3 19.6	0.017		1.62 2.87	111.62 112.87	0.67
115.0 120.0	19.6	0.016 0.016		2.87 4.07	112.87 114.07	0.68 0.69
120.0	18.4	0.015		5.23	115.23	0.09
130.0	17.9	0.015		6.35	116.35	0.70
135.0	17.4	0.014		7.44	117.44	0.71
140.0	16.9	0.014		8.49	118.49	0.72
145.0	16.5	0.014		9.51	119.51	0.72
150.0	16.1	0.013		0.50	120.50	0.73
155.0	15.7	0.013		1.47	121.47	0.73
160.0	15.3	0.013		2.40	122.40	0.74
165.0	15.0	0.012		3.32	123.32	0.75
170.0	14.6	0.012		4.21 5.08	124.21	0.75 0.76
175.0	14.3 14.0	0.012 0.012	12	0.00	125.08 125.92	0.76

ULithos

Modified Rational Method - Ten Year Storm Site Flow and Storage Summary 1444-1458 Cawthra Road File No. UD17-094 Date: May 2020

Prepared By: John Pasalidis, P.E., M.A.Sc.

		Controlled - A1 Post		Infiltation Trench Design	
		Drainage Areas Area (A1) = "C" = AC1= Tc = Time Increment =	A1 Post 0.466 ha 0.64 0.30 15.0 min 5.0 min		
10-Year De	sian Storm	Min. Storage =	155.10 m ³	Maximum Storm Runoff= Area of Porous Granular Base =	82.6 L/s 413.51 m ²
	-	Turno	Area (ha) "C"		
a= b=	1010.00 4.60	Type	()	Min. Storm Runoff Storage=	155.10 m ³
D=	4.60 0.78	Landscaped Hardscaped	0.184 0.25 0.282 0.90	Min. Storage Granular Base Height =	0.94 m
l =		Total Area (A1)	0.282 0.90		
	a (b + t) ^c	Total Area (AT)	0.400 0.64	-1	
(1)	(2)	(3)	(4)	(5)	(6)
Time	Rainfall	Storm	Runoff	Total	Storage
	I	Runoff	Volume	D (1)/1	_
	Intensity	(A1 post)	(A1 post)	Runoff Volume	Depth of Granular Base
(min)	(mm/hr)	(m ³ /s)	(m ³)	(m ³)	(m)
15.0	99.2	0.083	74.32	74.32	0.45
20.0	83.1	0.069	83.00	83.00	0.50
25.0	71.9	0.060	89.81	89.81	0.54
30.0	63.7	0.053	95.42	95.42	0.58
35.0	57.3	0.048	100.20	100.20	0.61
40.0	52.2	0.043	104.37	104.37	0.63
45.0	48.1	0.040	108.08	108.08	0.65
50.0	44.6	0.037	111.42	111.42	0.67
55.0	41.7	0.035	114.46	114.46	0.69
60.0	39.1	0.033	117.27	117.27	0.71
65.0	36.9	0.031	119.86	119.86	0.72
70.0	35.0	0.029	122.28	122.28	0.74
75.0	33.2	0.028	124.55	124.55	0.75
80.0	31.7	0.026	126.69	126.69	0.77
85.0 90.0	30.3 29.0	0.025 0.024	128.71 130.63	128.71 130.63	0.78 0.79
90.0 95.0	29.0 27.9	0.024	132.46	132.46	0.79
100.0	26.9	0.023	134.20	134.20	0.80
105.0	25.9	0.022	135.87	134.20	0.82
110.0	25.0	0.022	137.48	137.48	0.83
115.0	24.2	0.020	139.02	139.02	0.84
120.0	23.4	0.020	140.50	140.50	0.85
125.0	22.7	0.019	141.93	141.93	0.86
130.0	22.1	0.018	143.31	143.31	0.87
135.0	21.4	0.018	144.65	144.65	0.87
140.0	20.9	0.017	145.95	145.95	0.88
145.0	20.3	0.017	147.21	147.21	0.89
150.0	19.8	0.016	148.43	148.43	0.90
155.0	19.3	0.016	149.61	149.61	0.90
160.0	18.9	0.016	150.77	150.77	0.91
165.0	18.4	0.015	151.89	151.89	0.92
170.0	18.0	0.015	152.99	152.99	0.92
175.0	17.6	0.015	154.06	154.06	0.93

ULithos

Modified Rational Method - Hundred Year Storm Site Flow and Storage Summary 1444-1458 Cawthra Road File No. UD17-094 Date: May 2020

Prepared By: John Pasalidis, P.E., M.A.Sc. Reviewed By: Nick Moutzouris, P.Eng., M.A.Sc.

eviewed By: Nick	Moutzouris, P.Eng	., M.A.Sc.			1	
		Controlled - A1 Post			Infiltation Trench Design	
		Drainage Areas Area (A1) = "C" = AC1=	A1 Post 0.466 0.80 0.37	ha		
Adjustme	ent Factor	Tc =		min		
	=1.25 *C	Time Increment =		min		
0(100)	1.20 0		0.0			
		Min. Storage =	277.98	m³	Maximum Storm Runoff=	146.5 L/s
100-Year De	esign Storm				Area of Porous Granular Base =	413.51 m ²
a=	1450.00	Туре	Area (ha)	"C"	Min. Storm Runoff Storage=	277.98 m ³
b=	4.90	Landscaped	0.184	0.25	Min. Storage	1.68 m
C=	0.78	Hardscaped	0.282	0.90	Granular Base Height =	
=	a (b + t) ^c	Total Area (A1)	0.466	0.64	4	
(1)	(0)	Adjustment Factor	. ,			
(1) T ime e	(2)	(3)	(4 Rur	/	(5) Total	(6)
Time	Rainfall	Storm Runoff	Volu		lotai	Storage
	Intensity	(A1 post)	(A1 p		Runoff Volume	Depth of Granular Base
(min)	(ma ma /la m)	(m ³ /s)	(m		(m ³)	(m)
(min) 15.0	(mm/hr) 140.7	0.146	131		131.81	(m) 0.80
20.0	140.7	0.140	131		147.55	0.89
25.0	102.4	0.123	159		159.91	0.03
30.0	90.8	0.094	170		170.09	1.03
35.0	81.8	0.085	178		178.76	1.08
40.0	74.6	0.078	186		186.32	1.13
45.0	68.7	0.071	193.04 193.04		1.17	
50.0	63.8	0.066	199		199.10	1.20
55.0	59.6	0.062	204		204.61	1.24
60.0	56.0	0.058	209	.68	209.68	1.27
65.0	52.8	0.055	214	.38	214.38	1.30
70.0	50.0	0.052	218	.76	218.76	1.32
75.0	47.6	0.050	222	.86	222.86	1.35
80.0	45.4	0.047	226	.73	226.73	1.37
85.0	43.4	0.045	230		230.38	1.39
90.0	41.6	0.043	233		233.85	1.41
95.0	40.0	0.042	237		237.15	1.43
100.0	38.5	0.040	240		240.30	1.45
105.0	37.1	0.039	243		243.32	1.47
110.0	35.8	0.037	246		246.21	1.49
115.0	34.7	0.036	248		248.99	1.51
120.0 125.0	33.6 32.6	0.035 0.034	251 254		251.66 254.25	1.52 1.54
125.0	31.6	0.034	254		254.25	1.54
135.0	30.7	0.033	250		259.15	1.55
140.0	29.9	0.031	209		261.49	1.57
145.0	29.1	0.030	263		263.76	1.59
150.0	28.4	0.030	265		265.96	1.61
155.0	27.7	0.029	268		268.09	1.62
160.0	27.0	0.028	270		270.18	1.63
165.0	26.4	0.027	272		272.20	1.65
170.0	25.8	0.027	274		274.18	1.66
175.0	25.3	0.026	276		276.10	1.67
180.0	24.7	0.026	277	.98	277.98	1.68

Modified Rational Method Two Year Storm Site Flow and Storage Summary - towards Cawthra Road

1444-1458 Cawthra Road

	ea A2 Post				
controlled area	towards Cawthra Roa	d			
	Area (A2) =	0.055	ha	2-Year Desi	an Storm
	"C" =	0.40	na	a=	610.00
	AC2=	0.022		b=	4.60
	Tc =	15.0	min	C=	0.78
	Time Increment =	5.0	min	=	a (b + t) ^c
Ν	/lax. Release Rate =	3.7	L/s		
Т	уре	Area (ha)	"C"		
Land	scaped	0.042	0.25		
Hard	scaped	0.013	0.90		
Total Are	a (A2 Post)	0.055	0.40		
			re-Development Site		
	Release Ra	te towards Caw	thra Road (A2-pre)=	12.6 L	_/s
	Site Release Rat	te towards Cawl	hra Road (A2 Post)=	3.7 L	_/s
(1)	(2)		(3)	(4)	
Time	Rainfall	S	storm	Run	off
	Latera de	R	unoff	Volu	me
	Intensity	(A2	2 post)	(A2 p	ost)
(min)	(mm/hr)	(1	m³/s)	(m ³	3)
15.0	59.9		0.004	3.3	
20.0	50.2		0.003	3.7	
25.0	43.4		0.003		2
30.0	38.4		0.002	4.2	
35.0	34.6).002).002	4.4 4.6	
40.0 45.0	31.5 29.0).002	4.0	
45.0 50.0	29.0).002	4.0	
55.0	25.2).002	5.1	
60.0	23.6		0.002	5.2	
65.0	22.3).001	5.3	
70.0	22.3).001	5.4	
75.0	20.1		0.001	5.5	
80.0	19.1		0.001	5.6	
85.0	18.3		0.001	5.7	
90.0	17.5		0.001	5.8	
95.0	16.9).001	5.9	
100.0	16.2		0.001	6.0	
105.0	15.6		0.001	6.0	
110.0	15.1).001	6.1	
115.0	14.6).001	6.2	
120.0	14.2	().001	6.2	
125.0	13.7).001	6.3	
130.0	13.3).001	6.4	
135.0	13.0	().001	6.4	7
140.0	12.6).001	6.5	3
145.0	12.3).001	6.5	8
150.0	12.0	().001	6.6	
155.0	11.7).001	6.6	
		().001	6.7	
160.0	11.4				
160.0 165.0	11.1	().001	6.7	
160.0 165.0 170.0	11.1 10.9	().001).001	6.8	4
160.0 165.0	11.1	((().001		4 9

Modified Rational Method Five Year Storm Site Flow and Storage Summary - towards Cawthra Road

1444-1458 Cawthra Road

Drainage Are	ea A2 Post				
	towards Cawthra Roa	d			
	Area (A2) =	0.055	ha		esign Storm
	"C" =	0.40		a:	
	AC2= Tc =	0.022 15.0	min	b	
	Time Increment =	5.0	min min	C:	
				I ·	= a (b + t) ^c
	/ax. Release Rate =	5.0	L/s	I	
	уре	Area (ha)	"C"		
Land	scaped	0.042	0.25		
Hards	scaped	0.013	0.90		
Total Are	a (A2 Post)	0.055	0.40		
		•	Pre-Development Site		
	Release Ra	te towards Caw	/thra Road (A2-pre)=	12.6	L/s
	Site Release Rat	te towards Caw	thra Road (A2 Post)=	5.0	L/s
(1)	(2)		(3)		(4)
Time	Rainfall	Ş	Storm		unoff
		B	unoff	Ve	lume
	Intensity		2 post)		post)
				•	
(min)	(mm/hr)	(m³/s)		m ³)
15.0	80.5		0.005		1.47
20.0	67.4		0.004		1.99
25.0	58.4		0.004		5.40 5.74
30.0 35.0	51.7 46.5		0.003 0.003 0.003 0.002		5.74 5.02
40.0	40.3				5.02 5.27
45.0	39.0				5.50
50.0	36.2		0.002		5.70 5.70
55.0	33.8		0.002		5.88
60.0	31.8		0.002		7.05
65.0	30.0		0.002		7.21
70.0	28.4		0.002		7.35
75.0	27.0		0.002		7.49
80.0	25.7		0.002		7.62
85.0	24.6		0.002		7.74
90.0	23.6		0.001		7.85
95.0	22.7		0.001		7.96
100.0	21.8		0.001		3.07
105.0	21.0		0.001		3.17
110.0	20.3	(0.001	8	3.27
115.0	19.6	(0.001	8	3.36
120.0	19.0	(0.001		3.45
125.0	18.4		0.001		3.53
130.0	17.9		0.001		3.62
135.0	17.4		0.001		3.70
140.0	16.9		0.001		3.77
145.0	16.5		0.001		3.85
150.0	16.1		0.001		3.92
155.0	15.7		0.001		3.99
160.0	15.3		0.001		9.06
165.0	15.0		0.001		9.13
170.0	14.6		0.001		9.20
175.0 180.0	14.3		0.001		9.26
180.0	14.0		0.001	ļ	9.32

Modified Rational Method Ten Year Storm Site Flow and Storage Summary - towards Cawthra Road

1444-1458 Cawthra Road

Drainage Area A2 Post

180.0

17.2

Uncontrolled area towards Cawthra Road

Uncontrolled area	a towards Cawthra Ro	ad			
	Area (A2) =	0.055	ha	10-Year	Design Storm
	"C" =	0.40	ľ		a= 1010.00
	AC2=	0.022			b= 4.60
	Tc =	15.0	min		c= 0.78
	Time Increment =	5.0	min		I= a (b + t) ^c
	Max. Release Rate =	6.1	L/s		
-	Туре	Area (ha)	"C"		
Lan	dscaped	0.042	0.25		
	dscaped	0.013	0.90		
Total Ar	ea (A2 Post)	0.055	0.40		
		ate towards Cawth	e-Development Site nra Road (A2-pre)=	12.6	L/s
	Site Release R	ate towards Cawth	ra Road (A2 Post)=	6.1	L/s
(1)	(2)		3)		(4)
Time	Rainfall	Sto	orm		Runoff
	Intensity		noff post)		∕olume ∖2 post)
(min)	(mm/hr)	(m	³ /s)		(m ³)
15.0	99.2		006		5.50
20.0	83.1		005		6.15
25.0	71.9		004		6.65
30.0	63.7		004		7.07
35.0 40.0	57.3 52.2		004 003		7.42 7.73
40.0 45.0	48.1		003		8.00
45.0 50.0	44.6		003		8.25
55.0	44.0		003		8.48
60.0	39.1		002		8.68
65.0	36.9		002		8.88
70.0	35.0		002		9.05
75.0	33.2		002		9.22
80.0	31.7		002		9.38
85.0	30.3		002		9.53
90.0	29.0		002		9.67
95.0	23.0		002		9.81
100.0	26.9		002		9.94
105.0	25.9		002		10.06
110.0	25.0		002		10.18
115.0	23.0		001		10.29
120.0	23.4		001		10.23
125.0	22.7		001		10.51
130.0	22.1		001		10.61
135.0	21.4		001		10.71
140.0	20.9		001		10.81
145.0	20.3		001		10.90
150.0	19.8		001		10.99
155.0	19.3		001		11.08
160.0	18.9		001		11.16
165.0	18.4		001		11.25
170.0	18.0		001		11.33
175.0			001		11.41
175.0	17.6		JU1 101		11.41

0.001

11.49

Modified Rational Method Hundred Year Storm Site Flow and Storage Summary - towards Cawthra Road

1444-1458 Cawthra Road

Drainage Are					
ncontrolled area t	towards Cawthra Roa	d			
	Area (A2) =	0.055	ha	100-Year De	esign Storm
	"C" =	0.50		a=	1450.00
	AC2=	0.028	. –	b=	4.90
	Tc =	15.0	min	C=	0.78
	Time Increment =	5.0	min	=	a (b + t) ^c
М	ax. Release Rate =	10.8	L/s		
Ту	/pe	Area (ha)	"C"		
Lands	scaped	0.042	0.25		
Hards	scaped	0.013	0.90		
Total Area	a (A2 Post)	0.055	0.40		
	Adjustment Factor				
	D .1 D .		re-Development Site	40.0	. /
	Release Ra	te towards Caw	thra Road (A2-pre)=	12.6	L/s
	Site Release Ra	te towards Cawt	hra Road (A2 Post)=	10.8	L/s
			, <i>,</i> ,		
(1)	(2)		(3)		4)
Time	Rainfall	S	torm	Ru	noff
	Intensity		unoff		ume
	intensity	(A2	e post)	(A2	post)
(min)	(mm/hr)	(r	m³/s)	(n	n ³)
15.0	140.7		.011	9.	76
20.0	118.1		.009		.93
25.0	102.4	0.008			.84
30.0	90.8		.007		.59
35.0	81.8		.006		.24
40.0	74.6		.006		3.80
45.0	68.7		.005		.29
50.0	63.8		.005		14.74 15.15
55.0	59.6		.005		
60.0	56.0		.004		.53
65.0	52.8		.004		.87
70.0 75.0	50.0	0		16	
	50.0		.004	16	
	47.6	0	.004	16	.50
80.0 85.0	47.6 45.4	0 0	.004 .003	16 16	.50 .79
85.0	47.6 45.4 43.4	0 0 0	.004 .003 .003	16 16 17	.50 .79 .06
85.0 90.0	47.6 45.4 43.4 41.6	0 0 0 0	.004 .003 .003 .003	16 16 17 17	.50 .79 .06 .32
85.0 90.0 95.0	47.6 45.4 43.4 41.6 40.0	0 0 0 0 0 0	.004 .003 .003 .003 .003	16 16 17 17 17	.50 .79 .06 .32 .56
85.0 90.0 95.0 100.0	47.6 45.4 43.4 41.6 40.0 38.5	0 0 0 0 0 0 0 0 0	.004 .003 .003 .003 .003 .003 .003	16 16 17 17 17 17 17	.50 .79 .06 .32 .56 .79
85.0 90.0 95.0 100.0 105.0	47.6 45.4 43.4 41.6 40.0	0 0 0 0 0 0 0 0 0 0 0	.004 .003 .003 .003 .003	16 16 17 17 17 17 17 18	.50 .79 .06 .32 .56
85.0 90.0 95.0 100.0	47.6 45.4 43.4 41.6 40.0 38.5 37.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0	.004 .003 .003 .003 .003 .003 .003 .003	16 16 17 17 17 17 17 18 18	.50 .79 .06 .32 .56 .79 .02
85.0 90.0 95.0 100.0 105.0 110.0	47.6 45.4 43.4 41.6 40.0 38.5 37.1 35.8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.004 .003 .003 .003 .003 .003 .003 .003	16 16 17 17 17 17 18 18 18	.50 .79 .06 .32 .56 .79 .02 .23
85.0 90.0 95.0 100.0 105.0 110.0 115.0	47.6 45.4 43.4 41.6 40.0 38.5 37.1 35.8 34.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.004 .003 .003 .003 .003 .003 .003 .003	16 16 17 17 17 17 18 18 18 18	.50 .79 .06 .32 .56 .79 .02 .23 .44
85.0 90.0 95.0 100.0 105.0 110.0 115.0 120.0 125.0 130.0	47.6 45.4 43.4 41.6 40.0 38.5 37.1 35.8 34.7 33.6 32.6 31.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.004 .003 .003 .003 .003 .003 .003 .003	16 16 17 17 17 17 18 18 18 18 18 18 18 18	.50 .79 .06 .32 .56 .79 .02 .23 .44 .64 .83 .01
85.0 90.0 95.0 100.0 105.0 110.0 115.0 120.0 125.0	47.6 45.4 43.4 41.6 40.0 38.5 37.1 35.8 34.7 33.6 32.6 31.6 30.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.004 .003 .002	16 16 17 17 17 17 18 18 18 18 18 18 18 18 18 18 19	.50 .79 .06 .32 .56 .79 .02 .23 .44 .64 .83 .01 .19
85.0 90.0 95.0 100.0 105.0 110.0 115.0 125.0 130.0 135.0 140.0	47.6 45.4 43.4 41.6 40.0 38.5 37.1 35.8 34.7 33.6 32.6 31.6 30.7 29.9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.004 .003 .002 .002 .002	16 16 17 17 17 17 18 18 18 18 18 18 18 18 18 18 19 19	50 79 .06 .32 .56 .79 .02 .23 .44 .64 .83 .01 .19 .36
85.0 90.0 95.0 100.0 105.0 110.0 115.0 120.0 125.0 130.0 135.0 140.0 145.0	47.6 45.4 43.4 41.6 40.0 38.5 37.1 35.8 34.7 33.6 32.6 31.6 30.7 29.9 29.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.004 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .002 .002 .002 .002	16 16 17 17 17 17 18 18 18 18 18 18 18 18 19 19 19	.50 .79 .06 .32 .56 .79 .02 .23 .44 .64 .83 .01 .19 .36 .53
85.0 90.0 95.0 100.0 105.0 110.0 115.0 120.0 125.0 130.0 135.0 140.0 145.0 150.0	47.6 45.4 43.4 41.6 40.0 38.5 37.1 35.8 34.7 33.6 32.6 31.6 30.7 29.9 29.1 28.4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.004 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .002 .002 .002 .002 .002	16 16 17 17 17 17 18 18 18 18 18 18 18 18 19 19 19	.50 .79 .06 .32 .56 .79 .02 .23 .44 .64 .83 .01 .19 .36 .53 .69
85.0 90.0 95.0 100.0 105.0 110.0 115.0 120.0 125.0 130.0 135.0 140.0 145.0 150.0	47.6 45.4 43.4 41.6 40.0 38.5 37.1 35.8 34.7 33.6 32.6 31.6 30.7 29.9 29.1 28.4 27.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.004 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .002 .002 .002 .002 .002 .002 .002	16 16 17 17 17 17 18 18 18 18 18 18 18 19 19 19 19 19	.50 .79 .06 .32 .56 .79 .02 .23 .44 .64 .83 .01 .19 .36 .53 .69 .85
85.0 90.0 95.0 100.0 105.0 110.0 115.0 120.0 125.0 130.0 135.0 140.0 145.0 150.0 155.0 160.0	47.6 45.4 43.4 41.6 40.0 38.5 37.1 35.8 34.7 33.6 32.6 31.6 30.7 29.9 29.1 28.4 27.7 27.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.004 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .002 .002 .002 .002 .002 .002 .002 .002	16 16 17 17 17 17 18 18 18 18 18 18 18 18 19 19 19 19 19 19 20	.50 .79 .06 .32 .56 .79 .02 .23 .44 .64 .83 .01 .19 .36 .53 .69 .85 .01
85.0 90.0 95.0 100.0 105.0 110.0 120.0 125.0 130.0 135.0 140.0 145.0 155.0 160.0 165.0	47.6 45.4 43.4 41.6 40.0 38.5 37.1 35.8 34.7 33.6 32.6 31.6 30.7 29.9 29.1 28.4 27.7 27.0 26.4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.004 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .002 .002 .002 .002 .002 .002 .002 .002 .002	16 16 17 17 17 17 18 18 18 18 18 18 18 18 19 19 19 19 19 19 20 20	.50 .79 .06 .32 .56 .79 .02 .23 .44 .64 .83 .01 .19 .36 .53 .69 .85 .01 .16
85.0 90.0 95.0 100.0 105.0 110.0 115.0 120.0 125.0 130.0 135.0 140.0 145.0 150.0 155.0 160.0	47.6 45.4 43.4 41.6 40.0 38.5 37.1 35.8 34.7 33.6 32.6 31.6 30.7 29.9 29.1 28.4 27.7 27.0		.004 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .002 .002 .002 .002 .002 .002 .002 .002	16 16 17 17 17 17 18 18 18 18 18 18 18 18 19 19 19 19 19 19 20 20 20 20	.50 .79 .06 .32 .56 .79 .02 .23 .44 .64 .83 .01 .19 .36 .53 .69 .85 .01

		Water B	alance Ca	lculation	
		Road			
Lithos	File No. UD17-094				
			Date: May 2020		
	Prepared By: John Pasalidis, P.E., M.A.Sc.				
		Reviewed By:	Nick Moutzouris, P	.Eng., M.A.Sc.	
	Contribut	ing Drainage Area	5209.4	m ²	
	Rainfall dep	oth to be retained	5.0	mm	
Total	rainfall volume	required at 5mm	26.05	m ³	
Initial Abstraction Cal	culations				
Surface	Area (ha)	IA (mm)	Volume (m ³)		
Landscaping	2260.0	5.0	11.30	m ³	
Impervious Surfaces	2949.4	1.0	2.95	m ³	
Total	5209.4		14.25	m ³	
Additional Water Balance Required	to be Stored		11.80	m ³	

liii Lit	hos			uality Calcul	
	.1105	File No. UD17-094 Date: May 2020 Prepared By: John Pasalidis, P.E., M.A.S Reviewed By: Nick Moutzouris, P.Eng., M.A			
Surface	Method	Effective TSS Removal	Area (ha)	% Area of Controlled Site	Overall TSS Removal

Surface	Method	Effective TSS Removal	(ha)	Controlled Site	Overall TSS Removal
Rooftop/Terraces/Landscape	Inherent	80%	0.176	38%	30%
Driveway Area	Stormseptor EF04	80%	0.290	62%	50%
Total			0.466	100%	80%

Note: Uncontrolled water does not account in the above calculations

Γ

٦

Stormceptor* EF Sizing Report

	Ontario	Project N	ame:	1444-1458 Cawtl	nra Rd.
City:	Mississauga	Project N	umber:	-	
Nearest Rainfall Station:	TORONTO CENTRAL	Designer	Name:	Brandon O'Leary	
NCDC Rainfall Station Id:	0100	Designer	Company:	Forterra	
Years of Rainfall Data:	18	Designer	Email/Phone:	brandon.oleary@	oforterrabp.com
Site Name:	1444-1458 Cawthra Rd.	Designer	Email/Phone:	(905) 630-0359	
Site Name.	1444-1458 Cawtilla Nu.	EOR Nam	ie:	John Pasalidis	
Drainage Area (ha):	0.29	EOR Com	pany:	Lithos Group Inc.	
Runoff Coefficient 'c':	0.78	EOR Ema	il/Phone:		
Require Hydrocarbon Spill Ca	apture?	Yes		Stormceptor Model	TSS Removal Provided (%)
Upstream Flow Control?		No		EFO4	88
Estimated Water Quality Flor	w Rate (L/s):	3.55		EFO6	91
. /				EFO8	92
Peak Conveyance (maximum) Flow Rate (L/s):				°-
· · · · · · · · · · · · · · · · · · ·) Flow Rate (L/S):			EFO10	93

www.imbriumsystems.com

THIRD-PARTY TESTING AND VERIFICATION

Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators** and performance has been third-party verified in accordance with the **ISO 14034 Environmental Technology Verification (ETV)** protocol.

PERFORMANCE

► Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patentpending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including highintensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterways.

PARTICLE SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators** for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Percent
Size (µm)	Than	Fraction (µm)	
1000	100	500-1000	5
500	95	250-500	5
250	90	150-250	15
150	75	100-150	15
100	60	75-100	10
75	50	50-75	5
50	45	20-50	10
20	35	8-20	15
8	20	5-8	10
5	10	2-5	5
2	5	<2	5

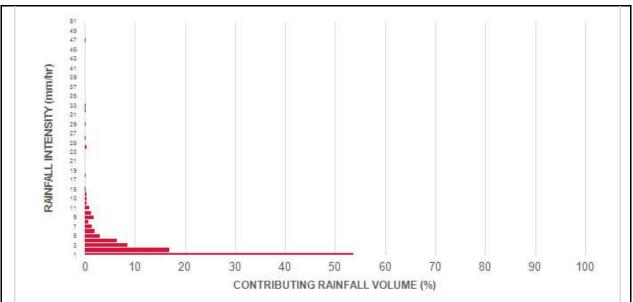
info@imbriumsystems.com

Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
1	53.7	53.7	0.63	38.0	31.0	93	49.9	49.9
2	16.9	70.6	1.26	75.0	63.0	91	15.4	65.3
3	8.6	79.2	1.89	113.0	94.0	88	7.6	72.9
4	6.4	85.6	2.52	151.0	126.0	85	5.4	78.3
5	3.1	88.7	3.14	189.0	157.0	81	2.5	80.8
6	2.0	90.7	3.77	226.0	189.0	78	1.6	82.4
7	1.5	92.2	4.40	264.0	220.0	74	1.1	83.5
8	0.7	92.9	5.03	302.0	252.0	72	0.5	84.0
9	1.8	94.7	5.66	340.0	283.0	69	1.2	85.2
10	1.3	96.0	6.29	377.0	314.0	66	0.9	86.1
11	0.9	96.9	6.92	415.0	346.0	63	0.6	86.7
12	0.4	97.3	7.55	453.0	377.0	61	0.2	86.9
13	0.4	97.7	8.17	490.0	409.0	58	0.2	87.1
14	0.4	98.1	8.80	528.0	440.0	57	0.2	87.4
15	0.2	98.3	9.43	566.0	472.0	56	0.1	87.5
16	0.0	98.3	10.06	604.0	503.0	55	0.0	87.5
17	0.0	98.3	10.69	641.0	535.0	54	0.0	87.5
18	0.2	98.5	11.32	679.0	566.0	53	0.1	87.6
19	0.0	98.5	11.95	717.0	597.0	52	0.0	87.6
20	0.0	98.5	12.58	755.0	629.0	52	0.0	87.6
21	0.0	98.5	13.21	792.0	660.0	52	0.0	87.6
22	0.0	98.5	13.83	830.0	692.0	52	0.0	87.6
23	0.0	98.5	14.46	868.0	723.0	51	0.0	87.6
24	0.4	98.9	15.09	906.0	755.0	51	0.2	87.8
25	0.0	98.9	15.72	943.0	786.0	51	0.0	87.8

info@imbriumsystems.com

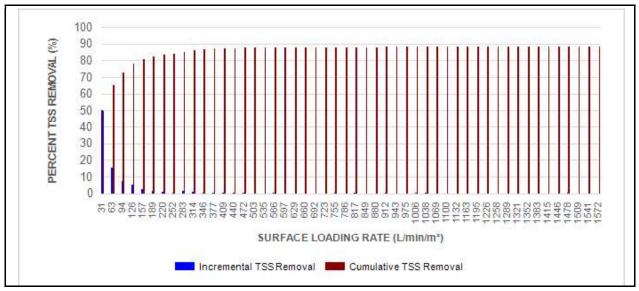
www.imbriumsystems.com

Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
26	0.2	99.1	16.35	981.0	817.0	51	0.1	87.9
27	0.0	99.1	16.98	1019.0	849.0	51	0.0	87.9
28	0.0	99.1	17.61	1056.0	880.0	51	0.0	87.9
29	0.2	99.3	18.24	1094.0	912.0	50	0.1	88.0
30	0.0	99.3	18.87	1132.0	943.0	50	0.0	88.0
31	0.0	99.3	19.49	1170.0	975.0	50	0.0	88.0
32	0.2	99.5	20.12	1207.0	1006.0	50	0.1	88.1
33	0.2	99.7	20.75	1245.0	1038.0	50	0.1	88.2
34	0.0	99.7	21.38	1283.0	1069.0	49	0.0	88.2
35	0.0	99.7	22.01	1321.0	1100.0	49	0.0	88.2
36	0.0	99.7	22.64	1358.0	1132.0	49	0.0	88.2
37	0.0	99.7	23.27	1396.0	1163.0	48	0.0	88.2
38	0.0	99.7	23.90	1434.0	1195.0	48	0.0	88.2
39	0.0	99.7	24.52	1471.0	1226.0	48	0.0	88.2
40	0.0	99.7	25.15	1509.0	1258.0	48	0.0	88.2
41	0.0	99.7	25.78	1547.0	1289.0	47	0.0	88.2
42	0.0	99.7	26.41	1585.0	1321.0	47	0.0	88.2
43	0.0	99.7	27.04	1622.0	1352.0	47	0.0	88.2
44	0.0	99.7	27.67	1660.0	1383.0	46	0.0	88.2
45	0.0	99.7	28.30	1698.0	1415.0	46	0.0	88.2
46	0.0	99.7	28.93	1736.0	1446.0	45	0.0	88.2
47	0.2	99.9	29.56	1773.0	1478.0	44	0.1	88.3
48	0.0	99.9	30.18	1811.0	1509.0	43	0.0	88.3
49	0.0	99.9	30.81	1849.0	1541.0	42	0.0	88.3
50	0.0	99.9	31.44	1887.0	1572.0	41	0.0	88.3
		·		Estimated Net	Annual Sedim	nent (TSS) Loa	ad Reduction =	88 %



www.imbriumsystems.com

info@imbriumsystems.com



RAINFALL DATA FROM TORONTO CENTRAL RAINFALL STATION

INCREMENTAL AND CUMULATIVE TSS REMOVAL FOR THE RECOMMENDED STORMCEPTOR® MODEL

info@imbriumsystems.com

Page 5

www.imbriumsystems.com

Stormceptor EF / EFO	Model [Diameter	Min Angle Inlet / Outlet Pipes	Max Inle Diam	•	Max Out Diam	•		nveyance v Rate
	(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60
EF10 / EFO10	3.0	10	90	1828	72	1828	72	2830	100
EF12 / EF012	3.6	12	90	1828	72	1828	72	2830	100

Maximum Pipe Diameter / Peak Conveyance

SCOUR PREVENTION AND ONLINE CONFIGURATION

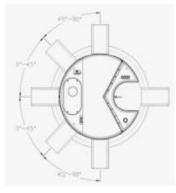
Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.

DESIGN FLEXIBILITY

► Stormceptor® EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION

► While Stormceptor® EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor® EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.


info@imbriumsystems.com

Page 6

www.imbriumsystems.com

INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

0° - 45° : The inlet pipe is 1-inch (25mm) higher than the outlet pipe.

45° - 90° : The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

Pollutant Capacity

Stormceptor EF / EFO	Mo Diam		Pipe In	(Outlet vert to Floor)	Oil Vo	lume	Sedi	mended ment nce Depth *	Maxi Sediment	-	Maxin Sediment	-
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)
EF4 / EFO4	1.2	4	1.52	5.0	197	52	203	8	1190	42	1904	5250
EF6 / EFO6	1.8	6	1.93	6.3	348	92	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	545	144	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	874	231	610	24	17790	628	28464	78500
EF12 / EF012	3.6	12	3.89	12.8	1219	322	610	24	31220	1103	49952	137875

*Increased sump depth may be added to increase sediment storage capacity ** Average density of wet packed sediment in sump = $1.6 \text{ kg/L} (100 \text{ lb/ft}^3)$

Feature	Benefit	Feature Appeals To
Patent-pending enhanced flow treatment and scour prevention technology	Superior, verified third-party performance	Regulator, Specifying & Design Engineer
Third-party verified light liquid capture and retention for EFO version	Proven performance for fuel/oil hotspot locations	Regulator, Specifying & Design Engineer, Site Owner
Functions as bend, junction or inlet structure	Design <mark>f</mark> lexibility	Specifying & Design Engineer
Minimal drop between inlet and outlet	Site installation ease	Contractor
Large diameter outlet riser for inspection and maintenance	Easy maintenance access from grade	Maintenance Contractor & Site Owner

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

info@imbriumsystems.com

Table of TSS Removal vs Surface Loading Rate Based on Third-Party Test Results Stormceptor® EFO

SLR (L/min/m²)	TSS % REMOVAL						
1	70	660	46	1320	48	1980	35
30	70	690	46	1350	48	2010	34
60	67	720	45	1380	49	2040	34
90	63	750	45	1410	49	2070	33
120	61	780	45	1440	48	2100	33
150	58	810	45	1470	47	2130	32
180	56	840	45	1500	46	2160	32
210	54	870	45	1530	45	2190	31
240	53	900	45	1560	44	2220	31
270	52	930	44	1590	43	2250	30
300	51	960	44	1620	42	2280	30
330	50	990	44	1650	42	2310	30
360	49	1020	44	1680	41	2340	29
390	48	1050	45	1710	40	2370	29
420	48	1080	45	1740	39	2400	29
450	48	1110	45	1770	39	2430	28
480	47	1140	46	1800	38	2460	28
510	47	1170	46	1830	37	2490	28
540	47	1200	47	1860	37	2520	27
570	46	1230	47	1890	36	2550	27
600	46	1260	47	1920	36	2580	27
630	46	1290	48	1950	35		

info@imbriumsystems.com

APPENDIX D Sanitary Data Analysis

U Lithos

SANITARY SEWER DESIGN SHEET

1444-1458 Cawthra Road

CITY OF MISSISSAUGA

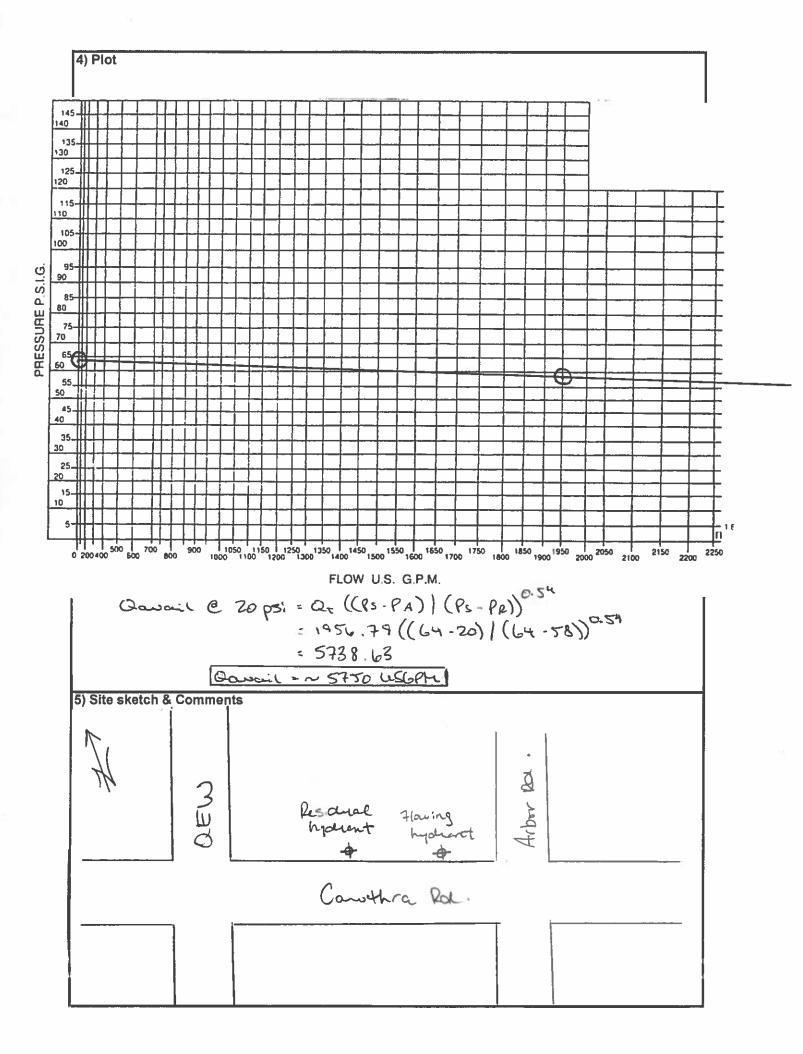
		RESIDE	NTIAL		COMMERC	CIAL				FLO	w					s	EWER	DESIGN	
LOCATION	SECTION AREA	Single & Semi- Dettached Dwellings	Townhouses	SECTION POP.	COMMERCIAL/OFFICE AREA	SECTION POP. @ 50p/ha	TOTAL ACCUM. POP.	AVERAGE RESIDENTIAL FLOW '@' 302.8 L/c/d	HARMON PEAKING FACTOR	RES. PEAK FLOW	AVERAGE COMMERCIAL/O FFICE FLOW @ 302.8 L/c/d	TOTAL ACCUM. AREA	INFILT. @ 0.2 L/s/ha.	TOTAL DESIGN FLOW	PIPE LENGTH (m)	PIPE DIA.	SLOPE	FULL FLOW CAPACITY n = 0.013	% of DESIG CAPACITY
column number	(ha.)	@ 4.15 ppu	@ 3.5 ppu	(persons)	(ha.)	(persons)	(persons)	(L/s) 8	0	(L/s) 10	(L/s)	(ha.) 12	(L/s) 13	(L/s) 14	(m) 15	(mm) 16	(%) 17	(L/sec)	(%) 19
Existing Condition		2	3	4		0		3	3	10		12	13	14	15	10		10	.9
Residential Development	0.521	4	0	17	0.00	0	17	0.06	4.39	0.255	0.00	0.521	0.104	0.36					
Proposed Condition																			
Residential-Use Development	0.521	4	12	59	0.00	0	59	0.21	4.30	0.88	0.00	0.521	0.104	0.99					
Residential/Commercial Flow Ra Infiltration - 0.2 L/ha Peaking Factor = 1 + [14 / (4 + P ⁱ Site Area: 0.506 ha												Total N	let Flow	0.63					
🖳 Litho	S	Prepared by: Reviewed by	: Nick Moutzo				Project N	1444-1458 o: UD17-08		Road									
		Date: May 20)20				City of Mi	ssissauga										Sheet 1 (DF 1

APPENDIX E Water Data Analysis

U Lithos

WATER DEMAND

1444-1458 Cawthra Road File No: PUD17-094 Date: May 2020 Prepared by: John Pasalidis, P.E., M.A.Sc. Reviewed By: Nick Moutzouris, P.Eng., M.A.Sc.


Fire Flow Calculation

	Required 'Desig	ın' Flow =	83.42 1322	L/s US GPM		Note: Required 'Design' Flow is the maximum of either: 1) Fire Flow + Maximum Daily Demand 2) Maximum Hourly Demand
	•	Demand = Fire Flow =	0.29 83.13	L/s L/s		
or	Max. Hou Max. Hourly	urly Demand Pea Demand =		= 3.0 43 L/s	=	7 US GPM
or	Max. D Max. Daily Demand	aily Demand Pea l =		⁻ = 2.0 29 L/s	=	(For residential) 5 US GPM
		=	0.1	4 L/s 2 US GPM		1 US GPM=15.852L/s
		Population = ercial Area = / Demand = =		44 Persons 0 Persons 80 L/cap/day		design sheet for Residential) design sheet for Commercial) 1 US Gallon=3.785 L
	Domestic Flov	w Calculatio	ons			
	F =	83.13 L/s 1318 US	GPM			
	F =	4,988.00 L/m		2100	L/11011	
	25% W 10% S 75% Total S	0 to 20.1 eparation Charge	to 30m	2128	L/min	
4	Separation Charge 15% N 25% E	0 to				
	0% Reduct F =	<u>i</u> ion for NFPA Sp 2850 I/miı		em		
3	F = Sprinkler Reduction	2850 L/m	IN			
2		mbustible occupa				
	F =	3,800 L/m	in	Round to ne	earest 100 l/m	nin
	F =	3,810.51 L/m				
	Level -1= =	200 m ² 300 sq.n	n	25%		according to the OBC
	Level 1= Level 2=	200 m ² 200 m ²		100% 25%		Note: The levels indicated, reference the worst case scenario for townhouse fire separation
	A = total floor	r area in sq.m. e	cluding bas	sements, incluc Area Applied	les garage*	
	C= construct =	ion type coefficie 1.0 Ord	ent inary Consti	ruction		
	Where F= Fire flow					
1	F= 220 C (A) ^{1/2}					

UU Li	thos			1. Prepare	444-1 File ed by: J	458 Caw No: PUI Date: May John Pasa		d M.A.Sc.
<u>Pressure Losse</u> Hazen-Williams Formu								
$V = kCR_{h}^{0.63}xS^{0.54}$								
	conversion factor (0.849 for S		S customary	units)				
	roughness coefficient (PVC :	140-150)						
S= h _f /L								
Rh= D/4 -	hydraulic radius (D/4 for full fl	ow, A/P _w for partially fig	ow)					
Fire Fiahtir	ng and Domestic Head L	055						
Flow Requirements=	83.4 L/s							
Diameter=	150 mm							
Area=	1.77E-02 m ²							
L=	13 m							
V= S=	4.72 m/s 1.17E-01							
R _h =	0.04							
H _r =	1.52 m							
=	2.17 psi							
Flow Test (dated	April 11, 2018)							
en: Static Pressure =	64 psi	Flow =	0	GPM	=	0.00	1/s	
Residual Pressure =	58 psi	Flow =	1950	GPM	=	123.01		
Pressure		_						
(psi)	Flow (L/s)							he flow requirement
64 58	0.00 123.01	83.42 L/s can b guidelines	e provided a	t minimum	pressu	ure (20.3 p	si + Losses) as set out by the F
59.9	83.42	Fire Flow is ab	ove minimu	m of		22.47	psi (20.3+	-Hf)

Since the flow of 83.42 L/s required for the proposed development is provided in the existing watermain at 59.9 psi (which is more than the minimum of 22.47 psi), we anticipate that the existing watermain infrastructure can support the proposed development.

HYDRANT FLOW TEST FORM			
Project No: 2018 - DE	046	Date:	Apr. 11, 2018
Site Location: 1444 - 1458 (anothra Rd. Hyd	rants Opened by:	Peel Region Water
<u>Uississaug</u>	a, On:	Tested By:	Peel Region Water
1) Required photos:			
Site Id & Date	Condition of Flow	Hydrant	
Location Overview	Condition of Resid	ual Hydrant	
Other			
2) Test Data			
Time of Test: 1300			
Location of Test: (Flow) In Lont	of 1424 Ca	wthra Roy S	outh side
Location of Test: (Flow) <u>In front</u> (Residual) <u>In front</u>	1 1476 Can	wthra Rol. se	with side
Main Size: 300 mm	V)	
Static Pressure: 64 pSi			
Number of Outlets & Orifice Size	Pitot Pressure	Flow (USGPM)	Residual Pressure
1 x 25"	54	1250	60
2 2 × 2.5"	34	1950	58
3			
4			
3) Calculations			
Q= 29.83 cd²vp			discharge (1 in smooth pipe)
$Q_1 = (29.83)(0.9)(2.5^{\mu})^2$	-54	d- pipe diamete p- pitot reading	(psi)
= 1233.03		Q- flow (USGP	M)
Q1 = ~ 1250 US6PM			1. 2
Qr = 2 (29 83) (0.9) (2.5")	2 349		
= 1956.79			
Qt = ~ 1950 USUPM		£	
Note: Hydrants tested accordin	g to NFPA 291	I: Recommended	Practice for Fire Flow
lestir	ig and Markin	g of Hydrants	

