

1240 BRITANNIA ROAD WEST PROPOSED RESIDENTIAL DEVELOPMENT URBAN TRANSPORTATION CONSIDERATIONS UPDATE REPORT

City of Mississauga

Prepared For: National Homes (1240 Britannia) Inc.

October 2020

TABLE OF CONTENTS

1.0	INT	RODUCTION	1
	1.1	October 2020 Update	1
	1.2	Study Scope	3
2.0	THE	E SITE TODAY	6
3.0	PRO	OPOSED DEVELOPMENT	6
	3.1	Proposed Private Driveway	6
	3.2	Waste Collection Vehicle Circulation Plan	8
	3.3	Cabrera Crescent Cul-de-sac	8
	3.4	Britannia Road Right-of-Way Widening	9
4.0	TRA	ANSPORTATION CONTEXT	10
	4.1	Area Road Network	10
	4.2	Area Transit Services	13
	4.3	Area Cycling Facilities and Infrastructure	13
5.0	VEH	HICLE PARKING CONSIDERATIONS	16
	5.1	Zoning By-law Requirements	16
	5.2	Proposed Parking Supply	16
6.0	TRA	AFFIC VOLUME FORECASTS	17
	6.1	Existing Traffic Volumes	17
	6.2	Future Background Traffic Volumes	
	6.3	Site Traffic Volumes	20
		6.3.1 Site Trip Generation	20
		6.3.2 Site Traffic Distribution/Assignment	21
	6.4	Future Total Traffic Volumes	21
7.0	OPI	ERATIONS ANALYSIS	24
	7.1	Analysis Scenarios	24
	7.2	Analysis Methodology	24
	7.3	Analysis Summary	25
		7.3.1 Signalized Intersection Analysis	25
		7.3.2 Unsignalized Intersection Analysis	28
	7.4	Community Impacts	30
8.0	TRA	ANSPORTATION DEMAND MANAGEMENT PLAN	31
	2 1	TDM Plan Objectives	31

9 0	SUN	/MARY	Y AND CONCLUSIONS	3:
	8.4	Imple	ementation	32
		8.3.3	Travel Mode Information Packages	32
		8.3.2	Visitor Bicycle Parking	32
		8.3.1	Pedestrian Connections	32
	8.3	TDM	Plan Strategies	32
		8.2.1	Existing Travel Mode Characteristics	31
	8.2	Site T	Fransportation Characteristics	31

LIST OF TABLES

Table 1	Response to Comments	2
Table 2	Site Statistics Comparison	2
Table 3	Zoning By-Law 0225-2007 Minimum Vehicle Parking Requirements	16
Table 4	Site Trip Generation	20
Table 5	Site Traffic Distribution	21
Table 6	Britannia Road W / Whitehorn Avenue / Bidwell Trail Analysis Summary	25
Table 7	Britannia Road West / Brookhaven Way Analysis Summary	26
Table 8	95 th Percentile Queueing Summary (Signalized Intersections)	27
Table 9	Unsignalized Intersection Analysis Summary	28
Table 10	Existing Area Travel Mode Split	31
	LIST OF FIGURES	
	LIST OF FIGURES	
Figure 1:	Site Location	4
Figure 2:	Site Context	5
Figure 3:	Site Plan	7
Figure 4:	Existing Road Network	11
Figure 5:	Local Area Intersections Lane Configuration and Traffic Control	12
Figure 6:	Area Transit Context	14
Figure 7:	Area Cycling Context	15
Figure 8:	Existing Traffic Volumes	18
Figure 9:	Future Background 2025 Traffic Volumes	19
Figure 10:	Site Traffic Volumes	22
Figure 11:	Future Total 2025 Traffic Volumes	23

TABLE OF APPENDICES

Appendix A: Architectural Site Plans

Appendix B: Driveway Sight Distance Diagrams

Appendix C: Vehicle Manoeuvring Diagrams and Waste Collection Plan

Appendix D: Synchro Capacity Analysis Output Sheets

Appendix E: Existing Turning Movement Count (TMC) Data

Appendix F: Correspondence with City and Region Staff

1.0 INTRODUCTION

BA Group has been retained by National Homes to provide transportation consultation services in relation to a proposed residential townhouse development located at 1240 Britannia Road West (referred to herein as "the site") in the City of Mississauga.

The site is located on the south side of Britannia Road West, between Whitehorn Avenue and Brookhaven Way. The site is approximately 21,474 m² in size and is bounded by Britannia Road West to the north, Galesway Boulevard to the south, residential properties on Cabrera Crescent to the west and residential properties on Candlebrook Court to the east.

The site location and context are illustrated in Figure 1 and Figure 2.

The development program contemplates a total of 106 new residential townhouse units, serviced by internal private condominium roads and the existing Cabrera Crescent, with access provided directly from Galesway Boulevard. This report documents BA Group's updated review of the transportation-related aspects of the project including parking, refuse collection and fire vehicle access, and future traffic operations as part of a City of Mississauga Zoning By-law Amendment (ZBA) and Site Plan Approval (SPA) process.

1.1 OCTOBER 2020 UPDATE

BA Group previously submitted an Urban Transportation Considerations Report for 1240 Britannia Road West, dated March 2020. Upon review of this document, comments were received from the City of Mississauga, dated July 16, 2020. Comments related to transportation have been addressed through updates to this report. A summary of the comments received and their response is provided in **Table 1**.

In addition to the response to comments, site statistics have also been updated for the revised submission. **Table 2** is a comparison between the current and previously submitted site statistics.

TABLE 1 RESPONSE TO COMMENTS

Agency Comment	Response
(i) Should the applicant not be able to satisfy Development Engineering conditions No. 1 and 2, the following will be required: 3.3 Cabrera Crescent Cul-de-Sac- The extension of Cabrera Crescent from Galesway Boulevard to the Cul-de-Sac is a requirement as originally intended.	It is our understanding that the applicant is currently making arrangements with the City to obtain the rights to the lands originally intended to be used for an extension of Cabrera Crescent. As such, this revised application continues to reflect a site plan that assumes the termination of Cabrera Crescent in a cul-de-sac that has been improved to meet the appropriate City road standard.
(ii) 6.1 Existing Traffic Volumes- Provide the Spectrum data TMC tables as apart of the Appendix.	TMC data included as Appendix E
(ii) Include a queue table. The table should include the intersection, individual lane movements, 95th Percentile Queues in the A.M. and P.M. peak hours. Include the queue reports (Synchro) for signalized intersections.	Section 7.3.1.1 and Section 7.3.2.1 added.
(iii) The TIS shall include a section in the report to address Community Impacts. This section shall include summary statements outlining the resulting traffic increases to the critical streets, movements and intersections. Comments or concerns from the community through future public meetings and engagements that are related to traffic shall also be addressed in this section.	Section 7.4 added.
(iv) The report is to be stamped by a professional engineer.	This report has now been stamped by a Professional Engineer.

TABLE 2 SITE STATISTICS COMPARISON

Land Use	March 2020	October 2020 (current)	Net Change
Dual Front Townhomes	48 units	45 units	-3 units
Standard Townhomes	60 units	61 units	+1 unit
Freehold Detached Townhomes	1 unit	-	-1 unit
Total	109 units	106 units	-3 units

1.2 STUDY SCOPE

Based on the nature and scale of the proposed development, as well as consultation with City of Mississauga and Region of Peel Transportation Planning staff, the following study scope has been identified and reviewed as part of this report.

- Weekday morning and afternoon peak hour traffic capacity analyses at the following intersections:
 - Britannia Road West / Bidwell Trail / Whitehorn Avenue;
 - o Britannia Road West / Brookhaven Way / Douguy Boulevard;
 - Whitehorn Avenue / Galesway Boulevard;
 - Galesway Boulevard / Brookhaven Way / Prestonwood Crescent;
 - Galesway Boulevard / Cabrera Crescent;
 - Galesway Boulevard / Candlebrook Court; and
 - Galesway Boulevard / Proposed Site Driveway.
- Consideration of traffic allowances for any relevant area background development(s) identified using the City of Mississauga's Planning Information Hub tool.
- Consideration of general background corridor traffic growth along Britannia Road West based on historical traffic count information.
- Consideration of new site-generated vehicle trips forecast based on relevant proxy site survey data and the ITE Trip Generation Manual (10th Edition).
- A review of the vehicle and bicycle parking requirements for the development as proposed compared to the prevailing Zoning By-law requirement.
- A functional review of the proposed new internal roads with particular respect to fire route requirements and waste collection vehicle routing and manoeuvres.
- A sightline analysis of the proposed site driveway.

FIGURE 1 - SITE LOCATION

FIGURE 2 - SITE CONTEXT

2.0 THE SITE TODAY

The site is currently occupied by two detached dwellings, with two vehicle access points located on Britannia Road West. Pedestrian sidewalks are currently provided along all boundary roads.

It is noted that there is an existing closed driveway connection to the property on Galesway Boulevard at the southwest corner of the site. Presumably, this driveway connection was constructed in anticipation of the existing Cabrera Crescent being extended from its cul-de-sac terminus to reconnect with Galesway Boulevard. The current development plan for the site does not propose extension of Cabrera Crescent, as discussed in **Section 3.0**.

The City of Mississauga Zoning By-law 0225-2007 designates the site as a Residential Zone (R1), bordered by medium-density residential (various RM code) zones on all sides. Commercial lots exist both northeast and northwest of the site, located along Britannia Road at Creditview Road and at Douguy Boulevard.

There are a number of public parks situated within walking distance of the site, in addition to Whitehorn Public School and BraeBen Golf Course.

3.0 PROPOSED DEVELOPMENT

The proposed development comprises 106 residential units, including 45 dual-frontage townhouse dwellings and 61 standard townhomes (a decrease of 3 units overall compared to the March 2020 development application). Additionally, 6 secondary suites are proposed within 6 of the dual-frontage townhouses fronting onto Britannia Road West. The existing residential uses on the site will be demolished as part of the redevelopment.

A private driveway on Galesway Boulevard, between Cabrera Crescent and Candlebrook Court, is proposed to accommodate fire access and waste collection vehicle access, as well as vehicular access to the visitor parking spaces and resident parking spaces.

Two (2) parking spaces will be provided per unit for the townhouses and 1 additional parking space will be provided for those townhouses with a secondary suite. A total of 27 visitor parking spaces to serve the townhouses, located along the private road, are also proposed.

The proposed site plan is shown in Figure 3. An architectural site plan is included in Appendix A.

3.1 PROPOSED PRIVATE DRIVEWAY

A private driveway on Galesway Boulevard, between Cabrera Crescent and Candlebrook Court, is proposed to provide vehicular access to the development. The driveway is located approximately 90 meters east of Cabrera Crescent.

The proposed private driveway will intersect with Galesway Boulevard at a one-way, STOP-controlled intersection, with Galesway Boulevard continuing to operate under free-flowing conditions.

The proposed private driveway (internal private road) has been designed to accommodate a 7.0-meter wide pavement width and a 1.5-metre wide pedestrian sidewalk on one side. At-grade visitor parking for the development will be located in various locations along the private road.

All private road intersections and corners have also been designed to accommodate a 9.0-metre inside radius and 15.0-metre outside radius, as per the requirements of an appropriate fire route as specified within the Ontario Building Code.

Sight distance diagrams illustrating appropriate driver sight lines are provided at the Galesway Boulevard driveway are included in **Appendix B**.

3.2 WASTE COLLECTION VEHICLE CIRCULATION PLAN

Vehicle Manoeuvring Diagrams (VMDs) illustrating waste collection vehicle manoeuvres for a Peel Region side-loading vehicle are included in **Appendix C**. Note that in order to avoid requiring the collection vehicle to reverse more than 15 metres, as per the Region of Peel *Waste Collection Design Standards Manual*, common collection points having been utilized for units along the tangent portions of the internal private road. Waste collection points for each unit, 3 m² in size (consolidated in the common collection points for the aforementioned units), are highlighted on this plan as well.

The suitability of this waste collection arrangement is currently being discussed with Region Waste Management staff.

3.3 CABRERA CRESCENT CUL-DE-SAC

An existing and closed driveway connection to the property on Galesway Boulevard, at the southwest corner of the site, is located approximately 180 metres east of Whitehorn Avenue. Presumably, this driveway connection was constructed in anticipation of the existing Cabrera Crescent being extended from its cul-desac terminus to reconnect with Galesway Boulevard.

The subject development lands include the properties that would have been utilized to complete the Cabrera Crescent connection to Galesway Boulevard. However, this public road connection is not proposed as part of the development plan. Instead, it is proposed that the existing driveway 'stub' on Galesway Boulevard be removed and replaced with the private road driveway discussed in **Section 3.1**.

Currently, Cabrera Crescent extends from Galesway Boulevard and terminates in a sub-standard cul-de-sac. Given that the development plan does not include the extension of Cabrera Crescent from this cul-de-sac to reconnect with Galesway Boulevard, it is proposed that the cul-de-sac be reconstructed to the appropriate permanent standard.

As such, the development plan includes the reconstruction of the Cabrera Crescent cul-de-sac to be compliant with City of Mississauga Transportation and Works Standard 2211.240 (Residential Road Cul-de-Sac). This reconstruction notably includes a 13.0-metre pavement radius and inclusion of a 3.5 to 5.0-metre wide boulevard around the perimeter of the cul-de-sac, as per the above noted standard.

Cabrera Crescent currently provides access to 25 existing detached dwelling homes. From a traffic capacity perspective, there is no necessity to extend Cabrera Crescent to provide a second access point to Galesway Boulevard – the single access point is sufficient for the level of residential density the road wills serve.

From a vehicular access perspective, the provision of a cul-de-sac at the terminus of Cabrera Crescent as per the City's standard is sufficient to accommodate the turnaround requirements of municipal service vehicles (i.e., street cleaning, snow removal and waste/recycling vehicles). The existing residential houses on Cabrera Crescent have been built and occupied since at least 2009 (according to Google Street View photography) and the current configuration of the road – even with the sub-standard cul-de-sac terminus that exists today – appears to allow for the appropriate servicing of these houses.

The City of Mississauga does not specify the maximum number of residential units that may be located on a cul-de-sac road. However, the City of Vaughan specifies that a maximum of 40 units may be located on a cul-de-sac in its Standard Design Drawings (Standard Drawing C-2: Residential Cul-de-Sac). Furthermore, there are several existing cul-de-sacs within the local neighbourhood that contain greater than 25 residential units. These include Candlebrook Court, Prosper Court, Remington Court and Barnswallow Court. As such, the provision of 25 residential units on Cabrera Crescent is not unprecedented with respect to municipal engineering standards or existing conditions.

An emergency vehicle access connection between the Cabrera Crescent cul-de-sac and the private road serving the development is also proposed. This access will serve as a secondary access point for emergency vehicles to the development, in addition to the site driveway on Galesway Boulevard. This access point will gated and not available for use by non-emergency vehicles. It is noted that this access point has been designed to accommodate the turning requirements of a fire route (9.0 metres inside radius, 15.0 outside radius). This emergency vehicle access point would also, logically, serve as a secondary access point for emergency vehicles to the existing Cabrera Crescent as well.

The suitability of this access arrangement from an emergency vehicle access perspective was confirmed with City staff in a meeting held on September 14, 2020. A summary of the outcomes of this meeting, sent in an email to all those in attendance, is included in **Appendix F** for reference.

3.4 BRITANNIA ROAD RIGHT-OF-WAY WIDENING

A conveyance of lands along site's Britannia Road West frontage is being granted to the Region of Peel to achieve a 22-metre from centerline right-of-way width for the road. This conveyance has been discussed with Region staff and approved by the Traffic Development section, as per the correspondence included in **Appendix F**.

As part of the site development plan, the existing multi-use path along the site's Britannia Road West frontage will be realigned to more closely match the alignment of the path east and west of the site. A 1.0m-wide asphalt splash pad between the path and the edge of the roadway is also being provided, as requested by Region staff. Illustrative cross-sections of the site's Britannia Road West frontage are included in the correspondence attached in **Appendix F**.

4.0 TRANSPORTATION CONTEXT

4.1 AREA ROAD NETWORK

The existing road network within the study is shown in **Figure 4**. A brief description of the area road network is provided as follows.

Britannia Road West is classified as a Regional Arterial road, oriented east-west and extending between Highway 407 in the west and Hurontario Street in the east. The road extends further than these boundaries in both directions, under the names Britannia Road and Britannia Road East. This road is under the jurisdiction of the Region of Peel and consists of a three lanes of travel in either direction nearby the site. The posted speed limit is 60 km/h in vicinity of the site.

Whitehorn Avenue is classified as a Minor Collector road, oriented north-south and extending between Britannia Road West in the north and Bristol Road West in the south. This road is under the jurisdiction of the City of Mississauga and consists of a single lane of travel in either direction. The assumed speed limit is 50 km/h in vicinity of the site.

Galesway Boulevard is classified as a local street, oriented east-west and extending between Whitehorn Avenue in the west and Terry Fox Way in the east. This road is under the jurisdiction of the City of Mississauga and consists of a single lane of travel in either direction. The assumed speed limit is 50 km/h in vicinity of the site.

Brookhaven Way is classified as a local street, oriented north-south and extending between Whitehorn Avenue in the west and Terry Fox Way in the east. This road is under the jurisdiction of the City of Mississauga and consists of a single lane of travel in either direction. The assumed speed limit is 50 km/h in vicinity of the site.

Cabrera Crescent is classified as a local street, oriented north-south and extending from Galesway Boulevard in the south and terminating in a cul-de-sac to the north. This road is under the jurisdiction of the City of Mississauga and consists of a single lane of travel in either direction.

Candlebrook Court is classified as a local street, oriented north-south and extending from Galesway Boulevard in the south and terminating in a cul-de-sac to the north. This road is under the jurisdiction of the City of Mississauga and consists of a single lane of travel in either direction.

Existing area intersection lane configurations and traffic control is illustrated in **Figure 5**.

FIGURE 4 - AREA ROAD CLASSIFICATION

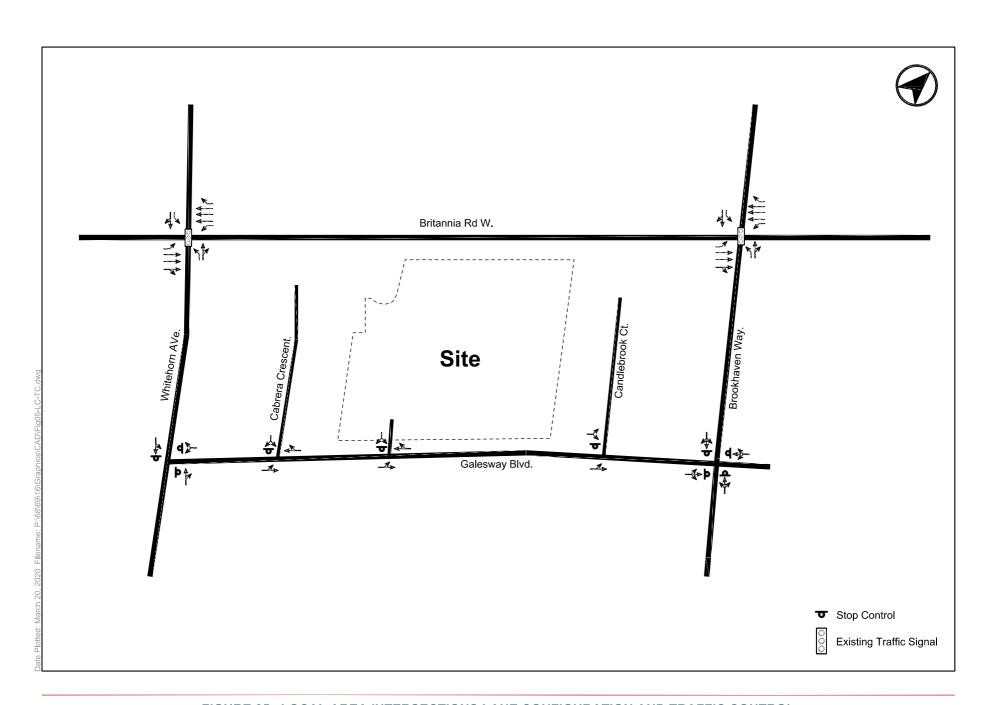


FIGURE 05 LOCAL AREA INTERSECTIONS LANE CONFIGURATION AND TRAFFIC CONTROL

4.2 AREA TRANSIT SERVICES

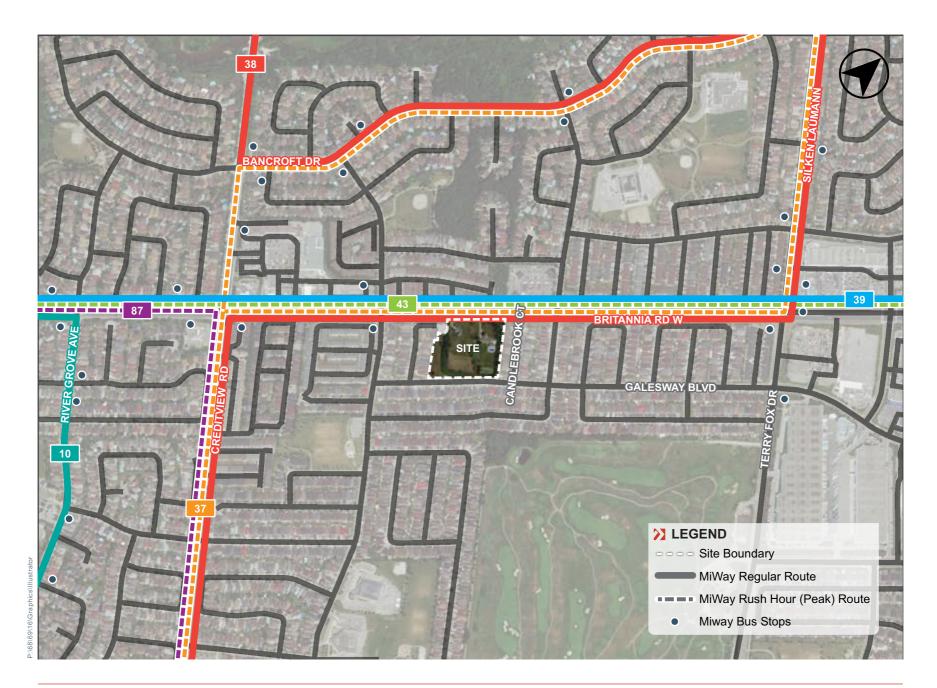
The site is served by Mississauga MiWay transit services running along Britannia Road West. In particular, it is serviced by the bus routes 37, 39, 43, 68 and 314. A brief description of these routes is provided below.

37 Creditview-Erindale GO is a regular service bus route. Its predominant travel path is in a north-south direction along Creditview Road, looping from the Erindale GO Station to Britannia Road West and back. This service has 20-30 minute headways between consecutive vehicles and services the proposed development site in both directions.

39 Britannia is a regular service bus route. Its predominant travel path is in an east-west direction along Britannia Road West, extending from the Renforth Transitway Station in the east, and Meadowvale Town Centre Transit Terminal in the west. This service has 20-30 minute headways between consecutive vehicles and services the proposed development site in both directions.

43 Matheson-Argentia is a regular service bus route. Its predominant travel path is in an east-west direction along Britannia Road West, extending from the Renforth Transitway Station in the east, and Meadowvale Town Centre Transit Terminal in the west, via an alternative route to the 39 Britannia service. This service has 20-30 minute headways between consecutive vehicles and services the proposed development site in both directions.

314 Rick Hansen-Creditview is a school bus route, operating before and after school times from Rick Hansen Secondary School, north to Britannia Road West and then south down Creditview Road.


Bus stops for the abovementioned routes are located east and west of the site at the intersections of Britannia Road West / Whitehorn Avenue and Britannia Road West / Brookhaven Way, approximately 200 metres away. The existing area transit context is illustrated in **Figure 6**.

4.3 AREA CYCLING FACILITIES AND INFRASTRUCTURE


The site is located in an area with excellent access to a variety of cycling facilities. The site is located directly adjacent to a multi-use trail along Britannia Road West, in addition to a signed bike route along Galesway Boulevard. Whitehorn Avenue is also a signed bike route.

Further to the east, another multi-use trail exists on Terry Fox Way, and further west on Creditview Road is another multi-use trail. In conjunction with one another, these bicycle routes and facilities enable cyclists to easily travel between the site and popular destinations such as Downtown Mississauga and a variety of other popular trip destinations around Mississauga and Peel Region.

The local area cycling context is shown in Figure 7.

FIGURE 6 - AREA TRANSIT CONTEXT

FIGURE 7 - AREA CYCLING CONTEXT

5.0 VEHICLE PARKING CONSIDERATIONS

5.1 ZONING BY-LAW REQUIREMENTS

BA Group has undertaken a review of the prevailing Zoning By-law vehicle parking requirements as applicable to the site's location and proposed development programme. The site is subject to City of Mississauga By-Law 0225-2007.

Table 3 lists the minimum off-street vehicle parking requirements applicable to the site as set out in By-law 0225-2007.

TABLE 3 ZONING BY-LAW 0225-2007 MINIMUM VEHICLE PARKING REQUIREMENTS

Land Use	No. of Units ¹	Type of Space	Parking Requirement	No. of Spaces Required
Residential (Semi-detached Dwelling	106	Resident 2.0 spaces per unit		212 spaces
off of CEC - Road ²)	100	Visitor	0.25 spaces per unit	27 spaces
Residential (Second Unit)	6	Resident/Visitor	1.0 space per unit	6 spaces
Total parking spaces requ	245 spaces			

Notes:

Based on the foregoing, the in-effect Mississauga By-law 0225-2007 requires the provision of 245 parking spaces in total for the proposed development.

5.2 PROPOSED PARKING SUPPLY

Parking for all townhouses units will be provided at a rate of 2 spaces per unit. For the 6 townhouse units with secondary suites, an additional parking space will be provided.

Furthermore, 27 visitor parking spaces will be provided along the private road to accommodate additional parking for visitors to the townhouse units.

The proposed parking spaces serving the development are illustrated on the architectural site plans included in **Appendix A**.

Based on the foregoing, the proposed parking supply meets the requirements of the prevailing and applicable City of Mississauga Zoning By-law 0225-2007 and is therefore considered to be appropriate.

^{1.} Site statistics are based on plans provided by National Homes dated October 13, 2020.

^{2. &#}x27;CEC – Road' = Common Elements Condominium Road.

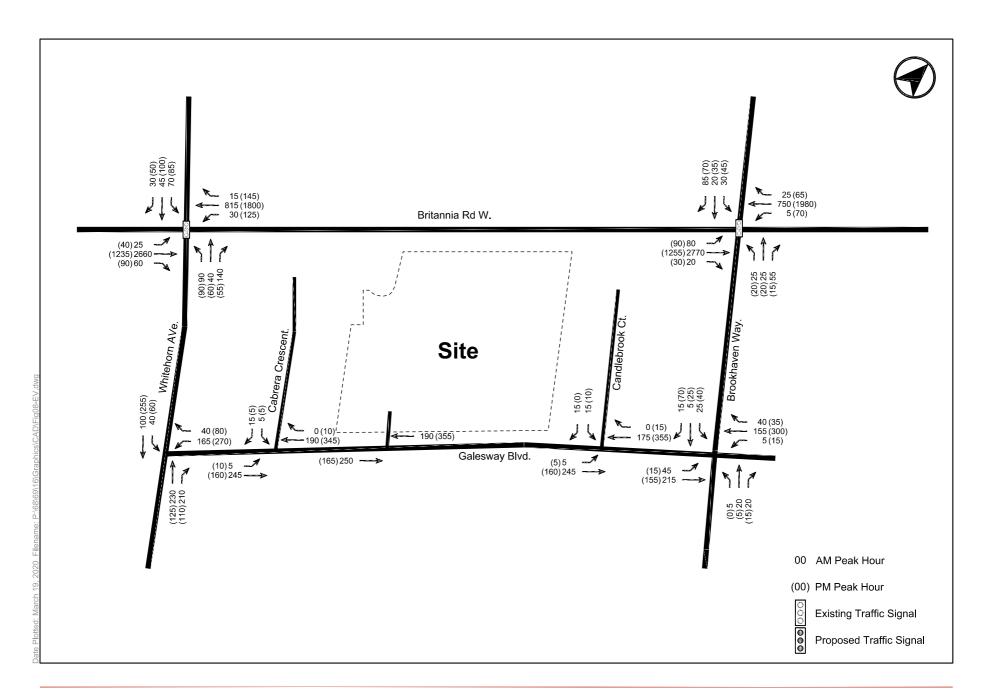
6.0 TRAFFIC VOLUME FORECASTS

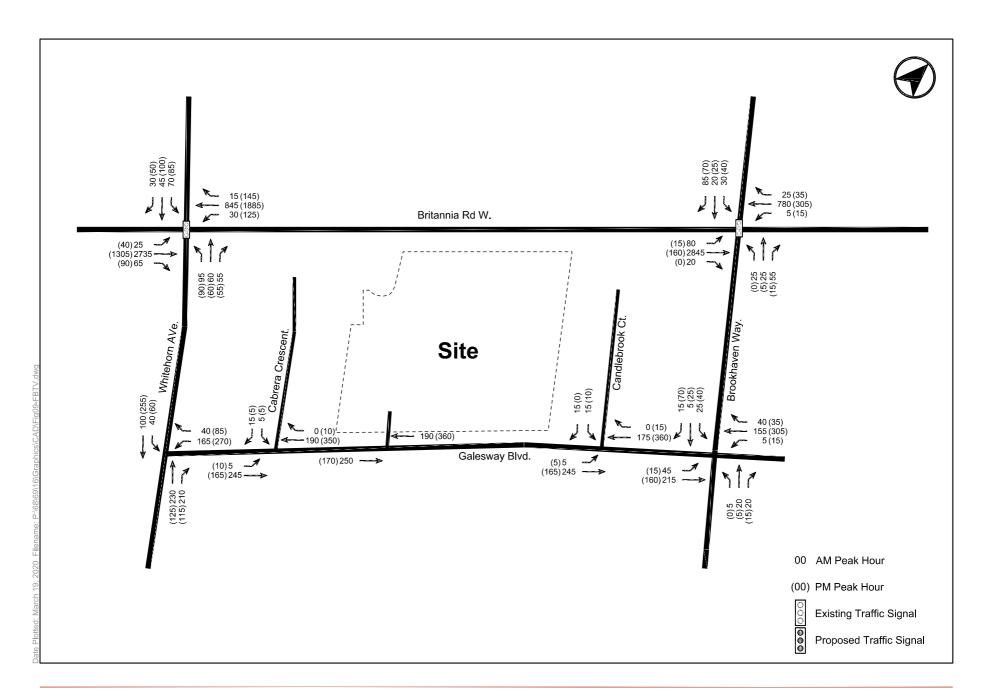
6.1 EXISTING TRAFFIC VOLUMES

Existing public street intersection peak hour traffic volumes have been established, based upon a review of recent traffic counts undertaken by Spectrum Traffic Data Inc. in March 2020. Turning movement counts were undertaken at the following locations:

- Britannia Rd West / Bidwell Trail / Whitehorn Avenue;
- Britannia Rd West / Brookhaven Way / Douguy Boulevard;
- Whitehorn Avenue / Galesway Boulevard;
- · Galesway Boulevard / Brookhaven Way / Prestonwood Crescent;
- Galesway Boulevard / Cabrera Crescent;
- Galesway Boulevard / Candlebrook Court; and
- Galesway Boulevard / Proposed Site Driveway.

The existing turning movement counts were reviewed in detail to ensure a general consistency in the traffic volumes on links between intersections. Where necessary, minor volume adjustments were made to balance traffic volumes between intersections to provide a balanced and representative traffic volume base for the purposes of the traffic operations analyses undertaken as part of this assessment.


Existing, baseline area traffic volumes for the morning and afternoon peak hours are summarized in Figure 8.


6.2 FUTURE BACKGROUND TRAFFIC VOLUMES

An annual corridor traffic growth rate of 0.5% (cumulating) was adopted for morning and afternoon peak hours, for east and west volumes on Britannia Road West. Based on historical data acquired from Peel Region, a negative growth rate was observed since the year 2013, however the 0.5% cumulating growth has been added as a conservative approach to analysis. The growth rate were applied over a five year study horizon for the 2025 horizon year.

Traffic allowances were also made for other specific proposed development in the area, based on a review of the City of Mississauga's 'Planning Information Hub' tool in March 2020. The sole active development application at this time is a Rezoning application for a commercial site located at 5855 Terry Fox Boulevard, which plans to redevelop the block to include a total retail floor area of 26,819 m². Associated site traffic has been added to the Britannia Road West and Galesway Boulevard, as reported in the site's Traffic Impact Study by Read, Voorhees & Associates Limited (March 2018, updated August 2019).

Figure 9 summarizes the 2025 future background traffic volumes for the weekday morning and afternoon peak hours, which were developed by adding the abovementioned allowances for corridor traffic growth and background development to base existing traffic volumes.

6.3 SITE TRAFFIC VOLUMES

6.3.1 Site Trip Generation

Vehicular trip generation rates assumed for the proposed residential townhomes were based on a review of data contained within the *ITE Trip Generation Manual* (10th Edition) for Land Use Code 220 (Residential Multi-Family Housing, Low-Rise), in conjunction with observed trip generation at two proxy sites with similar transportation contexts to the subject site.

The highest rates from the three trip generation rate sources shown (from Queen Street West / Link Lane, Brampton) were adopted as trip generation rates for the proposed development at 1240 Britannia Road West. These rates represent what would likely be a conservative estimate, with actual rates more likely to fall more closely towards ITE or average surveyed rates.

Site trip generation forecasts are summarized in Table 4.

TABLE 4 SITE TRIP GENERATION

Trin Consustion Bata Source	Units	А	AM Peak Hour			PM Peak Hour		
Trip Generation Rate Source	Units	In	Out	2-Way	In	Out	2-Way	
ITE Land Use Code 220 (Multi-Family Housing, Low-Rise)	-	0.11	0.35	0.46	0.35	0.21	0.56	
Wellington Green Townhouses (Proxy Site) ³	72	0.06	0.25	0.31	0.21	0.08	0.29	
Queen Street West / Links Lane, Brampton (Proxy Site) ⁴	87	0.13	0.49	0.62	0.54	0.31	0.85	
Average Trip Rate	-	0.10	0.36	0.46	0.37	0.20	0.57	
Adopted Trip Generation Rates for 1240 Britannia Road West	-	0.13	0.49	0.62	0.54	0.31	0.85	
Number of Trips Generated for 1240 Britannia Road West ²	106	15	55	70	60	35	95	

Notes:

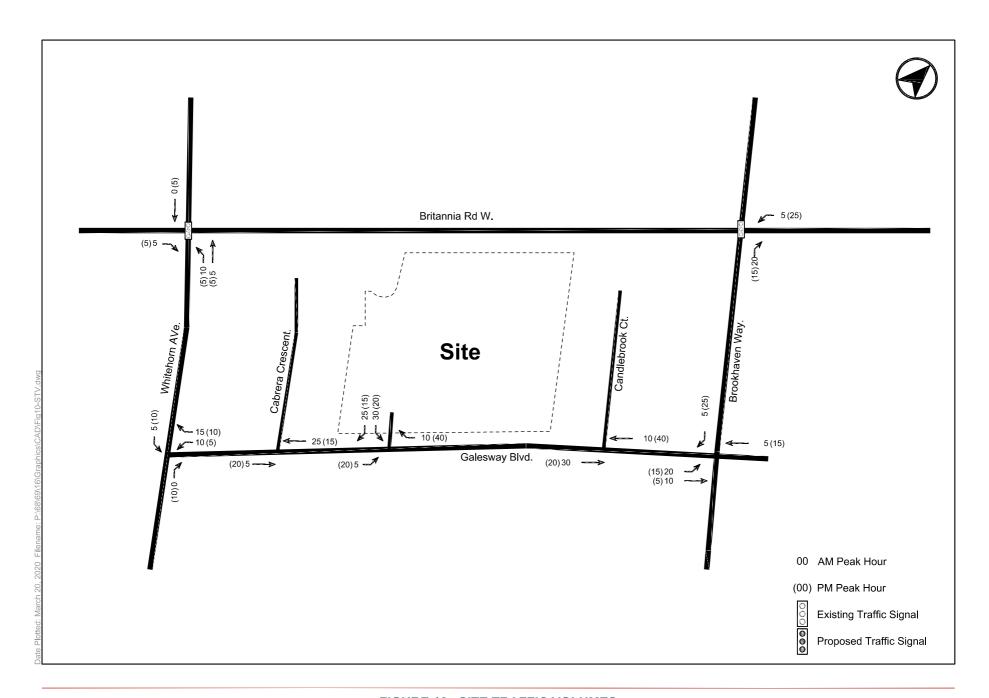
- 1. Trip generation rates are shown in *italic text*.
- 2. Trips generated for proposed development are rounded to the nearest five (5).
- 3. Wellington Green proxy site surveyed on Monday August 13, 2018.
- 4. Queen Street West proxy site surveyed on Tuesday May 16, 2017.
- Trip generation is conservative for October submission due to a reduction of 3 units. Trips generated has not been updated.

The site is anticipated to generate approximately 70 and 95 two-way vehicle trips during the weekday morning and afternoon peak hours, respectively.

6.3.2 Site Traffic Distribution/Assignment

The trip distribution pattern for site traffic was established based upon a review of 2016 Transportation Tomorrow Survey (TTS) data for home-based vehicle trips to and from the study area during the weekday peak hour periods. The distribution of inbound and outbound traffic adopted for the proposed development is outlined in **Table 5**. Site traffic volumes assigned onto the area road network are illustrated in **Figure 10**.

TABLE 5 SITE TRAFFIC DISTRIBUTION


To/From	Inbound	Outbound
North to/from Bidwell Trail	5%	5%
South to/from Whitehorn Avenue	15%	15%
East to/from Britannia Road West	40%	40%
East to/from Galesway Boulevard	25%	20%
West to/from Britannia Road West	15%	20%
Total	100%	100%

Notes:

6.4 FUTURE TOTAL TRAFFIC VOLUMES

Future total 2025 traffic volumes were developed by adding site-generated traffic to future background 2025 traffic volumes. **Figure 11** illustrates future total traffic volumes for the weekday morning and afternoon peak hours for horizon year of 2025.

Based on a review of 2016 TTS data for home-based trips to and from 2006 TTS Zones 3604, 3607, 3691 and 3694 during weekday morning and afternoon peak periods.

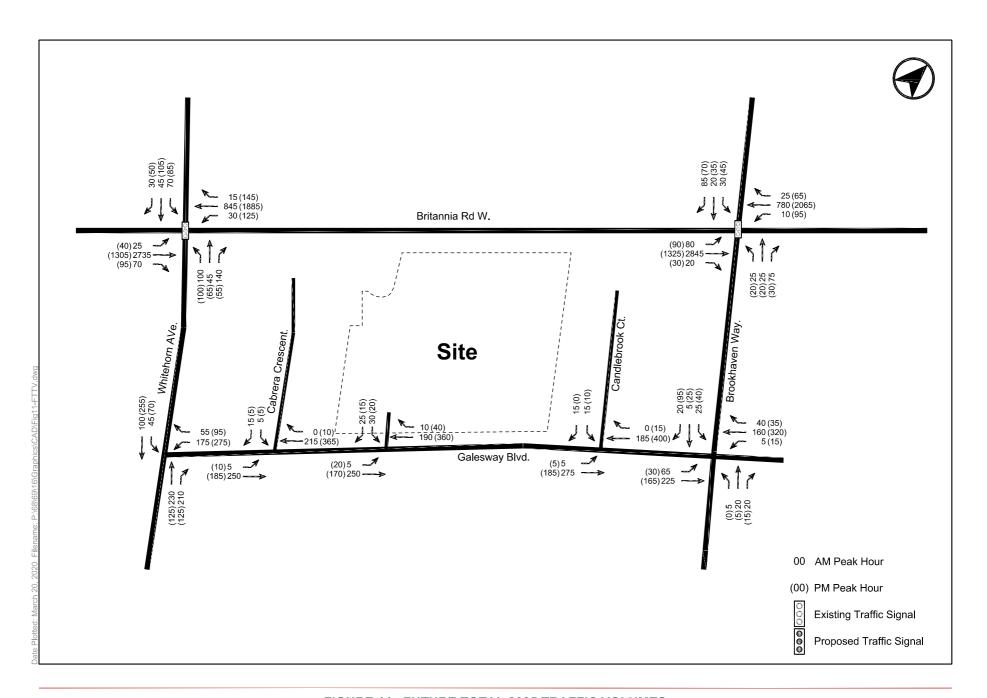


FIGURE 11 FUTURE TOTAL 2025 TRAFFIC VOLUMES

7.0 OPERATIONS ANALYSIS

7.1 ANALYSIS SCENARIOS

Traffic operations analyses were undertaken at the study area intersections for the weekday morning and afternoon peak travel hours under the following traffic conditions:

- Existing traffic conditions;
- Future background traffic conditions, which include allowances for general corridor traffic growth and active area background development applications; and
- Future total traffic conditions, which take into consideration future background traffic volumes plus site-generated traffic volumes.

7.2 ANALYSIS METHODOLOGY

Traffic operations analyses have been completed using the Synchro (Version 9) capacity analysis software in accordance with the methodologies outlined in the *Highway Capacity Manual* (HCM) and City of Mississauga's *Transportation Impact Study Guidelines*. Default Synchro parameters as outlined by the City of Peel were used for the analysis of signalized intersections.

The key performance indicator of the signalized intersection evaluation is an intersection performance index (volume to capacity ratio, or v/c), where a v/c index of 1.00 indicates 'at or near capacity' conditions.

The key performance indicator of the unsignalized intersection / driveway analyses is an average delay per vehicle (in seconds) and a level of service (LOS) designation, where the LOS A (little delay) to LOS F (extended delay) range provides an understanding of the relative time a motorist may have to wait to complete a turn at an intersection or driveway.

Signal Timings

Existing traffic signal timing plans for all signalized intersections within the study area were obtained Regional Municipality of Peel. Analyses were undertaken using this signal timing plan for existing, future background and future total traffic conditions.

Road Network Assumptions

Existing lane configurations in the area road network have been assumed in the analysis for the existing and future background traffic scenarios.

Under future total conditions, it was assumed that the new private driveway will intersect Galesway Boulevard at a STOP-controlled intersection. The site driveway is assumed to be two-way with a single-lane outbound approach.

The existing road network intersection lane configurations are shown in **Figure 4**. Synchro analysis worksheets are included in **Appendix D**.

7.3 ANALYSIS SUMMARY

7.3.1 Signalized Intersection Analysis

Britannia Road West / Whitehorn Avenue / Bidwell Trail

The Britannia Road West / Whitehorn Avenue / Bidwell Trail intersection operates under traffic signal control with cycle length of 160 seconds in the weekday morning and afternoon peak periods. The existing cycle length was maintained in all analysis scenarios. A summary of traffic analysis results for this intersection is shown in **Table 6**.

TABLE 6 BRITANNIA ROAD W / WHITEHORN AVENUE / BIDWELL TRAIL ANALYSIS SUMMARY

Traffic Movement	Existing		Future Background		Future Total	
Traffic Movement	V/C	LOS	V/C	LOS	V/C	LOS
EBL	0.06 (0.42)	A (B)	0.06 (0.45)	A (B)	0.06 (0.45)	A (B)
EBTR	0.79 (0.42)	B (A)	0.80 (0.42)	B (A)	0.81 (0.42)	B (A)
WBL	0.30 (0.67)	B (B)	0.31 (0.69)	B (B)	0.32 (0.70)	B (C)
WBT	0.23 (0.56)	A (A)	0.24 (0.56)	A (A)	0.24 (0.56)	A (A)
WBR	0.01 (0.10)	A (A)	0.01 (0.11)	A (A)	0.01 (0.11)	A (A)
NBL	0.56 (0.43)	D (C)	0.58 (0.48)	D (D)	0.61 (0.52)	D (D)
NBTR	0.49 (0.31)	D (C)	0.51 (0.32)	D (D)	0.50 (0.34)	D (D)
SBL	0.62 (0.39)	E (C)	0.66 (0.40)	E (D)	0.63 (0.41)	E (D)
SBTR	0.26 (0.44)	D (C)	0.26 (0.46)	D (D)	0.25 (0.48)	D (D)
Overall	0.75 (0.62)	B (B)	0.77 (0.65)	B (B)	0.77 (0.66)	B (B)

Notes:

Under existing, future background and future total conditions, the intersection operates at an acceptable level of service during the weekday and morning and afternoon peak traffic hours with overall v/c ratios of 0.77 or less at all times.

Based on the foregoing, the traffic generated by the proposed development can be acceptably accommodated at the Britannia Road West / Whitehorn Avenue intersection. No mitigation measures or improvements are recommended at this intersection.

^{1.} xx(xx) = weekday AM peak hour (weekday PM peak hour)

Britannia Road West / Brookhaven Way / Douguy Boulevard

The Britannia Road West / Brookhaven Way / Douguy Boulevard intersection operates under traffic signal control with cycle length of 160 seconds in the weekday morning and afternoon peak periods. The existing cycle length was maintained in all analysis scenarios. A summary of traffic analysis results for this intersection is shown in **Table 7**.

TABLE 7 BRITANNIA ROAD WEST / BROOKHAVEN WAY ANALYSIS SUMMARY

Traffic Movement	Existing		Future Ba	ckground	Future Total	
Trainic Movement	V/C	LOS	V/C	LOS	V/C	LOS
EBL	0.19 (0.79)	A (D)	0.19 (0.89)	A (E)	0.19 (0.89)	A (E)
EBTR	0.76 (0.32)	A (A)	0.77 (0.34)	A (A)	0.78 (0.34)	A (A)
WBL	0.07 (0.26)	A (A)	0.07 (0.28)	A (A)	0.16 (0.38)	A (A)
WBT	0.21 (0.49)	A (A)	0.22 (0.51)	A (A)	0.22 (0.51)	A (A)
WBR	0.02 (0.05)	A (A)	0.02 (0.05)	A (A)	0.02 (0.05)	A (A)
NBL	0.22 (0.17)	D (D)	0.23 (0.17)	D (D)	0.20 (0.17)	D (D)
NBTR	0.43 (0.13)	D (D)	0.45 (0.13)	D (D)	0.51 (0.14)	D (D)
SBL	0.23 (0.35)	D (E)	0.24 (0.35)	D (E)	0.22 (0.35)	D (E)
SBT	0.17 (0.58)	D (E)	0.18 (0.59)	D (E)	0.16 (0.59)	D(E)
Overall	0.71 (0.77)	A (A)	0.73 (0.85)	A (A)	0.74 (0.85)	B (A)

Notes:

Under existing, future background and future total conditions, the intersection operates at an acceptable level of service during the weekday and morning and afternoon peak traffic hours with overall v/c ratios of 0.85 or less.

Based on the foregoing, the traffic generated by the proposed development can be acceptably accommodated at the Britannia Road West / Brookhaven Way / Douguy Boulevard intersection. Similar to at Whitehorn Avenue, no mitigation measures or improvements are recommended at this intersection.

^{1.} xx(xx) = weekday AM peak hour (weekday PM peak hour)

7.3.1.1 Signalized Intersection Queueing

Britannia Road West is notably busy in both existing and future conditions, with long queues reported eastbound in the morning peak hour and westbound in the afternoon peak hour. However, no additional queueing concerns are noted at signalized intersections as a result of the addition of development site traffic.

In the future total scenario, 95th percentile queue lengths are generally very close to those reported under future background conditions. As a result, future queueing impacts can be readily accommodated within the existing storage provisions at each signalized intersection.

Table 8 is a summary of the 95th percentile queue lengths reported for each movement at the signalized intersection within the study area.

 Table 8
 95th Percentile Queueing Summary (Signalized Intersections)

Intersection	Movement /	95	th Percentile Queue Length (m)
mersection	Lane	Existing	Future Background	Future Total
_	EBL	6.2 (14.8)	6.2 (17.3)	6.5 (18)
ehori	EBTR	224.7 (59.4)	238.1 (65.6)	248.7 (68.4)
Vhite	WBL	4.3 (45.3)	4.3 (56.3)	4.6 (66.0)
st / V	WBT	30.6 (91.5)	31.8 (101.2)	33.4 (105.0)
l We Bid	WBR	0.9 (6.3)	0.9 (7.1)	1.0 (7.4)
Roac	NBL	44.6 (45.8)	44.6 (47.9)	48.6 (49.9)
nia Road West / White Avenue / Bidwell Trail	NBTR	52.5 (45.3)	52.5 (45.3)	54.5 (47.5)
Britannia Road West / Whitehorn Avenue / Bidwell Trail	SBL	37.8 (42.5)	38.0 (42.5)	37.8 (42.6)
Δ	SBT	30.8 (63.5)	30.8 (63.5)	30.8 (65.8)
	EBL	10.4 (26.3)	10.6 (34.0)	11.5 (34.0)
have d	EBTR	146.1 (42.9)	156.1 (46.3)	171.0 (46.3)
rook evar	WBL	1.5 (11.8)	1.5 (12.4)	3.3 (19.0)
t / B Boul	WBT	22.3 (78.2)	23.4 (84.5)	25.6 (84.5)
Wes	WBR	1.8 (4.1)	1.8 (4.3)	1.9 (4.3)
toad	NBL	16.5 (13.9)	16.5 (13.9)	16.2 (13.9)
Britannia Road West / Brookhaven Way / Douguy Boulevard	NBTR	39.0 (16.1)	39.2 (16.1)	47.1 (18.2)
itanr W	SBL	19.1 (24.8)	18.8 (24.8)	18.8 (24.9)
Ā	SBT	23.9 (44.5)	23.9 (45.0)	23.6 (45.0)

Notes:

^{1.} xx(xx) = weekday AM peak hour (weekday PM peak hour)

7.3.2 Unsignalized Intersection Analysis

Traffic operations at all unsignalized intersections within the study area are acceptable under all scenarios without any need for road improvements or mitigation measures. All movements will function at **LOS C or better** in the future total scenario.

The results of the capacity analysis undertaken at the unsignalized intersections within the study area are summarized in **Table 9**.

Vehicular access to the site will be provided via a single driveway located on Galesway Boulevard. The driveway is expected to operate at a good level of service (LOS B) under the future total scenario.

TABLE 9 UNSIGNALIZED INTERSECTION ANALYSIS SUMMARY

T(C. M	Existing		Future Ba	ckground	Future	Total
Traffic Movement	Delay	LOS	Delay	LOS	Delay	LOS
Whitehorn Avenu	e & Galesway B	oulevard				
WBLR	11.1 (15.3)	B (C)	11.1 (15.6)	B (C)	11.4 (16.7)	B (C)
NBTR	13.5 (11.2)	B (B)	13.5 (11.4)	B (B)	13.9 (11.8)	B (B)
SBLT	9.6 (13.8)	A (B)	9.6 (14.0)	A (B)	9.8 (14.7)	A (B)
Galesway Boulev	ard & Cabrera C	rescent				
EBLT	0.2 (0.6)	A (A)	0.2 (0.6)	A (A)	0.2 (0.5)	A (A)
SBLR	10.1 (11.6)	B (B)	10.1 (11.6)	B (B)	10.2 (11.9)	B (B)
Galesway Boulev	ard & Site Acce	ss				
EBLT	()	()	()	()	0.2 (1.0)	A (A)
SBLR	()	()	()	()	11.3 (12.7)	B (B)
Galesway Boulev	ard & Candlebr	ook Court				
EBLT	0.2 (0.3)	A (A)	0.2 (0.3)	A (A)	0.2 (0.2)	A (A)
SBLR	10.5 (12.8)	B (B)	10.5 (12.9)	B (B)	10.8 (13.6)	B (B)
Prestonwood Cre	scent/Brookhav	en Way & Gale	sway Boulevard	d		
EBLTR	9.5 (9.4)	A (A)	9.5 (9.5)	A (A)	9.9 (10.0)	A (B)
WBLTR	8.8 (11.7)	A (B)	8.8 (11.8)	A (B)	9.0 (12.7)	A (B)
NBLTR	8.1 (8.2)	A (A)	8.1 (8.2)	A (A)	8.2 (8.4)	A (A)
SBLTR	8.4 (9.3)	A (A)	8.4 (9.3)	A (A)	8.5 (9.8)	A (A)

Notes:

^{1. 0.0 (0.0) –} Weekday Morning Peak Hour (Weekday Afternoon Peak Hour)

7.3.2.1 Unsignalized Intersection Queueing

Queueing at all unsignalized intersections within the study area can be comfortably contained by the existing road network configuration, under all analysis scenarios.

The maximum 95th percentile queue at an unsignalized intersection under future total conditions, is calculated as four (4) vehicles queueing westbound at Whitehorn Avenue / Galesway Boulevard (PM peak hour). This queue is reported in 'vehicles', rather than 'metres', as HCM 2000 does not provide All Way Stop Control analysis results. Therefore, the HCM 2010 analysis methodology was utilized in this case, which reports 95th percentile queue length in the number of vehicles.

A queue of four (4) vehicles is equivalent to approximately 26 metres queue length, assuming one vehicle requires 6.5 metres of storage space when queueing.

7.4 COMMUNITY IMPACTS

As the subject site utilizes Galesway Boulevard to facilitate vehicular access, traffic generated by the new development will be primarily along this street. Under existing and future background scenarios, two-way traffic volumes are approximately 500 to 600 vehicles per hour in the weekday morning and weekday afternoon peak hours. Typically, Annual Average Daily Traffic (AADT) can be estimated using peak hour traffic volumes by multiplying the highest peak hour volume by a factor of 10. Accordingly, Galesway Boulevard currently facilitates approximately 5,000 to 6,000 two-way vehicles per 24 hour period, on average.

Under future total conditions, the development site is expected to generate approximately 40 new two-way vehicles to the east and 30 new two-way vehicles to the west in the weekday morning peak hour. In the afternoon peak hour, the site will generate approximately 60 new two-way vehicles to the east and 35 new two-way vehicles to the west. During peak times along Galesway Boulevard, the addition of site traffic would result in a maximum of one new vehicle per 60 seconds (on average) along any given section of Galesway Boulevard.

In a 24 hour period, the approximate AADT volumes for this section of Galesway Boulevard would likely increase to 5,500 to 6,500 vehicles per day. This change in traffic volume is not expected to influence the character of the street or result in any major impact to the existing community in terms of traffic noise or road safety. Outside of Galesway Boulevard, site traffic is generally evenly distributed and no single road segment will experience any notable traffic impact as a result.

8.0 TRANSPORTATION DEMAND MANAGEMENT PLAN

Consistent with the objectives of the Region of Peel Official Plan, a Transportation Demand Management (TDM) plan for the proposed residential development is provided herein. The following outlines the proposed physical and operational strategies that complement the site design with the goal of encouraging a shift in the travel pattern of future residents to sustainable modes of transportation.

8.1 TDM PLAN OBJECTIVES

The Plan strives to reduce automobile use as a part of the design and construction of the development, as well as after construction as an on-going strategy by supporting and promoting the use of non-auto travel modes.

The key objective of the TDM Plan is to reduce peak hour single occupant automobile traffic by focusing on four specific policy areas:

- 1. Encourage the use of sustainable travel modes (transit, cycling, walking);
- 2. Increase vehicle occupancy;
- 3. Shift travel to off-peak periods; and
- 4. Reduce vehicle kilometres travelled.

8.2 SITE TRANSPORTATION CHARACTERISTICS

8.2.1 Existing Travel Mode Characteristics

The existing travel mode split for home-based trips in the area based on 2016 Transportation Tomorrow Survey (TTS) data is summarized in **Table 10**.

TABLE 10 EXISTING AREA TRAVEL MODE SPLIT

Travel Mode	% of Trips
Transit	21%
Auto Driver	55%
Auto Passenger	18%
Cycle	1%
Walk	5%

Notes:

Based on the most recent 2016 TTS data, in the order of 55% of residents living in the area regularly drive during the peak travel periods, which is typical for a suburban area of Peel Region.

Based on 2016 TTS data for home-based trips originating in 2006 TTS Zones 3604, 3607, 3691 and 3694 between hours of 6:00 and 9:00 a.m. on a weekday.

8.3 TDM PLAN STRATEGIES

The future site context provides for good public transit service, cyclist facilities and pedestrian connectivity. Additional TDM strategies have been developed to further support the use of non-auto modes of travel. Based upon the site context and proposed land uses, the recommended TDM strategies have been selected.

8.3.1 Pedestrian Connections

The site design, including walkway connections through the site, provides for good pedestrian linkages to Britannia Road West and Galesway Boulevard, which is well-connected to the area pedestrian sidewalk network. Combined with the close proximity of neighbourhood amenities such as schools, parks and retail shops, this will encourage residents of the proposed development to rely less on automobiles. Neighbourhood amenities within walking distance, which include grocery stores, pharmacies, banks and restaurants, are illustrated in **Figure 2**.

These good pedestrian connections will also support usage of transit by residents of the proposed development by providing easy access on foot to local area transit stops.

8.3.2 Visitor Bicycle Parking

The in-effect Mississauga Zoning By-law 0225-2007 does not specify any bicycle parking requirements for new residential developments. Notwithstanding, the provision of garages for each of the units allows for bicycles to be stored when not in use for residents and visitors. Additionally, the provision of bicycle parking rings within the proposed central private park is being considered as part of the final design for that communal space.

The ability for future residents and visitors to the development to park and store bicycles, combined with the site's excellent location relative to existing cycling facilities/routes (see **Section 4.3**) and proximity to neighbourhood amenities within cycling distance, will encourage the use of cycling as a viable alternative to automobile use on a regular basis.

8.3.3 Travel Mode Information Packages

Marketing programs aimed at new residential unit purchasers should be implemented to ensure that new residents have comprehensive information on modal choices in the area now and in the future. This information should be made available at the sales centres for the new homes.

8.4 IMPLEMENTATION

The physical infrastructure components or 'hard' TDM measures outlined in this plan (i.e., pedestrian connections and visitor bicycle parking) will be incorporated into the development designs and are illustrated on the site plan included in **Appendix A**. The implementation of these elements and the costs associated with them will be the responsibility of the applicant/land developer.

The 'soft' measures of the TDM plan (i.e., travel mode information packages) will be implemented by the developer as part of the marketing process for the site.

9.0 SUMMARY AND CONCLUSIONS

BA Group has been retained by National Homes to provide transportation consultation services in relation to a proposed residential townhouse development located at 1240 Britannia Road West (referred to herein as "the site") in the City of Mississauga.

The site is located on the south side of Britannia Road West, between Whitehorn Avenue and Brookhaven Way. The site is approximately 21,474 m² in size and is bounded by Britannia Road West to the north, Galesway Boulevard to the south, residential properties on Cabrera Crescent to the west and residential properties on Candlebrook Court to the east.

The site is currently occupied by two detached dwellings, with two vehicle access points located on Britannia Road West. Pedestrian sidewalks are currently provided along all boundary roads. It is noted that there is an existing closed driveway connection to the property on Galesway Boulevard at the southwest corner of the site. Presumably, this driveway connection was constructed in anticipation of the existing Cabrera Crescent being extended from its cul-de-sac terminus to reconnect with Galesway Boulevard.

The development program contemplates a total of 106 new residential townhouse units, serviced by internal private condominium roads and the existing Cabrera Crescent, with access provided directly from Galesway Boulevard. The existing residential uses on the site will be removed as part of the redevelopment. The current development plan for the site does not propose extension of Cabrera Crescent. Instead, the existing driveway 'stub' on Galesway Boulevard will be removed and the cul-de-sac at the terminus of the existing Cabrera Crescent will be reconstructed to the appropriate City of Mississauga design standard. Architectural site plans are included in **Appendix A**.

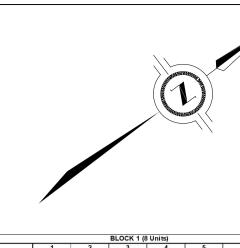
This report documents BA Group's review of the transportation-related aspects of the project including parking, refuse collection and fire vehicle access, and future traffic operations as part of a City of Mississauga Zoning By-law Amendment (ZBA) and Site Plan Approval (SPA) process.

Transportation Context

- 1. The site is served by Mississauga MiWay transit services running on Britannia Road West. In particular, it is serviced by MiWay bus routes 37, 39, 43, 68 and 314. These bus routes generally have service headways of 20-30 minutes. The bus stops closest to the site are located at Whitehorn Avenue and Brookhaven Way, approximately 250 metres away.
- 2. The site is located in an area with excellent access to a variety of cycling facilities, including the adjacent multi-use trail along Britannia Road West, a signed bike route along Galesway Boulevard, and a signed bike route on Whitehorn Avenue.
- 3. There are a number of neighbourhood amenities within walking distance of the site, including schools, parks, restaurants, grocery stores, pharmacies and banks.

Vehicular and Pedestrian Connections

- 4. The proposed internal private road servicing the new townhouse units has been designed with appropriate widths (7.0 metres) and turning radii (minimum 9.0 metres inside, 15.0 metres outside), suitable to accommodate the manoeuvres of a municipal waste collection vehicle and the requirements of a fire access route as per the Ontario Building Code.
- 5. Pedestrian walkways 1.5 metres in width are provided along the private road (on one side) and provide connections to Britannia Road West and Galesway Boulevard.
- The site plans show the reconstruction of the existing Cabrera Crescent cul-de-sac terminus to meet
 City of Mississauga Transportation and Works Standard 2211.240 (Residential Road Cul-de-Sac) and
 is therefore considered appropriate.
- A secondary emergency access point to the development is provided from Cabrera Crescent from the new cul-de-sac. This access will be gated and only available for use by emergency vehicles.


Parking

- 8. The applicable City of Mississauga By-law 0225-2007 requires a total of 245 parking spaces be provided for the site as proposed. This includes 2.0 spaces per unit for townhouse units and detached dwellings, 1.0 space per unit for second units, and 0.25 spaces per unit for visitors to the townhouse units.
- 9. The proposed site plans illustrate the provision of parking to meet these requirements, including 27 visitor parking spaces located along the private road, and is therefore considered to be appropriate.

Traffic Operations

- 10. The site is anticipated to generate approximately 70 and 95 two-way vehicle trips during the weekday morning and afternoon peak hours, respectively.
- 11. Under future total traffic conditions with the build-out of the site, all signalized and unsignalized intersections within the study area are anticipated to operate within their theoretical capacity. No road network infrastructure improvements are warranted or recommended.

Appendix A: Architectural Site Plans

STAMP AREA

Total Landscape Area (m²) Total Landscape Area (m²) Total Lot Area (m²) Lot Width (m) Gross Floor Area (ft²) Floor Space Index (m2) Lot Coverage (m2) Name

SITE STATISTICS NET SITE AREA = 21474.51

23, 26, 30, 32, AND 36)

45 DUAL FRONT + 61 STD TOWNS = 106 UNITS TOTAL (EXCLUDING SECONDARY SUITES)

PROVIDED: 6 UNITS (SECONDARY SUITES IN LOTS 18,

AFFORDABLE UNITS: REQUIRED: (108-50)* 10% = 6 UNITS

CONDO SITE:

NET CONDO SITE AREA = 21,474.51sm

TYPICAL LOT AREAS (INTERIOR UNITS): 14.0m TOWNHOUSE = 192.58sm

13.0M DUAL FRONT = 176.39sm 14.0M DUAL FRONT = 191.39sm

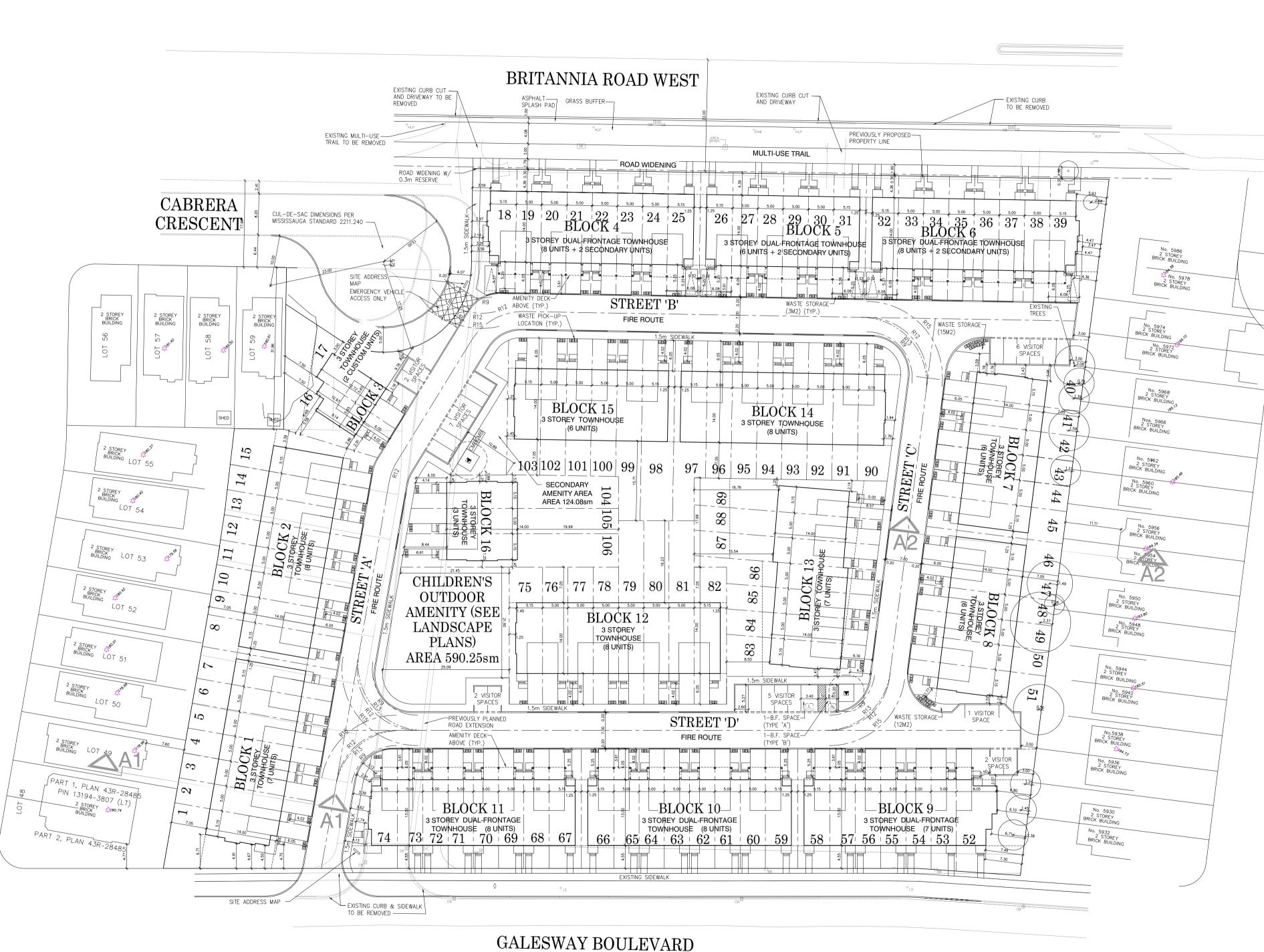
PRIVATE AMENITY SPACE

CEC TOWNHOUSES = 30sm/unit = 1800.00sm CEC DUAL FRONT = 5.95sm/unit = 285.60sm = 2085.60 sm

CHILDREN'S OUTDOOR AMENITY AREA = 590.25 sm SECONDARY AMENITY AREA = 124.08 sm= 714.33 sm

PRIVATE ROAD LENGTH = 446.25m

VISITOR PARKING: REQUIRED = 106 UNITS X 0.25 = 26.50 REQUIRD BARRIER FREE (4% OF TOTAL) = 1.08 PROVIDED = 25 + 2 B.F. = 27


LAND FROM TOWN TO NATIONAL = 633.28sm LAND FROM NATIONAL TO TOWN = 570.73sm

NATIONAL HOMES (1240 BRITANNIA) INC.

BRITANNIA ROAD RESIDENTIAL DEVELOPMENT **CONDOMINIUM TOWNHOMES** CITY OF MISSISSAUGA

REGIONAL MUNICIPALITY OF PEEL BRITANNIA ROAD, MISSISSAUGA PART LOTS 1-3 CON 3, PLAN 43R-3248

ate	OCTOBE	R 13, 20		Scale	1 : 500
Drawn by: EK/.	AMM/EW	Checked by:	AMM	Project No.	2019-39
DWG. NO.	A100) —	SITE		AN

Appendix B: Driveway Sight Distance Diagrams

GENERAL NOTES

1. DESCRIPTON

2. DESRIPTION

BA Group

BA Consulting Group Ltt 300 - 45 St. Clair Ave. W. Toronto ON M4V 1K9 TEL 416 961 7110 EMAIL bagroup@bagroup.c

1240 BRITANNIA ROAD

SITE CONTEXT

Date: March 25, 2020

Project No.: 6869-16

0 5 10

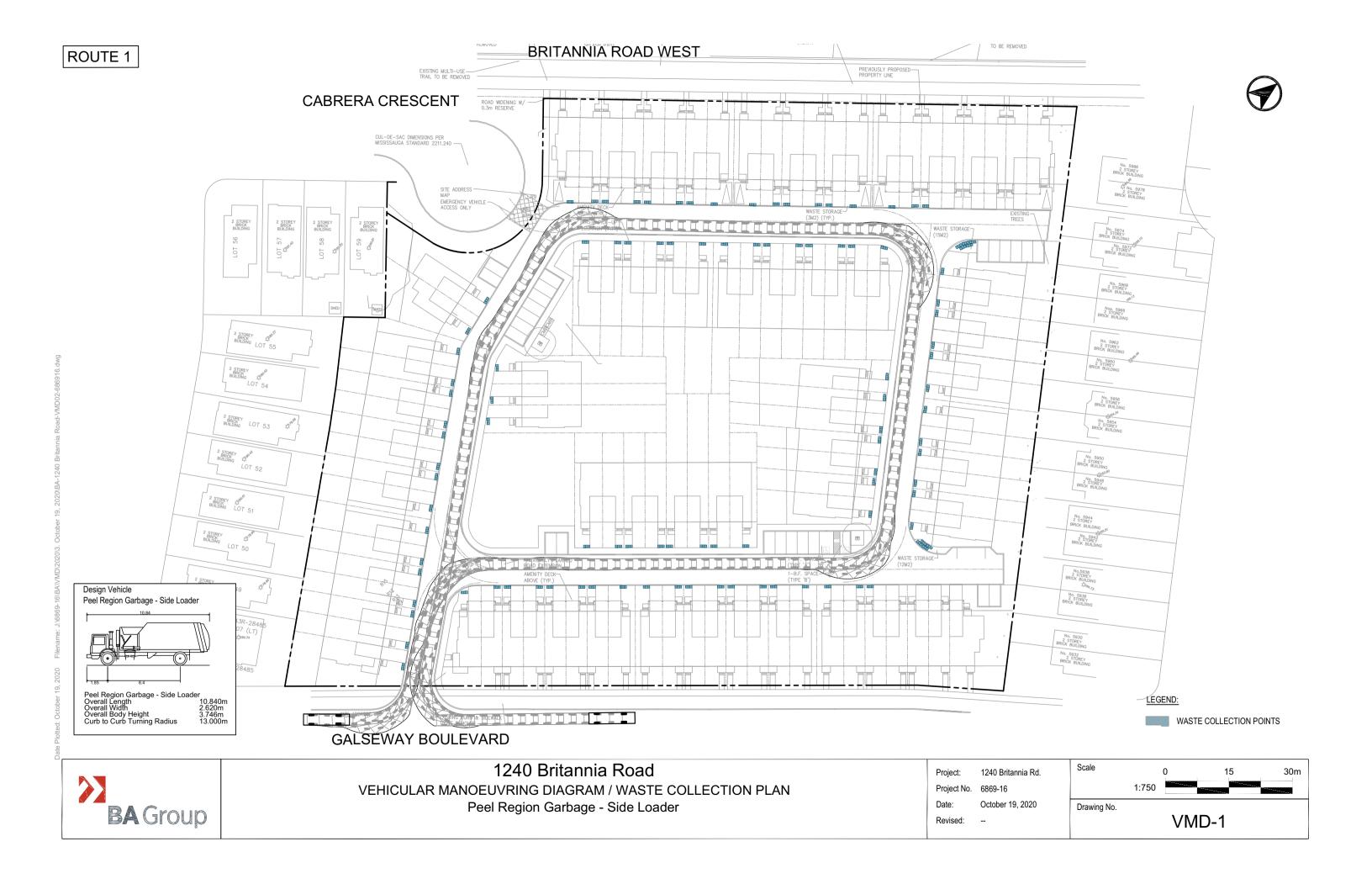
Scale: 1:500

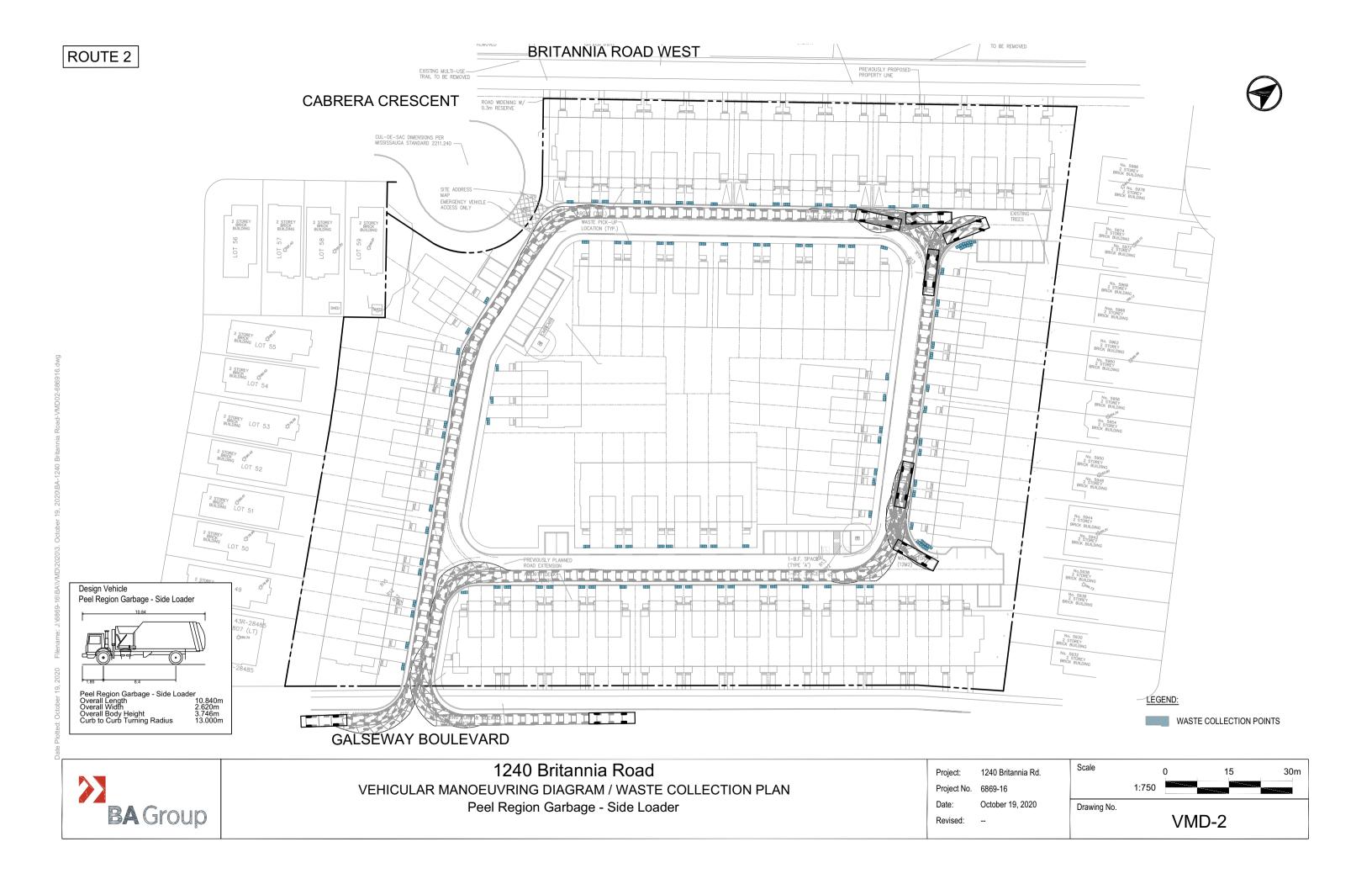
SD-01

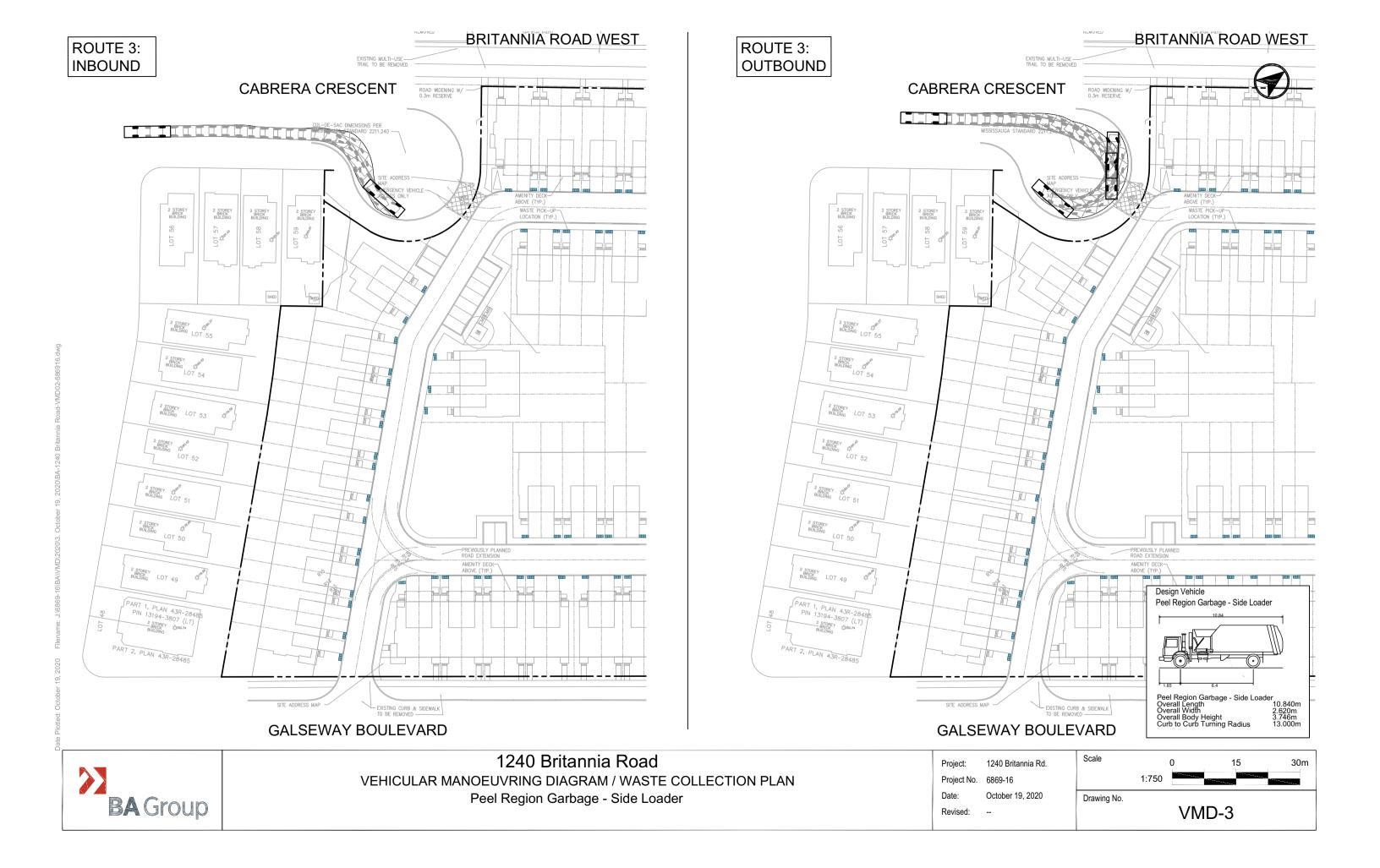
GENERAL NOTES

1. DESCRIPTON 2. DESRIPTION

Date Plotted: March 25, 2020 Filename: J:\6869-16\BA\Sight Distance\2020\1. March 24, 2020\BA-1240 Britannia Road-SD-R0-686916.dwg


BA Consulting Group Ltd. 300 - 45 St. Clair Ave. W. Toronto ON M4V 1K9 TEL 416 961 7110


1240 BRITANNIA ROAD


SIGHT DISTANCE AT PROPOSED DRIVEWAY

March 25, 2020

Appendix C: Vehicle Manoeuvring Diagrams and Waste Collection Plan

Appendix D: Synchro Capacity Analysis	Output Sheets

	•	-	7	1	•	*	1	1	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	*	^^		7	^ ^	7	ħ	13		7	1	
Traffic Volume (vph)	25	2660	65	30	815	15	90	40	140	70	45	30
Future Volume (vph)	25	2660	65	30	815	15	90	40	140	70	45	30
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time (s)	6.9	6.9		3.0	6.9	6.9	7.3	7.3		7.3	7.3	
Lane Util. Factor	1.00	0.91		1.00	0.91	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.97	1.00	0.99		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	0.98	1.00		1.00	1.00	
Frt	1.00	1.00		1.00	1.00	0.85	1.00	0.88		1.00	0.94	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1781	5166		1552	4948	1194	1657	1660		1747	1742	
Flt Permitted	0.32	1.00		0.05	1.00	1.00	0.71	1.00		0.48	1.00	
Satd. Flow (perm)	607	5166		81	4948	1194	1233	1660		874	1742	
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	26	2742	67	31	840	15	93	41	144	72	46	3′
RTOR Reduction (vph)	0	1	0	0	0	4	0	75	0	0	17	(
Lane Group Flow (vph)	26	2808	0	31	840	11	93	110	0	72	60	(
Confl. Peds. (#/hr)	3		6	6		3	15		2	2		15
Heavy Vehicles (%)	0%	1%	4%	15%	6%	25%	6%	5%	0%	2%	0%	6%
Bus Blockages (#/hr)	0	0	0	0	0	10	0	0	0	0	0	(
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2		1	6			4			8	
Permitted Phases	2			6		6	4			8		
Actuated Green, G (s)	77.5	77.5		83.8	83.8	83.8	15.2	15.2		15.2	15.2	
Effective Green, g (s)	77.5	77.5		83.8	83.8	83.8	15.2	15.2		15.2	15.2	
Actuated g/C Ratio	0.68	0.68		0.74	0.74	0.74	0.13	0.13		0.13	0.13	
Clearance Time (s)	6.9	6.9		3.0	6.9	6.9	7.3	7.3		7.3	7.3	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	415	3536		102	3662	883	165	222		117	233	
v/s Ratio Prot		c0.54		c0.01	0.17			0.07			0.03	
v/s Ratio Perm	0.04			0.21		0.01	0.08			c0.08		
v/c Ratio	0.06	0.79		0.30	0.23	0.01	0.56	0.49		0.62	0.26	
Uniform Delay, d1	5.9	12.3		14.1	4.6	3.9	45.9	45.4		46.2	43.9	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.1	1.3		1.7	0.0	0.0	4.4	1.7		9.3	0.6	
Delay (s)	5.9	13.6		15.8	4.6	3.9	50.2	47.2		55.5	44.5	
Level of Service	Α	В		В	Α	Α	D	D		Е	D	
Approach Delay (s)		13.6			5.0			48.2			49.8	
Approach LOS		В			Α			D			D	
Intersection Summary												
HCM 2000 Control Delay			15.4	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	ity ratio		0.75									
Actuated Cycle Length (s)	· ·		113.2	S	um of los	t time (s)			17.2			
Intersection Capacity Utilizat	ion		91.0%	IC	U Level	of Service)		Е			
Analysis Period (min)			15									
c Critical Lane Group												

80 80 900 3.5 6.5 1.00 1.00 1.00 0.95 681	2770 2770 2770 1900 3.7 6.5 0.91 1.00	20 20 1900 3.5	5 5 1900 3.5 6.5	750 750 1900 3.7	25 25 1900	25 25 1900	25 25 1900	55 55	30 30	20 20	
80 900 3.5 6.5 1.00 1.00 1.00	2770 1900 3.7 6.5 0.91 1.00	20 1900	5 1900 3.5	750 1900 3.7	25 1900	25	25	55	30		85
900 3.5 6.5 1.00 1.00 1.00	1900 3.7 6.5 0.91 1.00	1900	1900 3.5	1900 3.7	1900					20	85
3.5 6.5 1.00 1.00 1.00 1.00 1.00	3.7 6.5 0.91 1.00		3.5	3.7		1900	1900	4000			QQ.
6.5 1.00 1.00 1.00 1.00	6.5 0.91 1.00	3.5					1300	1900	1900	1900	1900
1.00 1.00 1.00 1.00 1.95	0.91 1.00		6.5		3.5	3.5	3.7	3.5	3.5	3.7	3.5
1.00 1.00 1.00 1.95	1.00			6.5	6.5	7.5	7.5		7.5	7.5	
1.00 1.00 0.95			1.00	0.91	1.00	1.00	1.00		1.00	1.00	
0.00 0.95	1.00		1.00	1.00	0.97	1.00	0.99		1.00	0.99	
0.00 0.95	1.00		1.00	1.00	1.00	1.00	1.00		0.99	1.00	
	1.00		1.00	1.00	0.85	1.00	0.90		1.00	0.88	
621	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
	5185		1785	4948	1311	1449	1701		1659	1605	
.34	1.00		0.05	1.00	1.00	0.69	1.00		0.70	1.00	
604	5185		98	4948	1311	1047	1701		1227	1605	
).95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
84	2916	21	5	789	26	26	26	58	32	21	89
0	0	0	0	0	7	0	2	0	0	79	0
84	2937	0	5	789	19	26	82	0	32	31	0
3	200.	2	2	, 00	3	2		8	8	0.	2
6%	1%	5%	0%	6%	14%	23%	0%	0%	7%	0%	5%
0	0	10	0	0	10	0	0	0	0	0	0
erm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
	2			6			4			8	
2			6		6	4			8		
6.5	76.5		76.5	76.5	76.5	11.6	11.6		11.6	11.6	
6.5	76.5		76.5	76.5	76.5	11.6	11.6		11.6	11.6	
).75	0.75		0.75	0.75	0.75	0.11	0.11		0.11	0.11	
6.5	6.5		6.5	6.5	6.5	7.5	7.5		7.5	7.5	
3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
102			10		002	110			100		
14	00.01		0.05	0.10	0.01	0.02	00.00		0.03	0.02	
	0.76			0.21			0.43			0.17	
,,			,,		,,						
	Α			A			D			D	
		9.4	Н	CM 2000	Level of S	Service		Δ			
tio				2 2000	20101010	2017100		,,,			
0			Si	ım of lost	time (s)			14 0			
			10	C 20101 C	501 1100						
		10									
	3.0 452 0.14 0.19 3.7 .00 0.2 3.9 A	452 3884 c0.57 1.14 1.19 0.76 3.7 7.4 .00 1.00 0.2 0.9 3.9 8.3 A A 8.2 A	452 3884 c0.57 1.14 1.19 0.76 3.7 7.4 .00 1.00 0.2 0.9 3.9 8.3 A A 8.2 A	452 3884 73 c0.57 1.14 0.05 1.19 0.76 0.07 3.7 7.4 3.4 0.00 1.00 1.00 0.2 0.9 0.4 3.9 8.3 3.8 A A A 8.2 A 100 1.01 H6 100 1.01 1.01 102.1 St 92.1% IC	452 3884 73 3707 c0.57 0.16 1.14 0.05 1.19 0.76 0.07 0.21 3.7 7.4 3.4 3.8 .00 1.00 1.00 1.00 1.00 0.2 0.9 0.4 0.0 3.9 8.3 3.8 3.8 A A A A A 8.2 3.8 A A A 6.2 3.8 A A A 6.2 3.8 A A B.2 3.8 A B.2 3.8 A CA 100.1 Sum of lost 102.1 100.1 Sum of lost 102.1 92.1% ICU Level of 102.1	452 3884 73 3707 982 0.16 .144 0.05 0.01 .149 0.76 0.07 0.21 0.02 .3.7 7.4 3.4 3.8 3.3 .00 1.00 1.00 1.00 1.00 1.00 0.2 0.9 0.4 0.0 0.0 3.9 8.3 3.8 3.8 3.3 A A A A A A 8.2 3.8 A A A A 8.2 3.8 A B A A A 8.2 3.8 A B A A A 8.2 3.8 A C B B B B B B B B B B B B B B B B B B	452 3884 73 3707 982 118 c0.57 0.16 1.14 0.05 0.01 0.02 1.19 0.76 0.07 0.21 0.02 0.22 3.7 7.4 3.4 3.8 3.3 41.1 1.00 1.00 1.00 1.00 1.00 1.00 0.2 0.9 0.4 0.0 0.0 0.9 3.9 8.3 3.8 3.8 3.3 3.42.1 A A A A A D 8.2 3.8 A A A 9.4 HCM 2000 Level of Service tio 0.71 102.1 Sum of lost time (s) 92.1% ICU Level of Service	452 3884 73 3707 982 118 193 c0.05 .144 0.05 0.10 0.02 .149 0.76 0.07 0.21 0.02 0.22 0.43 3.7 7.4 3.4 3.8 3.3 41.1 42.1 .00 1.00 1.00 1.00 1.00 1.00 1.00 .0.2 0.9 0.4 0.0 0.0 0.9 1.5 3.9 8.3 3.8 3.8 3.3 42.1 43.7 A A A A A D D 8.2 3.8 43.3 A HCM 2000 Level of Service 102.1 Sum of lost time (s) 92.1% ICU Level of Service	452 3884 73 3707 982 118 193 c0.05 1.14 0.05 0.10 0.02 1.19 0.76 0.07 0.21 0.02 0.22 0.43 3.7 7.4 3.4 3.8 3.3 41.1 42.1 .00 1.00 1.00 1.00 1.00 1.00 1.00 0.2 0.9 0.4 0.0 0.0 0.9 1.5 3.9 8.3 3.8 3.8 3.3 42.1 43.7 A A A A A A D D 8.2 3.8 43.3 A HCM 2000 Level of Service A tio 0.71 102.1 Sum of lost time (s) 14.0 F	452 3884 73 3707 982 118 193 139 c0.05 1.14 0.05 0.10 0.02 0.03 1.19 0.76 0.07 0.21 0.02 0.22 0.43 0.23 3.7 7.4 3.4 3.8 3.3 41.1 42.1 41.2 .00 1.00 1.00 1.00 1.00 1.00 1.00 1.	452 3884 73 3707 982 118 193 139 182 c0.57 0.16 c0.05 0.02 0.02 1.14 0.05 0.01 0.02 0.03 1.19 0.76 0.07 0.21 0.02 0.22 0.43 0.23 0.17 3.7 7.4 3.4 3.8 3.3 41.1 42.1 41.2 40.9 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1

HCM Signalized Intersection Capacity Analysis 2: Brookhaven Way/Douguy Boulevard & Britannia Road W

1240 BRITANNIA ROAD WEST 03-12-2020 EX AM BA Group - CA

Synchro 9 Report Page 1 1240 BRITANNIA ROAD WEST 03-12-2020 EX AM BA Group - CA

4: Gale

4: Galesway Boulevar	d & Cabre	era Cres	cent
		DAN TOPS	

	1	•	Ť	1	-	Į.		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	Y		1			ર્ન		
Sign Control	Stop		Stop			Stop		
Traffic Volume (vph)	165	40	230	210	40	100		
Future Volume (vph)	165	40	230	210	40	100		
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94		
Hourly flow rate (vph)	176	43	245	223	43	106		
Direction, Lane #	WB 1	NB 1	SB 1					
Volume Total (vph)	219	468	149					
Volume Left (vph)	176	0	43					
Volume Right (vph)	43	223	0					
Hadj (s)	0.09	-0.27	0.12					
Departure Headway (s)	5.4	4.5	5.2					
Degree Utilization, x	0.33	0.58	0.22					
Capacity (veh/h)	608	780	646					
Control Delay (s)	11.1	13.5	9.6					
Approach Delay (s)	11.1	13.5	9.6					
Approach LOS	В	В	Α					
Intersection Summary								
Delay			12.2					
Level of Service			В					
Intersection Capacity Utilizat	tion		54.7%	IC	CU Level o	of Service	Α	
Analysis Period (min)			15					

	۶	→	+	4	1	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्स	13		W	
Traffic Volume (veh/h)	5	245	190	0	5	15
Future Volume (Veh/h)	5	245	190	0	5	15
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	5	266	207	0	5	16
Pedestrians					2	
Lane Width (m)					3.5	
Walking Speed (m/s)					1.2	
Percent Blockage					0	
Right turn flare (veh)					U	
Median type		None	None			
Median storage veh)		NONE	NOILE			
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	209				485	209
vC1, stage 1 conf vol	209				400	209
vC2, stage 2 conf vol	209				485	209
vCu, unblocked vol	4.3				485 6.5	6.2
tC, single (s)	4.3				0.0	0.2
tC, 2 stage (s)						
tF (s)	2.3				3.6	3.3
p0 queue free %	100				99	98
cM capacity (veh/h)	1281				517	835
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	271	207	21			
Volume Left	5	0	5			
Volume Right	0	0	16			
cSH	1281	1700	728			
Volume to Capacity	0.00	0.12	0.03			
Queue Length 95th (m)	0.1	0.0	0.7			
Control Delay (s)	0.2	0.0	10.1			
Lane LOS	Α		В			
Approach Delay (s)	0.2	0.0	10.1			
Approach LOS			В			
Intersection Summary						
Average Delay			0.5			
Intersection Capacity Utiliza	ation		26.9%	IC	U Level o	of Service
Analysis Period (min)			15			
maryono i orioa (miin)			10			

	•	→	•	*	1	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		ર્ન	13		W		
Traffic Volume (veh/h)	0	250	190	0	0	0	
Future Volume (Veh/h)	0	250	190	0	0	0	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	272	207	0	0	0	
Pedestrians					2		
Lane Width (m)					3.5		
Walking Speed (m/s)					1.2		
Percent Blockage					0		
Right turn flare (veh)					, ,		
Median type		None	None				
Median storage veh)		140116	None				
Upstream signal (m)							
pX, platoon unblocked							
C, conflicting volume	209				481	209	
/C1, stage 1 conf vol	209				401	209	
vC1, stage 1 conf vol							
vCu, unblocked vol	209				481	209	
	4.1				6.4	6.2	
tC, single (s)	4.1				0.4	0.2	
tC, 2 stage (s)	0.0				0.5	0.0	
tF (s)	2.2				3.5	3.3	
p0 queue free %	100				100	100	
cM capacity (veh/h)	1372				547	835	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	272	207	0				
Volume Left	0	0	0				
Volume Right	0	0	0				
SH	1372	1700	1700				
Volume to Capacity	0.00	0.12	0.00				
Queue Length 95th (m)	0.0	0.0	0.0				
Control Delay (s)	0.0	0.0	0.0				
ane LOS			Α				
Approach Delay (s)	0.0	0.0	0.0				
Approach LOS			Α				
Intersection Summary							
Average Delay			0.0				
Intersection Capacity Utiliza	ation		16.5%	IC	U Level o	of Service	Α
Analysis Period (min)			15				

	۶	→	-	4	1	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્લ	1,		Y	
Traffic Volume (veh/h)	5	245	175	0	15	15
Future Volume (Veh/h)	5	245	175	0	15	15
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	5	255	182	0	16	16
Pedestrians		1	1		3	
Lane Width (m)		3.7	3.7		3.5	
Walking Speed (m/s)		1.2	1.2		1.2	
Percent Blockage		0	0		0	
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	185				451	186
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	185				451	186
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	100				97	98
cM capacity (veh/h)	1398				566	858
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	260	182	32			
Volume Left	5	0	16			
Volume Right	0	0	16			
cSH	1398	1700	682			
Volume to Capacity	0.00	0.11	0.05			
Queue Length 95th (m)	0.1	0.0	1.2			
Control Delay (s)	0.2	0.0	10.5			
Lane LOS	Α		В			
Approach Delay (s)	0.2	0.0	10.5			
Approach LOS			В			
Intersection Summary						
Average Delay			0.8			
Intersection Capacity Utiliza	ation		27.2%	IC	U Level o	of Service
Analysis Period (min)			15			

HCM Unsignalized Intersection Capacity Analysis 7: Prestonwood Crescent/Brookhaven Way & Galesway Boulevard

_	٠	→	*	1	•	•	1	†	<i>></i>	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	45	215	0	5	155	40	5	20	20	25	5	15
Future Volume (vph)	45	215	0	5	155	40	5	20	20	25	5	15
Peak Hour Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Hourly flow rate (vph)	45	217	0	5	157	40	5	20	20	25	5	15
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	262	202	45	45								
Volume Left (vph)	45	5	5	25								
Volume Right (vph)	0	40	20	15								
Hadj (s)	0.05	-0.01	-0.21	0.05								
Departure Headway (s)	4.4	4.4	4.8	5.1								
Degree Utilization, x	0.32	0.25	0.06	0.06								
Capacity (veh/h)	795	784	674	640								
Control Delay (s)	9.5	8.8	8.1	8.4								
Approach Delay (s)	9.5	8.8	8.1	8.4								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			9.0									
Level of Service			Α									
Intersection Capacity Utilizat	tion		43.9%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	۶	-	*	•	+	•	1	†	1	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^^		7	^ ^	7	7	ĵ.		7	1,	
Traffic Volume (vph)	40	1235	90	125	1800	145	90	60	55	85	100	50
Future Volume (vph)	40	1235	90	125	1800	145	90	60	55	85	100	50
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time (s)	6.9	6.9		6.9	6.9	6.9	7.3	7.3		7.3	7.3	
Lane Util. Factor	1.00	0.91		1.00	0.91	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.96	1.00	0.99		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	0.99	1.00		0.99	1.00	
Frt	1.00	0.99		1.00	1.00	0.85	1.00	0.93		1.00	0.95	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1748	5132		1765	5193	1477	1764	1759		1775	1808	
Flt Permitted	0.08	1.00		0.17	1.00	1.00	0.66	1.00		0.68	1.00	
Satd. Flow (perm)	154	5132		307	5193	1477	1220	1759		1269	1808	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	42	1300	95	132	1895	153	95	63	58	89	105	53
RTOR Reduction (vph)	0	5	0	0	0	53	0	23	0	0	12	0
Lane Group Flow (vph)	42	1390	0	132	1895	100	95	98	0	89	146	0
Confl. Peds. (#/hr)	10		7	7		10	17		8	8		17
Confl. Bikes (#/hr)						1						
Heavy Vehicles (%)	2%	1%	0%	1%	1%	0%	0%	0%	1%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	10	0	0	0	0	0	0
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6		6	4			8		
Actuated Green, G (s)	54.1	54.1		54.1	54.1	54.1	15.2	15.2		15.2	15.2	
Effective Green, g (s)	54.1	54.1		54.1	54.1	54.1	15.2	15.2		15.2	15.2	
Actuated g/C Ratio	0.65	0.65		0.65	0.65	0.65	0.18	0.18		0.18	0.18	
Clearance Time (s)	6.9	6.9		6.9	6.9	6.9	7.3	7.3		7.3	7.3	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	99	3325		198	3364	956	222	320		231	329	
v/s Ratio Prot		0.27			0.36			0.06			c0.08	
v/s Ratio Perm	0.27			c0.43		0.07	0.08			0.07		
v/c Ratio	0.42	0.42		0.67	0.56	0.10	0.43	0.31		0.39	0.44	
Uniform Delay, d1	7.1	7.1		9.1	8.2	5.6	30.3	29.6		30.0	30.4	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	2.9	0.1		8.2	0.2	0.0	1.3	0.5		1.1	1.0	
Delay (s)	10.1	7.2		17.3	8.4	5.6	31.6	30.1		31.1	31.3	
Level of Service	В	Α		В	Α	Α	С	С		С	С	
Approach Delay (s)		7.3			8.7			30.8			31.3	
Approach LOS		Α			Α			С			С	
Intersection Summary												
HCM 2000 Control Delay			10.7	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	city ratio		0.62									
Actuated Cycle Length (s)			83.5		um of lost				14.2			_
Intersection Capacity Utiliza	tion		90.6%	IC	CU Level of	of Service)		E			
Analysis Period (min)			15									
c Critical Lane Group												

1240 BRITANNIA ROAD WEST 03-12-2020 EX PM BA Group - CA

Synchro 9 Report Page 1

HCM Signalized Intersection Capacity Analysis 2: Brookhaven Way/Douguy Boulevard & Britannia Road W

	٠	→	•	•	+	•	1	1	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተ ተጉ		ħ	^ ^	7	ň	1		7	^	
Traffic Volume (vph)	90	1255	30	70	1980	65	20	20	15	45	35	70
Future Volume (vph)	90	1255	30	70	1980	65	20	20	15	45	35	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time (s)	6.5	6.5		6.5	6.5	6.5	7.5	7.5		7.5	7.5	
Lane Util. Factor	1.00	0.91		1.00	0.91	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.97	1.00	0.99		1.00	0.98	
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	0.99	1.00		1.00	1.00	
Frt	1.00	1.00		1.00	1.00	0.85	1.00	0.94		1.00	0.90	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1766	5171		1780	5245	1485	1767	1789		1743	1702	
Flt Permitted	0.08	1.00		0.19	1.00	1.00	0.69	1.00		0.73	1.00	
Satd. Flow (perm)	148	5171		354	5245	1485	1278	1789		1346	1702	
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	93	1294	31	72	2041	67	21	21	15	46	36	72
RTOR Reduction (vph)	0	1	0	0	0	11	0	14	0	0	13	0
Lane Group Flow (vph)	93	1324	0	72	2041	56	21	22	0	46	95	0
Confl. Peds. (#/hr)	5		8	8		5	12		4	4		12
Confl. Bikes (#/hr)						1						
Heavy Vehicles (%)	1%	1%	0%	0%	0%	0%	0%	0%	0%	2%	0%	0%
Bus Blockages (#/hr)	0	0	10	0	0	10	0	0	0	0	0	0
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6		6	4			8		
Actuated Green, G (s)	102.6	102.6		102.6	102.6	102.6	12.6	12.6		12.6	12.6	
Effective Green, g (s)	102.6	102.6		102.6	102.6	102.6	12.6	12.6		12.6	12.6	
Actuated g/C Ratio	0.79	0.79		0.79	0.79	0.79	0.10	0.10		0.10	0.10	
Clearance Time (s)	6.5	6.5		6.5	6.5	6.5	7.5	7.5		7.5	7.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	117	4106		281	4165	1179	124	174		131	165	
v/s Ratio Prot		0.26			0.39			0.01			c0.06	
v/s Ratio Perm	c0.63			0.20		0.04	0.02			0.03		
v/c Ratio	0.79	0.32		0.26	0.49	0.05	0.17	0.13		0.35	0.58	
Uniform Delay, d1	7.4	3.7		3.4	4.5	2.8	53.5	53.3		54.5	55.8	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	30.0	0.0		0.5	0.1	0.0	0.6	0.3		1.6	4.8	
Delay (s)	37.4	3.7		3.9	4.6	2.9	54.1	53.6		56.1	60.6	
Level of Service	D	A		A	A	A	D	D		Е	Е	
Approach Delay (s)		5.9			4.5			53.8			59.3	
Approach LOS		A			A			D			E	
Intersection Summary												
HCM 2000 Control Delay			8.0	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capa	acity ratio		0.77									
Actuated Cycle Length (s)			129.2	S	um of los	t time (s)			14.0			
Intersection Capacity Utiliz	ation		82.5%	IC	CU Level	of Service)		Е			

1240 BRITANNIA ROAD WEST 03-12-2020 EX PM BA Group - CA

Analysis Period (min) c Critical Lane Group 15

	1	•	Ť	1	1	Į.		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	Y		1 >			ર્લ		
Sign Control	Stop		Stop			Stop		
Traffic Volume (vph)	270	80	125	110	60	255		
Future Volume (vph)	270	80	125	110	60	255		
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94		
Hourly flow rate (vph)	287	85	133	117	64	271		
Direction, Lane #	WB 1	NB 1	SB 1					
Volume Total (vph)	372	250	335					
Volume Left (vph)	287	0	64					
Volume Right (vph)	85	117	0					
Hadj (s)	0.02	-0.28	0.04					
Departure Headway (s)	5.5	5.3	5.4					
Degree Utilization, x	0.56	0.37	0.51					
Capacity (veh/h)	625	630	631					
Control Delay (s)	15.3	11.2	13.8					
Approach Delay (s)	15.3	11.2	13.8					
Approach LOS	С	В	В					
Intersection Summary								
Delay			13.7					
Level of Service			В					
Intersection Capacity Utiliza	ation		60.3%	IC	U Level of	Service	В	
Analysis Period (min)			15					

	•	-	•	*	-	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		લી	b		Y		
Traffic Volume (veh/h)	10	160	345	10	5	5	
Future Volume (Veh/h)	10	160	345	10	5	5	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Hourly flow rate (vph)	11	172	371	11	5	5	
Pedestrians					3		
Lane Width (m)					3.5		
Walking Speed (m/s)					1.2		
Percent Blockage					0		
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	385				574	380	
vC1, stage 1 conf vol	000				0	000	
vC2, stage 2 conf vol							
vCu, unblocked vol	385				574	380	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)					0.1	0.2	
tF (s)	2.2				3.5	3.3	
p0 queue free %	99				99	99	
cM capacity (veh/h)	1182				478	670	
		MD 4	SB 1		110	010	
Direction, Lane #	EB 1	WB 1					
Volume Total	183	382	10				
Volume Left	11	0	5				
Volume Right	0	11	5				
cSH	1182	1700	558				
Volume to Capacity	0.01	0.22	0.02				
Queue Length 95th (m)	0.2	0.0	0.4				
Control Delay (s)	0.6	0.0	11.6				
Lane LOS	Α		В				
Approach Delay (s)	0.6	0.0	11.6				
Approach LOS			В				
Intersection Summary							
Average Delay			0.4				
Intersection Capacity Utiliza	ation		28.8%	IC	U Level o	of Service	A
Analysis Period (min)			15				

	•	-	•	*	1	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1>		W	
Traffic Volume (veh/h)	0	165	355	0	0	0
Future Volume (Veh/h)	0	165	355	0	0	0
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	0.00	177	382	0.00	0.00	0.00
Pedestrians			002	·	3	· ·
Lane Width (m)					3.5	
Walking Speed (m/s)					1.2	
Percent Blockage					0	
Right turn flare (veh)					U	
Median type		None	None			
Median type Median storage veh)		None	None			
Upstream signal (m)						
pX, platoon unblocked	205				FC0	205
vC, conflicting volume	385				562	385
vC1, stage 1 conf vol						
vC2, stage 2 conf vol	005				=00	005
vCu, unblocked vol	385				562	385
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	100				100	100
cM capacity (veh/h)	1182				490	666
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	177	382	0			
Volume Left	0	0	0			
Volume Right	0	0	0			
cSH	1182	1700	1700			
Volume to Capacity	0.00	0.22	0.00			
Queue Length 95th (m)	0.0	0.0	0.0			
Control Delay (s)	0.0	0.0	0.0			
Lane LOS			A			
Approach Delay (s)	0.0	0.0	0.0			
Approach LOS	0.0	0.0	Α.			
Intersection Summary						
			0.0			
Average Delay Intersection Capacity Utiliz	zation		22.0%	10	III ovel s	of Service
	zauon			IC	o revel c	o Service
Analysis Period (min)			15			

	•	→	•	*	1	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્લ	1		Y	
Traffic Volume (veh/h)	5	160	355	15	10	0
Future Volume (Veh/h)	5	160	355	15	10	0
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	5	174	386	16	11	0
Pedestrians		2			4	
Lane Width (m)		3.7			3.5	
Walking Speed (m/s)		1.2			1.2	
Percent Blockage		0			0	
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	406				582	400
vC1, stage 1 conf vol	.00				002	100
vC2, stage 2 conf vol						
vCu, unblocked vol	406				582	400
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)					0.1	0.2
tF (s)	2.2				3.5	3.3
p0 queue free %	100				98	100
cM capacity (veh/h)	1160				475	651
		WD 4	CD 4		-110	001
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	179	402	11			
Volume Left	5	0	11			
Volume Right	0	16	0			
cSH	1160	1700	475			
Volume to Capacity	0.00	0.24	0.02			
Queue Length 95th (m)	0.1	0.0	0.6			
Control Delay (s)	0.3	0.0	12.8			
Lane LOS	Α		В			
Approach Delay (s)	0.3	0.0	12.8			
Approach LOS			В			
Intersection Summary						
Average Delay			0.3			
Intersection Capacity Utiliz	zation		30.3%	IC	U Level o	of Service
Analysis Period (min)			15			,
raidiyolo i onod (iliili)			10			

HCM Unsignalized Intersection Capacity Analysis 7: Prestonwood Crescent/Brookhaven Way & Galesway Boulevard

	٠	→	*	1	•	•	1	†	<i>></i>	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	15	155	0	15	300	35	0	5	15	40	25	70
Future Volume (vph)	15	155	0	15	300	35	0	5	15	40	25	70
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	16	170	0	16	330	38	0	5	16	44	27	77
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	186	384	21	148								
Volume Left (vph)	16	16	0	44								
Volume Right (vph)	0	38	16	77								
Hadj (s)	0.02	-0.05	-0.46	-0.25								
Departure Headway (s)	4.8	4.5	5.0	5.0								
Degree Utilization, x	0.25	0.48	0.03	0.21								
Capacity (veh/h)	703	766	609	647								
Control Delay (s)	9.4	11.7	8.2	9.3								
Approach Delay (s)	9.4	11.7	8.2	9.3								
Approach LOS	Α	В	Α	Α								
Intersection Summary												
Delay			10.5									
Level of Service			В									
Intersection Capacity Utiliza	tion		43.0%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

1240 BRITANNIA ROAD WEST 03-12-2020 FB AM

BA Group - CA

	•	-	7	•	•	•	1	1	1	/	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^^		7	^ ^	7	*	1>		Ť	1>	
Traffic Volume (vph)	25	2735	65	30	845	15	90	40	140	70	45	30
Future Volume (vph)	25	2735	65	30	845	15	90	40	140	70	45	30
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time (s)	6.9	6.9		3.0	6.9	6.9	7.3	7.3		7.3	7.3	
Lane Util. Factor	1.00	0.91		1.00	0.91	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.97	1.00	0.99		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	0.98	1.00		1.00	1.00	
Frt	1.00	1.00		1.00	1.00	0.85	1.00	0.88		1.00	0.94	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1781	5167		1552	4948	1194	1656	1659		1747	1741	
Flt Permitted	0.31	1.00		0.05	1.00	1.00	0.71	1.00		0.46	1.00	
Satd. Flow (perm)	588	5167		78	4948	1194	1233	1659		842	1741	
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	26	2820	67	31	871	15	93	41	144	72	46	31
RTOR Reduction (vph)	0	1	0	0	0	4	0	76	0	0	17	0
Lane Group Flow (vph)	26	2886	0	31	871	11	93	109	0	72	60	0
Confl. Peds. (#/hr)	3		6	6		3	15		2	2		15
Heavy Vehicles (%)	0%	1%	4%	15%	6%	25%	6%	5%	0%	2%	0%	6%
Bus Blockages (#/hr)	0	0	0	0	0	10	0	0	0	0	0	0
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2		1	6			4			8	
Permitted Phases	2			6		6	4			8		
Actuated Green, G (s)	81.1	81.1		87.4	87.4	87.4	15.2	15.2		15.2	15.2	
Effective Green, g (s)	81.1	81.1		87.4	87.4	87.4	15.2	15.2		15.2	15.2	
Actuated g/C Ratio	0.69	0.69		0.75	0.75	0.75	0.13	0.13		0.13	0.13	
Clearance Time (s)	6.9	6.9		3.0	6.9	6.9	7.3	7.3		7.3	7.3	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	408	3587		100	3702	893	160	215		109	226	
v/s Ratio Prot		c0.56		c0.01	0.18			0.07			0.03	
v/s Ratio Perm	0.04			0.22		0.01	0.08			c0.09		
v/c Ratio	0.06	0.80		0.31	0.24	0.01	0.58	0.51		0.66	0.26	
Uniform Delay, d1	5.7	12.4		15.2	4.5	3.7	47.8	47.3		48.3	45.8	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.1	1.4		1.8	0.0	0.0	5.3	1.9		14.0	0.6	
Delay (s)	5.8	13.7		17.0	4.5	3.7	53.1	49.2		62.4	46.4	
Level of Service	Α	В		В	Α	Α	D	D		Е	D	
Approach Delay (s)		13.7			4.9			50.5			54.1	
Approach LOS		В			Α			D			D	
Intersection Summary												
HCM 2000 Control Delay			15.6	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capac	city ratio		0.77									
Actuated Cycle Length (s)			116.8	S	um of los	t time (s)			17.2			
Intersection Capacity Utiliza	tion		92.4%			of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	-	*	1		*	1	Ť	1	1	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	7	ተተቡ		7	^ ^	7	ħ	1>		*	^	
Traffic Volume (vph)	80	2845	20	5	780	25	25	25	55	30	20	8
Future Volume (vph)	80	2845	20	5	780	25	25	25	55	30	20	8
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.
Total Lost time (s)	6.5	6.5		6.5	6.5	6.5	7.5	7.5		7.5	7.5	
Lane Util. Factor	1.00	0.91		1.00	0.91	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.97	1.00	0.99		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00		0.99	1.00	
Frt	1.00	1.00		1.00	1.00	0.85	1.00	0.90		1.00	0.88	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1681	5185		1785	4948	1311	1449	1700		1659	1605	
Flt Permitted	0.33	1.00		0.05	1.00	1.00	0.69	1.00		0.70	1.00	
Satd. Flow (perm)	584	5185		93	4948	1311	1047	1700		1226	1605	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.9
Adj. Flow (vph)	84	2995	21	5	821	26	26	26	58	32	21	8
RTOR Reduction (vph)	0	0	0	0	0	6	0	1	0	0	79	
Lane Group Flow (vph)	84	3016	0	5	821	20	26	83	0	32	31	
Confl. Peds. (#/hr)	3		2	2		3	2		8	8		
Heavy Vehicles (%)	6%	1%	5%	0%	6%	14%	23%	0%	0%	7%	0%	59
Bus Blockages (#/hr)	0	0	10	0	0	10	0	0	0	0	0	
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6		6	4			8		
Actuated Green, G (s)	80.8	80.8		80.8	80.8	80.8	11.6	11.6		11.6	11.6	
Effective Green, g (s)	80.8	80.8		80.8	80.8	80.8	11.6	11.6		11.6	11.6	
Actuated g/C Ratio	0.76	0.76		0.76	0.76	0.76	0.11	0.11		0.11	0.11	
Clearance Time (s)	6.5	6.5		6.5	6.5	6.5	7.5	7.5		7.5	7.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	443	3937		70	3757	995	114	185		133	174	
v/s Ratio Prot	110	c0.58		10	0.17	000		c0.05		100	0.02	
v/s Ratio Perm	0.14	00.00		0.05	0.17	0.02	0.02	00.00		0.03	0.02	
v/c Ratio	0.19	0.77		0.07	0.22	0.02	0.23	0.45		0.24	0.18	
Uniform Delay, d1	3.6	7.4		3.3	3.7	3.1	43.3	44.4		43.4	43.1	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.2	0.9		0.4	0.0	0.0	1.0	1.7		0.9	0.5	
Delay (s)	3.8	8.3		3.7	3.7	3.1	44.3	46.1		44.3	43.5	
Level of Service	Α.	Α.		Α.	Α.	Α.	D	D		TT.5	TO.5	
Approach Delay (s)	,,	8.2		,,	3.7	,,		45.7			43.7	
Approach LOS		Α.2			Α			D			D	
Intersection Summary												
HCM 2000 Control Delay			9.4	ш	CM 2000	Level of	Service		A			
HCM 2000 Collino Delay HCM 2000 Volume to Capacity	, ratio		0.73	п	ON 2000	LCVCI UI	OCI VICE		^			
Actuated Cycle Length (s)	iauo		106.4	9	um of lost	t time (c)			14.0			
						(-)						
	n		u2 1%									
Intersection Capacity Utilizatio Analysis Period (min)	n		92.1% 15	IC	U Level o	of Service			F			

HCM Signalized Intersection Capacity Analysis 2: Brookhaven Way/Douguy Boulevard & Britannia Road W

Synchro 9 Report Page 1 1240 BRITANNIA ROAD WEST 03-12-2020 FB AM BA Group - CA

3-19-2020	
-----------	--

	1	•		1	-	↓		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	Y		1>			ર્ન		
Sign Control	Stop		Stop			Stop		
Traffic Volume (vph)	165	40	230	210	40	100		
Future Volume (vph)	165	40	230	210	40	100		
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94		
Hourly flow rate (vph)	176	43	245	223	43	106		
Direction, Lane #	WB 1	NB 1	SB 1					
Volume Total (vph)	219	468	149					
Volume Left (vph)	176	0	43					
Volume Right (vph)	43	223	0					
Hadj (s)	0.09	-0.27	0.12					
Departure Headway (s)	5.4	4.5	5.2					
Degree Utilization, x	0.33	0.58	0.22					
Capacity (veh/h)	608	780	646					
Control Delay (s)	11.1	13.5	9.6					
Approach Delay (s)	11.1	13.5	9.6					
Approach LOS	В	В	Α					
Intersection Summary								
Delay			12.2					
Level of Service			В					
Intersection Capacity Utiliza	ation		54.7%	IC	U Level o	f Service	Α	
Analysis Period (min)			15					

	۶	-	+	4	1	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		ર્ન	1,		Y		
Traffic Volume (veh/h)	5	245	190	0	5	15	
Future Volume (Veh/h)	5	245	190	0	5	15	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	5	266	207	0.02	5	16	
Pedestrians					2		
Lane Width (m)					3.5		
Walking Speed (m/s)					1.2		
Percent Blockage					0		
Right turn flare (veh)							
Median type		None	None				
Median storage veh)		110110	110.10				
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	209				485	209	
vC1, stage 1 conf vol	200						
vC2, stage 2 conf vol							
vCu, unblocked vol	209				485	209	
tC, single (s)	4.3				6.5	6.2	
tC, 2 stage (s)					0.0	0.2	
tF (s)	2.3				3.6	3.3	
p0 queue free %	100				99	98	
cM capacity (veh/h)	1281				517	835	
Direction, Lane #	EB 1	WB 1	SB 1		0		
Volume Total	271	207	21				
Volume Left	5	0	5				
Volume Right	0	0	16				
cSH	1281	1700	728				
Volume to Capacity	0.00	0.12	0.03				
Queue Length 95th (m)	0.1	0.0	0.7				
Control Delay (s)	0.2	0.0	10.1				
Lane LOS	Α		В				
Approach Delay (s)	0.2	0.0	10.1				
Approach LOS			В				
Intersection Summary							
Average Delay			0.5				
Intersection Capacity Utiliza	ation		26.9%	IC	U Level o	of Service	
Analysis Period (min)			15				

03-19-2020

	•	-	•	•	-	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		ર્ન	f)		Y		
Traffic Volume (veh/h)	0	250	190	0	0	0	
Future Volume (Veh/h)	0	250	190	0	0	0	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	272	207	0	0	0	
Pedestrians					2		
Lane Width (m)					3.5		
Walking Speed (m/s)					1.2		
Percent Blockage					0		
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	209				481	209	
vC1, stage 1 conf vol						200	
vC2, stage 2 conf vol							
vCu, unblocked vol	209				481	209	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)					0	0.2	
tF (s)	2.2				3.5	3.3	
p0 queue free %	100				100	100	
cM capacity (veh/h)	1372				547	835	
Direction, Lane #	EB 1	WB 1	SB 1		011	000	
Volume Total	272	207	0				
Volume Left	0	0	0				
Volume Right	0	0	0				
cSH "	1372	1700	1700				
Volume to Capacity	0.00	0.12	0.00				
Queue Length 95th (m)	0.0	0.0	0.0				
Control Delay (s)	0.0	0.0	0.0				
Lane LOS			Α				
Approach Delay (s)	0.0	0.0	0.0				
Approach LOS			Α				
Intersection Summary							
Average Delay			0.0				
Intersection Capacity Utiliza	ation		16.5%	IC	U Level o	of Service	A
Analysis Davied (min)			15				

15

	۶	-	•	*	1	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્ન	P		Y	
Traffic Volume (veh/h)	5	245	175	0	15	15
Future Volume (Veh/h)	5	245	175	0	15	15
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	5	255	182	0	16	16
Pedestrians		1	1		3	
Lane Width (m)		3.7	3.7		3.5	
Walking Speed (m/s)		1.2	1.2		1.2	
Percent Blockage		0	0		0	
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	185				451	186
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	185				451	186
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	100				97	98
cM capacity (veh/h)	1398				566	858
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	260	182	32			
Volume Left	5	0	16			
Volume Right	0	0	16			
cSH	1398	1700	682			
Volume to Capacity	0.00	0.11	0.05			
Queue Length 95th (m)	0.1	0.0	1.2			
Control Delay (s)	0.2	0.0	10.5			
Lane LOS	Α		В			
Approach Delay (s)	0.2	0.0	10.5			
Approach LOS			В			
Intersection Summary						
Average Delay			0.8			
Intersection Capacity Utiliz	ation		27.2%	IC	U Level o	of Service
Analysis Period (min)			15			
, ()			.5			

Analysis Period (min)

HCM Unsignalized Intersection Capacity Analysis 7: Prestonwood Crescent/Brookhaven Way & Galesway Boulevard

_	٠	→	*	1	•	•	1	†	<i>></i>	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	45	215	0	5	155	40	5	20	20	25	5	15
Future Volume (vph)	45	215	0	5	155	40	5	20	20	25	5	15
Peak Hour Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Hourly flow rate (vph)	45	217	0	5	157	40	5	20	20	25	5	15
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	262	202	45	45								
Volume Left (vph)	45	5	5	25								
Volume Right (vph)	0	40	20	15								
Hadj (s)	0.05	-0.01	-0.21	0.05								
Departure Headway (s)	4.4	4.4	4.8	5.1								
Degree Utilization, x	0.32	0.25	0.06	0.06								
Capacity (veh/h)	795	784	674	640								
Control Delay (s)	9.5	8.8	8.1	8.4								
Approach Delay (s)	9.5	8.8	8.1	8.4								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			9.0									
Level of Service			Α									
Intersection Capacity Utilizat	tion		43.9%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

Movement EBL WBL WBT **NBT** Lane Configurations 44% ** Traffic Volume (vph) 40 1305 125 1885 145 95 60 100 50 85 Future Volume (vph) 40 1305 90 125 1885 145 95 60 55 85 100 50 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 3.5 Lane Width 3.5 3.7 3.5 3.5 3.7 3.5 3.5 3.7 3.5 3.5 3.7 Total Lost time (s) 6.9 6.9 6.9 6.9 6.9 7.3 7.3 7.3 7.3 Lane Util. Factor 1.00 0.91 1.00 0.91 1.00 1.00 1.00 1.00 1.00 Frpb, ped/bikes 1.00 1.00 0.99 0.99 1.00 1.00 0.96 1.00 1.00 1.00 1.00 0.99 Flpb, ped/bikes 1 00 1 00 1 00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.85 1.00 0.93 0.95 1.00 Flt Protected 0.95 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 Satd. Flow (prot) 1748 5135 1765 5193 1473 1758 1807 1761 1773 Flt Permitted 0.08 1.00 0.15 1.00 1.00 0.65 1.00 0.68 1.00 139 Satd. Flow (perm) 5135 281 5193 1473 1197 1758 1268 1807 0.95 Peak-hour factor, PHF 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 Adj. Flow (vph) 42 1374 132 153 105 53 95 1984 100 63 58 89 RTOR Reduction (vph) Λ Λ ٥ 46 Λ 23 Λ Λ 12 ٥ 5 Λ Lane Group Flow (vph) 1464 100 132 1984 89 Confl. Peds. (#/hr) 10 10 17 8 8 17 Confl. Bikes (#/hr) Heavy Vehicles (%) 2% 1% 0% 1% 1% 0% 0% 0% 1% 0% 0% 0% Bus Blockages (#/hr) 0 0 0 0 0 10 0 0 0 0 0 0 Turn Type Perm NA Perm NA Perm Perm NA Perm NA Protected Phases 8 Permitted Phases 2 6 6 4 8 Actuated Green, G (s) 64.6 64.6 64.6 64.6 16.6 16.6 16.6 16.6 Effective Green, g (s) 64.6 64.6 64.6 64.6 64.6 16.6 16.6 16.6 16.6 0.68 0.68 0.68 0.68 0.17 0.17 0.17 0.17 Actuated g/C Ratio 0.68 Clearance Time (s) 6.9 6.9 6.9 6.9 6.9 7.3 7.3 7.3 7.3 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 94 3477 190 3516 997 208 305 220 314 v/s Ratio Prot 0.38 0.08 0.29 0.06 v/s Ratio Perm 0.30 c0.47 0.07 c0.08 0.07 v/c Ratio 0.45 0.42 0.69 0.56 0.11 0.48 0.32 0.40 0.46 Uniform Delay, d1 7.1 7.0 9.4 8.0 5.4 35.5 34.5 35.0 35.4 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.1 10.5 0.2 0.6 3.4 0.0 1.7 1.2 1.1 10.5 Delay (s) 7.0 19.9 8.3 5.4 37.3 35.1 36.2 36.5 Level of Service В Α В D D D D Α Α Approach Delay (s) 7.1 36.1 36.4 Approach LOS Α Α D D Intersection Summary HCM 2000 Level of Service HCM 2000 Control Delay 11.2 В HCM 2000 Volume to Capacity ratio 0.65 Actuated Cycle Length (s) 95.4 Sum of lost time (s) 14.2 Intersection Capacity Utilization 92.2% ICU Level of Service 15 Analysis Period (min) c Critical Lane Group

1240 BRITANNIA ROAD WEST 03-12-2020 FB PM BA Group - CA Synchro 9 Report Page 1

HCM Signalized Intersection Capacity Analysis 2: Brookhaven Way/Douguy Boulevard & Britannia Road W

	•	-	7	1	•	*	1	†	1	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^ ^		7	^ ^	7	7	1		7	↑	
Traffic Volume (vph)	90	1325	30	70	2065	65	20	20	15	45	35	70
Future Volume (vph)	90	1325	30	70	2065	65	20	20	15	45	35	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time (s)	6.5	6.5		6.5	6.5	6.5	7.5	7.5		7.5	7.5	
Lane Util. Factor	1.00	0.91		1.00	0.91	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.97	1.00	0.99		1.00	0.98	
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	0.99	1.00		1.00	1.00	
Frt	1.00	1.00		1.00	1.00	0.85	1.00	0.94		1.00	0.90	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1766	5172		1781	5245	1485	1767	1789		1743	1702	
Flt Permitted	0.07	1.00		0.17	1.00	1.00	0.69	1.00		0.73	1.00	
Satd. Flow (perm)	132	5172		325	5245	1485	1278	1789		1346	1702	
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	93	1366	31	72	2129	67	21	21	15	46	36	72
RTOR Reduction (vph)	0	1	0	0	0	11	0	14	0	0	10	0
Lane Group Flow (vph)	93	1396	0	72	2129	56	21	22	0	46	98	0
Confl. Peds. (#/hr)	5		8	8		5	12		4	4		12
Confl. Bikes (#/hr)						1						
Heavy Vehicles (%)	1%	1%	0%	0%	0%	0%	0%	0%	0%	2%	0%	0%
Bus Blockages (#/hr)	0	0	10	0	0	10	0	0	0	0	0	0
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6		6	4			8		
Actuated Green, G (s)	102.6	102.6		102.6	102.6	102.6	12.7	12.7		12.7	12.7	
Effective Green, g (s)	102.6	102.6		102.6	102.6	102.6	12.7	12.7		12.7	12.7	
Actuated g/C Ratio	0.79	0.79		0.79	0.79	0.79	0.10	0.10		0.10	0.10	
Clearance Time (s)	6.5	6.5		6.5	6.5	6.5	7.5	7.5		7.5	7.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	104	4104		257	4161	1178	125	175		132	167	
v/s Ratio Prot		0.27			0.41			0.01			c0.06	
v/s Ratio Perm	c0.70			0.22		0.04	0.02			0.03		
v/c Ratio	0.89	0.34		0.28	0.51	0.05	0.17	0.13		0.35	0.59	
Uniform Delay, d1	9.5	3.8		3.5	4.6	2.9	53.5	53.2		54.4	55.8	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	55.6	0.0		0.6	0.1	0.0	0.6	0.3		1.6	5.2	
Delay (s)	65.1	3.8		4.1	4.7	2.9	54.1	53.6		56.0	61.0	
Level of Service	Е	Α		Α	Α	Α	D	D		Е	Е	
Approach Delay (s)		7.7			4.7			53.8			59.5	
Approach LOS		Α			Α			D			Е	
Intersection Summary												
HCM 2000 Control Delay			8.6	Н	CM 2000	Level of S	Service		Α			
HCM 2000 Volume to Capa	acity ratio		0.85									
Actuated Cycle Length (s)			129.3	S	um of los	t time (s)			14.0			
Intersection Capacity Utiliza	ation		84.1%	IC	U Level	of Service			Е			
Analysis Period (min)			15									
a Critical Lana Croun												

1240 BRITANNIA ROAD WEST 03-12-2020 FB PM BA Group - CA

c Critical Lane Group

03-19-2020

	1	•	T		-	¥		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	Y		1→			ર્લ		
Sign Control	Stop		Stop			Stop		
Traffic Volume (vph)	270	85	125	115	60	255		
Future Volume (vph)	270	85	125	115	60	255		
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94		
Hourly flow rate (vph)	287	90	133	122	64	271		
Direction, Lane #	WB 1	NB 1	SB 1					
Volume Total (vph)	377	255	335					
Volume Left (vph)	287	0	64					
Volume Right (vph)	90	122	0					
Hadj (s)	0.01	-0.29	0.04					
Departure Headway (s)	5.5	5.3	5.5					
Degree Utilization, x	0.57	0.37	0.51					
Capacity (veh/h)	624	629	628					
Control Delay (s)	15.6	11.4	14.0					
Approach Delay (s)	15.6	11.4	14.0					
Approach LOS	С	В	В					
Intersection Summary								
Delay			13.9					
Level of Service			В					
Intersection Capacity Utiliza	tion		60.9%	IC	U Level o	f Service	В	
Analysis Period (min)			15					

	٨	-	-	1	1	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્લ	1		Y	
Traffic Volume (veh/h)	10	165	350	10	5	5
Future Volume (Veh/h)	10	165	350	10	5	5
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	11	177	376	11	5	5
Pedestrians	- ''	111	370		3	J
Lane Width (m)					3.5	
Walking Speed (m/s)					1.2	
Percent Blockage					0	
Right turn flare (veh)					U	
Median type		None	None			
Median storage veh)		INOTIE	NOTIE			
Upstream signal (m)						
pX, platoon unblocked	390				584	384
vC, conflicting volume	390				204	384
vC1, stage 1 conf vol						
vC2, stage 2 conf vol	202				E04	204
vCu, unblocked vol	390				584	384
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	99				99	99
cM capacity (veh/h)	1177				472	666
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	188	387	10			
Volume Left	11	0	5			
Volume Right	0	11	5			
cSH	1177	1700	552			
Volume to Capacity	0.01	0.23	0.02			
Queue Length 95th (m)	0.2	0.0	0.4			
Control Delay (s)	0.6	0.0	11.6			
Lane LOS	Α		В			
Approach Delay (s)	0.6	0.0	11.6			
Approach LOS			В			
Intersection Summary						
Average Delay			0.4			
Intersection Capacity Utiliza	ition		29.0%	IC	U Level o	of Service
Analysis Period (min)			15			

HCM Unsignalized Intersection Capacity Analysis 4: Galesway Boulevard & Cabrera Crescent

	202	

	٠	→	•	4	1	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્ની	13		Y	
Traffic Volume (veh/h)	0	170	360	0	0	0
Future Volume (Veh/h)	0	170	360	0	0	0
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	0	183	387	0	0	0
Pedestrians					3	
Lane Width (m)					3.5	
Walking Speed (m/s)					1.2	
Percent Blockage					0	
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	390				573	390
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	390				573	390
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	100				100	100
cM capacity (veh/h)	1177				483	661
Direction, Lane #	EB 1	WB 1	SB 1			
,						
Volume Total	183	387	0			
Volume Left	0	0	0			
Volume Right	0	0	0			
cSH	1177	1700	1700			
Volume to Capacity	0.00	0.23	0.00			
Queue Length 95th (m)	0.0	0.0	0.0			
Control Delay (s)	0.0	0.0	0.0			
Lane LOS			Α			
Approach Delay (s)	0.0	0.0	0.0			
Approach LOS			Α			
Intersection Summary						
Average Delay			0.0			
Intersection Capacity Utiliza	tion		22.3%	IC	U Level o	of Service
Analysis Period (min)			15			

	•	-		•	-	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્લ	ĵ.		Y	
Traffic Volume (veh/h)	5	165	360	15	10	0
Future Volume (Veh/h)	5	165	360	15	10	0
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	5	179	391	16	11	0
Pedestrians		2			4	
Lane Width (m)		3.7			3.5	
Walking Speed (m/s)		1.2			1.2	
Percent Blockage		0			0	
Right turn flare (veh)		·			·	
Median type		None	None			
Median storage veh)		110110	140110			
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	411				592	405
vC1, stage 1 conf vol	411				332	400
vC1, stage 1 conf vol						
vCu, unblocked vol	411				592	405
tC, single (s)	4.1				6.4	6.2
	4.1				0.4	0.2
tC, 2 stage (s) tF (s)	2.2				3.5	3.3
p0 queue free %	100				98	100
	1155				469	647
cM capacity (veh/h)	1100				409	047
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	184	407	11			
Volume Left	5	0	11			
Volume Right	0	16	0			
cSH	1155	1700	469			
Volume to Capacity	0.00	0.24	0.02			
Queue Length 95th (m)	0.1	0.0	0.6			
Control Delay (s)	0.3	0.0	12.9			
Lane LOS	Α		В			
Approach Delay (s)	0.3	0.0	12.9			
Approach LOS			В			
Intersection Summary						
Average Delay			0.3			
Intersection Capacity Utiliza	ation		30.5%	IC	U Level o	of Service
Analysis Period (min)			15			
ritalysis i chou (IIIII)			10			

1240 BRITANNIA ROAD WEST 03-12-2020 FB PM BA Group - CA

Synchro 9 Report Page 5 1240 BRITANNIA ROAD WEST 03-12-2020 FB PM BA Group - CA

HCM Unsignalized Intersection Capacity Analysis 7: Prestonwood Crescent/Brookhaven Way & Galesway Boulevard

		-2		
0.3				

	٨	→	*	•	+	•	1	1	~	/	Į.	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	15	160	0	15	305	35	0	5	15	40	25	70
Future Volume (vph)	15	160	0	15	305	35	0	5	15	40	25	70
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	16	176	0	16	335	38	0	5	16	44	27	77
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	192	389	21	148								
Volume Left (vph)	16	16	0	44								
Volume Right (vph)	0	38	16	77								
Hadj (s)	0.02	-0.05	-0.46	-0.25								
Departure Headway (s)	4.8	4.5	5.0	5.0								
Degree Utilization, x	0.26	0.49	0.03	0.21								
Capacity (veh/h)	702	765	604	643								
Control Delay (s)	9.5	11.8	8.2	9.3								
Approach Delay (s)	9.5	11.8	8.2	9.3								
Approach LOS	Α	В	Α	Α								
Intersection Summary												
Delay			10.6									
Level of Service			В									
Intersection Capacity Utiliza	ition		43.4%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									

1240 BRITANNIA ROAD WEST 03-12-2020 FT AM BA Group - CA HCM Signalized Intersection Capacity Analysis

2: Brookhaven Way/Douguy Boulevard & Britannia Road W

03-20-2020

	۶	→	•	1	•	•	1	†	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^^		*	^ ^	7	*	1		*	^	
Traffic Volume (vph)	80	2845	20	10	780	25	25	25	75	30	20	85
Future Volume (vph)	80	2845	20	10	780	25	25	25	75	30	20	85
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time (s)	6.5	6.5		6.5	6.5	6.5	7.5	7.5		7.5	7.5	
Lane Util. Factor	1.00	0.91		1.00	0.91	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.97	1.00	0.99		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00		0.99	1.00	
Frt	1.00	1.00		1.00	1.00	0.85	1.00	0.89		1.00	0.88	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1681	5185		1785	4948	1311	1449	1681		1659	1604	
Flt Permitted	0.33	1.00		0.05	1.00	1.00	0.69	1.00		0.69	1.00	
Satd. Flow (perm)	584	5185		92	4948	1311	1047	1681		1203	1604	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	84	2995	21	11	821	26	26	26	79	32	21	89
RTOR Reduction (vph)	0	0	0	0	0	7	0	1	0	0	78	0
Lane Group Flow (vph)	84	3016	0	11	821	19	26	104	0	32	32	0
Confl. Peds. (#/hr)	3		2	2		3	2		8	8		2
Heavy Vehicles (%)	6%	1%	5%	0%	6%	14%	23%	0%	0%	7%	0%	5%
Bus Blockages (#/hr)	0	0	10	0	0	10	0	0	0	0	0	0
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6		6	4			8		
Actuated Green, G (s)	81.3	81.3		81.3	81.3	81.3	13.2	13.2		13.2	13.2	
Effective Green, g (s)	81.3	81.3		81.3	81.3	81.3	13.2	13.2		13.2	13.2	
Actuated g/C Ratio	0.75	0.75		0.75	0.75	0.75	0.12	0.12		0.12	0.12	
Clearance Time (s)	6.5	6.5		6.5	6.5	6.5	7.5	7.5		7.5	7.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	437	3885		68	3707	982	127	204		146	195	
v/s Ratio Prot		c0.58			0.17			c0.06			0.02	
v/s Ratio Perm	0.14			0.12		0.01	0.02			0.03		
v/c Ratio	0.19	0.78		0.16	0.22	0.02	0.20	0.51		0.22	0.16	
Uniform Delay, d1	4.0	8.1		3.9	4.1	3.5	42.9	44.6		43.0	42.7	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.2	1.0		1.1	0.0	0.0	0.8	2.1		0.8	0.4	
Delay (s)	4.2	9.2		5.0	4.1	3.5	43.7	46.8		43.8	43.1	
Level of Service	Α	Α		Α	Α	Α	D	D		D	D	
Approach Delay (s)		9.0			4.1			46.2			43.2	
Approach LOS		Α			Α			D			D	
Intersection Summary												
HCM 2000 Control Delay			10.3	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	ity ratio		0.74									
Actuated Cycle Length (s)			108.5	S	um of lost	time (s)			14.0			
Intersection Capacity Utilizat	ion		92.1%	IC	U Level	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

1240 BRITANNIA ROAD WEST 03-12-2020 FT AM BA Group - CA

	1	•	Ť		-	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		1			ર્ન	
Sign Control	Stop		Stop			Stop	
Traffic Volume (vph)	175	55	230	210	45	100	
Future Volume (vph)	175	55	230	210	45	100	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Hourly flow rate (vph)	186	59	245	223	48	106	
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total (vph)	245	468	154				
Volume Left (vph)	186	0	48				
Volume Right (vph)	59	223	0				
Hadj (s)	0.05	-0.27	0.12				
Departure Headway (s)	5.4	4.6	5.3				
Degree Utilization, x	0.37	0.59	0.23				
Capacity (veh/h)	611	754	632				
Control Delay (s)	11.6	14.0	9.9				
Approach Delay (s)	11.6	14.0	9.9				
Approach LOS	В	В	Α				
Intersection Summary							
Delay			12.6				
Level of Service			В				
Intersection Capacity Utiliza	ation		56.2%	IC	CU Level o	of Service	В
Analysis Period (min)			15				

	٨	-	+	1	1	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		ર્ન	12		Y		
Traffic Volume (veh/h)	5	250	215	0	5	15	
Future Volume (Veh/h)	5	250	215	0	5	15	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	5	272	234	0	5	16	
Pedestrians					2		
Lane Width (m)					3.5		
Walking Speed (m/s)					1.2		
Percent Blockage					0		
Right turn flare (veh)							
Median type		None	None				
Median storage veh)		110110	110110				
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	236				518	236	
vC1, stage 1 conf vol	200				010	200	
vC2, stage 2 conf vol							
vCu, unblocked vol	236				518	236	
tC, single (s)	4.3				6.5	6.2	
tC, 2 stage (s)	7.0				0.0	0.2	
tF (s)	2.3				3.6	3.3	
p0 queue free %	100				99	98	
cM capacity (veh/h)	1251				494	807	
. , , ,					434	001	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	277	234	21				
Volume Left	5	0	5				
Volume Right	0	0	16				
cSH	1251	1700	701				
Volume to Capacity	0.00	0.14	0.03				
Queue Length 95th (m)	0.1	0.0	0.7				
Control Delay (s)	0.2	0.0	10.3				
Lane LOS	Α		В				
Approach Delay (s)	0.2	0.0	10.3				
Approach LOS			В				
Intersection Summary							
Average Delay			0.5				
Intersection Capacity Utiliza	ation		27.2%	IC	U Level o	of Service	
Analysis Period (min)			15				
			10				

Movement	EBL							
		EBT	WBT	WBR	SBL	SBR		
Lane Configurations		લી	1		Y			
Traffic Volume (veh/h)	5	250	190	10	30	25		
Future Volume (Veh/h)	5	250	190	10	30	25		
Sign Control		Free	Free		Stop			
Grade		0%	0%		0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	5	272	207	11	33	27		
Pedestrians					2			
Lane Width (m)					3.5			
Walking Speed (m/s)					1.2			
Percent Blockage					0			
Right turn flare (veh)								
Median type		None	None					
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	220				496	214		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	220				496	214		
tC, single (s)	4.1				6.4	6.2		
tC, 2 stage (s)					0	0.2		
tF (s)	2.2				3.5	3.3		
p0 queue free %	100				94	97		
cM capacity (veh/h)	1359				534	829		
. , ,		WD 4	00.4		004	023		
Direction, Lane #	EB 1	WB 1	SB 1					
Volume Total	277	218	60					
Volume Left	5	0	33					
Volume Right	0	11	27					
cSH	1359	1700	636					
Volume to Capacity	0.00	0.13	0.09					
Queue Length 95th (m)	0.1	0.0	2.5					
Control Delay (s)	0.2	0.0	11.3					
Lane LOS	Α		В					
Approach Delay (s)	0.2	0.0	11.3					
Approach LOS			В					
Intersection Summary								
Average Delay			1.3					
Intersection Capacity Utilizat	tion		27.2%	IC	CU Level of	f Service	Α	
Analysis Period (min)			15					

Movement
Traffic Volume (veh/h) 5 275 185 0 15 15 Future Volume (Veh/h) 5 275 185 0 15 15 Sign Control Free Free Stop Stop Grade 0% 0% 0% 0% Peak Hour Factor 0.96 </th
Future Volume (Veh/h) 5 275 185 0 15 15 Sign Control Free Free Stop Grade 0% 0% 0% 0% Peak Hour Factor 0.96 0.96 0.96 0.96 0.96 Hourly flow rate (vph) 5 286 193 0 16 16 Pedestrians 1 1 3 Lane Width (m) 3.7 3.7 3.5 Walking Speed (m/s) 1.2 1.2 1.2 Percent Blockage 0 0 0 0 Right turn flare (veh) Median type None None Median storage veh) Upstream signal (m) pX, platoon unblocked
Sign Control Free OW Free OW Stop OW Grade 0% 0% 0% Peak Hour Factor 0.96 0.96 0.96 0.96 0.96 Hourly flow rate (vph) 5 286 193 0 16 16 Pedestrians 1 1 3 3.5 3.5 Walking Speed (m/s) 1.2 1.2 Percent Blockage 0 0 0 0 Right turn flare (veh) None None Median storage veh) Wedian storage veh) Upstream signal (m) pX, platoon unblocked PX, platoon unblocked None None
Grade 0% 0% 0% Peak Hour Factor 0.96 0.96 0.96 0.96 0.96 Hourly flow rate (vph) 5 286 193 0 16 16 Pedestrians 1 1 3 3.5 3.5 Walking Speed (m/s) 1.2 1.2 1.2 Percent Blockage 0
Peak Hour Factor 0.96
Hourly flow rate (vph) 5 286 193 0 16 16 Pedestrians 1 1 3 Lane Width (m) 3.7 3.7 3.5 Walking Speed (m/s) 1.2 1.2 1.2 Percent Blockage 0 0 0 0 Right turn flare (veh) Median type None None Median storage veh) Upstream signal (m) pX, platoon unblocked
Pedestrians 1 1 3 Lane Width (m) 3.7 3.7 3.5 Walking Speed (m/s) 1.2 1.2 1.2 Percent Blockage 0 0 0 Right turn flare (veh) None None None Median type None None None Median storage veh) Upstream signal (m) pX, platoon unblocked
Lane Width (m) 3.7 3.7 3.5 Walking Speed (m/s) 1.2 1.2 1.2 Percent Blockage 0 0 0 0 Right turn flare (veh) Median type None None Median storage veh) Upstream signal (m) pX, platoon unblocked
Walking Speed (m/s) 1.2 1.2 1.2 Percent Blockage 0 0 0 Right turn flare (veh) None None Median type None None Median storage veh) Upstream signal (m) pX, platoon unblocked PX
Percent Blockage 0 0 0 Right turn flare (veh) Median type None None Median storage veh) Upstream signal (m) pX, platoon unblocked
Percent Blockage 0 0 0 0 Right turn flare (veh) Median type None None Median storage veh) Upstream signal (m) pX, platoon unblocked
Median type None None Median storage veh) Upstream signal (m) pX, platoon unblocked
Median type None None Median storage veh) Upstream signal (m) pX, platoon unblocked
Upstream signal (m) pX, platoon unblocked
pX, platoon unblocked
vC. conflicting volume 196 493 197
vC1, stage 1 conf vol
vC2, stage 2 conf vol
vCu, unblocked vol 196 493 197
tC, single (s) 4.1 6.4 6.2
tC, 2 stage (s)
tF(s) 2.2 3.5 3.3
p0 queue free % 100 97 98
Direction, Lane # EB 1 WB 1 SB 1
Volume Total 291 193 32
Volume Left 5 0 16
Volume Right 0 0 16
cSH 1386 1700 656
Volume to Capacity 0.00 0.11 0.05
Queue Length 95th (m) 0.1 0.0 1.2
Control Delay (s) 0.2 0.0 10.8
Lane LOS A B
Approach Delay (s) 0.2 0.0 10.8
Approach LOS B
-
Intersection Summary
Average Delay 0.8
Intersection Capacity Utilization 28.8% ICU Level of Service
Analysis Period (min) 15

03-20-2020

HCM Unsignalized Intersection Capacity Analysis 7: Prestonwood Crescent/Brookhaven Way & Galesway Boulevard

03-20-2020

	۶	_	`	•	•	4	4	†	<i>></i>	1	ı	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	65	225	0	5	160	40	5	20	20	25	5	20
Future Volume (vph)	65	225	0	5	160	40	5	20	20	25	5	20
Peak Hour Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Hourly flow rate (vph)	66	227	0	5	162	40	5	20	20	25	5	20
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	293	207	45	50								
Volume Left (vph)	66	5	5	25								
Volume Right (vph)	0	40	20	20								
Hadj (s)	0.07	-0.01	-0.21	-0.01								
Departure Headway (s)	4.4	4.5	4.9	5.1								
Degree Utilization, x	0.36	0.26	0.06	0.07								
Capacity (veh/h)	789	774	657	632								
Control Delay (s)	9.9	9.0	8.2	8.5								
Approach Delay (s)	9.9	9.0	8.2	8.5								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			9.4									
Level of Service			Α									
Intersection Capacity Utilizati	ion		46.0%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

. # #		**	=	_
Intersection Summary				
HCM 2000 Control Delay	11.4	HCM 2000 Level of Service	В	
HCM 2000 Volume to Capacity ratio	0.66			
Actuated Cycle Length (s)	97.1	Sum of lost time (s)	14.2	
Intersection Capacity Utilization	92.4%	ICU Level of Service	F	
Analysis Period (min)	15			
c Critical Lane Group				

1240 BRITANNIA ROAD WEST 03-12-2020 FT PM BA Group - CA

Synchro 9 Report Page 1

HCM Signalized Intersection Capacity Analysis

2: Brookhaven Way/Douguy Boulevard & Britannia Road W

03-19-2020

	۶	→	7	•	-	•	1	1	~	/	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^ ^		*	^ ^	7	*	1		7	↑	
Traffic Volume (vph)	90	1325	30	95	2065	65	20	20	30	45	35	70
Future Volume (vph)	90	1325	30	95	2065	65	20	20	30	45	35	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time (s)	6.5	6.5		6.5	6.5	6.5	7.5	7.5		7.5	7.5	
Lane Util. Factor	1.00	0.91		1.00	0.91	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.97	1.00	0.99		1.00	0.98	
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	0.99	1.00		1.00	1.00	
Frt	1.00	1.00		1.00	1.00	0.85	1.00	0.91		1.00	0.90	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1766	5172		1781	5245	1485	1767	1733		1744	1702	
Flt Permitted	0.07	1.00		0.17	1.00	1.00	0.69	1.00		0.72	1.00	
Satd. Flow (perm)	132	5172		325	5245	1485	1278	1733		1327	1702	
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	93	1366	31	98	2129	67	21	21	31	46	36	72
RTOR Reduction (vph)	0	1	0	0	0	11	0	28	0	0	10	0
Lane Group Flow (vph)	93	1396	0	98	2129	56	21	24	0	46	98	0
Confl. Peds. (#/hr)	5		8	8		5	12		4	4		12
Confl. Bikes (#/hr)						1						
Heavy Vehicles (%)	1%	1%	0%	0%	0%	0%	0%	0%	0%	2%	0%	0%
Bus Blockages (#/hr)	0	0	10	0	0	10	0	0	0	0	0	0
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA	-	Perm	NA	
Protected Phases	1 01111	2		1 OIIII	6	1 01111	1 01111	4		1 01111	8	
Permitted Phases	2	_		6		6	4			8		
Actuated Green, G (s)	102.6	102.6		102.6	102.6	102.6	12.7	12.7		12.7	12.7	
Effective Green, g (s)	102.6	102.6		102.6	102.6	102.6	12.7	12.7		12.7	12.7	
Actuated g/C Ratio	0.79	0.79		0.79	0.79	0.79	0.10	0.10		0.10	0.10	
Clearance Time (s)	6.5	6.5		6.5	6.5	6.5	7.5	7.5		7.5	7.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	104	4104		257	4161	1178	125	170		130	167	
v/s Ratio Prot	101	0.27		201	0.41	1110	120	0.01		100	c0.06	
v/s Ratio Perm	c0.70	0.21		0.30	0.11	0.04	0.02	0.01		0.03	00.00	
v/c Ratio	0.89	0.34		0.38	0.51	0.05	0.17	0.14		0.35	0.59	
Uniform Delay, d1	9.5	3.8		4.0	4.6	2.9	53.5	53.3		54.5	55.8	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	55.6	0.0		0.9	0.1	0.0	0.6	0.4		1.7	5.2	
Delay (s)	65.1	3.8		4.9	4.7	2.9	54.1	53.7		56.1	61.0	
Level of Service	E	A.		Α.	A	Α.	D	D		E	E	
Approach Delay (s)		7.7		,,	4.7	- '`		53.8			59.5	
Approach LOS		A			A			D			E	
Intersection Summary												
HCM 2000 Control Delay			8.8	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.85		000	_5.0.01			- '`			
Actuated Cycle Length (s)	,		129.3	S	um of los	t time (s)			14.0			
Intersection Capacity Utiliza	ation		84.1%			of Service)		E			
Analysis Period (min)			15			2200			_			
c Critical Lane Group												

1240 BRITANNIA ROAD WEST 03-12-2020 FT PM BA Group - CA

	1	•	Ť	1	-	Į.		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	Y		f >			ર્લ		
Sign Control	Stop		Stop			Stop		
Traffic Volume (vph)	275	95	125	125	70	255		
Future Volume (vph)	275	95	125	125	70	255		
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94		
Hourly flow rate (vph)	293	101	133	133	74	271		
Direction, Lane #	WB 1	NB 1	SB 1					
Volume Total (vph)	394	266	345					
Volume Left (vph)	293	0	74					
Volume Right (vph)	101	133	0					
Hadj (s)	-0.01	-0.30	0.04					
Departure Headway (s)	5.5	5.4	5.6					
Degree Utilization, x	0.61	0.40	0.53					
Capacity (veh/h)	619	620	616					
Control Delay (s)	16.7	11.8	14.7					
Approach Delay (s)	16.7	11.8	14.7					
Approach LOS	С	В	В					
Intersection Summary								
Delay			14.7					
Level of Service			В					
Intersection Capacity Utiliza	ation		63.0%	IC	CU Level o	of Service	В	
Analysis Period (min)			15					

	•	-	-	*	-	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		ર્ન	13		Y		
Traffic Volume (veh/h)	10	185	365	10	5	5	
Future Volume (Veh/h)	10	185	365	10	5	5	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Hourly flow rate (vph)	11	199	392	11	5	5	
Pedestrians					3		
Lane Width (m)					3.5		
Walking Speed (m/s)					1.2		
Percent Blockage					0		
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	406				622	400	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	406				622	400	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free %	99				99	99	
cM capacity (veh/h)	1161				449	652	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	210	403	10				
Volume Left	11	403					
		_	5				
Volume Right	0	11	5 532				
cSH	1161	1700					
Volume to Capacity	0.01	0.24	0.02				
Queue Length 95th (m)	0.2	0.0	0.5				
Control Delay (s)	0.5	0.0	11.9				
Lane LOS	A		В				
Approach Delay (s)	0.5	0.0	11.9				
Approach LOS			В				
Intersection Summary							
Average Delay			0.4				
Intersection Capacity Utiliza	ation		29.8%	IC	U Level o	of Service	A
Analysis Period (min)			15				

	•	-	•	*	1	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		લી	f)		W		
Traffic Volume (veh/h)	20	170	360	40	20	15	
Future Volume (Veh/h)	20	170	360	40	20	15	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Hourly flow rate (vph)	22	183	387	43	22	16	
Pedestrians					3		
Lane Width (m)					3.5		
Walking Speed (m/s)					1.2		
Percent Blockage					0		
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	433				638	412	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	433				638	412	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free %	98				95	98	
cM capacity (veh/h)	1135				434	643	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	205	430	38				
Volume Left	22	0	22				
Volume Right	0	43	16				
cSH	1135	1700	503				
Volume to Capacity	0.02	0.25	0.08				
Queue Length 95th (m)	0.5	0.0	2.0				
Control Delay (s)	1.0	0.0	12.7				
Lane LOS	Α		В				
Approach Delay (s)	1.0	0.0	12.7				
Approach LOS			В				
Intersection Summary							
Average Delay			1.0				
Intersection Capacity Utiliza	ation		35.7%	IC	U Level o	of Service	
Analysis Period (min)			15				
. , ,							

HCM Unsignalized Intersection Capacity Analysis	
6: Galesway Boulevard & Bandlebrook Court	

	۶	-	•	•	1	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્ન	f»		Y	
Traffic Volume (veh/h)	5	185	400	15	10	0
Future Volume (Veh/h)	5	185	400	15	10	0
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	5	201	435	16	11	0
Pedestrians		2			4	
Lane Width (m)		3.7			3.5	
Walking Speed (m/s)		1.2			1.2	
Percent Blockage		0			0	
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	455				658	449
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	455				658	449
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	100				97	100
cM capacity (veh/h)	1113				429	611
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	206	451	11			
Volume Left	5	0	11			
Volume Right	0	16	0			
cSH	1113	1700	429			
Volume to Capacity	0.00	0.27	0.03			
Queue Length 95th (m)	0.1	0.0	0.6			
Control Delay (s)	0.2	0.0	13.6			
Lane LOS	Α		В			
Approach Delay (s)	0.2	0.0	13.6			
Approach LOS			В			
Intersection Summary						
Average Delay			0.3			
Intersection Capacity Utiliza	ation		32.6%	IC	U Level	of Service
Analysis Period (min)			15			

HCM Unsignalized Intersection Capacity Analysis 7: Prestonwood Crescent/Brookhaven Way & Galesway Boulevard

		-2		
0.3				

	٨	-	•	1	+	•	1	1	~	/	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	30	165	0	15	320	35	0	5	15	40	25	95
Future Volume (vph)	30	165	0	15	320	35	0	5	15	40	25	95
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	33	181	0	16	352	38	0	5	16	44	27	104
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	214	406	21	175								
Volume Left (vph)	33	16	0	44								
Volume Right (vph)	0	38	16	104								
Hadj (s)	0.03	-0.05	-0.46	-0.31								
Departure Headway (s)	5.0	4.7	5.3	5.1								
Degree Utilization, x	0.30	0.53	0.03	0.25								
Capacity (veh/h)	682	744	573	635								
Control Delay (s)	10.0	12.7	8.4	9.8								
Approach Delay (s)	10.0	12.7	8.4	9.8								
Approach LOS	В	В	Α	Α								
Intersection Summary												
Delay			11.3									
Level of Service			В									
Intersection Capacity Utiliza	tion		44.5%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									

Appendix E: Existing Turning Movement Count (TMC) Data

Turning Movement Count Location Name: BRITANNIA RD W & BIDWELL TR / WHITEHORN AVE Date: Wed, Mar 11, 2020 Deployment Lead: Theo Daglis

Turning Movement Count (1 . BRITANNIA RD W & BIDWELL TR / WHITEHORN AVE) CustID: 00303738 MioID: 758381

				Turi	ning	wovement	Cour	π (ι.	BKI	IANN	IA KI	D W & BIDV	VELL	. IK/	WHII	EHO	AN A	(VE) Custil	J: 003	30373	8 IVI	וסוט:	/5836	3 I		
Start Time				N Approad						E Approa ITANNIA						Approad						W Appro a RITANNIA			Int. Total (15 min)	Int. Total (1 hr)
Start Time	Right N:W	Thru N:S	Left N:E	U-Turn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	U-Turn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	Left S:W	U-Turn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	Left W:N	U-Turn W:W	Peds W:	Approach Total		
07:00:00	6	0	6	0	0	12	3	129	10	0	0	142	26	1	6	0	1	33	7	465	7	0	0	479	666	
07:15:00	9	2	9	0	1	20	0	147	8	0	0	155	30	9	9	0	0	48	9	534	1	0	6	544	767	
07:30:00	4	6	16	0	1	26	3	172	7	0	1	182	37	4	25	0	0	66	8	698	2	0	4	708	982	
07:45:00	7	4	13	0	0	24	1	217	7	1	0	226	23	4	12	0	4	39	11	646	5	0	4	662	951	3366
08:00:00	7	16	20	0	1	43	4	232	8	0	0	244	38	5	25	0	1	68	9	652	6	1	4	668	1023	3723
08:15:00	13	9	23	0	1	45	8	196	10	0	1	214	42	6	28	0	1	76	17	644	10	0	3	671	1006	3962
08:30:00	9	11	13	0	0	33	6	220	4	0	0	230	33	9	26	0	1	68	15	604	4	0	2	623	954	3934
08:45:00	4	8	21	0	1	33	7	184	10	0	0	201	46	9	22	0	1	77	14	534	9	1	1	558	869	3852
BREAK	(·····																								
16:00:00	9	15	18	0	7	42	30	440	33	0	7	503	20	7	25	0	1	52	14	238	17	1	1	270	867	
16:15:00	15	31	26	0	3	72	33	403	26	0	2	462	22	17	24	0	0	63	18	270	11	0	7	299	896	
16:30:00	6	18	17	0	0	41	24	437	23	0	0	484	12	7	19	0	0	38	13	267	11	2	4	293	856	
16:45:00	10	22	22	0	4	54	39	471	28	0	3	538	20	11	27	0	4	58	17	288	4	0	2	309	959	3578
17:00:00	13	28	23	0	2	64	24	404	29	0	2	457	12	17	25	0	0	54	18	282	15	0	5	315	890	3601
17:15:00	10	23	20	0	1	53	35	466	32	1	1	534	13	9	14	0	3	36	23	347	8	2	2	380	1003	3708
17:30:00	19	27	18	0	3	64	45	457	37	0	2	539	10	14	23	0	0	47	18	265	12	0	8	295	945	3797
17:45:00	13	26	25	0	2	64	18	394	25	0	1	437	17	13	19	0	3	49	38	303	12	0	4	353	903	3741
Grand Total	154	246	290	0	27	690	280	4969	297	2	20	5548	401	142	329	0	20	872	249	7037	134	7	57	7427	14537	-
Approach%	22.3%	35.7%	42%	0%		-	5%	89.6%	5.4%	0%		-	46%	16.3%	37.7%	0%		-	3.4%	94.7%	1.8%	0.1%		-	-	-
Totals %	1.1%	1.7%	2%	0%		4.7%	1.9%	34.2%	2%	0%		38.2%	2.8%	1%	2.3%	0%		6%	1.7%	48.4%	0.9%	0%		51.1%	-	-
Heavy	2	0	4	0		-	5	135	11	0		-	6	2	9	0		-	7	121	3	0		-	-	-
Heavy %	1.3%	0%	1.4%	0%		-	1.8%	2.7%	3.7%	0%		-	1.5%	1.4%	2.7%	0%		-	2.8%	1.7%	2.2%	0%		-	-	-
Bicycles	0	0	0	0		-	0	1	0	0		-	0	1	0	0		-	0	0	0	0		-	-	-
Bicycle %	0%	0%	0%	0%		-	0%	0%	0%	0%		-	0%	0.7%	0%	0%		-	0%	0%	0%	0%		-	-	-

Turning Movement Count Location Name: BRITANNIA RD W & BIDWELL TR / WHITEHORN AVE Date: Wed, Mar 11, 2020 Deployment Lead: Theo Daglis

Peak Hour: 07:30 AM - 08:30 AM Weather: Scattered Clouds (-3.14 °C)

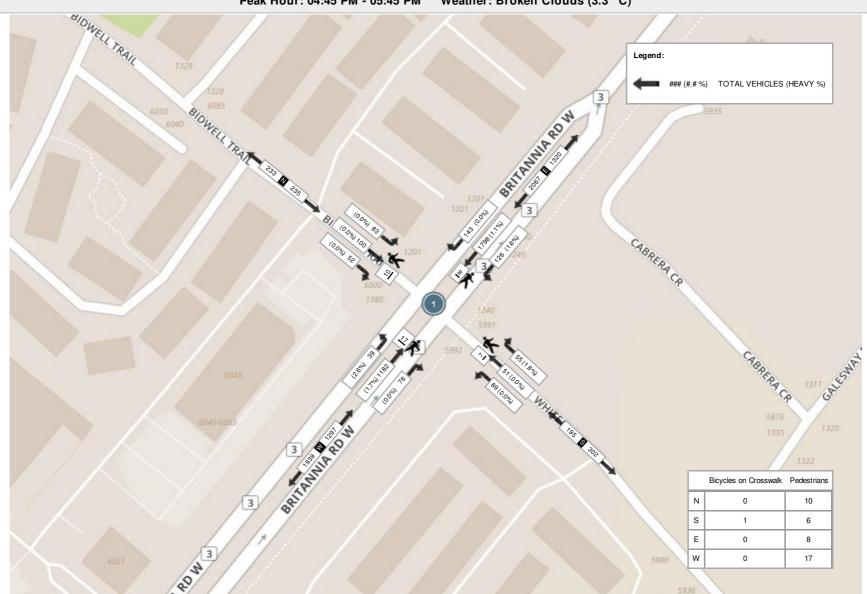
						rea	ак по	ur. u	7:30 F	NIVI - U	0.30	AW Wea	uner.	Scall	erea	Cioud	15 (-3.	14 ()							
Start Time				N Approa BIDWELL			_			Approa FANNIA F			_			Approa			_			W Approa RITANNIA			Int. Total (15 min)
	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	
07:30:00	4	6	16	0	1	26	3	172	7	0	1	182	37	4	25	0	0	66	8	698	2	0	4	708	982
07:45:00	7	4	13	0	0	24	1	217	7	1	0	226	23	4	12	0	4	39	11	646	5	0	4	662	951
08:00:00	7	16	20	0	1	43	4	232	8	0	0	244	38	5	25	0	1	68	9	652	6	1	4	668	1023
08:15:00	13	9	23	0	1	45	8	196	10	0	1	214	42	6	28	0	1	76	17	644	10	0	3	671	1006
Grand Total	31	35	72	0	3	138	16	817	32	1	2	866	140	19	90	0	6	249	45	2640	23	1	15	2709	3962
Approach%	22.5%	25.4%	52.2%	0%		-	1.8%	94.3%	3.7%	0.1%		-	56.2%	7.6%	36.1%	0%		-	1.7%	97.5%	0.8%	0%		-	-
Totals %	0.8%	0.9%	1.8%	0%		3.5%	0.4%	20.6%	0.8%	0%		21.9%	3.5%	0.5%	2.3%	0%		6.3%	1.1%	66.6%	0.6%	0%		68.4%	-
PHF	0.6	0.55	0.78	0		0.77	0.5	0.88	0.8	0.25		0.89	0.83	0.79	0.8	0		0.82	0.66	0.95	0.58	0.25		0.96	
Heavy	2	0	2	0		4	4	52	5	0		61	0	1	6	0		7	2	36	0	0		38	-
Heavy %	6.5%	0%	2.8%	0%		2.9%	25%	6.4%	15.6%	0%		7%	0%	5.3%	6.7%	0%		2.8%	4.4%	1.4%	0%	0%		1.4%	
Lights	29	35	70	0		134	12	765	27	1		805	140	18	84	0		242	43	2604	23	1		2671	-
Lights %	93.5%	100%	97.2%	0%		97.1%	75%	93.6%	84.4%	100%		93%	100%	94.7%	93.3%	0%		97.2%	95.6%	98.6%	100%	100%		98.6%	-
Single-Unit Trucks	1	0	1	0		2	2	19	1	0		22	0	0	0	0		0	0	13	0	0		13	-
Single-Unit Trucks %	3.2%	0%	1.4%	0%		1.4%	12.5%	2.3%	3.1%	0%		2.5%	0%	0%	0%	0%		0%	0%	0.5%	0%	0%		0.5%	-
Buses	1	0	1	0		2	0	31	4	0		35	0	1	6	0		7	2	17	0	0		19	-
Buses %	3.2%	0%	1.4%	0%		1.4%	0%	3.8%	12.5%	0%		4%	0%	5.3%	6.7%	0%		2.8%	4.4%	0.6%	0%	0%		0.7%	-
Articulated Trucks	0	0	0	0		0	2	2	0	0		4	0	0	0	0		0	0	6	0	0		6	-
Articulated Trucks %	0%	0%	0%	0%		0%	12.5%	0.2%	0%	0%		0.5%	0%	0%	0%	0%		0%	0%	0.2%	0%	0%		0.2%	-
Pedestrians	-	-	-	-	3	-	-	-	-	-	2	-	-	-	-	-	6	-	-	-	-	-	15	-	-
Pedestrians%	-	-	-	-	11.5%		-	-	-	-	7.7%		-	-	-	-	23.1%		-	-	-	-	57.7%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-
Bicycles on Road	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	-
Bicycles on Road%	-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-

Bicycles on Road%

Turning Movement Count Location Name: BRITANNIA RD W & BIDWELL TR / WHITEHORN AVE Date: Wed, Mar 11, 2020 Deployment Lead: Theo Daglis

Peak Hour: 04:45 PM - 05:45 PM Weather: Broken Clouds (3.3 °C)

						•	can i	.oui.	07.7	J 1 1VI	05	15 i W 11	cutiic	. Di	OKCII	Oloud	3 (0.0	, 0,							
Start Time				N Approa BIDWELL						Approa						S Approa						V Appro a ITANNIA			Int. Total (15 min)
	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	
16:45:00	10	22	22	0	4	54	39	471	28	0	3	538	20	11	27	0	4	58	17	288	4	0	2	309	959
17:00:00	13	28	23	0	2	64	24	404	29	0	2	457	12	17	25	0	0	54	18	282	15	0	5	315	890
17:15:00	10	23	20	0	1	53	35	466	32	1	1	534	13	9	14	0	3	36	23	347	8	2	2	380	1003
17:30:00	19	27	18	0	3	64	45	457	37	0	2	539	10	14	23	0	0	47	18	265	12	0	8	295	945
Grand Total	52	100	83	0	10	235	143	1798	126	1	8	2068	55	51	89	0	7	195	76	1182	39	2	17	1299	3797
Approach%	22.1%	42.6%	35.3%	0%		-	6.9%	86.9%	6.1%	0%		-	28.2%	26.2%	45.6%	0%		-	5.9%	91%	3%	0.2%		-	-
Totals %	1.4%	2.6%	2.2%	0%		6.2%	3.8%	47.4%	3.3%	0%		54.5%	1.4%	1.3%	2.3%	0%		5.1%	2%	31.1%	1%	0.1%		34.2%	-
PHF	0.68	0.89	0.9	0		0.92	0.79	0.95	0.85	0.25		0.96	0.69	0.75	0.82	0		0.84	0.83	0.85	0.65	0.25		0.85	<u>.</u>
Heavy	0	0	0	0		0	0	19	2	0		21	1	0	0	0		1	0	20	1	0		21	-
Heavy %	0%	0%	0%	0%		0%	0%	1.1%	1.6%	0%		1%	1.8%	0%	0%	0%		0.5%	0%	1.7%	2.6%	0%		1.6%	
Lights	52	100	83	0		235	143	1779	124	1		2047	54	51	89	0		194	76	1162	38	2		1278	-
Lights %	100%	100%	100%	0%		100%	100%	98.9%	98.4%	100%		99%	98.2%	100%	100%	0%		99.5%	100%	98.3%	97.4%	100%		98.4%	-
Single-Unit Trucks	0	0	0	0		0	0	5	1	0		6	1	0	0	0		1	0	10	1	0		11	-
Single-Unit Trucks %	0%	0%	0%	0%		0%	0%	0.3%	0.8%	0%		0.3%	1.8%	0%	0%	0%		0.5%	0%	0.8%	2.6%	0%		0.8%	-
Buses	0	0	0	0		0	0	8	1	0		9	0	0	0	0		0	0	6	0	0		6	-
Buses %	0%	0%	0%	0%		0%	0%	0.4%	0.8%	0%		0.4%	0%	0%	0%	0%		0%	0%	0.5%	0%	0%		0.5%	-
Articulated Trucks	0	0	0	0		0	0	6	0	0		6	0	0	0	0		0	0	4	0	0		4	-
Articulated Trucks %	0%	0%	0%	0%		0%	0%	0.3%	0%	0%		0.3%	0%	0%	0%	0%		0%	0%	0.3%	0%	0%		0.3%	-
Pedestrians	-	-	-	-	10	-	-	-	-	-	8	-	-	-	-	-	6	-	-	-	-	-	17	-	-
Pedestrians%	-	-	-	-	23.8%		-	-	-	-	19%		-	-	-	-	14.3%		-	-	-	-	40.5%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	1	-	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	2.4%		-	-	-	-	0%		-
Bicycles on Road	0	0	0	0	0	-	0	1	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	-


Turning Movement Count Location Name: BRITANNIA RD W & BIDWELL TR / WHITEHORN AVE Date: Wed, Mar 11, 2020 Deployment Lead: Theo Daglis

Peak Hour: 07:30 AM - 08:30 AM Weather: Scattered Clouds (-3.14 °C) SIDWELL TRAIL Legend: ### (#.# %) TOTAL VEHICLES (HEAVY %) BRITATIVE ACTIVE TO SERVICE ACTIVE AC Bicycles on Crosswalk Pedestrians Ν 0 3 S 0 6 Е 0 2 w 0 15

Spectrum

Peak Hour: 04:45 PM - 05:45 PM Weather: Broken Clouds (3.3 °C)

Turning Movement Count Location Name: BRITANNIA RD W & BROOKHAVEN WAY / DOUGUY BLVD Date: Wed, Mar 11, 2020 Deployment Lead: Theo Daglis

			Т	urnin	g Mo	vement Co	unt (2 . BI	RITA	NNIA	RD '	W & BROO	KHAV	EN W	AY/	DOUG	UY E	BLVD) Cus	stID:	00303	298	Miol	D: 75	8383		
Start Time				Approac						E Appro a ITANNIA						Approad						W Appro			Int. Total (15 min)	Int. Tota (1 hr)
Start Time	Right N:W	Thru N:S	Left N:E	U-Turn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	U-Turn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	Left S:W	U-Turn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	Left W:N	U-Turn W:W	Peds W:	Approach Total		
07:00:00	12	0	1	0	0	13	0	126	3	0	1	129	7	0	0	0	2	7	2	494	8	0	2	504	653	
07:15:00	21	1	4	0	2	26	3	135	4	0	5	142	8	0	5	0	2	13	1	540	13	0	1	554	735	
07:30:00	18	0	5	0	1	23	4	150	1	0	6	155	13	5	11	0	1	29	5	723	10	0	0	738	945	
07:45:00	23	4	9	0	2	36	5	193	2	0	1	200	13	1	4	0	0	18	2	649	17	0	2	668	922	3255
08:00:00	24	1	7	0	0	32	10	215	0	0	0	225	18	3	6	0	1	27	4	705	23	0	0	732	1016	3618
08:15:00	21	3	7	0	0	31	8	182	2	0	1	192	10	9	5	0	0	24	7	693	32	0	0	732	979	3862
08:30:00	32	7	7	0	1	46	11	190	4	0	1	205	11	5	7	0	0	23	1	597	29	1	0	628	902	3819
08:45:00	23	2	12	0	1	37	28	178	3	0	1	209	13	11	5	0	1	29	6	599	31	0	0	636	911	3808
***BREAK	***																		-						-	
16:00:00	18	5	4	0	4	27	11	430	12	0	3	453	6	5	2	0	4	13	6	229	18	0	2	253	746	
16:15:00	13	5	10	0	1	28	14	459	21	1	0	495	5	7	3	0	2	15	6	309	32	0	1	347	885	
16:30:00	19	10	5	0	1	34	14	441	9	0	2	464	3	3	8	0	1	14	8	268	15	0	0	291	803	
16:45:00	12	2	17	0	5	31	17	492	13	0	0	522	3	3	4	0	3	10	7	287	13	0	6	307	870	3304
17:00:00	10	7	10	0	1	27	19	506	20	0	0	545	2	6	5	0	2	13	5	314	22	0	4	341	926	3484
17:15:00	17	14	9	0	2	40	19	429	22	0	1	470	5	7	5	0	2	17	8	352	17	0	3	377	904	3503
17:30:00	26	4	10	0	0	40	14	501	19	0	3	534	4	3	8	0	1	15	9	265	17	1	0	292	881	3581
17:45:00	17	9	16	0	2	42	13	446	11	0	0	470	4	3	3	0	3	10	9	323	32	0	5	364	886	3597
Grand Total	306	74	133	0	23	513	190	5073	146	1	25	5410	125	71	81	0	25	277	86	7347	329	2	26	7764	13964	
Approach%	59.6%	14.4%	25.9%	0%		-	3.5%	93.8%	2.7%	0%		-	45.1%	25.6%	29.2%	0%		-	1.1%	94.6%	4.2%	0%		-	-	-
Totals %	2.2%	0.5%	1%	0%		3.7%	1.4%	36.3%	1%	0%		38.7%	0.9%	0.5%	0.6%	0%		2%	0.6%	52.6%	2.4%	0%		55.6%	-	-
Heavy	8	4	7	0		-	5	132	1	0		-	2	3	8	0		-	2	119	12	0		-	-	-
Heavy %	2.6%	5.4%	5.3%	0%		-	2.6%	2.6%	0.7%	0%		-	1.6%	4.2%	9.9%	0%		-	2.3%	1.6%	3.6%	0%		-	-	-
Bicycles	0	0	0	0		-	0	1	0	0		-	0	0	0	0		-	0	0	0	0		-	-	-
Bicycle %	0%	0%	0%	0%		-	0%	0%	0%	0%		-	0%	0%	0%	0%		-	0%	0%	0%	0%		-	-	-

Bicycles on Road%

Turning Movement Count Location Name: BRITANNIA RD W & BROOKHAVEN WAY / DOUGUY BLVD Date: Wed, Mar 11, 2020 Deployment Lead: Theo Daglis

Peak Hour: 07:30 AM - 08:30 AM Weather: Scattered Clouds (-3.14 °C)

						ГЕ	ak m	oui. (J7.3U	AIVI -	06.30	AIVI WE	attiet	. Sca	ilei eu	Ciou	us (-3	.14 ()							
Start Time				N Approa			_			E Approa ITANNIA			_			S Approa OKHAVE			_			V Approa ITANNIA F			Int. Total (15 min)
	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	
07:30:00	18	0	5	0	1	23	4	150	1	0	6	155	13	5	11	0	1	29	5	723	10	0	0	738	945
07:45:00	23	4	9	0	2	36	5	193	2	0	1	200	13	1	4	0	0	18	2	649	17	0	2	668	922
08:00:00	24	1	7	0	0	32	10	215	0	0	0	225	18	3	6	0	1	27	4	705	23	0	0	732	1016
08:15:00	21	3	7	0	0	31	8	182	2	0	1	192	10	9	5	0	0	24	7	693	32	0	0	732	979
Grand Total	86	8	28	0	3	122	27	740	5	0	8	772	54	18	26	0	2	98	18	2770	82	0	2	2870	3862
Approach%	70.5%	6.6%	23%	0%		-	3.5%	95.9%	0.6%	0%		-	55.1%	18.4%	26.5%	0%		-	0.6%	96.5%	2.9%	0%		-	-
Totals %	2.2%	0.2%	0.7%	0%		3.2%	0.7%	19.2%	0.1%	0%		20%	1.4%	0.5%	0.7%	0%		2.5%	0.5%	71.7%	2.1%	0%		74.3%	-
PHF	0.9	0.5	0.78	0		0.85	0.68	0.86	0.63	0		0.86	0.75	0.5	0.59	0		0.84	0.64	0.96	0.64	0		0.97	-
Heavy	5	0	2	0		7	4	47	0	0		51	0	0	6	0		6	1	37	5	0		43	
Heavy %	5.8%	0%	7.1%	0%		5.7%	14.8%	6.4%	0%	0%		6.6%	0%	0%	23.1%	0%		6.1%	5.6%	1.3%	6.1%	0%		1.5%	
Lights	81	8	26	0		115	23	693	5	0		721	54	18	20	0		92	17	2733	77	0		2827	
Lights %	94.2%	100%	92.9%	0%		94.3%	85.2%	93.6%	100%	0%		93.4%	100%	100%	76.9%	0%		93.9%	94.4%	98.7%	93.9%	0%		98.5%	-
Single-Unit Trucks	0	0	0	0		0	1	20	0	0		21	0	0	0	0		0	0	17	1	0		18	-
Single-Unit Trucks %	0%	0%	0%	0%		0%	3.7%	2.7%	0%	0%		2.7%	0%	0%	0%	0%		0%	0%	0.6%	1.2%	0%		0.6%	-
Buses	5	0	2	0		7	3	23	0	0		26	0	0	6	0		6	1	14	4	0		19	-
Buses %	5.8%	0%	7.1%	0%		5.7%	11.1%	3.1%	0%	0%		3.4%	0%	0%	23.1%	0%		6.1%	5.6%	0.5%	4.9%	0%		0.7%	-
Articulated Trucks	0	0	0	0		0	0	4	0	0		4	0	0	0	0		0	0	6	0	0		6	-
Articulated Trucks %	0%	0%	0%	0%		0%	0%	0.5%	0%	0%		0.5%	0%	0%	0%	0%		0%	0%	0.2%	0%	0%		0.2%	-
Pedestrians	-	-	-	-	3	-	-	-	-	-	8	-	-	-	-	-	2	-	-	-	-	-	2	-	-
Pedestrians%	-	-	-	-	20%		-	-	-	-	53.3%		-	-	-	-	13.3%		-	-	-	-	13.3%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-
Bicycles on Road	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	-
D D																									

Bicycles on Road%

Turning Movement Count Location Name: BRITANNIA RD W & BROOKHAVEN WAY / DOUGUY BLVD Date: Wed, Mar 11, 2020 Deployment Lead: Theo Daglis

Peak Hour: 05:00 PM - 06:00 PM Weather: Broken Clouds (3.3 °C)

	N Approach E Approach S Approach W Approach Unit. To																								
Start Time				N Approa						E Appro a						S Approa						V Approa ITANNIA			Int. Total (15 min)
	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	
17:00:00	10	7	10	0	1	27	19	506	20	0	0	545	2	6	5	0	2	13	5	314	22	0	4	341	926
17:15:00	17	14	9	0	2	40	19	429	22	0	1	470	5	7	5	0	2	17	8	352	17	0	3	377	904
17:30:00	26	4	10	0	0	40	14	501	19	0	3	534	4	3	8	0	1	15	9	265	17	1	0	292	881
17:45:00	17	9	16	0	2	42	13	446	11	0	0	470	4	3	3	0	3	10	9	323	32	0	5	364	886
Grand Total	70	34	45	0	5	149	65	1882	72	0	4	2019	15	19	21	0	8	55	31	1254	88	1	12	1374	3597
Approach%	47%	22.8%	30.2%	0%		-	3.2%	93.2%	3.6%	0%		-	27.3%	34.5%	38.2%	0%		-	2.3%	91.3%	6.4%	0.1%		-	-
Totals %	1.9%	0.9%	1.3%	0%		4.1%	1.8%	52.3%	2%	0%		56.1%	0.4%	0.5%	0.6%	0%		1.5%	0.9%	34.9%	2.4%	0%		38.2%	-
PHF	0.67	0.61	0.7	0		0.89	0.86	0.93	0.82	0		0.93	0.75	0.68	0.66	0		0.81	0.86	0.89	0.69	0.25		0.91	<u>.</u>
Heavy	0	0	1	0		1	0	17	0	0		17	0	0	0	0		0	0	16	1	0		17	-
Heavy %	0%	0%	2.2%	0%		0.7%	0%	0.9%	0%	0%		0.8%	0%	0%	0%	0%		0%	0%	1.3%	1.1%	0%		1.2%	-
Lights	70	34	44	0		148	65	1865	72	0		2002	15	19	21	0		55	31	1238	87	1		1357	-
Lights %	100%	100%	97.8%	0%		99.3%	100%	99.1%	100%	0%		99.2%	100%	100%	100%	0%		100%	100%	98.7%	98.9%	100%		98.8%	-
Single-Unit Trucks	0	0	1	0		1	0	7	0	0		7	0	0	0	0		0	0	5	1	0		6	-
Single-Unit Trucks %	0%	0%	2.2%	0%		0.7%	0%	0.4%	0%	0%		0.3%	0%	0%	0%	0%		0%	0%	0.4%	1.1%	0%		0.4%	-
Buses	0	0	0	0		0	0	6	0	0		6	0	0	0	0		0	0	6	0	0		6	-
Buses %	0%	0%	0%	0%		0%	0%	0.3%	0%	0%		0.3%	0%	0%	0%	0%		0%	0%	0.5%	0%	0%		0.4%	-
Articulated Trucks	0	0	0	0		0	0	4	0	0		4	0	0	0	0		0	0	5	0	0		5	-
Articulated Trucks %	0%	0%	0%	0%		0%	0%	0.2%	0%	0%		0.2%	0%	0%	0%	0%		0%	0%	0.4%	0%	0%		0.4%	-
Pedestrians	-	-	-	-	4	-	-	-	-	-	4	-	-	-	-	-	8	-	-	-	-	-	12	-	-
Pedestrians%	-	-	-	-	13.8%		-	-	-	-	13.8%		-	-	-	-	27.6%		-	-	-	-	41.4%		-
Bicycles on Crosswalk	-	-	-	-	1	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	-	3.4%		-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-
Bicycles on Road	0	0	0	0	0	-	0	1	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	-

Peak Hour: 07:30 AM - 08:30 AM Weather: Scattered Clouds (-3.14 °C) Legend: ### (#.# %) TOTAL VEHICLES (HEAVY %) Janua 20 m 6048 1217 8 ATAMIA AO Bicycles on Crosswalk Pedestrians Ν 0 3 S 0 2 Е 0 8 w 0 2

Spectrum Spectrum

Peak Hour: 05:00 PM - 06:00 PM Weather: Broken Clouds (3.3 °C) Legend: ### (#.# %) TOTAL VEHICLES (HEAVY %) Janua 20 va A COLO 6048 1217 88 TANIA AO Bicycles on Crosswalk Pedestrians Ν 4 S 0 8 Е 0 4 w 0 12

							Tu	ırning	ј Мо	vemer	nt Co	unt (6 . GA	LESW	/AY E	LVD	& BF	OOK	CHAVEN WA	AY)							
a =				Approac OKHAVEN						Approa ESWAY						Approa OKHAVE						V Approa LESWAY			Int. Total (15 min)	Int. Tota (1 hr)
Start Time	Right N:W	Thru N:S	Left N:E	U-Turn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	U-Turn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	Left S:W	U-Turn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	Left W:N	U-Turn W:W	Peds W:	Approach Total		
07:00:00	1	0	2	0	0	3	0	14	2	0	0	16	3	1	0	0	0	4	0	12	4	0	0	16	39	
07:15:00	6	2	1	0	2	9	4	12	4	0	2	20	3	2	0	0	1	5	0	21	8	0	3	29	63	
07:30:00	1	0	4	0	0	5	9	20	1	0	1	30	5	8	0	0	1	13	0	34	10	0	1	44	92	
07:45:00	2	0	8	0	2	10	5	34	2	0	1	41	2	3	0	0	1	5	0	51	9	0	0	60	116	310
08:00:00	2	0	3	0	1	5	10	32	1	0	11	43	5	7	4	0	5	16	1	61	9	0	2	71	135	406
08:15:00	3	0	9	0	0	12	6	38	0	0	1	44	4	4	0	0	0	8	0	57	16	0	0	73	137	480
08:30:00	7	4	6	0	2	17	11	31	2	0	0	44	7	3	2	0	3	12	1	52	9	0	0	62	135	523
08:45:00	4	1	9	0	0	14	11	44	3	0	0	58	6	5	1	0	0	12	0	42	11	0	0	53	137	544
***BREAK	***	,																								
16:00:00	10	4	9	0	3	23	11	64	8	0	3	83	1	1	0	0	1	2	0	18	4	0	1	22	130	
16:15:00	20	2	8	0	0	30	6	77	1	0	0	84	3	3	0	0	0	6	0	29	4	0	1	33	153	
16:30:00	14	5	10	0	0	29	9	66	9	0	0	84	1	4	1	0	2	6	0	32	1	0	1	33	152	
16:45:00	11	5	8	0	1	24	6	83	4	0	1	93	6	2	0	0	5	8	1	37	5	0	5	43	168	603
17:00:00	15	2	12	0	4	29	10	78	4	0	1	92	5	0	0	0	1	5	0	29	2	0	1	31	157	630
17:15:00	25	8	12	0	1	45	9	79	5	0	1	93	3	3	0	0	0	6	1	40	6	0	0	47	191	668
17:30:00	17	5	10	0	1	32	11	78	4	0	0	93	3	0	0	0	0	3	0	50	3	0	1	53	181	697
17:45:00	12	4	11	0	3	27	8	75	9	0	0	92	1	3	0	0	2	4	1	38	2	0	3	41	164	693
Grand Total	150	42	122	0	20	314	126	825	59	0	22	1010	58	49	8	0	22	115	5	603	103	0	19	711	2150	-
Approach%	47.8%	13.4%	38.9%	0%		-	12.5%	81.7%	5.8%	0%		-	50.4%	42.6%	7%	0%		-	0.7%	84.8%	14.5%	0%		-	-	-
Totals %	7%	2%	5.7%	0%		14.6%	5.9%	38.4%	2.7%	0%		47%	2.7%	2.3%	0.4%	0%		5.3%	0.2%	28%	4.8%	0%		33.1%	-	-
Heavy	2	2	3	0		-	8	11	1	0		-	0	3	0	0		-	0	5	2	0		-	-	-
Heavy %	1.3%	4.8%	2.5%	0%		-	6.3%	1.3%	1.7%	0%		-	0%	6.1%	0%	0%		-	0%	0.8%	1.9%	0%		-	-	-
Bicycles	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-
Bicycle %	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-

0%

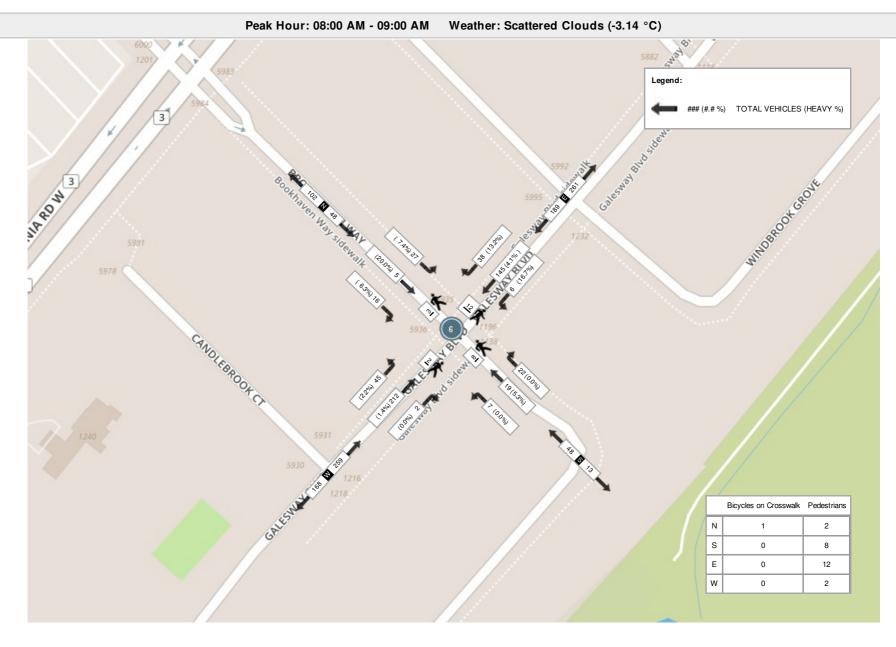
Spectrum

Bicycles on Crosswalk%

Peak Hour: 08:00 AM - 09:00 AM Weather: Scattered Clouds (-3.14 °C) N Approach W Approach E Approach S Approach Int. Total **BROOKHAVEN WAY** GALESWAY BLVD **BROOKHAVEN WAY GALESWAY BLVD** (15 min) Start Time Left U-Turn Peds Approach Total Right Thru Left U-Turn Peds Approach Total Right U-Turn Peds Approach Total Right U-Turn Peds Approach Total Right Thru Thru Left Thru 32 135 08:00:00 2 0 3 0 1 5 10 0 11 43 5 4 0 5 16 1 61 9 0 2 71 3 0 12 0 73 137 08:15:00 0 9 0 6 38 0 0 1 44 4 4 0 0 0 8 57 16 0 0 08:30:00 7 4 6 0 2 17 11 31 2 0 0 44 7 3 2 0 3 12 1 52 9 0 0 62 135 08:45:00 4 9 0 0 14 11 44 3 0 0 58 6 5 1 0 0 12 0 42 11 0 0 53 137 **Grand Total** 16 5 27 3 48 38 145 6 0 12 189 22 19 7 0 48 2 212 45 0 2 259 544 Approach% 10.4% 0% 0% 0% 33.3% 56.3% 20.1% 76.7% 3.2% 45.8% 39.6% 14.6% 0.8% 81.9% 17.4% 0% Totals % 2.9% 8.8% 34.7% 8.8% 39% 47.6% PHF 0.57 0.31 0.75 0 0.71 0.86 0.82 0.5 0 0.81 0.79 0.68 Ω 0.75 0.5 0.87 0.7 0 0.89 0 44 0 4 0 12 0 0 Heavy 2 5 6 0 0 1 0 3 4 7.4% 0% 8.3% 0% 6.3% 0% 2.1% 1.5% Heavy % 6.3% 20% 13.2% 4.1% 16.7% 0% 5.3% 0% 0% 1.4% 2.2% 0% 25 0 44 47 0 Lights 15 33 139 5 0 177 22 18 0 2 209 44 255 Lights % 93.8% 80% 92.6% 91.7% 86.8% 95.9% 83.3% 0% 93.7% 100% 100% 97.9% 100% 97.8% 98.5% Single-Unit Trucks 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Single-Unit Trucks % 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.5% 0% 0% 0.4% 12 Buses 2 0 4 6 0 0 0 Ω 0 2 0 3 8.3% 6.3% Buses % 6.3% 20% 7.4% 0% 13.2% 4.1% 16.7% 0% 0% 5.3% 0% 0% 2.1% 0% 0.9% 2.2% 0% 1.2% **Pedestrians** 2 12 8 2 Pedestrians% 48% 32% 8% Bicycles on Crosswalk

0%

0%



Spectrum

Bicycles on Crosswalk%

Weather: Broken Clouds (3.3 °C) Peak Hour: 04:45 PM - 05:45 PM W Approach N Approach E Approach S Approach Int. Total **BROOKHAVEN WAY GALESWAY BLVD BROOKHAVEN WAY GALESWAY BLVD** (15 min) Start Time Approach Total Right Left U-Turn Peds Approach Total Left U-Turn Peds Approach Total Right Approach Total Right Thru Left U-Turn Peds Thru Right Thru Thru Left U-Turn Peds 11 5 37 168 16:45:00 5 8 Ω 1 24 6 83 4 0 1 93 6 2 0 0 8 5 0 5 43 15 12 29 10 78 4 5 0 157 17:00:00 2 0 4 0 1 92 0 0 0 1 5 29 2 0 1 31 17:15:00 25 8 12 0 1 45 9 79 5 0 1 93 3 3 0 0 0 6 1 40 6 0 0 47 191 17:30:00 17 5 10 0 1 32 11 78 4 0 0 93 3 0 0 0 0 3 0 50 3 0 53 181 **Grand Total** 68 20 42 0 7 130 36 318 17 0 3 371 17 5 0 0 22 2 156 16 0 7 174 697 Approach% 0% 0% 0% 0% 52.3% 15.4% 32.3% 9.7% 85.7% 4.6% 77.3% 22.7% 0% 1.1% 89.7% 9.2% Totals % 9.8% 18.7% 45.6% 53.2% 2.4% 3.2% 0.3% 22.4% 25% PHF 0.72 0.68 0.63 0.88 0 0.82 0.96 0.85 0 1 0.71 0.42 0 0 0.69 0.5 0.78 0.67 0 0.82 0 0 0 0 0 0 0 Heavy 0 0 0 0 0 0 0 0 0 0 0 0 0 0% 0% 0% 0% 0% 0% 0% 0% Heavy % 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 42 130 0 371 0 22 16 174 Lights 68 20 0 36 318 17 17 5 0 2 156 0 Lights % 100% 100% 100% 0% 100% 100% 100% 100% 0% 100% 100% 100% 0% 0% 100% 100% 100% 100% 0% 100% Single-Unit Trucks 0 Single-Unit Trucks % 0 0 Buses 0 0 0 Ω 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0% 0% Buses % 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% Pedestrians 3 7 Pedestrians% 30.4% 13% 26 1% 30.4% Bicycles on Crosswalk 0

, ,

Peak Hour: 04:45 PM - 05:45 PM Weather: Broken Clouds (3.3 °C)

Turning Movement Count Location Name: GALESWAY BLVD & CABRERA CRES Date: Wed, Mar 11, 2020 Deployment Lead: Theo Daglis

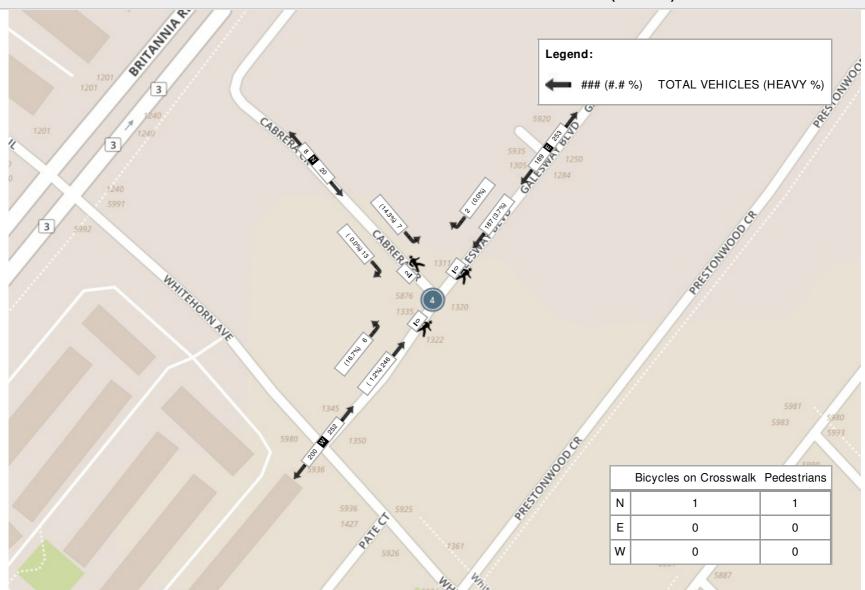
Turning Movement Count (4 . GALESWAY BLVD & CABRERA CRES)

					i urning wo	vemer	it Cou	nt (4 . C	JALE	SWAY BLVD &	CABR	EKA (JRES)				
Start Time			N App CABREF		ΞS			E App GALESV	proach VAY BL				W Ap			Int. Total (15 min)	Int. Tota (1 hr)
Start Time	Right N:W	Left N:E	U-Turn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	U-Turn E:E	Peds E:	Approach Total	Thru W:E	Left W:N	U-Turn W:W	Peds W:	Approach Total		
07:00:00	0	0	0	0	0	0	16	0	0	16	16	0	0	0	16	32	
07:15:00	1	4	0	2	5	0	18	0	0	18	25	1	0	0	26	49	
07:30:00	3	2	0	0	5	0	25	0	0	25	36	1	0	1	37	67	
07:45:00	2	2	0	0	4	0	31	0	0	31	54	0	0	0	54	89	237
08:00:00	6	1	0	0	7	0	47	0	0	47	66	2	0	0	68	122	327
08:15:00	2	2	0	1	4	2	46	0	0	48	71	2	0	0	73	125	403
08:30:00	4	1	0	1	5	0	37	0	0	37	52	2	0	0	54	96	432
08:45:00	1	3	0	0	4	0	57	0	0	57	57	0	0	0	57	118	461
***BREAK	***	,															
16:00:00	1	1	0	0	2	1	64	0	0	65	23	1	0	0	24	91	
16:15:00	0	3	0	0	3	3	88	1	0	92	32	2	0	0	34	129	
16:30:00	4	2	0	1	6	1	82	0	0	83	29	1	0	0	30	119	
16:45:00	1	1	0	1	2	1	87	0	0	88	37	0	0	0	37	127	466
17:00:00	2	0	0	2	2	5	82	0	0	87	34	4	0	0	38	127	502
17:15:00	0	3	0	0	3	2	96	0	0	98	44	0	0	0	44	145	518
17:30:00	2	3	0	0	5	3	82	0	0	85	46	4	0	0	50	140	539
17:45:00	2	0	0	3	2	5	77	0	0	82	39	2	0	0	41	125	537
Grand Total	31	28	0	11	59	23	935	1	0	959	661	22	0	1	683	1701	-
Approach%	52.5%	47.5%	0%		-	2.4%	97.5%	0.1%		-	96.8%	3.2%	0%		-	-	-
Totals %	1.8%	1.6%	0%		3.5%	1.4%	55%	0.1%		56.4%	38.9%	1.3%	0%		40.2%	-	-
Heavy	0	1	0		-	0	13	0		-	6	1	0		-	-	-
Heavy %	0%	3.6%	0%		-	0%	1.4%	0%		-	0.9%	4.5%	0%		-	-	-
Bicycles	0 0 0 -				-	0	0	0		-	1	0	0		-	-	-
Bicycle %	0%	0%	0%		-	0%	0%	0%		-	0.2%	0%	0%		-	-	-

Turning Movement Count Location Name: GALESWAY BLVD & CABRERA CRES Date: Wed, Mar 11, 2020 Deployment Lead: Theo Daglis

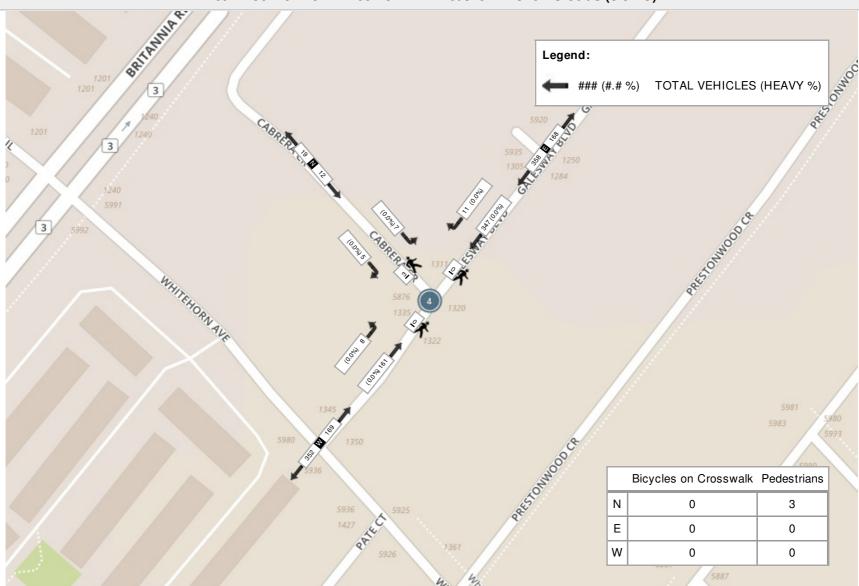
Peak Hour: 08:00 AM - 09:00 AM Weather: Scattered Clouds (-3.14 °C)

			Pe	ак но	ur: 08:00 AM -	09:00	AW	weatne	er: Sc	attered Clouds	s (-3.14	°C)				
Start Time			N App CABRE	roach RA CR				E App GALESW	roach /AY BL				W App GALESW			Int. Total (15 min)
	Right	Left	U-Turn	Peds	Approach Total	Right	Thru	U-Turn	Peds	Approach Total	Thru	Left	U-Turn	Peds	Approach Total	
08:00:00	6	1	0	0	7	0	47	0	0	47	66	2	0	0	68	122
08:15:00	2	2	0	1	4	2	46	0	0	48	71	2	0	0	73	125
08:30:00	4	1	0	1	5	0	37	0	0	37	52	2	0	0	54	96
08:45:00	1	3	0	0	4	0	57	0	0	57	57	0	0	0	57	118
Grand Total	13	7	0	2	20	2	187	0	0	189	246	6	0	0	252	461
Approach%	65%	35%	0%		-	1.1%	98.9%	0%		-	97.6%	2.4%	0%		-	-
Totals %	2.8%	1.5%	0%		4.3%	0.4%	40.6%	0%		41%	53.4%	1.3%	0%		54.7%	-
PHF	0.54	0.58	0		0.71	0.25	0.82	0		0.83	0.87	0.75	0		0.86	-
Heavy	0	1	0		1	0	7	0		7	3	1	0		4	-
Heavy %	0%	14.3%	0%		5%	0%	3.7%	0%		3.7%	1.2%	16.7%	0%		1.6%	-
Lights	13	6	0		19	2	180	0		182	243	5	0		248	-
Lights %	100%	85.7%	0%		95%	100%	96.3%	0%		96.3%	98.8%	83.3%	0%		98.4%	-
Single-Unit Trucks	0	1	0		1	0	0	0		0	0	1	0		1	-
Single-Unit Trucks %	0%	14.3%	0%		5%	0%	0%	0%		0%	0%	16.7%	0%		0.4%	-
Buses	0	0	0		0	0	7	0		7	3	0	0		3	-
Buses %	0%	0%	0%		0%	0%	3.7%	0%		3.7%	1.2%	0%	0%		1.2%	-
Pedestrians	-	-	-	1	-	-	-	-	0	-	-	-	-	0	-	-
Pedestrians%	-	-	-	50%		-	-	-	0%		-	-	-	0%		-
Bicycles on Crosswalk	-	-	-	1	-	-	-	-	0	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	50%		-	-	-	0%		-	-	-	0%		-
Bicycles on Road	0	0	0	0	-	0	0	0	0	-	0	0	0	0	-	-
Bicycles on Road%	-	-	-	0%		-	-	-	0%		-	-	-	0%		-


Turning Movement Count Location Name: GALESWAY BLVD & CABRERA CRES Date: Wed, Mar 11, 2020 Deployment Lead: Theo Daglis

Peak Hour: 04:45 PM - 05:45 PM Weather: Broken Clouds (3.3 °C)

	N Approach E Approach W Approach Int. To															
Start Time			N App CABRE		≣S			E App GALESW					W App			Int. Total (15 min)
	Right	Left	U-Turn	Peds	Approach Total	Right	Thru	U-Turn	Peds	Approach Total	Thru	Left	U-Turn	Peds	Approach Total	
16:45:00	1	1	0	1	2	1	87	0	0	88	37	0	0	0	37	127
17:00:00	2	0	0	2	2	5	82	0	0	87	34	4	0	0	38	127
17:15:00	0	3	0	0	3	2	96	0	0	98	44	0	0	0	44	145
17:30:00	2	3	0	0	5	3	82	0	0	85	46	4	0	0	50	140
Grand Total	5	7	0	3	12	11	347	0	0	358	161	8	0	0	169	539
Approach%	41.7%	58.3%	0%		-	3.1%	96.9%	0%		-	95.3%	4.7%	0%		-	-
Totals %	0.9%	1.3%	0%		2.2%	2%	64.4%	0%		66.4%	29.9%	1.5%	0%		31.4%	-
PHF	0.63	0.58	0		0.6	0.55	0.9	0		0.91	0.88	0.5	0		0.85	-
Heavy	0	0	0		0	0	0	0		0	0	0	0		0	-
Heavy %	0%	0%	0%		0%	0%	0%	0%		0%	0%	0%	0%		0%	<u>-</u>
Lights	5	7	0		12	11	347	0		358	161	8	0		169	-
Lights %	100%	100%	0%		100%	100%	100%	0%		100%	100%	100%	0%		100%	-
Single-Unit Trucks	0	0	0		0	0	0	0		0	0	0	0		0	-
Single-Unit Trucks %	0%	0%	0%		0%	0%	0%	0%		0%	0%	0%	0%		0%	-
Buses	0	0	0		0	0	0	0		0	0	0	0		0	-
Buses %	0%	0%	0%		0%	0%	0%	0%		0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	3	-	-	-	-	0	-	-	-	-	0	-	-
Pedestrians%	-	-	-	100%		-	-	-	0%		-	-	-	0%		-
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	0%		-	-	-	0%		-	-	-	0%		-
Bicycles on Road	Bicycles on Road 0 0 0 -			-	0	0	0	0	-	0	0	0	0	-	-	
Bicycles on Road%	-	-	-	0%		-	-	-	0%		-	-	-	0%		-



Peak Hour: 08:00 AM - 09:00 AM Weather: Scattered Clouds (-3.14 °C)

Peak Hour: 04:45 PM - 05:45 PM Weather: Broken Clouds (3.3 °C)

Turning Movement Count (5 GALESWAY BLVD & CANDLERBOOK CT)

					Turning Move	ement	Coun	t (5 . G <i>A</i>	LESV	VAY BLVD & C	ANDLE	EBRO	ок ст)				
Start Time		С	N App ANDLEE		СТ	_		E App GALESW	roach /AY BL		_		W Ap _l GALESW	proach /AY BL		Int. Total (15 min)	Int. Tota (1 hr)
Start Time	Right N:W	Left N:E	U-Turn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	U-Turn E:E	Peds E:	Approach Total	Thru W:E	Left W:N	U-Turn W:W	Peds W:	Approach Total		
07:00:00	1	0	0	0	1	0	15	0	0	15	17	0	0	0	17	33	
07:15:00	0	3	0	1	3	2	16	0	0	18	26	2	0	0	28	49	
07:30:00	4	3	0	0	7	1	20	0	0	21	40	0	0	0	40	68	
07:45:00	0	2	0	1	2	0	37	0	0	37	58	0	0	0	58	97	247
08:00:00	6	4	0	0	10	1	37	0	0	38	65	1	0	0	66	114	328
08:15:00	2	4	0	0	6	1	29	0	0	30	71	3	0	0	74	110	389
08:30:00	1	3	0	2	4	0	40	0	1	40	55	0	0	1	55	99	420
08:45:00	4	2	0	1	6	0	50	0	0	50	55	2	0	0	57	113	436
***BREAK	***										-						
16:00:00	0	0	0	1	0	3	70	0	0	73	21	2	0	0	23	96	
16:15:00	0	0	0	0	0	3	93	0	1	96	35	2	0	0	37	133	
16:30:00	1	0	0	1	1	3	76	0	1	79	29	1	0	0	30	110	
16:45:00	0	3	0	1	3	0	96	0	0	96	40	0	0	0	40	139	478
17:00:00	1	2	0	1	3	6	85	0	0	91	32	2	0	2	34	128	510
17:15:00	0	3	0	1	3	4	99	0	0	103	45	1	0	0	46	152	529
17:30:00	0	2	0	1	2	4	88	0	0	92	48	1	0	0	49	143	562
17:45:00	1	4	0	4	5	4	85	0	0	89	39	0	0	1	39	133	556
Grand Total	21	35	0	15	56	32	936	0	3	968	676	17	0	4	693	1717	-
Approach%	37.5%	62.5%	0%		-	3.3%	96.7%	0%		-	97.5%	2.5%	0%		-	-	-
Totals %	1.2%	2%	0%		3.3%	1.9%	54.5%	0%		56.4%	39.4%	1%	0%		40.4%	-	-
Heavy	0	0	0		-	0	13	0		-	8	0	0		-	-	-
Heavy %	0%	0%	0%		-	0%	1.4%	0%		-	1.2%	0%	0%		-	-	-
Bicycles	-	-	-		-	-	-	-		-	-	-	-		-	-	-
Bicycle %			-	-	-		-	-	-	-		-	-	-			

Weather: Scattered Clouds (-3.14 °C) Peak Hour: 08:00 AM - 09:00 AM Int. Total N Approach E Approach W Approach CANDLEBROOK CT **GALESWAY BLVD GALESWAY BLVD** (15 min) **Start Time** U-Turn Peds Approach Total Right U-Turn Peds Approach Total Right Thru Thru Left U-Turn Peds Approach Total Left 08:00:00 0 0 37 0 0 38 65 0 6 4 10 1 1 66 114 2 0 6 1 0 71 3 0 0 08:15:00 4 0 29 0 30 74 110 3 0 2 0 0 55 0 55 08:30:00 4 40 40 0 99 1 08:45:00 4 2 0 1 6 0 0 0 50 2 57 50 55 113 **Grand Total** 13 13 0 3 26 2 156 0 1 158 246 6 0 252 436 Approach% 50% 50% 0% 1.3% 98.7% 0% 97.6% 2.4% 0% Totals % 3% 3% 0% 6% 0.5% 35.8% 0% 36.2% 56.4% 1.4% 0% 57.8% PHF 0.65 0.79 0.54 0.81 0 0.5 0.78 0 0.87 0.5 0 0.85 Heavy 0 0 0 0 0 7 0 7 0 0 4 4 Heavy % 0% 0% 0% 0% 0% 4.5% 0% 4.4% 1.6% 0% 0% 1.6% 13 0 2 0 6 Lights 13 26 149 151 242 0 248 Lights % 100% 100% 0% 100% 95.5% 0% 95.6% 98.4% 100% 0% 98.4% 100% Single-Unit Trucks 0 0 0 0 0 0 0 0 0 1 0 Single-Unit Trucks % 0% 0% 0% 0% 0% 0% 0% 0% 0.4% 0% 0% 0.4% 7 **Buses** 0 0 0 0 0 0 0 0 3 **Buses** % 0% 0% 0% 0% 4.5% 0% 4.4% 1.2% 0% 0% 1.2% 2 **Pedestrians** 1 Pedestrians% 40% 20% 20% **Bicycles on Crosswalk** 1 0 0 Bicycles on Crosswalk% 20% 0% 0%

Turning Movement Count Location Name: GALESWAY BLVD & CANDLEBROOK CT Date: Wed, Mar 11, 2020 Deployment Lead: Theo Daglis

Peak Hour: 04:45 PM - 05:45 PM Weather: Broken Clouds (3.3 °C)


				r can i	10u1. 04.43 F W	- 05.4	J F IVI	Weati	ici. L	JOKEII GIOUUS	(3.5	C)				
Start Time			N Ap CANDLE	proach BROOK				E App GALESW	roach /AY BL				W Ap	proach VAY BL	VD	Int. Total (15 min)
	Right	Left	U-Turn	Peds	Approach Total	Right	Thru	U-Turn	Peds	Approach Total	Thru	Left	U-Turn	Peds	Approach Total	
16:45:00	0	3	0	1	3	0	96	0	0	96	40	0	0	0	40	139
17:00:00	1	2	0	1	3	6	85	0	0	91	32	2	0	2	34	128
17:15:00	0	3	0	1	3	4	99	0	0	103	45	1	0	0	46	152
17:30:00	0	2	0	1	2	4	88	0	0	92	48	1	0	0	49	143
Grand Total	1	10	0	4	11	14	368	0	0	382	165	4	0	2	169	562
Approach%	9.1%	90.9%	0%		-	3.7%	96.3%	0%		-	97.6%	2.4%	0%		-	-
Totals %	0.2%	1.8%	0%		2%	2.5%	65.5%	0%		68%	29.4%	0.7%	0%		30.1%	-
PHF	0.25	0.83	0		0.92	0.58	0.93	0		0.93	0.86	0.5	0		0.86	<u>-</u>
Heavy	0	0	0		0	0	0	0		0	0	0	0		0	-
Heavy %	0%	0%	0%		0%	0%	0%	0%		0%	0%	0%	0%		0%	<u>-</u>
Lights	1	10	0		11	14	368	0		382	165	4	0		169	-
Lights %	100%	100%	0%		100%	100%	100%	0%		100%	100%	100%	0%		100%	-
Single-Unit Trucks	0	0	0		0	0	0	0		0	0	0	0		0	-
Single-Unit Trucks %	0%	0%	0%		0%	0%	0%	0%		0%	0%	0%	0%		0%	-
Buses	0	0	0		0	0	0	0		0	0	0	0		0	-
Buses %	0%	0%	0%		0%	0%	0%	0%		0%	0%	0%	0%		0%	-
Pedestrians	edestrians 4 -								0	-	-	-	-	2	-	-
Pedestrians%	-	-	-	66.7%		-	-	-	0%		-	-	-	33.3%		-
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	0%		-	-	-	0%		-	-	-	0%		-

Peak Hour: 04:45 PM - 05:45 PM Weather: Broken Clouds (3.3 °C) Legend: TOTAL VEHICLES (HEAVY %) Bicycles on Crosswalk Pedestrians Ν 0 4 Ε 0 0 W 0 2

, ,

					Turning Mo	ovemer	nt Cou	nt (3 . C	GALE	SWAY BLVD &	WHITE	HORN	AVE)				
Start Time			N App WHITEH					E App GALESW		VD	_	,	S App WHITEH		VE	Int. Total (15 min)	Int. Total (1 hr)
Start Time	Thru N:S	Left N:E	U-Turn N:N	Peds N:	Approach Total	Right E:N	Left E:S	U-Turn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	U-Turn S:S	Peds S:	Approach Total		
07:00:00	15	1	0	0	16	5	12	0	0	17	15	26	0	0	41	74	
07:15:00	12	7	0	3	19	2	17	0	3	19	19	46	0	1	65	103	
07:30:00	21	5	0	0	26	10	21	0	1	31	33	51	0	3	84	141	
07:45:00	15	10	0	1	25	5	29	0	0	34	44	41	0	0	85	144	462
08:00:00	42	11	0	0	53	9	46	0	0	55	53	57	0	1	110	218	606
08:15:00	29	13	0	4	42	15	33	0	1	48	60	58	0	0	118	208	711
08:30:00	30	8	0	1	38	8	31	0	1	39	46	61	0	0	107	184	754
08:45:00	26	8	0	0	34	6	54	0	4	60	49	64	0	0	113	207	817
BREAK	(,															
16:00:00	46	8	0	0	54	20	46	0	3	66	15	40	0	0	55	175	
16:15:00	63	9	0	0	72	24	60	0	3	84	26	29	0	1	55	211	
16:30:00	48	8	0	1	56	18	66	0	2	84	20	23	0	2	43	183	
16:45:00	55	8	0	0	63	34	57	0	0	91	29	35	0	0	64	218	787
17:00:00	59	13	0	2	72	22	64	0	2	86	28	28	0	0	56	214	826
17:15:00	59	14	0	0	73	19	71	0	2	90	29	23	0	0	52	215	830
17:30:00	68	15	0	1	83	19	70	0	0	89	35	30	0	0	65	237	884
17:45:00	69	16	0	0	85	12	64	0	3	76	26	35	0	0	61	222	888
Grand Total	657	154	0	13	811	228	741	0	25	969	527	647	0	8	1174	2954	-
Approach%	81%	19%	0%		-	23.5%	76.5%	0%		-	44.9%	55.1%	0%		-	-	-
Totals %	22.2%	5.2%	0%		27.5%	7.7%	25.1%	0%		32.8%	17.8%	21.9%	0%		39.7%	-	-
Heavy	14	3	0		-	2	11	0		-	4	14	0		-	-	-
Heavy %	2.1%	1.9%	0%		-	0.9%	1.5%	0%		-	0.8%	2.2%	0%		-	-	-
Bicycles	0	0	0		-	0	0	0		-	1	0	0		-	-	-
Bicycle %	0%	0%	0%		-	0%	0%	0%		-	0.2%	0%	0%		-	-	-

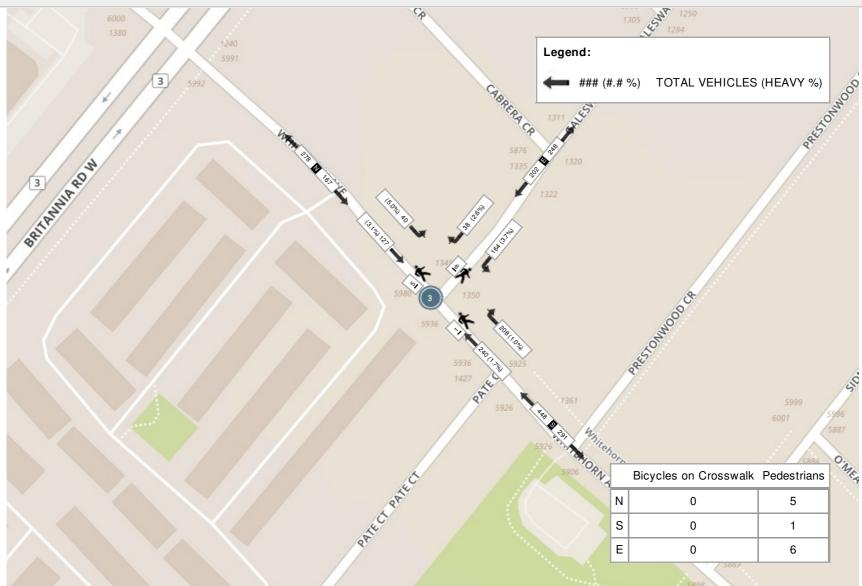
Bicycles on Road%

Peak Hour: 08:00 AM - 09:00 AM Weather: Scattered Clouds (-3.14 °C) Int. Total N Approach E Approach S Approach WHITEHORN AVE **GALESWAY BLVD** WHITEHORN AVE (15 min) **Start Time** Left U-Turn Peds Approach Total Right Right Thru Left U-Turn Peds Approach Total Thru U-Turn Peds Approach Total 42 0 9 0 55 53 0 08:00:00 11 0 53 46 0 57 1 110 218 29 1 0 08:15:00 13 0 4 42 15 33 0 48 60 58 0 118 208 30 8 0 8 31 39 0 107 08:30:00 1 38 0 46 61 184 08:45:00 8 0 0 6 54 4 49 34 60 0 113 207 **Grand Total** 127 40 0 5 167 38 164 0 6 202 208 240 0 448 817 Approach% 76% 24% 0% 18.8% 81.2% 0% 46.4% 53.6% 0% Totals % 15.5% 4.9% 0% 20.4% 4.7% 20.1% 0% 24.7% 25.5% 29.4% 0% 54.8% PHF 0.79 0.63 0 0.95 0.76 0.77 0 0.76 0 0.84 0.87 0.94 2 Heavy 4 0 6 1 6 0 7 2 4 0 6 Heavy % 3.1% 5% 0% 3.6% 2.6% 3.7% 0% 3.5% 1% 1.7% 0% 1.3% 123 38 0 37 158 0 236 0 Lights 161 195 206 442 Lights % 96.9% 95% 0% 96.4% 96.3% 0% 96.5% 99% 98.3% 0% 98.7% 97.4% Single-Unit Trucks 0 2 0 0 0 0 0 1 1 Single-Unit Trucks % 0.8% 2.5% 0% 1.2% 0% 0% 0% 0% 0% 0.4% 0% 0.2% 7 6 5 **Buses** 3 0 4 0 3 0 **Buses** % 2.4% 2.5% 0% 2.4% 2.6% 3.7% 0% 3.5% 1% 1.3% 0% 1.1% **Pedestrians** 5 6 Pedestrians% 41.7% 50% 8.3% **Bicycles on Crosswalk** 0 0 0 Bicycles on Crosswalk% 0% 0% **Bicycles on Road** 0 0 0 0 0 0 0 0 0 0 0 0

0%

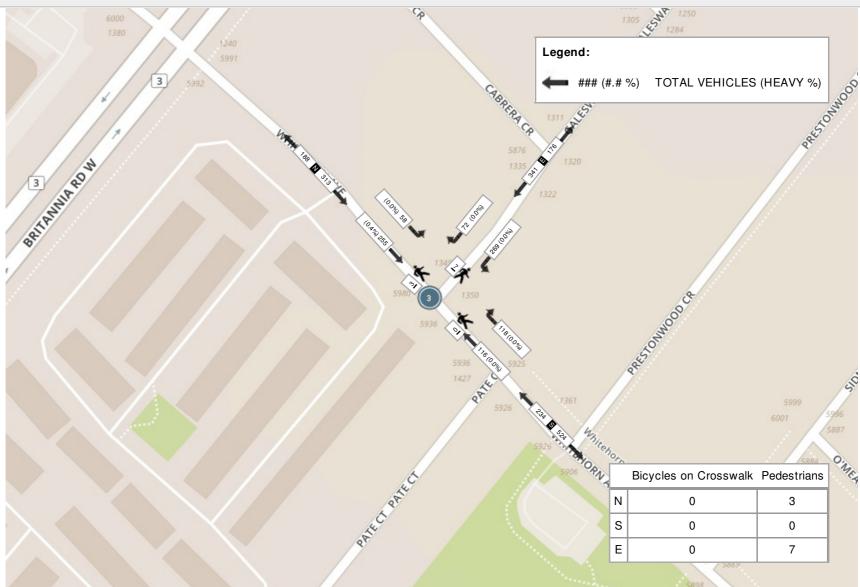
0%

0%



Location Name: GALESWAY BLVD & WHITEHORN AVE

			F	Peak H	lour: 05:00 PM	I - 06:0	Weath	ner: B	Broken Clouds	(3.3 ° C	C)					
Start Time		,	N App WHITEH		VE		(E App GALESW				,	S App WHITEH		VE	Int. Total (15 min)
	Thru	Left	U-Turn	Peds	Approach Total	Right	Left	U-Turn	Peds	Approach Total	Right	Thru	U-Turn	Peds	Approach Total	
17:00:00	59	13	0	2	72	22	64	0	2	86	28	28	0	0	56	214
17:15:00	59	14	0	0	73	19	71	0	2	90	29	23	0	0	52	215
17:30:00	68	15	0	1	83	19	70	0	0	89	35	30	0	0	65	237
17:45:00	69	16	0	0	85	12	64	0	3	76	26	35	0	0	61	222
Grand Total	255	58	0	3	313	72	269	0	7	341	118	116	0	0	234	888
Approach%	81.5%	18.5%	0%		-	21.1%	78.9%	0%		-	50.4%	49.6%	0%		-	-
Totals %	28.7%	6.5%	0%		35.2%	8.1%	30.3%	0%		38.4%	13.3%	13.1%	0%		26.4%	-
PHF	0.92	0.91	0		0.92	0.82	0.95	0		0.95	0.84	0.83	0		0.9	-
Heavy	1	0	0		1	0	0	0		0	0	0	0		0	-
Heavy %	0.4%	0%	0%		0.3%	0%	0%	0%		0%	0%	0%	0%		0%	<u>-</u>
Lights	254	58	0		312	72	269	0		341	118	116	0		234	-
Lights %	99.6%	100%	0%		99.7%	100%	100%	0%		100%	100%	100%	0%		100%	-
Single-Unit Trucks	1	0	0		1	0	0	0		0	0	0	0		0	-
Single-Unit Trucks %	0.4%	0%	0%		0.3%	0%	0%	0%		0%	0%	0%	0%		0%	-
Buses	0	0	0		0	0	0	0		0	0	0	0		0	-
Buses %	0%	0%	0%		0%	0%	0%	0%		0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	3	-	-	-	-	7	-	-	-	-	0	-	-
Pedestrians%	-	-	-	30%		-	-	-	70%		-	-	-	0%		-
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	0%		-	-	-	0%		-	-	-	0%		-
Bicycles on Road	0	0	0	0	-	0	0	0	0	-	0	0	0	0	-	-
Bicycles on Road%	-	-	-	0%		-	-	-	0%		-	-	-	0%		-



Peak Hour: 08:00 AM - 09:00 AM Weather: Scattered Clouds (-3.14 °C)

Peak Hour: 05:00 PM - 06:00 PM Weather: Broken Clouds (3.3 °C)

Appendix F: Correspondence with City and Region Staff	

From: Ryan A. Sankar

To: "Barnes, Catherine"

Cc: Yougendran Thiyagarajah; Christie Jeong; Hamdani, Hashim; Lalingo, Anthony

Subject: RE: 1240 Britannia Road W - Rezoning and Plan of Subdivision Application - Regional Road Property

Requirements

Date: October 16, 2020 6:21:57 PM

Attachments: image001.gif image002.jpg

1240 Britannia Road W - Regional Road ROW Property Dedication Rationale - Oct 17 2020.pdf

Hi Catherine,

Hope all's well on your end. Please find attached our justification letter for the proposed Britannia ROW widening associated with the 1240 Britannia Road development application. Note that the Draft Plan and site plan illustrated in the appended drawings are current as of today and reflect what will be submitted as part of the forthcoming revised application re-submission.

I trust that this will suffice to secure approval from the Region regarding the Britannia ROW property requirements and streetscaping arrangements along the site's frontage.

Thanks and I hope you have a good weekend!

Ryan

From: Barnes, Catherine <catherine.barnes@peelregion.ca>

Sent: September 25, 2020 9:20 AM

To: Ryan A. Sankar <sankar@bagroup.com>

Cc: Yougendran Thiyagarajah <ythiyagarajah@nationalhomes.com>; Christie Jeong

<Christie.Jeong@bagroup.com>; Hamdani, Hashim <hashimali.hamdani@peelregion.ca>; Lalingo,
Anthony <anthony.lalingo@peelregion.ca>

Subject: RE: 1240 Britannia Road W - Rezoning and Plan of Subdivision Application - Regional Road Property Requirements

Good morning Ryan,

The Region has reviewed the below email and would like to have it submitted in a formal Justification letter (PDF) that we can circulate to our internal staff for a Reduction of ROW circulation process. With that being said the Traffic Development team find the below rationale to be satisfactory and are wiling to circulate for a reduction of ROW. Please note this process can take a couple of weeks. The Region needs the draft plan that was attached to be revised to properly show the 0.3 metre reserve which should be behind the property line. Feel free to contact me with any questions or concerns,

Catherine Barnes

Region of Peel Technical Analyst Traffic Development & Permits

10 Peel Centre Drive Suite B, 4th Floor
Brampton, ON L6T 4B9

905-791-7800 x 7569

(Cell) 1 905-460-4206

P Please consider the environment before printing this email.

This email, including any attachments, is intended for the recipient specified in the message and may contain information which is confidential or privileged. Any unauthorized use or disclosure of this email is prohibited. If you are not the intended recipient or have received this e-mail in error, please notify the sender via return email and permanently delete all copies of the email. Thank you.

From: Ryan A. Sankar < sankar@bagroup.com >

Sent: September 17, 2020 6:02 PM

To: Lalingo, Anthony <anthony.lalingo@peelregion.ca>; Barnes, Catherine

<catherine.barnes@peelregion.ca>; Hamdani, Hashim <hashimali.hamdani@peelregion.ca>

Cc: Yougendran Thiyagarajah <<u>ythiyagarajah@nationalhomes.com</u>>; Christie Jeong

<<u>Christie.Jeong@bagroup.com</u>>

Subject: RE: 1240 Britannia Road W - Rezoning and Plan of Subdivision Application - Regional Road

Property Requirements

CAUTION: EXTERNAL MAIL. DO NOT CLICK ON LINKS OR OPEN ATTACHMENTS YOU DO NOT TRUST.

Hi Anthony, Catherine and Hashim,

Hope you're all well. Since we last spoke, the development team has done a bit of refining on the 1240 Britannia site plan, particularly with respect to the site's Britannia Road frontage. Given that the amount of lands required for the ROW dedication will significantly affect the site design, we wanted to run the current plan by you before another formal development application submission is made. See attached draft plan (CP-01 and CP-02) for discussion.

Based on the functional design analysis we've conducted, we're proposing a to dedicate lands along the site's Britannia Road frontage to achieve a **22m from centreline ROW**, exclusive of the required 0.3m-wide reserve. This reflects a conveyance of lands ranging between approximately 2.32m in width at the west of the site to 2.71m in width at the east end of the site (again, exclusive of the 0.3m-wide reserve).

This recommendation is made considering the following:

- Given that the north side of the ROW is 23.0m (taken from the centreline of the road allowance), 22.0m on the south side would achieve a 45.0m ROW width, consistent with the Region's OP.
- As illustrated in the attached plan and cross-section, the following streetscape elements can be delivered within this public ROW:
 - A 3.0m-wide multi-use path, aligning with the existing path east and west of the site (i.e. shifted south from its current curbside location)
 - A 1.0m-wide splash pad (including the top of curb) adjacent to the roadway
 - A 4.1m-wide landscaping strip between the MUP and the splash pad
 - A buffer zone of 2.3m to 2.7m between the MUP and the south ROW limit
 - 12.0m of pavement between the curb face and centreline of road allowance note that no changes to the existing curb or its alignment are proposed
- This dedication and proposed streetscape is consistent with what currently exists directly east and west of the site.

Assuming that the Region finds this plan to be acceptable in concept, we would include an updated version of these functional drawings and an accompanying rationale as part of the forthcoming revised submission.

As always, your consideration is greatly appreciated. Please let me know your thoughts and if you have any questions. Perhaps we can set a meeting time next week to discuss?

Thanks.

Ryan A. Sankar, P.Eng. Associate

BA Consulting Group Ltd.

300 - 45 St. Clair Ave. W. Toronto, ON M4V 1K9

TEL 416 961 7110 x163

CELL 416 317 5845
EMAIL sankar@bagroup.com

BA Consulting Group Ltd

From: Ryan A. Sankar

Sent: August 18, 2020 12:57 PM

To: 'Lalingo, Anthony' <<u>anthony.lalingo@peelregion.ca</u>>; Christie Jeong

<<u>Christie.Jeong@bagroup.com</u>>; Yougendran Thiyagarajah < ythiyagarajah@nationalhomes.com>

Cc: Hamdani, Hashim < <u>hashimali.hamdani@peelregion.ca</u>>; Barnes, Catherine

<<u>catherine.barnes@peelregion.ca</u>>

Subject: RE: 1240 Britannia Road W - Rezoning and Plan of Subdivision Application - Regional Road Property Requirements

Thanks, Anthony. It was nice speaking with you all today. We'll touch base soon for your input once our revised plans have been further developed.

Ryan

From: Lalingo, Anthony <anthony.lalingo@peelregion.ca>

Sent: August 18, 2020 11:31 AM

To: Ryan A. Sankar <sankar@bagroup.com>; Christie Jeong <Christie.Jeong@bagroup.com>;

Yougendran Thiyagarajah < vthiyagarajah@nationalhomes.com>

Cc: Hamdani, Hashim < hashimali.hamdani@peelregion.ca>; Barnes, Catherine

<<u>catherine.barnes@peelregion.ca</u>>

Subject: RE: 1240 Britannia Road W - Rezoning and Plan of Subdivision Application - Regional Road

Property Requirements

Hi Ryan,

As discussed, if you want to pursue a reduction in ROW requirements you will have to submit a Functional Design Plan and Justification Letter to rationalize the reduction. This will undergo review and circulation within our Traffic department and they will ultimately decide whether to accept the proposed reduction or not. As Hashim pointed out you can forward us a draft of the Functional Design Plan in advance of the submission to obtain their input.

Hashim and Catherine are cc'd on this email, please copy me on any correspondence with them.

Regards,

Anthony Lalingo

Junior Planner, Planning & Performance Region of Peel Development Services – Public Works 10 Peel Centre Drive, 4th Floor Suite B E: anthony.lalingo@peelregion.ca

This email, including any attachments, is intended for the recipient specified in the message and may contain information which is confidential or privileged. Any unauthorized use or disclosure of this email is prohibited. If you are not the intended recipient or have received this e-mail in error, please notify the sender via return email and permanently delete all copies of the email. Thank you.

In response to the emergence of the novel coronavirus, the Region of Peel is implementing various measures to protect our customers, employees and workplaces. Development Services will endeavour to maintain the continuity of our business operations, however delays in service may still be experienced. We appreciate your patience during this time.

From: Ryan A. Sankar < sankar@bagroup.com >

Sent: August 12, 2020 3:26 PM

To: Barnes, Catherine < <u>catherine.barnes@peelregion.ca</u>>

Cc: Lalingo, Anthony <<u>anthony.lalingo@peelregion.ca</u>>; Christie Jeong

<<u>Christie.Jeong@bagroup.com</u>>

Subject: 1240 Britannia Road W - Rezoning and Plan of Subdivision Application - Regional Road

Property Requirements

CAUTION: EXTERNAL MAIL. DO NOT CLICK ON LINKS OR OPEN ATTACHMENTS YOU DO NOT TRUST.

Hi Catherine,

Hope you're well. As per Anthony's advice, I'm reaching out to you regarding the 1240 Britannia Road West development application being made by National Homes.

To refresh your memory, what's being proposed is 109 townhouse units (excluding secondary suites) with vehicle access from the City's road only (Galesway Boulevard). A number of the units will have frontage on Britannia. I've attached the submitted architectural site plan for reference.

Comments regarding the March 2020 ZBA/Plan of Subdivision application were received from the Region in an e-mail from Anthony in May. I've also attached these comments for reference. These comments speak to the dedication of lands required to meet the Official Plan right-of-way (ROW) width for Britannia Road within the segment adjacent to the site:

'The Region will require the gratuitous dedication of lands to meet the Official Plan requirement for Regional Rd 3 (Britannia Road), which has a right-of-way requirement of a 45 metres, 25 metres from centreline of the road allowance. And an additional 5.5 metres (for a total Right of Way of 50.5 metres, 25.25 metres from the centreline of the road allowance) will be required within 245 metres of intersection to protect for the provision of, but no limited to; utilities, multiuse pathways and transit bay/shelters.'

We've done a bit of analysis regarding the ROW width of the relevant section of Britannia based on topographical survey information and property plan data we had available. This is summarized in the attached plan dated August 12, 2020. A few key observations that I'd like to bring to your attention are summarized below:

- Schedule F of the Region's Official Plan identifies the mid-block right-of-way width requirement of Britannia Road adjacent to the site to be **45 metres**.
- Official Plan Policy 5.9.4.2.5 states that an additional **5.5m** (extra to the 45m) is required within 245m of a Regional Road intersection for 'a single left turn configuration, right turn lanes, multi-purpose pathways or transit-related improvements'.
- The existing ROW width north of the roadway centreline is **23m**.
- The adjacent development to the west of the site a fully built-out residential subdivision was required to convey lands to achieve a distance of approximately 22.5m from the roadway

centreline.

- The adjacent development to the east of the site also a fully built-out residential subdivision
 – was required to convey lands to achieve a distance of approximately 23.7m from the
 roadway centreline.
- The adjacent signalized intersections on Britannia Road W (Brookhaven Way / Douguy Blvd and Whitehorn Ave / Bidwell Trail) appear to provide access solely to residential neighbourhoods north and south of the arterial road that are mostly built out.

Given the above, I'd like to discuss with you what the most appropriate land dedication from the site would be in order to be consistent with the policies of the Official Plan. I understand that the application of these requirements are subject to the discretion of Region staff. Essentially, there are two items that I'm seeking clarification on.

The first is regarding the land required to achieve the 45m ROW width specified in the OP. Given that the width of the roadway is 23 metres north of its centreline, would the site not be required to achieve a 22m from centreline ROW width (as opposed to 22.5m)?

Secondly, I'm unsure of the practicality in providing the additional 5.5m of ROW in this midblock location given that: a) this requirement does not seem to be applied to the fully built-out adjacent properties to the north, east and west, limiting the Region's ability to utilize this additional property for roadway/intersection improvements; and b) there does not appear to be a need (or reasonably expected future need) for any improvements along Britannia that would require these additional lands.

Once you've had a chance to review, would it be worthwhile to set up a conference call to discuss? The development team is currently working towards a second submission to address input from the City and Region and would like to receive clarification on this issue before revising the site plans, as the amount of land dedication required will be significantly impactful to the design of the site.

Thanks for your consideration and looking forward to hearing from you.

Ryan A. Sankar, P.Eng. Associate BA Consulting Group Ltd. 300 - 45 St. Clair Ave. W. Toronto, ON M4V 1K9 TEL 416 961 7110 x163 CELL 416 317 5845 EMAIL sankar@bagroup.com Image removed by sender. BA Consulting Group Ltd

From: Lalingo, Anthony <anthony.lalingo@peelregion.ca>

Sent: February 28, 2020 2:40 PM

To: Ryan A. Sankar <sankar@bagroup.com>; lahini.senthil-kumaran@mississauga.ca

Cc: Andrew T. Pasco < pasco@bagroup.com >

Subject: RE: 1240 Britannia Road W - Rezoning and Plan of Subdivision Application - TIS Terms of

Reference

Hi Ryan,

Thanks for reaching out. The Terms of Reference looks satisfactory. Looks like you have a good start. If any questions arise related to the TIS or required property dedication, feel free to reach out to our Traffic Analyst reviewing the file:

Catherine Barnes

catherine.barnes@peelregion.ca

905-791-7800 ext. 7569

FYI, I passed your email along to her and she said it looks good.

Regards,

Anthony Lalingo

Junior Planner, Growth Management Region of Peel Development Services – Public Works 10 Peel Centre Drive, 4th Floor Suite B T: (905) 791-7800 ext. 4612

E: anthony.lalingo@peelregion.ca

This email, including any attachments, is intended for the recipient specified in the message and may contain information which is confidential or privileged. Any unauthorized use or disclosure of this email is prohibited. If you are not the intended recipient or have received this e-mail in error, please notify the sender via return email and permanently delete all copies of the email. Thank you.

From: Ryan A. Sankar < sankar@bagroup.com >

Sent: February 28, 2020 10:34 AM

To: Lalingo, Anthony <anthony.lalingo@peelregion.ca>; lahini.senthil-kumaran@mississauga.ca

Cc: Andrew T. Pasco < pasco@bagroup.com >

Subject: 1240 Britannia Road W - Rezoning and Plan of Subdivision Application - TIS Terms of

Reference

YOU DO NOT TRUST.

Hi Anthony and Lahini,

Following up on our DARC meeting regarding the proposed Rezoning and Plan of Subdivision for 1240 Britannia Road West to permit a residential townhouse development, I'd like to confirm that the following scope of work for the Traffic Impact Study I will be preparing is acceptable.

I've attached the DARC final comments and submission requirements for reference.

To recap, what's proposed is a 112-unit townhouse development on the south side of Britannia Road West, midblock between Whitehorn Avenue/Bidwell Trail and Brookhaven Way/Douguy Blvd. The site today is occupied by what appears to be two single-family homes. I've attached a sketch illustrating the site's location. Vehicular access to the site is proposed on Galesway Boulevard. No access to Britannia Road West is proposed.

The traffic impact study will consider the following:

- AM/PM weekday peak hour traffic capacity analyses at the following intersections:
 - Britannia Rd W / Bidwell Tr / Whitehorn Ave
 - Britannia Rd W / Brookhaven Way / Douguy Blvd
 - Whitehorn Ave / Galesway Blvd
 - Galesway Blvd / Brookhaven Way / Prestonwood Cres
 - Galesway Blvd / Cabrera Cres
 - Galesway Blvd / Candlebrook Ct
 - Galesway Blvd / Proposed Site Driveway
- Traffic allowances made for background developments identified using the City of Mississauga's Planning Information Hub.
- General background corridor traffic growth along Britannia Rd W based on historical traffic count information.
- New site-generated vehicle trips forecast based on relevant proxy site survey data and the ITE Trip Generation Manual (10th Ed).
- A review of the vehicle and bicycle parking requirements for the development as proposed compared to the prevailing zoning by-law requirement.
- A functional review of the proposed new internal roads with particular respect to fire route requirements and waste collection vehicle routing and manoeuvres.
- A sightline analysis of the proposed site driveway.

The study will conform to the Region's TIS Guidelines

(https://www.peelregion.ca/pw/transportation/business/traffic-impact-study.asp) and the City's Guidelines (http://www.mississauga.ca/file/COM/Traffic-Impact-Study-Guidelines.pdf).

Please let me know if I've missed anything that you'd like to see covered. Looking forward to your response.

Thanks.

Ryan A. Sankar, P.Eng. Associate

BA Consulting Group Ltd.

300 - 45 St. Clair Ave. W. Toronto, ON M4V 1K9
TEL 416 961 7110 x163

CELL 416 961 7110 X163
CELL 416 317 5845
EMAIL sankar@bagroup.com

lmag	ge removed by sender. BA Consulting Group Ltd
	?

This message contains information which may be confidential and privileged. Unless you are the intended addressee (or authorized to receive for the intended addressee), you may not use, copy or disclose to anyone the message or any information contained in the message. If you have received the message in error, please advise the sender by reply at administrator@bagroup.com and delete the message.

This message contains information which may be confidential and privileged. Unless you are the intended addressee (or authorized to receive for the intended addressee), you may not use, copy or disclose to anyone the message or any information contained in the message. If you have received the message in error, please advise the sender by reply at administrator@bagroup.com and delete the message.

This message contains information which may be confidential and privileged. Unless you are the intended addressee (or authorized to receive for the intended addressee), you may not use, copy or disclose to anyone the message or any information contained in the message. If you have received the message in error, please advise the sender by reply at administrator@bagroup.com and delete the message.

Memorandum

TO:

Catherine Barnes **Technical Analyst** Region of Peel, Traffic Development & Permits 10 Peel Centre Drive Suite B, 4th Floor Brampton, ON L6T 4B9 905-791-7800 x 7569 c: 905-460-4206

Catherine.Barnes@peelregion.ca

FROM: PROJECT: DATE:

6869-16 Ryan A. Sankar October 16, 2020

1240 Britannia Road West

SUBJECT: 1240 BRITANNIA ROAD WEST - PROPOSED BRITANNIA ROAD RIGHT-OF-WAY WIDENING

Dear Catherine,

In March 2020, National Homes submitted a Zoning By-law Amendment and Plan of Subdivision application for a townhouse condominium development located at 1240 Britannia Road West in the City of Mississauga. The architectural site plans submitted as part of this application illustrated 109 new townhouse units with vehicular access from Galesway Boulevard only.

Comments regarding the March 2020 ZBA/Plan of Subdivision application were received from the Region in an e-mail from Development Services in May 2020. These comments speak to the dedication of lands required to meet the Official Plan Right-of-way (ROW) width for Britannia Road West within the segment adjacent to the site:

'The Region will require the gratuitous dedication of lands to meet the Official Plan requirement for Regional Rd 3 (Britannia Road), which has a right-of-way requirement of a 45 metres, 25 metres from centreline of the road allowance. And an additional 5.5 metres (for a total Right of Way of 50.5 metres, 25.25 metres from the centreline of the road allowance) will be required within 245 metres of intersection to protect for the provision of, but no limited to; utilities, multiuse pathways and transit bay/shelters.'

In response to this comment, BA Group has conducted an analysis regarding the ROW width of the relevant section of Britannia Road based on topographical survey information and property plan data.

Key observations made based on this analysis are summarized below, with reference to the attached **Drawing CP-01**:

- Schedule F of the Region's Official Plan identifies the mid-block right-of-way width requirement of Britannia Road adjacent to the site to be 45 metres.
- Official Plan Policy 5.9.4.2.5 states that an additional 5.5m (extra to the 45m) is required within 245m of a Regional Road intersection for 'a single left turn configuration, right turn lanes, multi-purpose pathways or transit-related improvements'.
- The existing ROW width north of the roadway centreline is 23m.
- The adjacent development to the west of the site a fully built-out residential subdivision was required to convey lands to achieve a distance of approximately 22.5m from the roadway centreline.
- The adjacent development to the east of the site also a fully built-out residential subdivision was required to convey lands to achieve a distance of approximately 23.7m from the roadway centreline.
- The adjacent signalized intersections on Britannia Road W (Brookhaven Way / Douguy Blvd and Whitehorn Ave / Bidwell Trail) appear to provide access solely to residential neighbourhoods north and south of the arterial road that are mostly built out.

Considering above, the revised Draft Plan of Subdivision and site plan, which will be formally re-submitted in October 2020, proposes to dedicate lands along the site's Britannia Road frontage to achieve a 22m from centreline ROW, exclusive of the required 0.3m-wide reserve (as opposed to the 25.25m from centreline ROW requested by the Region as noted above). This reflects a conveyance of lands ranging between approximately 2.32m in width at the west of the site to 2.71m in width at the east end of the site (again, exclusive of the 0.3m-wide reserve).

The attached **Drawing CP-01** illustrates the current Draft Plan of Subdivision (which has been prepared by Glen Schnarr & Associates Inc. and will be formally submitted to the City and Region in October 2020) and the proposed ROW conveyances along the property's frontage.

The attached **Drawing CP-02** illustrates the current architectural site plans (which has been prepared by Cassidy + Company Residential Design Consultants and will be formally submitted to the City and Region in October 2020) and the proposed Britannia Road streetscape section adjacent to the property. It is noted the revised site plan now proposes 106 new townhouse units, as opposed to the previously considered 109 units.

The recommended ROW dedication is made based on the following:

- Given that the north side of the ROW is 23.0m (taken from the centreline of the road allowance), 22.0m on the south side would achieve a 45.0m ROW width, consistent with the Region's OP.
- As illustrated in **Drawing CP-02**, the following streetscape elements can be delivered within this public ROW:
 - A 3.0m-wide multi-use path, aligning with the existing path east and west of the site (i.e. shifted south from its current curbside location);
 - o A 1.0m-wide splash pad (including the top of curb) adjacent to the roadway;
 - A 4.1m-wide landscaping strip between the MUP and the splash pad;
 - o A buffer zone of 2.3m to 2.7m between the MUP and the south ROW limit; and
 - 12.0m of pavement between the curb face and centreline of road allowance (note that no changes to the existing curb or its alignment are proposed).

- This dedication and proposed streetscape is consistent with what currently exists directly east and west of the site.
- The proposed streetscape elements and arrangement along the site's frontage are also consistent with the Region's requirements specified in their May 2020 development application comments.
- The additional 5.5m of ROW requested by the Region in this midblock location does not seem to be applied to the fully built-out adjacent properties to the north, east and west, limiting the Region's ability to utilize this additional property for roadway/intersection improvements. Furthermore, there does not appear to be a need (or reasonably expected future need) for any improvements along Britannia that would require these additional lands.

We understand that the Region's Traffic Development team has reviewed the proposed ROW dedication arrangements and have deemed them satisfactory. This rationale is now being formally submitted to the Region of Peel for approval as supporting material to the forthcoming October 2020 Plan of Subdivision and Zoning By-law Amendment application re-submission.

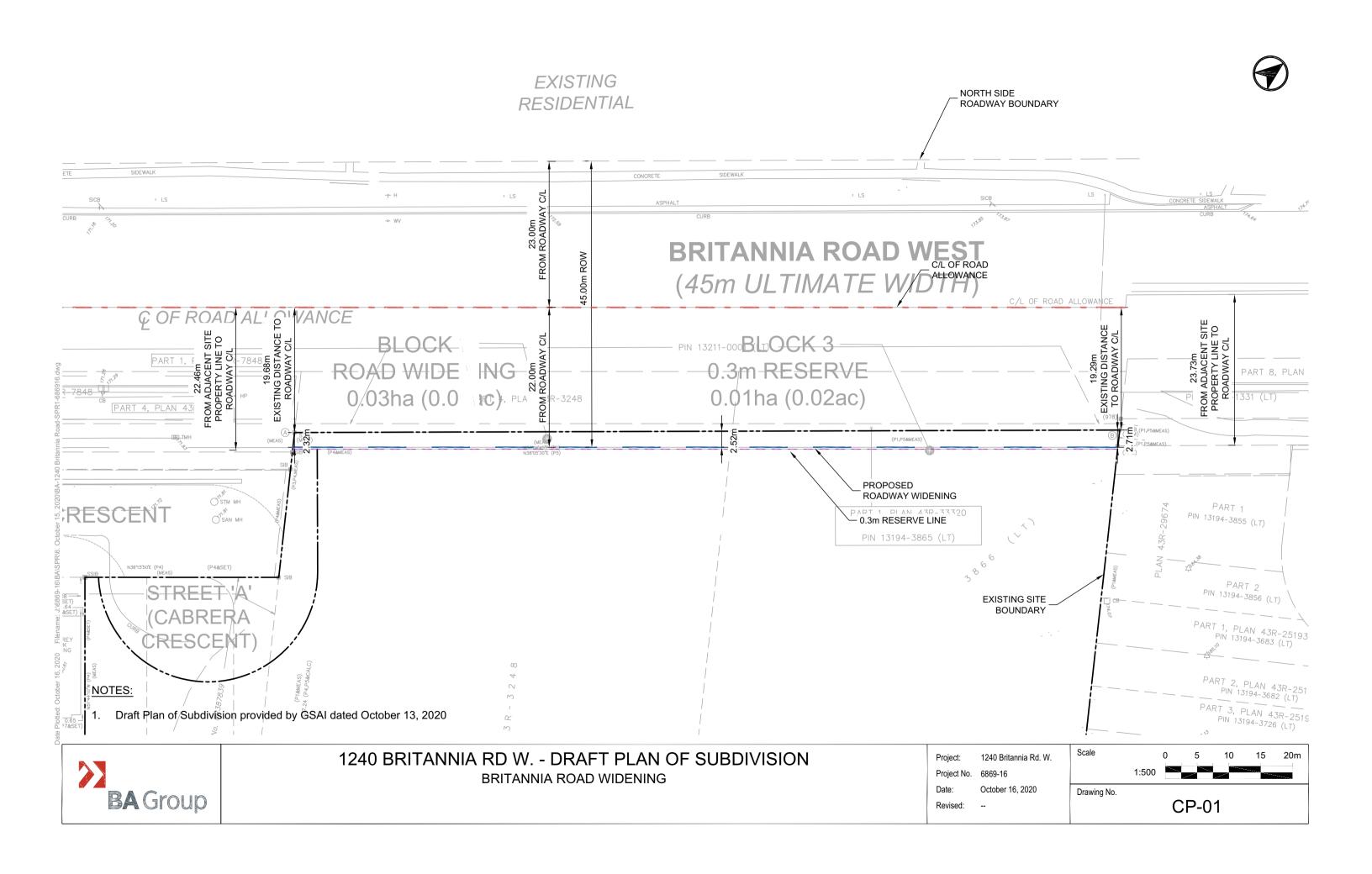
I trust that the foregoing is acceptable and provides an appropriate justification for the proposed Britannia Road ROW dedication and streetscape frontage associated with the 1240 Britannia Road West development. Please feel free to contact me directly if you have any questions or comments regarding this material.

Sincerely,

BA Consulting Group Ltd.

Ryan A. Sankar, P.Eng.

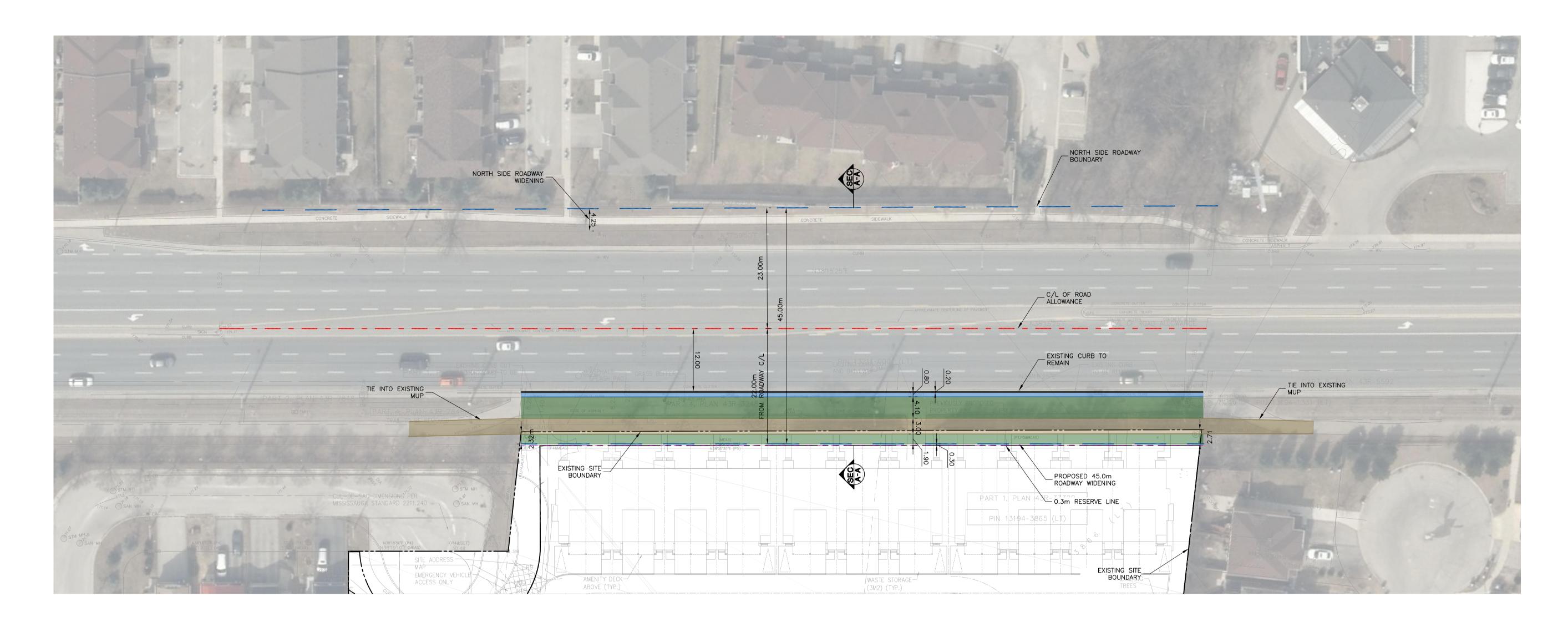
Associate

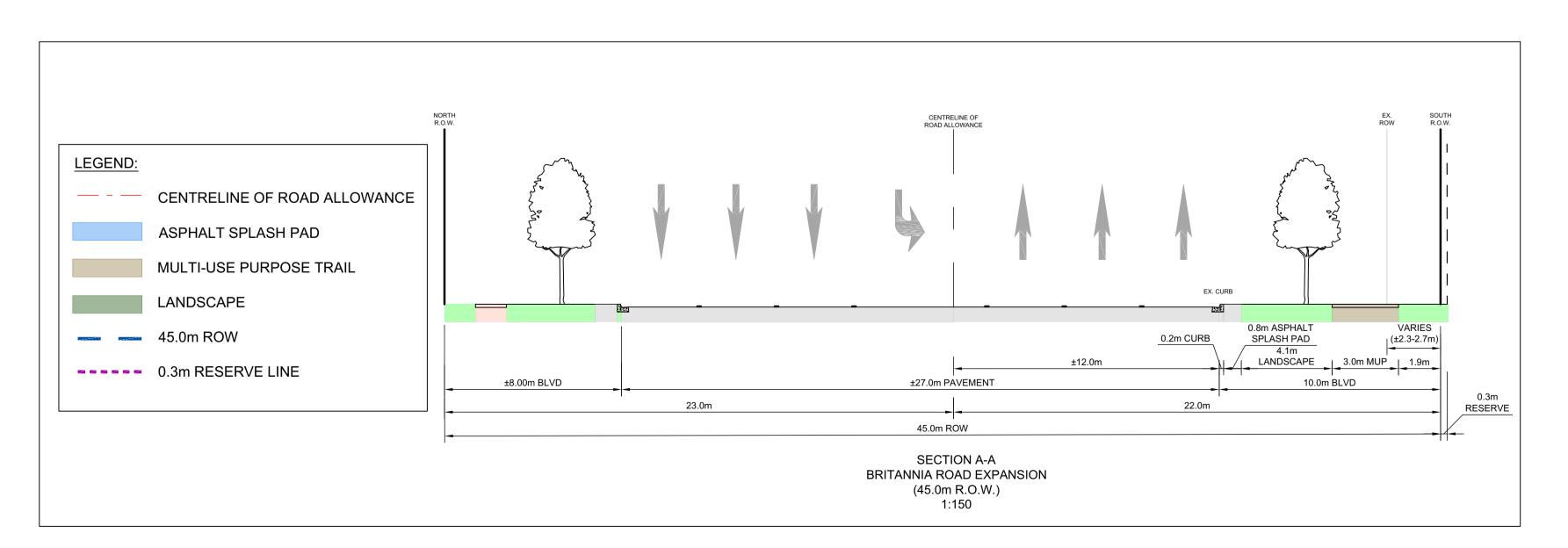

CC.

Christie Jeong, BA Consulting Group Ltd.

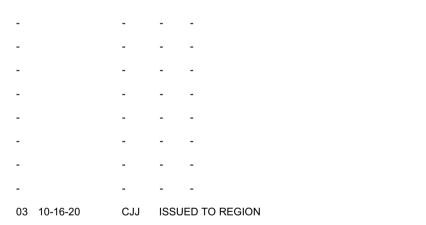
Anthony Lalingo, Region of Peel

Attachment 1:


Drawing CP-01 – 1240 Britannia Road West Draft Plan of Subdivision and Proposed Britannia Road ROW



Attachment 2: Drawing CP-02 – 1240 Britannia Road West Architectural Site Plan and Proposed Britannia Road Streetscape



- 1. Site Plan provided by Cassidy Co. Architects dated October 13, 2020
- 2. Draft Plan of Subdivision provided by GSAI dated October 13, 2020

Date Plotted: October 16, 2020 Filename: J:\6869-16\BA\SPR\6. October 15, 2020\BA-1240 Britannia Road-SPR2-686916.dwg

CJJ REVISED ARCH PLANS 01 09-10-20 CJJ NEW ARCH BASE PLANS

1240 BRITANNIA ROAD WEST -SITE PLAN

BRITANNIA ROAD WIDENING

September 03, 2020

CP-02

From: <u>Lahini Senthil-kumaran</u>
To: <u>Ryan A. Sankar; Don Casey</u>

Cc: Christie Jeong; Lin Rogers; Ryan Au; Yougendran Thiyagarajah

Subject: RE: National Homes (1240 Britannia) - Emergency Access

Date: September 21, 2020 12:00:06 PM

Attachments: <u>image001.png</u>

Thanks Ryan, we will review and get back to you.

Regards,

Lahini Senthil-Kumaran, B.Eng

Traffic Planning Technologist T 905-615-3200 ext.5798

lahini.senthil-kumaran@mississauga.ca

City of Mississauga

Please consider the environment before printing.

From: Ryan A. Sankar [mailto:sankar@bagroup.com]

Sent: Friday, September 18, 2020 4:01 PM **To:** Lahini Senthil-kumaran; Don Casey

Cc: Christie Jeong; Lin Rogers; Ryan Au; Yougendran Thiyagarajah **Subject:** RE: National Homes (1240 Britannia) - Emergency Access

Hi Lahini, Don and Ryan,

As follow-up to our meeting on Monday, I thought I'd summarize what I believe to be the consensus we arrived at regarding the secondary access for the 1240 Britannia application:

- We were all in agreement that an extension of Street 'C' (the eastern N-S private road) to meet Galesway Boulevard was not necessary from an emergency access perspective, assuming secondary access could be provided from the Cabrera Crescent cul-de-sac (which would be reconstructed to the appropriate City standard as part of the redevelopment).
- Ryan Au stated his preference for this secondary site driveway on Cabrera Crescent to be
 publicly accessible (i.e. not gated). Ryan Sankar commented that current Cabrera Crescent
 residents may be concerned about traffic infiltration that could result as a consequence of
 the driveway being open and available for public use. Ryan Sankar to discuss with the
 development team the feasibility of making this secondary driveway publicly accessible.
- Don confirmed that the fire department are accepting of the emergency secondary access point being provided from the Cabrera Crescent cul-de-sac. Either a gated or open driveway would be acceptable.
- All of the above discussion outcomes are predicated on the successful transfer of lands held in escrow for the previously planned extension of Cabrera Crescent to Galesway Boulevard.
 Formal comments regarding the revised development plan will be provided in response to the forthcoming revised development application submission.

Please let me know if you agree with my interpretation of the outcome of our discussion or if you have anything to add. Thanks again for meeting with us on this.

Have a great weekend.

Ryan A. Sankar, P.Eng. Associate

BA Consulting Group Ltd.

300 - 45 St. Clair Ave. W. Toronto, ON M4V 1K9

TEL 416 961 7110 x163
CELL 416 317 5845
EMAIL sankar@bagroup.com

-----Original Appointment-----

From: Ryan A. Sankar On Behalf Of Lahini Senthil-kumaran

Sent: September 14, 2020 11:07 AM

To: Christie Jeong

Subject: FW: National Homes (1240 Britannia) - Emergency Access

When: September 14, 2020 1:00 PM-1:30 PM (UTC-05:00) Eastern Time (US & Canada).

Where: N/A

This message contains information which may be confidential and privileged. Unless you are the intended addressee (or authorized to receive for the intended addressee), you may not use, copy or disclose to anyone the message or any information contained in the message. If you have received the message in error, please advise the sender by reply at administrator@bagroup.com and delete the message.