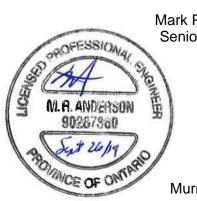


PRELIMINARY GEOTECHNICAL DESIGN REPORT

CLASS ENVIRONMENTAL ASSESSMENT STUDY BURNHAMTHORPE ROAD WEST CITY OF MISSISSAUGA, ONTARIO


Report

to

CIMA+

Mark Popik, M.Eng., P.Eng. Senior Pavement Engineer

Murray Anderson, P.Eng. Review Engineer

Date: September 26, 2019 File: 20337

TABLE OF CONTENTS

1	IN	ITROI	DUCTION	1
2	SI	TE D	ESCRIPTION	1
3	SI	TE IN	IVESTIGATION AND FIELD TESTING	2
	3.1	Field	I Investigation	2
	3.2		pratory Testing	
4	Sl	JMMA	ARY OF SITE CONDITIONS	3
	4.1	Surfa	ace Conditions	3
	4.	1.1	Geological Conditions	3
	4.	1.2	Surface Drainage	4
	4.	1.3	Pavement Condition	4
	4.2	Pave	ement Structure	4
	4.3			
	4.4	Silty	Clay to Clayey Silt Till	6
	4.5	Grou	Indwater	6
	4.6	Cher	nical Analysis	6
5	PA	AVEN	IENT DESIGN ANALYSIS	7
	5.1	Gene	eral	7
	5.2	Traff	ic Analysis	7
	5.3	New	Pavement Design Analysis	8
	5.	3.1	AASHTO Design Procedure	8
	5.	3.2	City of Mississauga Design Requirements	9
	5.4	Pave	ement Rehabilitation	9
	5.	4.1	Functional Requirements	9
	5.	4.2	Structural Requirements	10
	5.	4.3	Rehabilitation Alternatives	10
6	PF	RELIN	INARY PAVEMENT DESIGN RECOMMENDATIONS	11
	6.1	Burn	hamthorpe Road Rehabilitation	11
	6.2	Pave	ement Widening	12
	6.3	Subg	grade Preparation	12
	6.4	Pave	ement Drainage	13
	6.5	Man	agement of Excess Materials	13
	6.6	Cons	struction Inspection and Testing	14
7	CI	LOSU	IRE	14

Statement of Limitations and Conditions

APPENDICES

- **APPENDIX A:** Borehole Location Plan
- **APPENDIX B:** Pavement Core Photographs
- **APPENDIX C:** Record of Borehole Sheets
- **APPENDIX D:** Geotechnical Laboratory Test Results
- **APPENDIX E:** Analytical Laboratory Certificates of Analysis
- **APPENDIX F:** Pavement Design Analysis

1 INTRODUCTION

This report presents the results of a preliminary geotechnical investigation conducted in support of the Class EA for the proposed improvements of Burnhamthorpe Road West (Burnhamthorpe Road) from Loyalist Drive to the west city limit (Ninth Line) in Mississauga, Ontario.

The purpose of this investigation was to explore the subsurface conditions within the project limits and based on the data obtained, to provide borehole logs, borehole location plans and written descriptions of the subsurface conditions. Preliminary geotechnical recommendations for road widening, pavement design, and management options for soil that may be removed during construction are also provided.

Thurber Engineering Ltd. (Thurber) carried out the investigation as a sub-consultant to CIMA+ who are conducting the EA Study for the City of Mississauga.

It is a condition of this report that Thurber's performance of its professional services is subject to the attached Statement of Limitations and Conditions.

2 SITE DESCRIPTION

The study area extends along Burnhamthorpe Road from Loyalist Drive to the west city limit, a distance of approximately 1.5 km. Burnhamthorpe Road within the study area is an east-west arterial roadway presently comprising a two-lane road cross-section with ditches on both sides and a posted speed limit of 60 km/hr. Three intersections are included within the project area. From west to east the intersecting streets are Ninth Line, Ridgeway Drive and Colonial Drive. Burnhamthorpe Road crosses over Highway 403 east of Ninth Line.

The area surrounding the project corridor is residential east of Ridgeway Drive. West of Ridgeway Drive on the south side of Burnhamthorpe Road the property use is a mix of commercial and industrial. On the north side of Burnhamthorpe Road west of Ridgeway Drive there is a secondary school.

3 SITE INVESTIGATION AND FIELD TESTING

3.1 Field Investigation

The field work for this investigation was carried out on April 9, 2018 and comprised 22 boreholes advanced at the approximate locations shown on the borehole location plan in Appendix A. A total of 16 boreholes were advanced along Burnhamthorpe Road, while a pair of boreholes were advanced in approach pavement at all crossroads. The boreholes are designated as 18-01 to 18-22 and were all advanced to a depth of 2.1 m below the existing ground surface with the exception of Borehole 18-08 which was terminated at a depth of 1.9 m.

Pavement cores of the existing asphalt pavement were recovered from eight of the borehole locations for visual examination and confirmation of pavement thickness. Photographs of the pavement cores are provided in Appendix B.

Prior to starting the site investigation, clearance was obtained from utilities having plant in the area through the Ontario One-Call system. The borehole locations were established in the field using a hand-help GPS receiver.

The boreholes were drilled with solid stem augers by a drilling subcontractor (Malone's Soil Samples Co. Ltd.) under the direction and supervision of Thurber personnel. Soil samples were obtained using a split spoon sampler in conjunction with the Standard Penetration Test (SPT). The soil stratigraphy was recorded in each borehole by Thurber personnel who processed the recovered soil samples for transport to Thurber's laboratory for further examination and testing.

The groundwater conditions in the open boreholes were observed throughout the drilling operations. The boreholes were backfilled with auger cuttings and, where appropriate, the roadway surface was reinstated with asphalt cold-patch.

Results of the field drilling, sampling and testing are presented on the Record of Borehole sheets in Appendix C.

3.2 Laboratory Testing

All recovered soil samples were subjected to visual identification and to natural moisture content determination. Selected soil samples were also subjected to grain size analysis and Atterberg Limits testing. Test results are shown on the individual borehole logs presented in Appendix C. The grain size distribution curves and Atterberg Limits test results are plotted on figures attached in Appendix D.

To evaluate the requirements for management and/or disposal of soil excavated during construction, soil samples recovered from the boreholes were submitted to SGS Canada for analysis of selected parameters outlined in Ontario Regulation 153/04 (O.Reg. 153/04). In addition, selected samples were also tested for Toxicity Characteristic Leaching Procedure (TCLP) analysis of inorganic parameters in accordance with O.Reg. 347 – General Waste Management as amended by O.Reg. 558/00. The sample locations and material types are summarized in Table 1.

Borehole	Sample No.	Depth (m)	Soil Type	Analysis
18-01	SS2	1.5 – 2.1	Silty Clay Fill	Metals & Inorganics
18-04	GS1	0 – 0.6	Granular Fill	Metals & Inorganics
18-06	GS1	0.2 – 0.6	Granular Fill	TCLP
18-06	SS1	0.8 – 1.4	Silty Clay Fill	Metals & Inorganics
18-10	SS2	1.5 – 2.1	Silty Clay Till	Metals & Inorganics
18-11	SS1	0.8 – 1.4	Silty Clay Till	Metals & Inorganics
18-13	GS1	0.2 – 0.6	Granular Fill	Metals & Inorganics
18-15	SS2	1.5 – 2.1	Silty Clay Fill	BTEX & PHCs
18-16	SS1	0.8 – 1.4	Silty Clay Fill	Metals & Inorganics
18-19	SS2	1.5 – 2.1	Silty Clay Till	Metals & Inorganics
18-20	SS1	0.8 – 1.4	Silty Clay Till	TCLP
18-22	GS1	0.2 - 0.6	Granular Fill	Metals & Inorganics

Table 1. Samples Selected for Environmental Testing

The results of the analyses are provided on the Certificates of Analysis in Appendix E.

4 SUMMARY OF SITE CONDITIONS

4.1 Surface Conditions

Burnhamthorpe Road is currently a two-lane rural platform, with left turn lanes and an urban crosssection at all intersections. The existing travel lanes comprise a flexible pavement, with unpaved gravel shoulders.

4.1.1 Geological Conditions

The study area is located within the South Slope physiographic region, as delineated in The

Physiography of Southern Ontario by Chapman and Putnam (1984). The surficial geology consists of Halton till, a clayey silt to silty clay till that contains occasional sand layers. The underlying bedrock is expected to consist of the Queenston Formation, a red shale with occasional harder interbeds.

4.1.2 Surface Drainage

Drainage of surface water along the existing corridor is managed through open ditches on both sides of the roadway, although in some areas the ditches appear relatively shallow.

Major drainage features in the area comprise Sixteen Mile Creek to the west and the Credit River to the east. Both features flow southerly into Lake Ontario.

4.1.3 Pavement Condition

The current condition of the pavement surface on Burnhamthorpe Road is considered **Fair**, with predominant pavement distresses consisting of extensive, moderate to severe severity transverse cracking; with intermittent slight to moderate severity longitudinal and centreline cracking. In localized poorly performing areas, pavement distresses included: severe wheelpath fatigue cracking; slight to moderate pavement rutting; and localized potholes repaired with manual patches.

4.2 Pavement Structure

The pavement structure encountered in the boreholes drilled on Burnhamthorpe Road consisted of 150 mm to 275 mm of asphalt, overlying granular base varying from sand some gravel to gravelly sand with trace to some silt. The thickness of the granular base under the asphalt pavement ranged from 360 mm to 620 mm. In boreholes drilled on the shoulders of Burnhamthorpe Road the granular fill material was encountered at surface and the thickness of the granular fill ranged from 560 mm to 910 mm.

The pavement structure encountered in the two boreholes drilled on 9th Line (18-02 and 18-03) consisted of 175 mm of asphalt, overlying 510 mm to 780 mm of granular base. The granular base consisted of sand some gravel to gravelly sand with trace to some silt.

The pavement structure encountered in the two boreholes drilled on Ridgeway Drive (18-10 and 18-11) consisted of 175 mm to 200 mm of asphalt, overlying 370 mm to 530 mm of granular base. The granular base consisted of gravelly sand with trace to some silt.

The pavement structure encountered in the two boreholes drilled on Colonial Drive (18-16 and 18-17) consisted of 125 mm to 150 mm of asphalt, overlying 460 mm to 660 mm of granular base. The granular base consisted of gravelly sand with trace silt.

The results of grain size distribution analyses conducted on four samples of the granular material are presented on Figure D1 of Appendix D. In general, the gradation of the samples is finer than the requirements for OPSS Granular A. Testing of bulk samples collected from open test pits would be required to confirm the gradation.

Moisture contents for the granular material ranged from 2 to 10 percent.

4.3 Fill

A layer of fill was encountered below the pavement structure in Boreholes 18-01 to 18-09 and 18-12 to 18-18. The fill layer typically consisted of silty clay with trace sand to sandy and trace to some gravel. This layer was typically described as brown to dark brown and contained organic material at some locations. The thickness of the silty clay fill layers varied from 0.7 m to 0.9 m, where fully penetrated. Boreholes 18-01 to 18-07, 18-15 and 18-17 were terminated in the silty clay fill at 2.1 m depth.

SPT N-values obtained in the silty clay fill ranged from 2 to 22 blows/0.3 m, indicating a soft to very stiff consistency. A localized value of 54 was recorded in Borehole 18-01 where the split spoon sampler hit an asphalt layer. A second localized value of 50 blows/0.1 m was recorded in Borehole 18-04. Moisture contents varied between 9 and 20 percent.

The results of grain size distribution analyses conducted on samples of the silty clay fill are presented on Figure D2 of Appendix D. The Atterberg Limits determined from three samples are plotted on Figure D4.

Silty sand fill with trace to some gravel and trace clay was found in two boreholes (Borehole 18-08 and 18-12) below the pavement structure. This layer was 0.6 m thick in Borehole 18-12, and Borehole 18-08 was terminated within this layer at a depth of 1.9 m.

SPT-N values obtained in the silty sand fill ranged from 8 blows/0.3 m in Borehole 18-12 (loose) to 50 blows/ 225 mm (very dense) in Borehole 18-08. Moisture contents varied from 5 to 18 percent.

The results of one grain size distribution analysis conducted on a sample of silty sand fill are presented on Figure D3 of Appendix D.

4.4 Silty Clay to Clayey Silt Till

A till deposit consisting of silty clay was encountered directly below the pavement structure in Boreholes 18-10, 18-11 and 18-19 to 18-22 and below the fill layer in Boreholes 18-09, 18-12 to 18-14, 18-16 and 18-18. The till generally contains some sand to sandy and trace gravel. The boreholes where the till deposit was encountered were terminated within the till deposit at a depth of 2.1 m.

SPT N-values obtained in the till deposit ranged from 12 blows/0.3 m to 38 blows/0.3 m, indicating a stiff to hard consistency, typically very stiff. Moisture contents ranged from 11% to 20%.

The results of grain size distribution analyses conducted on samples of the silty clay till are presented on Figure D5 of Appendix D. The Atterberg Limits determined from three samples are plotted on Figure D6

Till soils frequently contain cobbles and boulders, and these should be anticipated when excavating during construction.

4.5 Groundwater

All boreholes were dry upon completion of drilling, except for Borehole 18-12 where a water level of 0.4 m (Elev. 180.2 m) was measured upon completion of the borehole drilling, and Borehole 18-17 where a water level at 1.4 m depth (Elev. 175.2 m) was measured. The water in Borehole 18-12 appears to be perched in the pavement granular and sand fill.

Groundwater levels are expected to fluctuate seasonally. Higher groundwater levels are expected during wet periods of the year, such as spring and following periods of sustained precipitation.

4.6 Chemical Analysis

In general, visual and olfactory examination of the soil samples recovered from the field investigation program revealed no unusual staining or odours indicative of hydrocarbon impact or other contamination.

The analytical results were compared to the Table 3 Standards (Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition) of O.Reg. 153/04, for industrial/commercial/community property use. The concentrations of all parameters measured in the samples are below Table 3 Standards, with the exception of Electrical Conductivity (EC) in five samples and Sodium Adsorption Ratio (SAR) in five samples. The concentrations of all

parameters measured in the TCLP analyses were below the leachate quality criteria specified in Schedule 4 of O.Reg. 347. A summary of samples where exceedances were detected is provided in Table 2.

Sample	Soil Type	Guideline	Analysis	Parameter	Guide Value	Result
18-4 GS1 0 – 0.6	Granular Fill	Table 3	O. Reg. 153 Metals & Inorganics	Sodium Adsorption Ratio	12	13.8
18-6	Silty Clay		O. Reg. 153	Conductivity	1.4	4.9
SS1 0.8 – 1.4	Fill	Table 3	Metals & Inorganics	Sodium Adsorption Ratio	12	69.2
18-10 SS2 1.5 – 2.1	Silty Clay Till	Table 3	O. Reg. 153 Metals & Inorganics	Conductivity	1.4	2.3
18-11	Silty Clay		O. Reg. 153	Conductivity	1.4	2.0
SS1 0.8 – 1.4	Till	Table 3	Metals & Inorganics	Sodium Adsorption Ratio	12	30.5
18-16	Silty Clay		O. Reg. 153	Conductivity	1.4	2.2
SS1 0.8 – 1.4	Fill	Table 3	Metals & Inorganics	Sodium Adsorption Ratio	12	32.0
18-19	SS2 Silty Clay Table 3 Metals 5 – 2.1 Till Inorgan		O. Reg. 153	Conductivity	1.4	2.1
1.5 – 2.1			Metals & Inorganics	Sodium Adsorption Ratio	12	20.6

Table 2. Summary of Test Exceedances

Note: Results compared to Table 3 Standards ("Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition" for Industrial/Commercial/Community Property Use with coarse textured soils)

5 PAVEMENT DESIGN ANALYSIS

5.1 General

This section of the report presents the design analysis for the widening and rehabilitation of Burnhamthorpe Road based on our interpretation of the borehole information and projected traffic volumes. Readers of this report are reminded that the subsurface conditions may vary between and beyond the borehole locations.

5.2 Traffic Analysis

Traffic information for Burnhamthorpe Road was provided by CIMA+ and included the 2015 Annual Average Daily Traffic (AADT) volumes for Burnhamthorpe Road for the roadway segment

between Ridgeway Drive and Ninth Line. It is assumed that the provided AADT includes two-way traffic volumes. Forecasted volumes were also provided for years 2031 and 2041, which were used to estimate future growth rate. A summary of the provided traffic information is provided in Table 3.

Year	AADT
2015	15,560
2031	22,924
2041	23,150

Table 3. Peak Hour Traffic Summary

Based on the forecasted traffic volumes, a growth rate of 2.45 percent was back-calculated between the years 2015 and 2031, while a growth rate of 0.1 percent was forecasted between years 2031 and 2041. Furthermore, it is understood that the truck traffic on Burnhamthorpe Road is between 1 (PM) to 2 (AM) percent. For pavement design purposes, an estimated 2021 AADT of 17,014 will be assumed for Burnhamthorpe Road, with 2.0 percent truck traffic.

The traffic data was used to determine the amount of pavement damage caused by the anticipated traffic volumes. Using an average truck factor of 2.5, the pavement damage caused by different vehicle classes are converted to a standard axle load known as an Equivalent Single Axle Load (ESAL). The 20-year design ESALs (commencing in year 2021) for Burnhamthorpe Road is estimated to be some 3.3 million ESALs.

5.3 New Pavement Design Analysis

5.3.1 AASHTO Design Procedure

Flexible pavement designs were developed using the AASHTO procedure as outlined in the 1993 Guide for Design of Pavement Structures, as modified by the MTO publication MI-183. The following inputs were used in developing the required pavement designs.

- Initial serviceability, (P_i) = 4.5
- Terminal serviceability (Pt) = 2.5
- Reliability level (R) = 90 percent
- Overall standard of deviation (S_o) = 0.44
- Mean soil resilient modulus (M_R) = 30 MPa

Based on the above structural requirements, site considerations, and input from the design team, the following pavement structure is required in new pavement areas.

140 mm	Hot Mix Asphalt
200 mm	Granular Base Material
400 mm	Granular Subbase Material

The total thickness of the new pavement should be adequate to maintain subsurface drainage across the pavement widening area; however, localized thickening of the granular subbase layer will be required.

5.3.2 City of Mississauga Design Requirements

The results of the AASHTO pavement design analysis were compared to the City of Mississauga Standard Pavement and Road Base Design Requirements (Standard No. 2220.010). The new pavement design developed for pavement widening areas matches the design standard for an Arterial roadway, when constructed on a subgrade soil (or fill material) containing less than 55 percent silt content.

However, it is noted that the thickness of the granular subbase is to be increased by 150 mm when roadways are constructed within 15 m of intersections.

5.4 Pavement Rehabilitation

The rehabilitation of Burnhamthorpe Road will need to address the functional and structural requirements to extend the service life of this roadway. The understanding of these requirements is critical for the development of the most practical and cost-effective rehabilitation treatment.

5.4.1 Functional Requirements

The functional capacity of a roadway is a measure of how well the pavement serves the user. This serviceability index is often referred to as 'Ride Comfort' and is reflective of the pavement condition at a particular time during the service life of the pavement. Pavement distresses that impact a pavement's functional ability to serve the travelling public include: transverse cracking; potholes; ravelling; as well as heave and swells.

The segment of Burnhamthorpe Road within the project limits is considered to be in **Fair** condition, with pavement distresses such as transverse, wheelpath, and longitudinal cracking, as well as localized areas of ravelling and pothole patches that affect the ride comfort. Most of the transverse

cracks vary from moderate to severe severity, and significantly affect the ride quality. Furthermore, based on the observed severity, these cracks are expected to have propagated through the full asphalt thickness. Any rehabilitation treatments considered for Burnhamthorpe Road will need to improve the observed functional distresses.

5.4.2 Structural Requirements

The structural capacity of a pavement is the physical condition of the roadway that adversely affects the load-carrying capability of the pavement structure. The structural assessment of Burnhamthorpe Road was completed by identifying pavement distresses that indicate structural failure (such as alligator/fatigue cracking and pavement rutting), as well as considering the existing pavement layer thicknesses.

Although the asphalt thickness on Burnhamthorpe Road appears to be of adequate thickness, the pavement surface shows localized structural distresses that are an early indication of structurally deficiency. As the proposed improvements to Burnhamthorpe Road will not be completed for several years, the existing pavement will continue to deteriorate. Therefore, any rehabilitation treatment considered for the existing portion of Burnhamthorpe Road should include structural strengthening as part of the roadway improvements.

5.4.3 Rehabilitation Alternatives

Based on the AASHTO pavement design analysis and the analysis of the field investigation, the existing pavement on Burnhamthorpe Road is considered to be approaching the end of the service life, and in need of considerable functional and structural improvement. Based on the expected pavement condition at the time of the proposed widening, the most practical and cost-effective rehabilitation strategy to address the functional and structural pavement capacity includes the removal of the existing asphalt, with the underlying granular base/subbase graded (as required) into the widening area for the placement of the new Granular Base and Asphalt material.

An alternative to the removal of the existing asphalt would be to consider Full-Depth Reclamation (FDR), which would pulverize the existing asphalt and blend the material with the underlying granular base/subbase. Completing FDR of the existing pavement will reduce the removal of existing materials from site and increase the quantity of granular material available to use as granular subbase in the pavement widening area. The processed material should be graded to permit the placement of the new granular base and asphalt layers. The thickness of the new pavement layers should match the design in the pavement widening area and include:

140 mm	Hot Mix Asphalt
200 mm	Granular Base

It is noteworthy that the FDR process may be complicated by the presence of manholes observed in the EB lane. The practicality of proceeding with the FDR process should be reviewed during detailed design.

This rehabilitation strategy will provide a uniform granular base and asphalt thickness across the entire new pavement platform, which is expected to maintain a consistent performance over the pavement service life.

6 PRELIMINARY PAVEMENT DESIGN RECOMMENDATIONS

6.1 Burnhamthorpe Road Rehabilitation

Preliminary recommendations for the pavement rehabilitation of Burnhamthorpe Road should consist of full depth reclamation (pulverizing) of the existing asphalt with the underlying granular material, followed by grading and compacting the pulverized material, and placement of new Granular Base and Hot Mix Asphalt (HMA). Due to the thickness of the existing asphalt and limitations on the maximum depth of pulverization (400 mm), milling of the existing asphalt in advance of pulverization is recommended. After milling, the remaining pavement should be pulverized to a depth of 400 mm so that the blended material contains a maximum of 50 percent of asphalt coated aggregate, as permitted by OPSS.MUNI 330.

The pulverized material should be graded and compacted (as required), prior to the placement of new granular base material. The recommended asphalt lift types and thicknesses shall consist of:

40 mm	HL1
50 mm	HDBC
50 mm	HDBC
200 mm	Granular 'A' Base

Consideration should be given to grading the pulverized material into the pavement widening area and utilizing the blended material as granular subbase material. Should this option be selected, it is recommended that a maximum of 340 mm of the processed material be removed from the existing lanes, with this material replacing the need for new Granular B, Type I subbase material in the widening area.

This strategy would permit the placement of a consistent granular base and asphalt layer thickness across the entire pavement platform.

6.2 Pavement Widening

It is understood that roadway improvements within the project limits include pavement widening to Burnhamthorpe Road for the construction of a 4-lane platform. In all pavement widening areas (beyond existing shoulder rounding or curb and gutters), the surficial topsoil should be removed with the underlying subgrade graded as required.

The preliminary recommended pavement structure for widening of Burnhamthorpe Road shall consist of:

40 mm	HL1
50 mm	HDBC
50 mm	HDBC
200 mm	Granular 'A' Base
400 mm	Granular 'B' Type I Subbase

As per City of Mississauga standards (Standard No. 2220.010), the thickness of the granular subbase layer should be increased by 150 mm when placed within 15 m of an intersection.

Final grades in all pavement widening areas will need to match the expected elevation of the new curb and gutters. The grading of the top of subgrade in pavement widening areas must match, or exceed, the thickness of the adjacent existing pavement to maintain lateral drainage at the top of subgrade. The total thickness of the new pavement should be sufficient to maintain subsurface drainage across the widening for most of the project limits; however, localized thickening of the granular subbase will be required.

6.3 Subgrade Preparation

In all pavement widening areas, any surficial topsoil should be stripped to expose the underlying soils. The underlying subgrade soils should be removed and graded as required to accommodate the new pavement platform. The exposed top of subgrade should be graded to a 3 percent crossfall toward the subdrains installed at the outer pavement edge.

As per City of Mississauga standards, the top 1.0 m of the subgrade shall be compacted to a minimum of 98 percent of Standard Proctor Maximum Dry Density (SPMDD), within 2 percent of optimum moisture content (OMC). The exposed subgrade should be compacted and proof-rolled

with a heavy roller and examined to identify areas of unstable subgrade. Any soft/wet areas identified should be sub-excavated and replaced with approved material.

6.4 Pavement Drainage

Proper drainage of the pavement structure must be provided by way of curb and gutter and use of subdrains to ensure optimal pavement performance. Pavement design thicknesses in widening areas are based on the pavement structure thicknesses recorded in the boreholes. It is cautioned that actual existing pavement thicknesses may fluctuate between borehole locations. The actual thickness of the new granular subbase layer may need to be increased during construction to ensure that the total thickness of the pavement in the widening area match, or exceed, the thickness of the existing pavement.

All new subdrains should be constructed as per City of Mississauga standard No. 2220.040.

6.5 Management of Excess Materials

The EC and SAR values likely result from de-icing salt applied to the roadway for safety purposes. Currently, salt-related impacts are exempt where salt has been applied on a "highway" by a government or municipal authority, and the applicable site conditions standard is deemed not to be exceeded under O.Reg. 153/04. Therefore, the excavated materials may be managed for reuse in engineering applications on site (i.e. site grading fill or backfill) pending geotechnical approval. The material should not be used in landscaped areas with sensitive vegetation and plant species.

Considering that the parameter exceedances are non-health related, the soils may also be suitable for reuse at industrial/commercial/community sites that require fill for a benefical use, pending approval of receiving site authorities. The use of the excess material at other sites must meet the site's analytical requirements and MECP standards for imported material. The EC and SAR concentrations may have potential implications if a Record of Site Condition is required for that site at this time or in the future.

Alternatively, excess soil may be disposed of off-site as waste at a licensed facility (i.e. landfill and/or treatment facilities) with an Environmental Compliance Approval (ECA) to receive this material, pending approval of receiving site authorities. The results of the leachate analyses met the respective Schedule 4 criteria provided under O.Reg. 347, and therefore, the materials may be disposed of as non-hazardous.

Additional testing will be required during the detailed design investigation to confirm these preliminary recommendations regarding management of excess excavated soils.

6.6 Construction Inspection and Testing

The successful performance of the pavement and roadwork will depend largely on good workmanship and quality control during construction. It is therefore recommended that materials testing and inspection by qualified personnel be provided during construction. The inspection and testing should include observation and inspection of asphalt paving and sampling as well as onsite recommendation and coordination.

Thurber should be retained to review the preliminary pavement recommendations during detailed design and have an opportunity to review the construction tender package for the proposed works to ensure that the recommendations in this report have been adequately interpreted.

7 CLOSURE

Overall supervision of the field program was carried out by Mr. Matthew Boucher, P.Eng. Interpretation of the field data, and report preparation was conducted by Mr. Mark Popik P.Eng. A technical review of this report was completed by Mr. Murray Anderson, P.Eng.

The preliminary recommendations made in this report are in accordance with our present understanding of the project requirements. Additional field, laboratory, and analytic work will be required to advance the project beyond the preliminary stage.

We trust that this report satisfies the requirements of CIMA+, and the City of Mississauga. Please do not hesitate to contact our office if you have any questions.

STATEMENT OF LIMITATIONS AND CONDITIONS

1. STANDARD OF CARE

This Report has been prepared in accordance with generally accepted engineering or environmental consulting practices in the applicable jurisdiction. No other warranty, expressed or implied, is intended or made.

2. COMPLETE REPORT

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment are a part of the Report, which is of a summary nature and is not intended to stand alone without reference to the instructions given to Thurber by the Client, communications between Thurber and the Client, and any other reports, proposals or documents prepared by Thurber for the Client relative to the specific site described herein, all of which together constitute the Report.

IN ORDER TO PROPERLY UNDERSTAND THE SUGGESTIONS, RECOMMENDATIONS AND OPINIONS EXPRESSED HEREIN, REFERENCE MUST BE MADE TO THE WHOLE OF THE REPORT. THURBER IS NOT RESPONSIBLE FOR USE BY ANY PARTY OF PORTIONS OF THE REPORT WITHOUT REFERENCE TO THE WHOLE REPORT.

3. BASIS OF REPORT

The Report has been prepared for the specific site, development, design objectives and purposes that were described to Thurber by the Client. The applicability and reliability of any of the findings, recommendations, suggestions, or opinions expressed in the Report, subject to the limitations provided herein, are only valid to the extent that the Report expressly addresses proposed development, design objectives and purposes, and then only to the extent that there has been no material alteration to or variation from any of the said descriptions provided to Thurber, unless Thurber is specifically requested by the Client to review and revise the Report in light of such alteration or variation.

4. USE OF THE REPORT

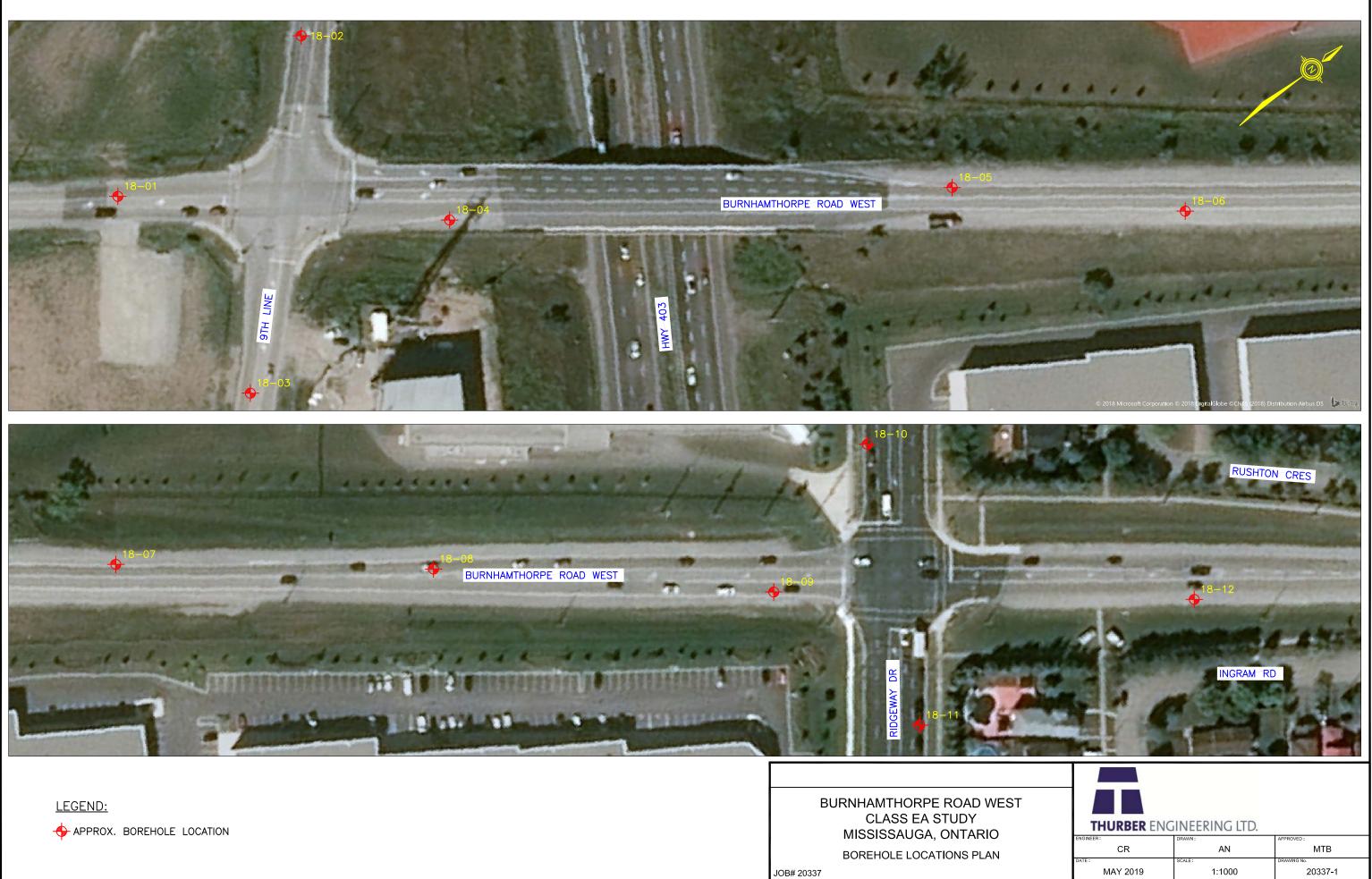
The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. NO OTHER PARTY MAY USE OR RELY UPON THE REPORT OR ANY PORTION THEREOF WITHOUT THURBER'S WRITTEN CONSENT AND SUCH USE SHALL BE ON SUCH TERMS AND CONDITIONS AS THURBER MAY EXPRESSLY APPROVE. Ownership in and copyright for the contents of the Report belong to Thurber. Any use which a third party makes of the Report, is the sole responsibility of such third party. Thurber accepts no responsibility whatsoever for damages suffered by any third party resulting from use of the Report without Thurber's express written permission.

5. INTERPRETATION OF THE REPORT

- a) Nature and Exactness of Soil and Contaminant Description: Classification and identification of soils, rocks, geological units, contaminant materials and quantities have been based on investigations performed in accordance with the standards set out in Paragraph 1. Classification and identification of these factors are judgmental in nature. Comprehensive sampling and testing programs implemented with the appropriate equipment by experienced personnel may fail to locate some conditions. All investigations utilizing the standards of Paragraph 1 will involve an inherent risk that some conditions will not be detected and all documents or records summarizing such investigations will be based on assumptions of what exists between the actual points sampled. Actual conditions may vary significantly between the points investigated and the Client and all other persons making use of such documents or records with our express written consent should be aware of this risk and the Report is delivered subject to the express condition that such risk is accepted by the Client and such other persons. Some conditions are subject to change over time and those making use of the Report should be aware of this possibility and understand that the Report only presents the conditions at the sampled points at the time of sampling. If special concerns exist, or the Client has special considerations or requirements, the Client should disclose them so that additional or special investigations may be undertaken which would not otherwise be within the scope of investigations made for the purposes of the Report.
- b) Reliance on Provided Information: The evaluation and conclusions contained in the Report have been prepared on the basis of conditions in evidence at the time of site inspections and on the basis of information provided to Thurber. Thurber has relied in good faith upon representations, information and instructions provided by the Client and others concerning the site. Accordingly, Thurber does not accept responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of misstatements, omissions, misrepresentations, or fraudulent acts of the Client or other persons providing information relied on by Thurber. Thurber is entitled to rely on such representations, information and instructions and is not required to carry out investigations to determine the truth or accuracy of such representations, information and instructions.
- c) Design Services: The Report may form part of design and construction documents for information purposes even though it may have been issued prior to final design being completed. Thurber should be retained to review final design, project plans and related documents prior to construction to confirm that they are consistent with the intent of the Report. Any differences that may exist between the Report's recommendations and the final design detailed in the contract documents should be reported to Thurber immediately so that Thurber can address potential conflicts.
- d) Construction Services: During construction Thurber should be retained to provide field reviews. Field reviews consist of performing sufficient and timely observations of encountered conditions in order to confirm and document that the site conditions do not materially differ from those interpreted conditions considered in the preparation of the report. Adequate field reviews are necessary for Thurber to provide letters of assurance, in accordance with the requirements of many regulatory authorities.

6. RELEASE OF POLLUTANTS OR HAZARDOUS SUBSTANCES

Geotechnical engineering and environmental consulting projects often have the potential to encounter pollutants or hazardous substances and the potential to cause the escape, release or dispersal of those substances. Thurber shall have no liability to the Client under any circumstances, for the escape, release or dispersal of pollutants or hazardous substances, unless such pollutants or hazardous substances have been specifically and accurately identified to Thurber by the Client prior to the commencement of Thurber's professional services.


7. INDEPENDENT JUDGEMENTS OF CLIENT

The information, interpretations and conclusions in the Report are based on Thurber's interpretation of conditions revealed through limited investigation conducted within a defined scope of services. Thurber does not accept responsibility for independent conclusions, interpretations, interpretations and/or decisions of the Client, or others who may come into possession of the Report, or any part thereof, which may be based on information contained in the Report. This restriction of liability includes but is not limited to decisions made to develop, purchase or sell land.

Appendix A

Borehole Location Plan

FILENAME: H:\DraftIng\20000\2033 PLOTDATE: May 13, 2019 - 2:42 PN

BURNHAMTHORPE ROAD WEST CLASS EA STUDY MISSISSAUGA, ONTARIO BOREHOLE LOCATIONS PLAN

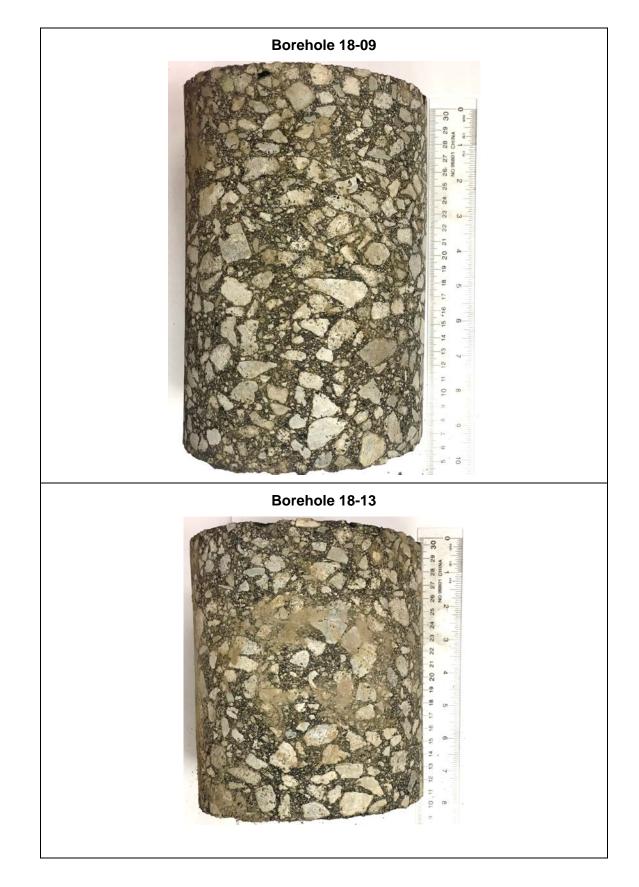
LEGEND:

+ APPROX. BOREHOLE LOCATION

JOB# 20337

THURBER ENG	INEERING LTD.	
ENGINEER:	DRAWN:	APPROVED :
CR	AN	MTB
DATE : MAY 2019	scale: 1:1000	DRAWING No. 20337-2

L I I FILENAME: H:Drafting\2000\20037/xrefboreholes.dv PLOTDATE: May 13, 2019 - 2:44 PM


Appendix B

Pavement Core Photographs

Appendix C

Record of Borehole Sheets

SYMBOLS, ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES

1. <u>TEXTURAL CLASSIFICATION OF SOILS</u>

2.

3.

4.

5.

	PARTICLE SIZE Greater than 200mm	VISUAL IDENTIFICATION
Boulders Cobbles	75 to 200mm	same
	4.75 to 75mm	same
Gravel		5 to 75mm
Sand	0.075 to 4.75mm	Not visible particles to 5mm
Silt	0.002 to 0.075mm	Non-plastic particles, not visible to
	I 1 0.000	the naked eye
Clay	Less than 0.002mm	Plastic particles, not visible to the naked eye
<u>COARSE GRAIN SOIL D</u>	ESCRIPTION (50% greater than 0.07)	
TERMINOLOGY		PROPORTION
Trace or Occasional		Less than 10%
Some		10 to 20%
Adjective (e.g. silty or sand	lv)	20 to 35%
And (e.g. sand and gravel)	-57	35 to 50%
TERMS DESCRIBING CO	NSISTENCY (COHESIVE SOILS O	NLY)
DESCRIPTIVE TERM	UNDRAINED SHEAR	APPROXIMATE SPT ⁽¹⁾ N'
	STRENGTH (kPa)	VALUE
Very Soft	12 or less	Less than 2
Soft	12 to 25	2 to 4
Firm	25 to 50	4 to 8
Stiff	50 to 100	8 to 15
Very Stiff	100 to 200	15 to 30
Hard	Greater than 200	Greater than 30
NOTE: Hierarchy of Soil S	2) Fie 3) La 4) SF	boratory Triaxial Testing eld Insitu Vane Testing boratory Vane Testing YT value ocket Penetrometer
		NT X7
TERMS DESCRIBING DE	ENSITY (COHESIONLESS SOILS O	<u>NLY)</u>
TERMS DESCRIBING DE	ENSITY (COHESIONLESS SOILS O SPT "N" VALUE	<u>NLY)</u>
		<u>NLY)</u>
DESCRIPTIVE TERM	SPT "N" VALUE	<u>NLY)</u>
DESCRIPTIVE TERM Very Loose Loose	SPT "N" VALUE Less than 4	<u>NLY)</u>
DESCRIPTIVE TERM Very Loose	SPT "N" VALUE Less than 4 4 to 10	<u>NLY)</u>
DESCRIPTIVE TERM Very Loose Loose Compact	SPT "N" VALUE Less than 4 4 to 10 10 to 30	<u>NLY)</u>
DESCRIPTIVE TERM Very Loose Loose Compact Dense	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50 Greater than 50	<u>NLY)</u>
DESCRIPTIVE TERM Very Loose Loose Compact Dense Very Dense LEGEND FOR RECORDS	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50 Greater than 50 S OF BOREHOLES	
DESCRIPTIVE TERM Very Loose Loose Compact Dense Very Dense <u>LEGEND FOR RECORDS</u> SYMBOLS AND	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50 Greater than 50 S OF BOREHOLES SS Split Spoon Sample WS	Wash Sample AS Auger (Grab) Sample
DESCRIPTIVE TERM Very Loose Loose Compact Dense Very Dense <u>LEGEND FOR RECORDS</u> SYMBOLS AND ABBREVIATIONS	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50 Greater than 50 S OF BOREHOLES SS Split Spoon Sample WS TW Thin Wall Shelby Tube Samp	Wash Sample AS Auger (Grab) Sample le TP Thin Wall Piston Sample
DESCRIPTIVE TERM Very Loose Loose Compact Dense Very Dense <u>LEGEND FOR RECORDS</u> SYMBOLS AND	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50 Greater than 50 S OF BOREHOLES SS Split Spoon Sample WS	Wash Sample AS Auger (Grab) Sample le TP Thin Wall Piston Sample lic Pressure PM Sampler Advanced by Manual Pre
DESCRIPTIVE TERM Very Loose Loose Compact Dense Very Dense <u>LEGEND FOR RECORDS</u> SYMBOLS AND ABBREVIATIONS FOR SAMPLE TYPE	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50 Greater than 50 S OF BOREHOLES SS Split Spoon Sample WS TW Thin Wall Shelby Tube Samp PH Sampler Advanced by Hydrau WH Sampler Advanced by Self St Undisturbed Shear Strength	Wash Sample AS Auger (Grab) Sample le TP Thin Wall Piston Sample lic Pressure PM Sampler Advanced by Manual Pre
DESCRIPTIVE TERM Very Loose Loose Compact Dense Very Dense <u>LEGEND FOR RECORDS</u> SYMBOLS AND ABBREVIATIONS FOR	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50 Greater than 50 SOF BOREHOLES SS Split Spoon Sample WS TW Thin Wall Shelby Tube Samp PH Sampler Advanced by Hydrau WH Sampler Advanced by Self St	Wash Sample AS Auger (Grab) Sample le TP Thin Wall Piston Sample lic Pressure PM Sampler Advanced by Manual Pre
DESCRIPTIVE TERM Very Loose Loose Compact Dense Very Dense <u>LEGEND FOR RECORDS</u> SYMBOLS AND ABBREVIATIONS FOR SAMPLE TYPE	SPT "N" VALUE Less than 4 4 to 10 10 to 30 30 to 50 Greater than 50 SOF BOREHOLES SS Split Spoon Sample WS TW Thin Wall Shelby Tube Samp PH Sampler Advanced by Hydrau WH Sampler Advanced by Self St Undisturbed Shear Strength	Wash Sample AS Auger (Grab) Sample le TP Thin Wall Piston Sample lic Pressure PM Sampler Advanced by Manual Pre

SPT 'N' Value Standard Penetration Test 'N' Value – refers to the number of blows from a 63.5kg hammer free falling a height of 0.76m to advance a standard 50 mm outside diameter split spoon sampler for 0.3 m depth into undisturbed ground.
 DCPT Dynamic Cone Penetration Test – Continuous penetration of a 50 mm outside diameter, 60° conical steel point attached to "A" size rods driven by a 63.5 kg hammer free falling a height of 0.76 m. The resistance to cone

penetration is the number of hammer blows required for each 0.3 m advance of the conical point into undisturbed ground.

UNIFIED SOILS CLASSIFICATION

MAJO	OR DIVISIONS	GROUP SYMBOL	TYPICAL DESCRIPTION
		GW	Well-graded gravels or gravel-sand mixtures, little or
	GRAVEL		no fines.
	AND	GP	Poorly-graded gravels or gravel-sand mixtures, little
	GRAVELLY		or no fines.
COARSE	SOILS	GM	Silty gravels, gravel-sand-silt mixtures.
GRAINED		GC	Clayey gravels, gravel-sand-clay mixtures.
SOILS		SW	Well-graded sands or gravelly sands, little or no
	SAND AND		fines.
	SANDY	SP	Poorly-graded sands or gravelly sands, little or no
	SOILS		fines.
		SM	Silty sands, sand-silt mixtures.
		SC	Clayey sands, sand-clay mixtures.
		ML	Inorganic silts and very fine sands, rock flour, silty or
			clayey fine sands or clayey silts with slight plasticity.
		CL	Inorganic clays of low to medium plasticity, gravelly
	SILTS AND		clays, sandy clays, silty clays, lean clays.
FINE	CLAYS		$(W_L < 30\%).$
GRAINED	$W_L {<} 50\%$	CI	Inorganic clays of medium plasticity, silty clays.
SOILS			$(30\% < W_L < 50\%).$
		OL	Organic silts and organic silty-clays of low plasticity.
		MH	Inorganic silts, micaceous or diatomaceous fine
	SILTS AND		sandy or silty soils, elastic silts.
	CLAYS	СН	Inorganic clays of high plasticity, fat clays.
	$W_L\!>\!50\%$	OH	Organic clays of medium to high plasticity, organic
			silts.
HIGHLY		Pt	Peat and other highly organic soils.
ORGANIC			
SOILS			
CLAY SHALE	3	I	
SANDSTONE			
SILTSTONE			
CLAYSTONE			
COAL			

				F	REC	0	R) (OF BOREHOLE	18-01		
		JE	-	West (Class E	A					Project I	No. 20337
		ATI RTI	ION : Mississauga, ON ED : April 9, 2018								OUEET	
			ED : April 9, 2018 .ETED : April 9, 2018				1	N 4	819 552.0 E 603 738.0		SHEET DATUM	Geodetic
	-		SOIL PROFILE			SA	MPL			SHEAR STRENGTH: Cu, KPa nat V - ● Q - ¥ rem V - ● Cpen ▲		
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	nation Cpen A rem V - Cpen A 40 80 120 160 I Image: Imag	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_			GROUND SURFACE		182.48							
			ASPHALT: (150mm)		0.00							
-			SAND, gravelly, some silt, brown, wet: (FILL) CLAY, silty, sandy, trace gravel, hard to very stiff, dark brown, moist: (FILL)		0.15 181.89 0.59	1	GS			0		
- 1	Solid Stam Augura	Jruck Mounted Hvdraulic Drill	Very stiff, dark brown, moist: (FILL)			1	SS	54	Grain Size Analysis: Gr 0%/ Sa 28%/Si 42%/ Cl 30%	0 		
-	C.	Trick M	0.15m of asphalt at 1.2m									
-2			END OF BOREHOLE AT 2.13m.		180.34 2.13	2	SS	16		0		
-			BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH CUTTINGS AND ASPHALT TO SURFACI	Ξ.								
- 3												
-												
-4												
			GROUNDWATER ELE					L v	VATER LEVEL IN WELL/PIEZC	DMETER LOGGED : CAI CHECKED : MTI		THURBER

				R	REC	0	R) (OF BOREHOLE	18	8-02					
		JEC	•	Vest C	Class E	A								F	Project N	lo. 20337
		ATIC RTEI	0											S	SHEET 1	OF 1
			TED : April 9, 2018			N 4 819 624.0 E 603 734.0										Geodetic
щ		OD	SOIL PROFILE			SA	MPL	ES	COMMENTS		SHEAR S nat V - rem V -		H: Cu, I Q -	KPa	ں _ا	
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	_	40 8	30 12 ONTENT 	20 1 	160	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
			GROUND SURFACE ASPHALT: (175mm)		183.44 0.00											
					0.00											
			SAND, gravelly, trace to some silt, dark brown, moist: (FILL)		0.18											
	S	lic Drill	CLAY , silty, some sand to sandy, trace gravel, very stiff to stiff, dark brown, moist: (FILL)		182.75 0.69		GS				o					
- 1	Solid Stem Augers	Truck Mounted Hydraulic				1	ss	16			0					
-2					181.30	2	ss	9			0					
-			END OF BOREHOLE AT 2.13m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH CUTTINGS AND ASPHALT TO SURFACE.		2.13											
- 3																
-4																
-																
<u>i</u>			GROUNDWATER ELE		IONS	L;										
)							_	V V	/ATER LEVEL IN WELL/PIEZ	ZOME	ETER	LOGGE		CAR MTB		THURBER

	ATIO RTE	DN : Mississauga, ON D : April 9, 2018 TED : April 9, 2018 SOIL PROFILE DESCRIPTION					148	319 547.0 E 603 808.0						S	Project N HEET 1 ATUM	
STA COM	RTE //PLE	D : April 9, 2018 TED : April 9, 2018 SOIL PROFILE DESCRIPTION	A PLOT P		SAI		148	319 547.0 E 603 808.0								
COM	NPLE	SOIL PROFILE	A PLOT		SAI		148	319 547.0 E 603 808.0								
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	A PLOT F		SAI								Geodelic			
DEPTH SCAI	BORING METH		A PLOT			MPL	ES	COMMENTS		SH	IEAR S nat V -		FH: Cu, I Q - Cpen	KPa	٦Ū	
				.EV. PTH m)	NUMBER	түре	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT		40) 8 TER C	30 1 	20 1 I I, PERC	160	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		GROUND SURFACE	18	83.44												
-		ASPHALT: (175mm)		0.00												
-		SAND, some gravel, trace to some silt, brown, moist: (FILL)		0.18	1	GS			0							
- 1 - 1 - Solid Stem Aurors	Solid Stern Augers Truck Mounted Hydraulic Drill	CLAY, silty, sandy, some gravel, some cobbles, very stiff, brown, moist: (FILL)		82.48 0.96	1	SS	21			0						
- -	Truck			-												
-2		END OF BOREHOLE AT 2.13m.	18	81.30 2.13	2	SS	18				0					
-		ENDOI DOLLATE AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH CUTTINGS AND ASPHALT TO SURFACE.		2.10												
- 3																
-																
-																
-4																
-		GROUNDWATER ELEN $\overline{\mathcal{Y}}$ water level upon com				Ţ	- w	ATER LEVEL IN WELL/PIEZ	OME.	TEF	R	LOGGE CHECK		CAR MTB		THURBER

				R	REC	0	R) (OF BOREHOLE	18-	04								
PF	80.	JEC	•	Nest C	Class E	A								P	roject N	roject No. 20337			
			0												UEET.				
		RTE PLE	D : April 9, 2018 TED : April 9, 2018				1	N 4	819 625.0 E 603 804.0						HEET [·] ATUM	Geodetic			
	_		SOIL PROFILE			SA		ES	COMMENTS	SHEAR S nat V - rem V -	TRENG	FH: Cu, I							
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТУРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	v	40 8	30 1 ONTENT 	20 1 , PERC	160	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION			
_			GROUND SURFACE		185.20 0.00					_									
-			SAND, some gravel, trace to some silt, brown, moist: (FILL) CLAY, silty, sandy to some sand, trace gravel, hard to stiff, dark brown, moist: (FILL)		184.59 0.61	1	GS			0									
		Drill	gravel, hard to stiff, dark brown, moist: (FILL)																
- 1	Solid Stem Augers	Truck Mounted Hydraulic				1	SS	50/ 0.100	,		0								
		Truck																	
-2					183.06	2	SS	11			0					-			
- 3			END OF BOREHOLE AT 2.13m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH CUTTINGS TO SURFACE.		2.13														
-																			
-4																			
-																			
5																			
		1	GROUNDWATER ELE				<u> </u>	- w	/ATER LEVEL IN WELL/PIEZ	OMETE	R	LOGGE CHECK		CAR MTB		THURBER			

						REC	0	R) (OF BOREHOLE	18-05			
	PROJECT : Burnhamthorpe Road West Class EA proceedings and the second se													
				_								SHEET	1 OF 1	
				TED : April 9, 2018				I	N 4	819 748.0 E 603 888.0			Geodetic	
	Т	8		SOIL PROFILE			SA	MPI	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ● Q - X rem V - ● Cpen ▲			
DEPTH SCALE (metres)		BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	rem V - ● Cpen ▲ 40 80 120 160 I I I I WATER CONTENT, PERCENT wp I W WI 10 20 30 40	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION	
				GROUND SURFACE	0)	188.11								
				ASPHALT: (225mm)		0.00								
				SAND, some silt, some gravel, trace clay, brown, moist: (FILL) CLAY, silty, some sand to sandy, trace gravel, stiff, brown, moist: (FILL)		0.23 187.52 0.59	1	GS		Grain Size Analysis: Gr 17%/Sa 56%/Si 20%/ Cl 7%	0			
- - 1		Solid Stem Augers	Truck Mounted Hydraulic Drill	gravel, stiff, brown, moist: (FILL)		****	1	ss	11		0			
-		Soli	Truck Mo											
-2				END OF BOREHOLE AT 2.13m.		185.97 2.13		SS	14		φ			
-				END OF BOREHOLE AT 2,5111. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH CUTTINGS AND ASPHALT TO SURFAC	E.	2.15								
- 3 -														
-4														
5PJ 5/1//19														
1337.G														
EL-ZU														
THURBER2S TEL-20337.GPJ 5/17/19				GROUNDWATER ELI ⊈ WATER LEVEL UPON C				1	Z v	/ATER LEVEL IN WELL/PIEZC	METER LOGGED : CA CHECKED : MT		THURBER	

PROJUND Weisseage, OH Project No. 2033 Project No. 2033 STATUE April 9, 2018 South PROFILE Project No. 2033 Project No. 2033 South PROFILE April 9, 2018 South PROFILE South PROFILE South PROFILE Project No. 2033 Project No. 2033 Outhout Profile South PROFILE South PROFILE South PROFILE South PROFILE South PROFILE Comment Project No. 2033					F	REC	0	R) (OF BOREHOLE	1	8-0)6					
STARTED: 1: April 9, 2018 SHE APRIL 9, 2018					/est	Class E	ΞA									P	roject N	lo. 20337
COMPLETED: April 9, 2013 N 419 798.0 E. 603 398.0 DUTUM Genedicia 9 90 <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>s</td><td>HEET</td><td>1 OF 1</td></t<>				-												s	HEET	1 OF 1
Signal DESCRIPTION Signal Signal OPWAGE COMPLEXING COMPLEXING Signal Sig								I	N 4	819 798.0 E 603 936.0						D		
Signal DESCRIPTION Signal Signal OPWAGE COMPLEXING COMPLEXING Signal Sig	щ		ŋ	SOIL PROFILE			SA	MPL	ES	COMMENTS		Sł	IEAR S ⁻ nat V -		FH: Cu, P Q - S	(Pa	_ U	
ABPHALT. (200m) 000 <td>DEPTH SCAI (metres)</td> <td></td> <td>BURING MELF</td> <td>DESCRIPTION</td> <td>STRATA PLOT</td> <td>DEPTH</td> <td>NUMBER</td> <td>TYPE</td> <td>BLOWS/0.3m</td> <td>\geq</td> <td>_</td> <td>4 WA W</td> <td>0 ε ATER CO ρ I</td> <td>30 1 L ONTENT O^W</td> <td>20 1 </td> <td>60 ENT wl</td> <td>ADDITIONA LAB. TESTIN</td> <td>OR STANDPIPE</td>	DEPTH SCAI (metres)		BURING MELF	DESCRIPTION	STRATA PLOT	DEPTH	NUMBER	TYPE	BLOWS/0.3m	\geq	_	4 WA W	0 ε ATER CO ρ I	30 1 L ONTENT O^W	20 1 	60 ENT wl	ADDITIONA LAB. TESTIN	OR STANDPIPE
						188.19												
-1 Image: (FILL)						0.00												
-1 1 0	-			SAND, some gravel, some silt, brown, moist: (FILL)		0.20		GS				0						
-2 -2 <	-	s	lic Drill	CLAY, silty, trace sand, trace gravel, stiff, dark brown, moist: (FILL)														
-2 -2 -2 -2 -2 -0 0 0 0 -2 -2 -2 -2 -2 -2 -2 0 0 0 -2 -2 -2 -2 -2 -2 -2 -2 0 0 0 0 -2 -2 -2 -2 -2 -2 -2 -2 -2 0 0 0 0 -2 <t< td=""><td>- 1</td><td>lid Stem Auger</td><td>ounted Hydrau</td><td></td><td></td><td></td><td>1</td><td>SS</td><td>11</td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td></t<>	- 1	lid Stem Auger	ounted Hydrau				1	SS	11				0					
-2 Image: Second S	-	S	Truck M															
- PN OF BOREHOLE AT 2.13m 190.00 BOREHOLE OPEN AND DRY UPON CONTINUES AND ASPHALT TO SURFACE 2.13 -3	-						2	SS	10				0					
BD OF BORHOLE AT 2.13m. CORPOLE OF ALLED WITH CORPOLE OF ALLED WITH CUTTINGS AND ASPHALT TO SURFACE. -3 -4 -4 -4 -5 -74 -74 -74 -74 -74 -74 -74 -74 -74 -75 -76 -77 -78 -79 -74 -74 -75 -76 -77 -78 -79 -74 -74 -75 -76 -77 -78 -79 -74 -74 -75 -76 -77 -78 -79 -79 -71 -71 -72 -73 -74 -77	-2																	-
GROUNDWATER ELEVATIONS V WATER LEVEL IN WELL/PIEZOMETER LOGGED : CAR	-			BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH														
GROUNDWATER ELEVATIONS ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER LOGGED : CAR	-																	
GROUNDWATER ELEVATIONS ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER LOGGED : CAR	- 3																	
GROUNDWATER ELEVATIONS ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER LOGGED : CAR	-																	
GROUNDWATER ELEVATIONS ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER LOGGED : CAR																		
	-4																	-
	-																	
	<u> </u>						Ĺ											
								1	Z w	ATER LEVEL IN WELL/PIEZ	OM	ETE						THURBER

THURBER2S TEL-20337.GPJ 5/17/19

				R	EC	0	RE) (OF BOREHOLE	18-	07						
		JEC	•	Nest Cl	ass E	A								Р	roject N	Io. 20337	
			3											0			
		RTE IPLE	D : April 9, 2018 TED : April 9, 2018				١	۷4	819 869.0 E 603 981.0						SHEET 1 OF 1 DATUM Geodetic		
	-		SOIL PROFILE			SA	MPL		COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ● Q - ¥ rem V - ● Cpen ▲							
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	D AT	ELEV. EPTH (m)	NUMBER	түре	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	v	40 /ATER C wp	80 1 L ONTENT	20 1 	60 ENT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION	
_			GROUND SURFACE		186.78 0.00												
-			SAND, some gravel, trace to some silt, brown, dry: (FILL) CLAY, silty, some sand, trace gravel, some organics, firm, dark brown, moist: (FILL)		186.23 0.56	1	GS			0							
- 1 - 1	Solid Stem Augers	Truck Mounted Hydraulic Drill				1	SS	7			0						
-2			END OF BOREHOLE AT 2.13m.		184.65 2.13	2	SS	4			c	>					
- 3			BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH CUTTINGS TO SURFACE.														
- - -4																	
I HURBERZS I			GROUNDWATER ELE $\$ water level upon co				Ţ	- w	ATER LEVEL IN WELL/PIEZO	OMETE	R	LOGGE CHECK		CAR MTB		THURBER	

Image: Section for the section of	Project No. 20337 SHEET 1 OF 1 DATUM Geodetic
STARTED : April 9, 2018 COMPLETED : April 9, 2018 N 4 819 942.2 E 604 040.0 Image: Complete D : SOIL PROFILE SAMPLES COMMENTS SHEAR STRENGTH: Cu, nat V - Q - Q - Q - Q - Q - Q - Q - Q - Q -	DATUM Geodetic
COMPLETED : April 9, 2018 N 4 819 942.2 E 604 040.0 U SOIL PROFILE SAMPLES COMMENTS SHEAR STRENGTH: Cu, nat V - Occurs U OF U DESCRIPTION U U U OP U OS DESCRIPTION U U U U OP OP U OR OP U <t< td=""><td>DATUM Geodetic</td></t<>	DATUM Geodetic
UTO SOIL PROFILE SAMPLES COMMENTS SHEAR STRENGTH: Cu, nat V - Orem V - Or	
Or State Image: state DESCRIPTION Image: state Imag	n Pa
GROUND SURFACE GROUND SURFACE I85.05 ASPHALT: (225mm) SAND, some gravel, trace to some silt, brown, moist: (FILL) I GS I 4 43 SAND, silty, trace gravel, trace clay, very 0.62	
GROUND SURFACE 185.05 ASPHALT: (225mm) 0.00 SAND, some gravel, trace to some silt, brown, moist: (FILL) 0.23 1 GS SAND, silty, trace gravel, trace clay, very 0.62	
GROUND SURFACE 185.05 ASPHALT: (225mm) 0.00 SAND, some gravel, trace to some silt, brown, moist: (FILL) 0.23 1 GS SAND, silty, trace gravel, trace clay, very 0.62	
ASPHALT: (225mm) SAND, some gravel, trace to some silt, brown, moist: (FILL) 1 GS 184.43 SAND, silty, trace gravel, trace clay, very 0.62	40
SAND, some gravel, trace to some silt, brown, moist: (FILL) 1 GS 184.43 SAND, silty, trace gravel, trace clay, very 0.62	<u> </u>
SAND, silty, trace gravel, trace clay, very 0.62 0	
SAND, silty, trace gravel, trace clay, very 0.62 0	
SAND, silty, trace gravel, trace clay, very 0.62	
SAND, silty, trace gravel, trace clay, very 0.62	
- 1 $\begin{bmatrix} G \\ H \\$	
- 1 $\frac{1}{1}$ \frac	
$\begin{bmatrix} \mathbf{r} \\ \mathbf{r} $	
Solid S Mount Solid S Solid	
-2 BOREHOLE OPEN AND DRY UPON 183.15	
-2 BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH	
CUTTINGS AND ASPHALT TO SURFACE.	
GROUNDWATER ELEVATIONS	
	_
→ WATER LEVEL UPON COMPLETION → WATER LEVEL IN WELL/PIEZOMETER LOGGED :	
CHECKED :	CAR MTB THUR

						U	RL) (OF BOREHOLE	18-09					
		JEC		Vest	Class E	ΞA							Pr	roject N	lo. 20337
		ATIO RTE	0										0	HEET '	
			ETED : April 9, 2018				1	۷4	820 017.3 E 604 107.4						Geodetic
	-		SOIL PROFILE			SA	MPL			SHEAR	STRENGT	H: Cu, KP Q - X Cpen ▲			
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТУРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40	80 1: L CONTENT	20 160 . PERCEN) IT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_			GROUND SURFACE		183.11 0.00										
			ASPHALT: (235mm)		0.00										
-			SAND, gravelly, trace to some silt, brown, wet: (FILL)		0.24	1	GS			C					
- 1 - 1	Solid Stem Augers	Truck Mounted Hydraulic Drill	CLAY, silty, sandy, trace gravel and cobbles, very stiff, brown, moist: (FILL)		182.35 0.76		SS	22	Grain Size Analysis: Gr 0%/ Sa 26%/Si 46%/ Cl 28%	a–					
ŀ		Ę			404 50										
-			CLAY, silty, some sand, trace gravel, oxidized, very stiff, brown, moist: (TILL)		181.59 1.52		SS	29		0					
-2					180.98										
-			END OF BOREHOLE AT 2.13m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH CUTTINGS AND ASPHALT TO SURFACE		2.13										
- 3															
-4															
			GROUNDWATER ELE				Ţ	- w	/ATER LEVEL IN WELL/PIEZO	OMETER	LOGGE		AR ITB		THURBER

				F	REC	0	R) (OF BOREHOLE	18-	10					
		JEC	•	Nest	Class E	ΞA								F	Project N	No. 20337
		ATIC RTE	•											ç	HEET .	1 OF 1
			TED : April 9, 2018				I	N 4	820 066.0 E 604 090.0							Geodetic
	Γ	0	SOIL PROFILE			SA	MPI	ES	COMMENTS	S	HEAR S nat V - rem V -		TH: Cu, Q -	KPa X	(1)	
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	W	40 8 L ATER C	30 ⁻	120 T_PERC	160 ENT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
B		BOR		STR/	(m)	ž	ľ	BLO	20 40 60 80 100		vp	20 1	30	40	L A	
_			GROUND SURFACE ASPHALT: (200mm)		182.30 0.00											
			ASPHALI. (200mm)		0.00											
			SAND, gravelly, some silt, brown, moist: (FILL)		0.20											
						1	GS		Grain Size Analysis: Gr 28%/Sa 57%/ Si & Cl 15%	0						
					181.73											
			CLAY, silty, some sand to sandy, trace gravel, very stiff, brown, moist: (TILL)	Ŵ	0.57											
		Drill	•••••••••••••••••													
	lers	aulic														
1	Solid Stem Augers	Hydr				1	00	20			0					
	d Stel	unted					33	20								
	Soli	Truck Mounted Hydraulic Drill														
		Tru														
						2	ss	26			0					
·2					180.16											-
			END OF BOREHOLE AT 2.13m. BOREHOLE OPEN AND DRY UPON		2.13											
			COMPLETION. BOREHOLE BACKFILLED WITH													
			CUTTINGS AND ASPHALT TO SURFACE													
• 3																
-4																-
			GROUNDWATER ELE					_								
			$\overline{\mathbb{Y}}$ water level upon C	OMPL	ETION	I	Ţ	Z v	ATER LEVEL IN WELL/PIEZO	METE	R	LOGGE	ED :	CAR		
												CHEC	KED :	МТВ		THURBER
					-											

				F	REC	0	R) (OF BOREHOLE	18	3-11					
		JEC	•	Vest	Class E	A								Р	roject N	lo. 20337
		ATIO RTE	0											s	HEET 1	1 OF 1
			ETED : April 9, 2018				1	۷4	820 027.0 E 604 165.0							Geodetic
щ		0	SOIL PROFILE			SA	MPL	ES	COMMENTS		SHEAR S nat V - rem V -		H: Cu, I Q -	KPa K	ں . 10	
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT		40 8 WATER C wp I	30 1: ONTENT 	20 1 	160 ENT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_					181.99											
			ASPHALT: (175mm)		0.00											
			SAND, gravelly, trace to some silt, brown, moist: (FILL)		0.18		GS			0						
		Drill	CLAY, silty, some sand to sandy, trace gravel, very stiff to hard, brown, moist:		181.28 0.71											
- 1	Solid Stem Augers		gravel, very stiff to hard, brown, moist: (TILL)			1	SS	21			0					
-	Solid S	Truck Mount														
-2					179.86	2	SS	38			0					
			END OF BOREHOLE AT 2.13m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH CUTTINGS AND ASPHALT TO SURFACE	X/¥/2	2.13											
-																
- 3																
-																
-4																-
-																
	1		GROUNDWATER ELE					- w	ATER LEVEL IN WELL/PIEZ	OME.	TER	LOGGE		CAR	<u> </u>	
												CHECK	20 :	MTB		THURBER

				F	REC	0	R) (OF BOREHOLE	18-'	12			
PI	RO	JEC	•	/est	Class E	ΞA							Project	No. 20337
			0											
			D : April 9, 2018 TED : April 9, 2018					N /	820 113.9 E 604 185.8				SHEET	1 OF 1 I Geodetic
	_									s	HEAR STRENG	TH: Cu, KPa		
DEPTH SCALE (metres)		BORING METHOD	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	COMMENTS DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	W	HEAR STRENG nat V - ● rem V - ● 40 80 ↓ ↓ VATER CONTEN vp ↓ 0 20	120 160	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
	┝		GROUND SURFACE	ω'	180.64									
			SAND, gravelly, trace to some silt, brown, wet: (FILL)		0.00	1	GS			0				Ā
- - - 1 -	Solid Stem Augers	Truck Mounted Hydraulic Drill	SAND, silty, some gravel, trace clay, loose, brown, wet: (FILL)		179.73 0.91	1	ss	8			0			
-2			CLAY, silty, trace to some sand, trace gravel, hard, brown, wet: (TILL)		179.12 1.52		SS	32			Φ			
			END OF BOREHOLE AT 2.13m. BOREHOLE OPEN TO 0.6m AND WATER LEVEL AT 0.45m UPON COMPLETION. BOREHOLE BACKFILLED WITH CUTTINGS AND ASPHALT TO SURFACE.		178.51 2.13									
- 3 - -														
-4														
N N			GROUNDWATER ELE	VA1	FIONS	3								
THUKBERZ			abla water level upon co				7	Z w	/ATER LEVEL IN WELL/PIEZ	OMETE		ED : CAR KED : MTB		THURBER

				F	REC	0	RI) (OF BOREHOLE	18-13				
		JEC	•	/est	Class E	ΞA						Pro	ject N	lo. 20337
		ATIC RTEI	0,									SHI	EET 1	OF 1
			TED : April 9, 2018				I	N 4	820 196.1 E 604 238.6			DA		Geodetic
щ		doł	SOIL PROFILE			SA	MPI	ES	COMMENTS	SHEAR nat \	STRENGTH: Cu, KP / -	'a	JO	
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40	80 120 160 I I I I CONTENT, PERCEN 0 I I 0 W I I I 20 30 40 I I		AUDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
			GROUND SURFACE ASPHALT: (185mm)		179.38 0.00									
-			SAND, gravelly, trace silt, brown, wet: (FILL)		0.19	1	GS			0				
- 1 - 1	Solid Stem Augers	Truck Mounted Hydraulic Drill	CLAY, silty, some sand to sandy, trace gravel, very stiff, dark brown, moist to wet: (FILL)		178.57 0.81	1	ss	19		c	5			
-2			CLAY, silty, some sand to sandy, trace gravel, very stiff, brown to grey, moist: (TILL)		177.86 1.52		ss	24		0				-
-			END OF BOREHOLE AT 2.13m. BOREHOLE CAVED TO 1.47m AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH CUTTINGS AND ASPHALT TO SURFACE.	8236	177.25 2.13									
- 3														
-4														-
			GROUNDWATER ELE®				1	<u>v</u>	IATER LEVEL IN WELL/PIEZC	OMETER		AR 1TB		THURBER

THURBER2S TEL-20337.GPJ 5/17/19

	PR(OJE		T : Burnhamthorpe Road V	Vest (lace F	- •										
_ L L	-00				1001 0		A								P	Project N	lo. 20337
5	STA	JA AR		0											s	HEET '	I OF 1
				TED : April 9, 2018				1	۷4	820 278.0 E 604 302.0					D		Geodetic
щ		DO		SOIL PROFILE			SA	MPL	ES	COMMENTS	S	HEAR S nat V - rem V -		H: Cu, H Q - 2	<pa< td=""><td>10</td><td></td></pa<>	10	
DEPTH SCALE	(sa nalil)	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	W	40 8 ⊥ ATER C0 /p I	80 1: L ONTENT	20 1 	60 L ENT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
	+	<u>م</u>		GROUND SURFACE	ی ا	178.41			В	20 40 60 80 100 			.0 .	80 4	40		
				ASPHALT: (200mm)		0.00											
				SAND, some gravel to gravelly, trace silt, brown, moist: (FILL)		0.20											
				CI AY silty some sand to sandy trace		177.77 0.63	1	GS			0						
		gers	raulic Drill	CLAY, silty, some sand to sandy, trace gravel, stiff, dark brown, moist to wet: (FILL)		0.00											
- 1		Solid Stem Augers	Truck Mounted Hydraulic Drill				1	SS	13	Grain Size Analysis: Gr 0%/ Sa 21%/ Si 45%/ Cl 34%		10 -		-1			
		S	Truck	CI AY silty some sand to sandy trace		176.89 1.52											
				CLAY, silty, some sand to sandy, trace gravel, very stiff, brown to grey, moist: (TILL)			2	SS	23			0					
-2						176.27											
				END OF BOREHOLE AT 2.13m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH CUTTINGS AND ASPHALT TO SURFACE.		2.13											
- 3 -																	
-																	
-4																	
6																	
THURBER2S TEL-20337.GPJ 5/17/19																	
2033																	
s TEL	_			GROUNDWATER ELE	VAT	IONS	ـــــــــــــــــــــــــــــــــــــ	1	I			1	I	1	1		
THURBER2				abla water level upon CC				Ţ	- w	/ATER LEVEL IN WELL/PIEZO	METE		LOGGE CHECK		CAR MTB		THURBER

				F	REC	0	R) (OF BOREHOLE	18-′	15					
PF	ROJ	EC	•	Vest	Class E	A								F	roject N	lo. 20337
			0											- -		
	TAR DMF		D : April 9, 2018 TED : April 9, 2018				1	N 4	820 350.7 E 604 353.1						HEET 1	Geodetic
		_	SOIL PROFILE			SA	MPL		COMMENTS	S	HEAR S		H: Cu, I			
DEPTH SCALE (metres)	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТУРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	W. W.	0 8 ATER C0	80 12 L ONTENT	20 1 	160 ENT wl	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		á —	GROUND SURFACE	ST				BI		1	0 2	20 3	0 4	40		
			SAND, gravelly, some silt, brown, wet:	***	<u>177.43</u> 0.00											
-			(FILL)		470 70	1	GS		Grain Size Analysis: Gr 34%/Sa 52%/ Si & Cl 14%	0						
- - 1 -	Solid Stem Augers	Truck Mounted Hydraulic Drill	CLAY, silty, some sand to sandy, trace gravel, firm to soft, dark brown, moist to wet: (FILL)		176.72 0.71	1	ss	7			0					
-2			some organics material END OF BOREHOLE AT 2.13m.		175.30 2.13		ss	2		(Þ					
- 3			ENDIFICULT OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH CUTTINGS AND ASPHALT TO SURFACE.		2.10											
-4																-
			GROUNDWATER ELE				<u> </u>	<u>v</u>	VATER LEVEL IN WELL/PIEZC	DMETE	R	LOGGEI CHECKE		CAR MTB		THURBER

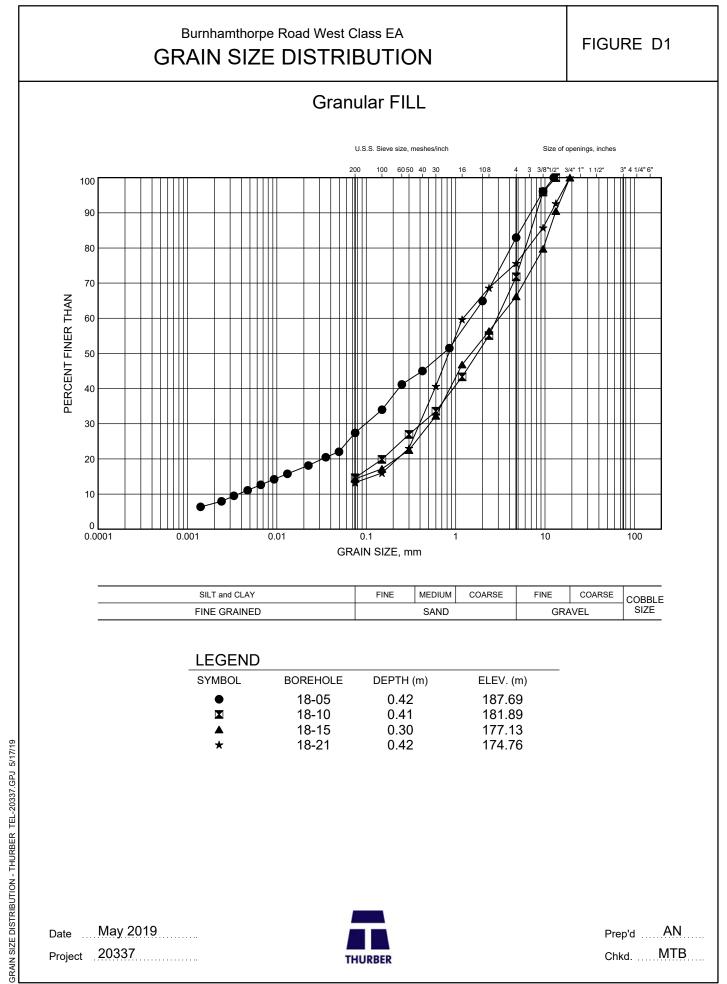
					REC	0	R) (OF BOREHOLE	1	8-'	16					
		JEC	•	Vest	Class E	A									F	Project N	lo. 20337
		ATIC RTE	0												c	SHEET '	
			ETED : April 9, 2018				I	N 4	820 421.0 E 604 375.2								Geodetic
		Q	SOIL PROFILE			SA	MPI		COMMENTS		S	HEAR S ⁻ nat V - rem V -	TRENG	TH: Cu,	KPa		
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100		W	40 8 │ ATER C0	30 1 	120 T, PERC	160 ENT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
					176.66												
			ASPHALT: (150mm)		0.00												
ŀ			SAND, gravelly, trace silt, brown, moist: (FILL)		0.15												
-		c Drill	CLAY silly some cand trace gravel stiff		175.85 0.81		GS			(C						
- 1 - -	Solid Stem Augers	Truck Mounted Hydraulic	CLAY, silty, some sand, trace gravel, stiff, brown, moist: (FILL)			1	SS	10				0					
			CLAY, silty, some sand, trace gravel,		175.14 1.52		-										
-2			oxidized lenses, very stiff, brown, moist: (TILL)			2	ss	29				0					
2					174.53												
- 3			END OF BOREHOLE AT 2.13m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH CUTTINGS AND ASPHALT TO SURFACE.		2.13												
i l																	
-4																	
1.1000																	
EL-2(
			GROUNDWATER ELE				_	<u>v</u>	VATER LEVEL IN WELL/PIEZ	OM	IETE		LOGGE CHECK		CAR MTB		THURBER

				F	REC	0	R) (OF BOREHOLE	18-1	17					
		JEC	•	Vest	Class E	ΞA								Ρ	roject I	No. 20337
		ATIO RTE	0											S	HEET	1 OF 1
			TED : April 9, 2018				I	N 4	820 380.7 E 604 438.4					D		Geodetic
щ		οļ	SOIL PROFILE		-	SA	MPL	ES	COMMENTS	SI	HEAR S nat V - rem V -		TH: Cu, I Q -	KPa K	G	
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	4 W/ w	0 8 ATER C0	30 1 L ONTENT	20 1 , PERC	160 I	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
	┢	Ī	GROUND SURFACE	٥ ٥	176.60					·	<u> </u>		+			
			ASPHALT: (125mm)													
-			SAND, gravelly, trace silt, brown, moist: (FILL)		0.13											
						1	GS			0						
-			CLAY, silty, some sand, trace gravel, stiff,		176.02 0.59											
		Drill	grey to brown, moist: (FILL)													
ľ	2															
- 1		Hydra														
	Solid Stem Auders	Inted				1	SS	13			0					
ſ	Pilov.	Truck Mounted Hydraulic														
		Truc														$\overline{\Delta}$
·																
-						2	ss	14			c c	,				
-2					174.47											-
ŀ			END OF BOREHOLE AT 2.13m. BOREHOLE OPEN AND WATER LEVEL		2.13											
			AT 1.42m UPON COMPLETION. BOREHOLE BACKFILLED WITH													
Ī			CUTTINGS AND ASPHALT TO SURFACE.													
-																
ŀ																
- 3																
ŀ																
-																
ŀ																
-																
-4																-
ŀ																
t																
ł																
Ī																
<u> </u>	L		GROUNDWATER ELE			Ļ				<u> </u>				1		
			$\overline{\nabla}$ water level upon CC				Ţ	<u>v</u>	/ATER LEVEL IN WELL/PIEZO	OMETEI	R	LOGGE CHECK		CAR MTB		THURBER
- ட																HIORDER

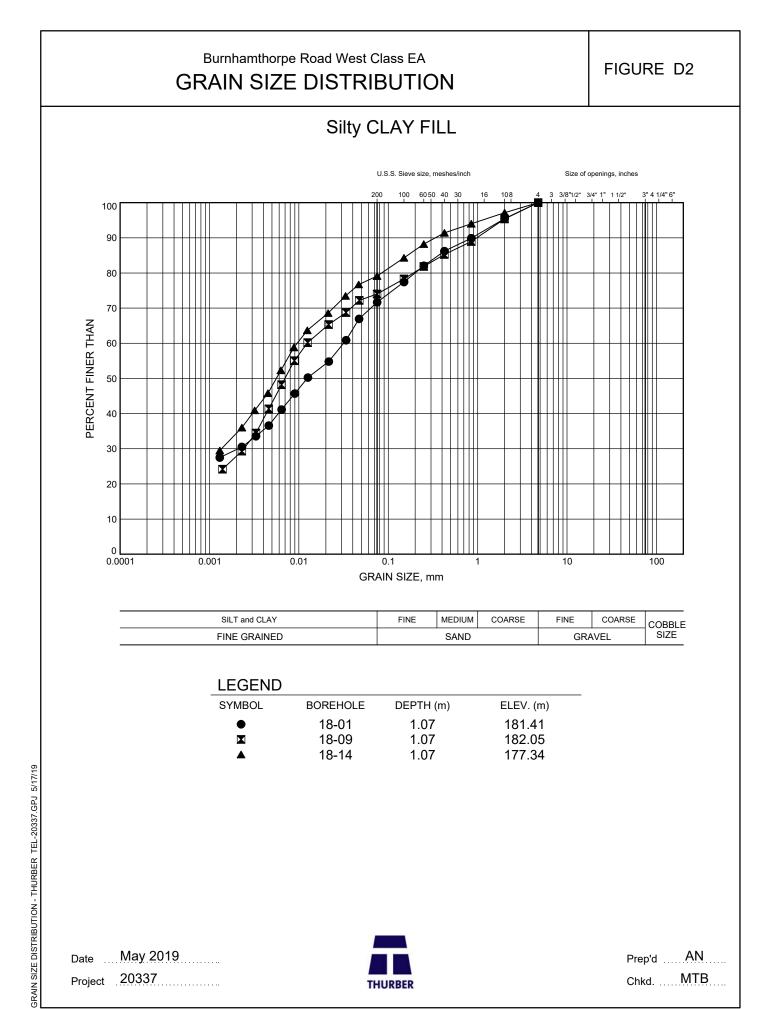
				F	REC	0	R) (OF BOREHOLE	18 [.]	-18					
PF	RO	JEC	•	Vest	Class E	A								Р	roject N	lo. 20337
			0													
		RTE 1PLE	D : April 9, 2018 TED : April 9, 2018				I	N 4	820 443.1 E 604 430.0						HEET 1 ATUM	Geodetic
	-		SOIL PROFILE			SA	MPI		COMMENTS		SHEAR S nat V - rem V -	TRENGT	H: Cu, I			
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT		40 8	30 1: L ONTENT O^W	20 1 	160 ENT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_			GROUND SURFACE ASPHALT: (235mm)		176.20 0.00											
			ASPHALI: (235mm)		0.00											
			SAND, gravelly, trace silt, brown, wet: (FILL)		0.24	1	GS				0					
	S	ulic Drill	CLAY, silty, some sand, trace gravel, very stiff, brown, moist: (FILL)		175.49 0.71											
- 1	Solid Stem Augers	Truck Mounted Hydraulic				1	ss	19			0					
		True	CLAY, silty, some sand to sandy, trace gravel, very stiff, brown, moist: (TILL)		174.68 1.52											
-2						2	ss	22			0					
-			END OF BOREHOLE AT 2.13m. BOREHOLE OPEN TO 1.37m AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH CUTTINGS AND ASPHALT TO SURFACE		174.07 2.13											
- 3																
-4																
11/11/0 L19.1																
2033																
	1		GROUNDWATER ELE					L v	I /ATER LEVEL IN WELL/PIEZ	OMET	ER	LOGGE		CAR	<u> </u>	
Ē												SHEGK	LU .	IVI D		THURB

				F	REC	0	R) (OF BOREHOLE	18-19		
		JEC		West	Class E	ΞA					Project I	No. 20337
		ATIO RTE	0,								OUEET	
			D : April 9, 2018 ETED : April 9, 2018				1	N 4	820 497.4 E 604 482.0		SHEET DATUM	Geodetic
	r		SOIL PROFILE			SA	MPL			SHEAR STRENGTH: Cu, KPa nat V - ● Q - X rem V - ● Cpen ▲		-
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТУРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	riat V - ▼ Cpr ▲ 40 80 120 160 40 80 120 160 WATER CONTENT, PERCENT wp → → W wi 10 20 30 40	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
			GROUND SURFACE	0)	175.38							
			ASPHALT: (235mm)		0.00							
			SAND, gravelly, trace silt, brown, wet: (FILL)		0.24							
-						1	GS			0		
- 1	Solid Stem Augers	Truck Mounted Hydraulic Drill	CLAY, silty, some sand to sandy, trace gravel, stiff to very stiff, grey to brown, moist: (TILL)		174.52 0.86	1	ss	12	Grain Size Analysis: Gr 2%/ Sa 22%/ Si 47%/ Cl 29%	0		
	Solid St	Truck Mounte										
-						2	SS	19		0		
-2					173.25		55	15				
-			END OF BOREHOLE AT 2.13m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH CUTTINGS AND ASPHALT TO SURFACE	Ξ.	2.13							
- 3												
-												
-4												
								- w	/ATER LEVEL IN WELL/PIEZO	DMETER LOGGED : CAL CHECKED : MT		THURBER

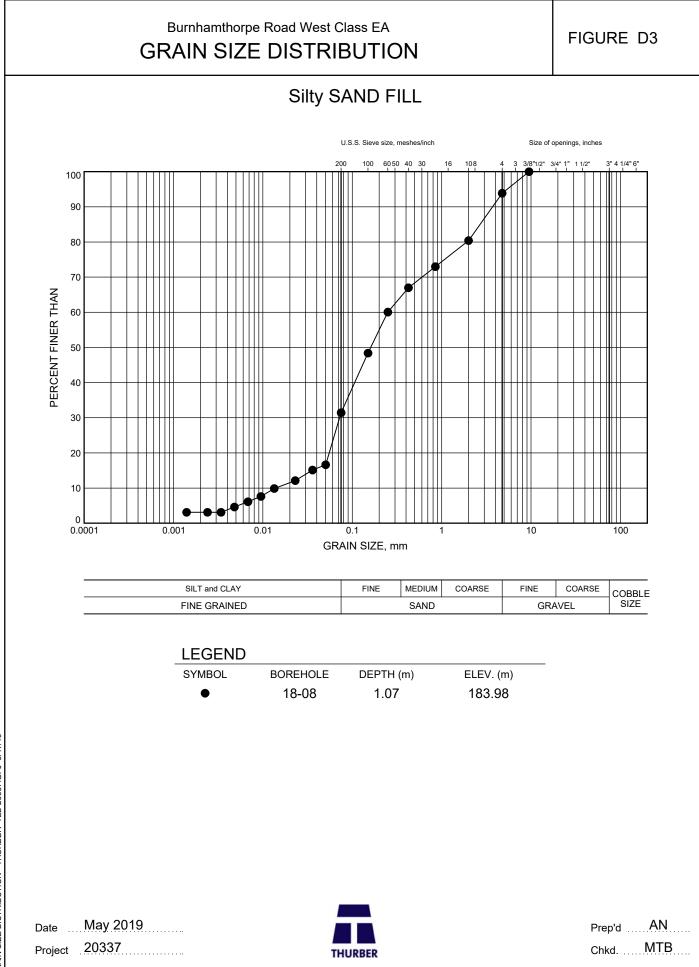
				F	REC	0	R) (OF BOREHOLE	18-2	20					
Pf	RC	JEC	•	Vest (Class E	A								P	roject N	lo. 20337
			0													
		RTE 1PLE	D : April 9, 2018 ETED : April 9, 2018				I	N 4	820 589.1 E 604 542.6						HEET 1 ATUM	Geodetic
	-		SOIL PROFILE			SA		ES		SI	HEAR S	TRENG	TH: Cu, KF Q - ¥ Cpen ▲			
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	4 W/	0 8 L ATER C	30 1 1 ONTENT	20 16 1 1 1. PERCE	0 NT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
DEI		BORI		STRA	(m)	R	-	BLOV	20 40 60 80 100		p ⊢	0 20	w 30 40		LAE	INGTALLATION
			GROUND SURFACE	0,	174.71											
			SAND, gravelly, trace silt, brown, moist: (FILL)		0.00											
-																
ŀ						1	GS			0						
					174.10											
ĺ		_	CLAY, silty, some sand to sandy, trace gravel, stiff to very stiff, brown, moist: (TILL		0.61											
	,	" lic Dril														
- 1	Colid Ctom Augor	Truck Mounted Hydraulic Drill														
	0+0	Inted F				1	SS	15			ο					
-	5 Filou	k Mor														
-		Truc														
									One in Oine America							
ŀ						2	ss	19	Grain Size Analysis: Gr 0%/ Sa 31%/Si 40%/ Cl 29%		o—	+				
-2																
		+	END OF BOREHOLE AT 2.13m.		172.57 2.13											
			BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH													
			CUTTINGS AND ASPHALT TO SURFACE	•												
ŀ																
- 3																
-																
·																
ŀ																
-4																
ŀ																
ŀ																
ŀ																
<u> </u>			GROUNDWATER ELE			Ļ										
			$\overline{\Psi}$ water level upon co					Ζ 1Λ	ATER LEVEL IN WELL/PIEZO		2	1000-				
			- WATER LEVEL UPON CC	JIVIPL			-				`	LOGGE		CAR MTB		THURBER
																HURDER

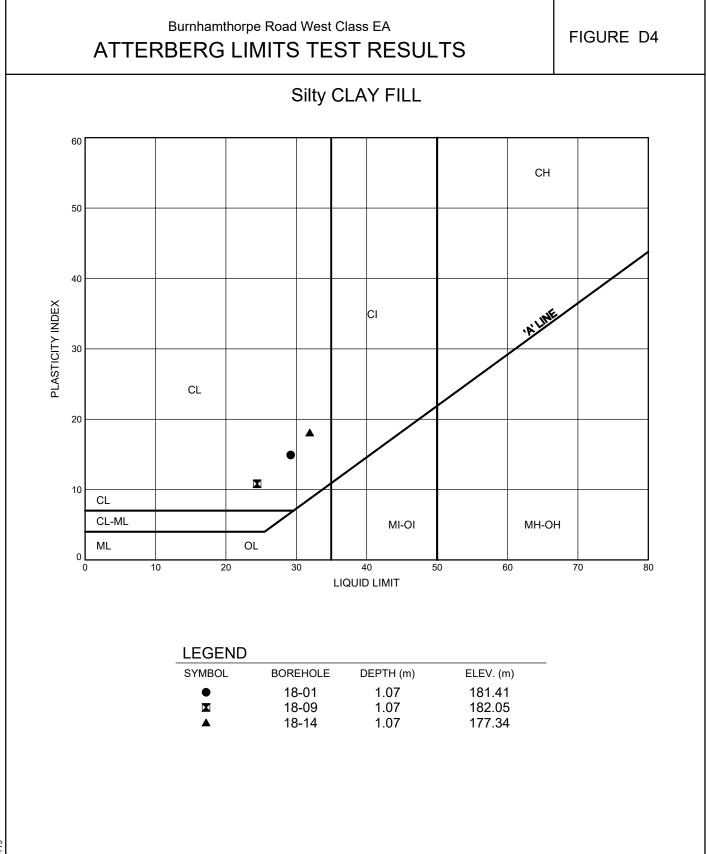

				F	REC	0	R) (OF BOREHOLE	18-2	21					
		JEC	•	West	Class E	Ā								F	Project N	lo. 20337
		ATIC RTE	0											ç	SHEET '	1 OF 1
			TED : April 9, 2018				I	N 4	820 664.7 E 604 608.2							Geodetic
		8	SOIL PROFILE			SA	MPL	ES	COMMENTS	S	HEAR S nat V -		TH: Cu, Q - Cpen	KPa		
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	4 W	ATER C	30 1 1 ONTEN	120 T_PERC	160 ENT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
DEI		BORI		STRA	(m)	R	-	BLOV	20 40 60 80 100		′p 2	0 20	30	wl 40	LAE	INGTALLATION
_					175.18 0.00											
			ASPHALT: (225mm)		0.00											
-			SAND, gravelly, some silt, brown, moist: (FILL)		0.23											
						1	GS		Grain Size Analysis: Gr 24%/Sa 62%/ Si & Cl 14%	0						
		=	CLAY silty some sand to sandy trace		174.47 0.71	-										
	gers	raulic Drill	CLAY, silty, some sand to sandy, trace gravel, very stiff, grey to brown, moist: (TILL)													
- 1	Solid Stem Augers	nted Hyd				1	ss	16			0					
	Solid	Truck Mounted Hydraulic														
		Ĕ														
-						2	ss	23			0					
-2					173.05											
-			END OF BOREHOLE AT 2.13m. BOREHOLE OPEN TO 1.44m AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH		2.13											
ļ			CUTTINGS AND ASPHALT TO SURFACE	Ξ.												
-																
-																
- 3																
-																
-																
-																
-4																
-																
-																
-																
-																
	-	-	GROUNDWATER ELE	EVAT	TIONS	5							1	1		
			$\overline{\Sigma}$ water level upon C	OMPL	ETION	l	1	Z w	/ATER LEVEL IN WELL/PIEZC	DMETE	R	LOGGE CHECK		CAR MTB		THURBER

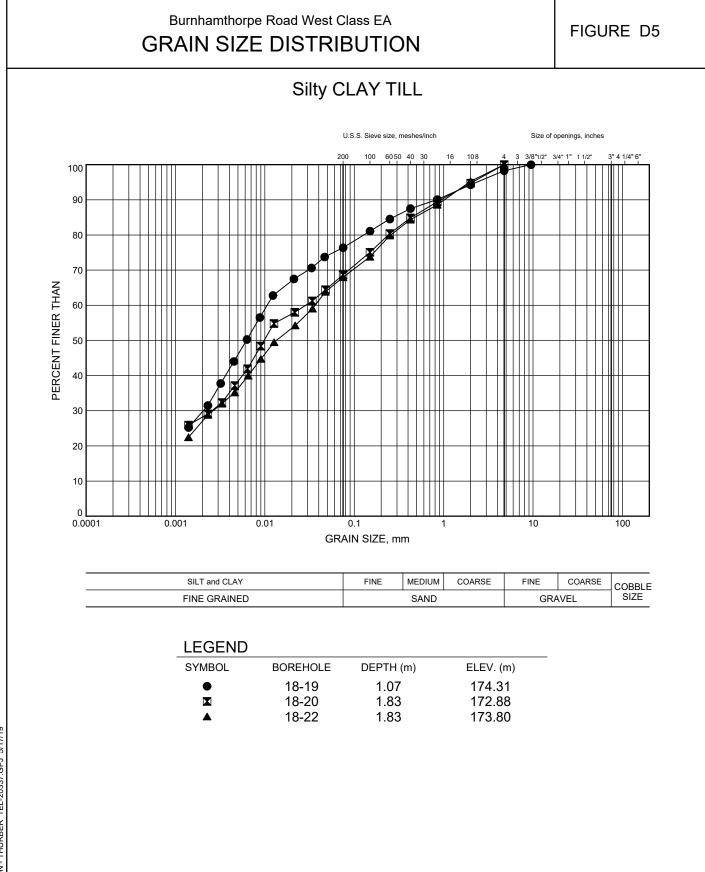
				F	REC	0	R) (OF BOREHOLE	18-22		
		JEC	•	West	Class E	A					Project I	No. 20337
		ATIC RTE	0 /								SHEET	1 OF 1
			TED : April 9, 2018				ſ	N 4	820 733.9 E 604 669.5			Geodetic
		8	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ● Q - X rem V - ● Cpen ▲	(1)	
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	rem V - ● Cpen ▲ 40 80 120 160 I I I I WATER CONTENT, PERCENT wp I → 0 ^W WI 10 20 30 40	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_			GROUND SURFACE ASPHALT: (275mm)		175.63							
			ASPHALI: (275mm)									
-			SAND, gravelly, trace silt, brown, wet:		175.35 0.28							
-			(FILL)		0.28	1	GS					
-		_										
		ic Drill	CLAV silts, some condite conductions		174.79 0.84							
- 1	Colid Stam Audars	Truck Mounted Hydraulic	CLAY, silty, some sand to sandy, trace gravel, stiff to very stiff, brown to grey, moist: (TILL)		0.84							
'	to to	ted H				1	ss	14		0		
·		Mour										
		Truck										
-						2	ss	22	Grain Size Analysis: Gr 0%/ Sa 32%/Si 41%/ Cl 27%	0		
-2												
[²					173.50							
-			END OF BOREHOLE AT 2.13m. BOREHOLE OPEN AND DRY UPON COMPLETION.		2.13							
			COMPLETION. BOREHOLE BACKFILLED WITH CUTTINGS AND ASPHALT TO SURFACI	Ξ.								
-												
- 3												
-												
-												
-4												
-												
	-		GROUNDWATER ELE									
			abla water level upon C	OMPL	ETION		7	L v	ATER LEVEL IN WELL/PIEZO	OMETER LOGGED : CAF	र	
										CHECKED : MT	3	THURBER

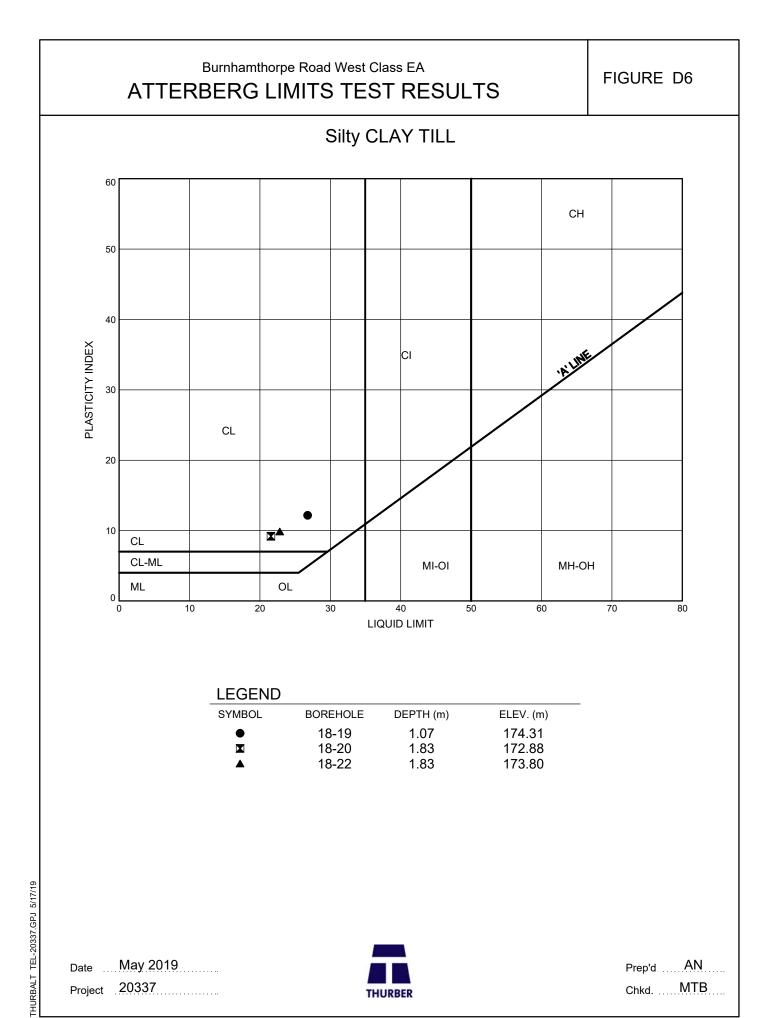

Appendix D

Geotechnical Laboratory Test Results




Date May 2019 Project 20337





Date May 2019 Project 20337

Appendix E

Analytical Laboratory Certificates of Analysis

CA14274-APR18 R1

PO# 20337

Prepared for

Thurber Engineering Ltd.

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	Thurber Engineering Ltd.	Project Specialist	Deanna Edwards, B.Sc, C.Chem
		Laboratory	SGS Canada Inc.
Address	103, 2010 Winston Park Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Oakville, ON		
	L6H 5R7.		
Contact	Cecile Ritchie	Telephone	705-652-2000
Telephone	905-829-8666	Facsimile	705-652-6365
Facsimile		Email	deanna.edwards@sgs.com
Email	critchie@thurber.ca	SGS Reference	CA14274-APR18
Project	PO# 20337	Received	04/12/2018
Order Number		Approved	04/19/2018
Samples	Soil (10)	Report Number	CA14274-APR18 R1
		Date Reported	05/13/2019

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons. The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

Temperature of Sample upon Receipt: 7.2 degrees C Cooling Agent Present: Yes Custody Seal Present: No

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-13
Legend	14
Annexes	15-16

CA14274-APR18 R1

Client: Thurber Engineering Ltd.

Project: PO# 20337

Project Manager: Cecile Ritchie

ACKAGE: BTEX (SOIL)			Sar	nple Number	17							
			s	ample Name	18-15 SS2 5-7'							
= REG153 / SOIL / COARSE - TABLE 3 - Industria	al/Commercial - UNDEFINED		s	ample Matrix	Soil							
= REG153 / SOIL / COARSE - TABLE 3 - Resider	ntial/Parkland - UNDEFINED			Sample Date	10/04/2018							
Parameter	Units	RL	L1	L2	Result							
TEX												
Benzene	hð\ð	0.02	0.32	0.21	< 0.02							
Ethylbenzene	hā\a	0.05	9.5	2	< 0.05							
Toluene	ha\a	0.05	68	2.3	< 0.05							
Xylene (total)	hð\ð	0.05	26	3.1	< 0.05							
m/p-xylene	ha\a	0.05			< 0.05							
o-xylene	hð\ð	0.05			< 0.05							
/drides												
Antimony	hð\ð	0.8	40	7.5	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
Arsenic	hð\ð	0.5	18	18	4.9	4.1	4.7	4.6	4.9	10	4.3	6.3
Selenium	hā\ā	0.7	5.5	2.4	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7
etals and Inorganics												
Moisture Content	%	-			15.0	10.9	17.6	11.1	11.1	5.4	12.3	8.9
Barium	hð\ð	0.01	670	390	88	69	78	64	94	37	88	60
Beryllium	hð\ð	0.02	8	4	0.54	0.55	0.71	0.51	0.48	0.21	0.56	0.28
Boron	hð\ð	1	120	120	6	6	2	6	5	8	6	7
Cadmium	hā\a	0.02	1.9	1.2	0.09	0.06	0.15	0.08	0.09	0.10	0.09	0.15
Chromium	hð\ð	0.5	160	160	20	18	22	18	17	12	19	15
Cobalt	ha\a	0.01	80	22	11	12	13	12	11	6.9	11	17
Copper	hð\ð	0.1	230	140	27	30	19	28	28	93	28	49
Lead	μg/g	0.1	120	120	8.5	8.5	14	8.3	8.9	20	8.8	10
Molybdenum	μg/g	0.1	40	6.9	0.5	0.4	0.6	0.4	0.5	1.4	0.5	0.6
Nickel	hð\ð	0.1	270	100	23	23	20	26	24	11	24	13
Silver	hð\ð	0.01	40	20	0.03	0.03	0.03	0.02	0.01	0.08	0.03	0.22

CA14274-APR18 R1

Client: Thurber Engineering Ltd.

Project: PO# 20337

Project Manager: Cecile Ritchie

PACKAGE: Metals and Inorganics (SOI	L)			nple Number ample Name	8 18-16 SS1	9 18-10 SS2 5-7'	10 18-1 SS2 5-7	11 18-19 SS2 5-7	12 18-11 SS1	13 18-4 GS1 0-2'	14 18-6 SS1 2.5-4.5	15 18-22 GS1 0-2'
L1 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Comm L2 = REG153 / SOIL / COARSE - TABLE 3 - Residential/Park				ample Matrix Sample Date	2.5'-4.5' Soil 10/04/2018	Soil 10/04/2018	Soil 10/04/2018	Soil 10/04/2018	2.5-4.5 Soil 10/04/2018	Soil 10/04/2018	Soil 10/04/2018	Soil 10/04/2018
Parameter	Units	RL	L1	L2	Result	Result	Result	Result	Result	Result	Result	Result
Metals and Inorganics (continued)												
Thallium	hā\ð	0.02	3.3	1	0.14	0.14	0.14	0.14	0.12	0.11	0.13	0.11
Uranium	hð\ð	0.002	33	23	0.63	0.98	0.54	0.68	0.56	0.29	0.57	0.34
Vanadium	hð\ð	3	86	86	27	23	33	25	23	12	26	20
Zinc	hð\ð	0.7	340	340	61	55	59	55	54	47	55	54
Water Soluble Boron	hð\ð	0.5	2	1.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Other (ORP)												
Mercury	hð\ð	0.05	3.9	0.27	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Sodium Adsorption Ratio		0.2	12	5	32.0	4.8	1.5	20.6	30.5	13.8	69.2	6.8
Conductivity	mS/cm	0.002	1.4	0.7	2.2	2.3	0.96	2.1	2.0	1.4	4.9	0.62
Chromium VI	hð\ð	0.2	8	8	< 0.2	< 0.2	0.4	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Free Cyanide	hð\ð	0.05			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
PHCs												
F1 (C6-C10)	hð\ð	10	55	55	< 10							
F1-BTEX (C6-C10)	hð\ð	10			< 10							
F2 (C10-C16)	hð\ð	10	230	98	< 10							
F3 (C16-C34)	hð\ð	50	1700	300	< 50							
F4 (C34-C50)	hð\ð	50	3300	2800	< 50							
Chromatogram returned to baseline at nC50	Yes / No	-			YES							

CA14274-APR18 R1

Client: Thurber Engineering Ltd.

Project: PO# 20337

Project Manager: Cecile Ritchie

RACKACE: Hudridge (SOIL)			San	nple Number	16	
PACKAGE: Hydrides (SOIL)				ample Name	18-13 GS1 0-2'	
L1 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Commer				ample Name	Soil	
L2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Comment L2 = REG153 / SOIL / COARSE - TABLE 3 - Residential/Parkla				Sample Date	10/04/2018	
Parameter	Units	RL	L1	L2	Result	
Hydrides	Unito				rtooan	
			40	7.5	< 0.8	_
Antimony	µg/g	0.8	40	7.5		_
Arsenic	µg/g	0.5	18	18	6.9	_
Selenium	µg/g	0.7	5.5	2.4	< 0.7	_
Metals and Inorganics						
Moisture Content	%	-			7.7	
Barium	µg/g	0.01	670	390	79	
Beryllium	µg/g	0.02	8	4	0.24	
Boron	µg/g	1	120	120	6	
Cadmium	µg/g	0.02	1.9	1.2	0.10	-
Chromium	µg/g	0.5	160	160	9.8	-
Cobalt	μg/g	0.01	80	22	33	Γ
Copper	μg/g	0.1	230	140	66	
Lead		0.1	120	120	8.9	_
	µg/g					_
Molybdenum	µg/g	0.1	40	6.9	0.6	
Nickel	µg/g	0.1	270	100	11	
Silver	µg/g	0.01	40	20	3.9	_
Thallium	µg/g	0.02	3.3	1	0.12	
Uranium	µg/g	0.002	33	23	0.33	
Vanadium	µg/g	3	86	86	17	
Zinc	µg/g	0.7	340	340	45	
Water Soluble Boron	µg/g	0.5	2	1.5	< 0.5	

CA14274-APR18 R1

Client: Thurber Engineering Ltd.

Project: PO# 20337

Project Manager: Cecile Ritchie

PACKAGE: Other (ORP) (SOIL)			Sar	nple Number	16
			s	ample Name	18-13 GS1 0-2'
L1 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/	Commercial - UNDEFINED		s	ample Matrix	Soil
L2 = REG153 / SOIL / COARSE - TABLE 3 - Residentia	al/Parkland - UNDEFINED			Sample Date	10/04/2018
Parameter	Units	RL	L1	L2	Result
Other (ORP)					
Mercury	µg/g	0.05	3.9	0.27	< 0.05
Sodium Adsorption Ratio		0.2	12	5	4.5
Conductivity	mS/cm	0.002	1.4	0.7	0.40
Chromium VI	µg/g	0.2	8	8	< 0.2
Free Cyanide	µg/g	0.05			< 0.05

EXCEEDANCE SUMMARY

Conductivity EPA 6010/SM 2510 mS/cm 2.2 1.4 0.7 Sodium Adsorption Ratio MOE 466601/EPA 6010 32.0 12 5 18-10 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 2.3 1.4 0.7 18-11 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 0.96 0.7 18-19 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 2.1 1.4 0.7 18-19 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 2.1 1.4 0.7 18-19 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 2.1 1.4 0.7 18-19 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 2.1 1.4 0.7 18-19 SS1 2.5-4.5 Conductivity EPA 6010/SM 2510 mS/cm 2.0 1.4 0.7 Sodium Adsorption Ratio MOE 4686e01/EPA 6010 30.5 12 5 18-6 SS1 2.5-4.5 Conductivity EPA 6010/SM 2510 mS/cm	Parameter	Method	Units	Result	REG153 / SOIL / COARSE - TABLE 3 - Industrial/Commer cial - UNDEFINED L1	REG153 / SOIL / COARSE - TABLE 3 - Residential/Parkla nd - UNDEFINED L2
Sodium Adsorption Ratio MOE 4666e01/EPA 6010 32.0 12 5 18-10 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 2.3 1.4 0.7 18-11 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 0.96 0.7 18-19 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 2.1 1.4 0.7 18-19 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 2.1 1.4 0.7 18-19 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 2.1 1.4 0.7 18-19 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 2.1 1.4 0.7 18-19 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 2.0 1.4 0.7 18-11 SS1 2.5-4.5 Conductivity EPA 6010/SM 2510 mS/cm 1.4 0.7 Sodium Adsorption Ratio MOE 4666e01/EPA 6010 13.8 12 5 18-6 SS1 2.5-4.5 Conductivity EPA 6010/SM 2510 mS	18-16 SS1 2.5'-4.5'					
Sodium Adsorption Ratio MOE 4666e01/EPA 6010 32.0 12 5 18-10 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 2.3 1.4 0.7 18-11 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 0.96 0.7 18-19 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 2.1 1.4 0.7 18-19 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 2.1 1.4 0.7 18-19 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 2.1 1.4 0.7 18-19 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 2.1 1.4 0.7 18-19 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 2.0 1.4 0.7 18-11 SS1 2.5-4.5 Conductivity EPA 6010/SM 2510 mS/cm 1.4 0.7 Sodium Adsorption Ratio MOE 4666e01/EPA 6010 13.8 12 5 18-6 SS1 2.5-4.5 Conductivity EPA 6010/SM 2510 mS	Conductivity	EPA 6010/SM 2510	mS/cm	2.2	1.4	0.7
Conductivity EPA 6010/SM 2510 mS/cm 2.3 1.4 0.7 18-1 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 0.96 0.7 18-19 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 2.1 1.4 0.7 18-19 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 2.1 1.4 0.7 Sodium Adsorption Ratio MOE 4696601/EPA 6010 20.6 12 5 18-11 SS1 2.54.5 Conductivity EPA 6010/SM 2510 mS/cm 2.0 1.4 0.7 Sodium Adsorption Ratio MOE 4696601/EPA 6010 30.5 12 5 18-4 GS1 0-2' Conductivity EPA 6010/SM 2510 mS/cm 1.4 0.7 Sodium Adsorption Ratio MOE 4696601/EPA 6010 13.8 12 5 18-6 SS1 2.5-4.5 Conductivity EPA 6010/SM 2510 mS/cm 4.9 1.4 0.7 Sodium Adsorption Ratio MOE 4696601/EPA 6010 69.2 12 5	-	MOE 4696e01/EPA 6010		32.0		
18-1 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 0.96 0.7 18-19 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 2.1 1.4 0.7 Sodium Adsorption Ratio MOE 4696601/EPA 6010 20.6 12 5 18-11 SS1 2.54.5 Conductivity EPA 6010/SM 2510 mS/cm 2.0 1.4 0.7 Sodium Adsorption Ratio MOE 4696601/EPA 6010 30.5 12 5 18-11 SS1 2.54.5 Conductivity EPA 6010/SM 2510 mS/cm 2.0 1.4 0.7 Sodium Adsorption Ratio MOE 4696601/EPA 6010 30.5 12 5 18-4 GS1 0-2' Conductivity EPA 6010/SM 2510 mS/cm 1.4 0.7 Sodium Adsorption Ratio MOE 4696601/EPA 6010 13.8 12 5 18-8 SS1 2.5-4.5 Conductivity EPA 6010/SM 2510 mS/cm 4.9 1.4 0.7 Sodium Adsorption Ratio MOE 4696601/EPA 6010 69.2 12 5 18-2 GS1 0-2' Sodium Adsorption Ratio MOE 4696601/EPA 6010	18-10 SS2 5-7'					
Conductivity EPA 6010/SM 2510 mS/cm 0.96 0.7 18-19 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 2.1 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 20.6 12 5 18-11 SS1 2.5-4.5 Conductivity EPA 6010/SM 2510 mS/cm 2.0 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 30.5 12 5 18-4 GS1 0-2' Conductivity EPA 6010/SM 2510 mS/cm 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 30.5 12 5 18-4 GS1 0-2' Conductivity EPA 6010/SM 2510 mS/cm 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 13.8 12 5 18-6 SS1 2.5.4.5 Conductivity EPA 6010/SM 2510 mS/cm 4.9 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 69.2 12 5 18-22 GS1	Conductivity	EPA 6010/SM 2510	mS/cm	2.3	1.4	0.7
18-19 SS2 5-7 Conductivity EPA 6010/SM 2510 mS/cm 2.1 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 20.6 12 5 18-11 SS1 2.5-4.5 Conductivity EPA 6010/SM 2510 mS/cm 2.0 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 30.5 12 5 18-4 GS1 0-2' Conductivity EPA 6010/SM 2510 mS/cm 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 30.5 12 5 18-4 GS1 0-2' Conductivity EPA 6010/SM 2510 mS/cm 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 13.8 12 5 18-6 SS1 2.54.5 Conductivity EPA 6010/SM 2510 mS/cm 4.9 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 69.2 12 5 18-22 GS1 0-2' Sodium Adsorption Ratio MOE 4696e01/EPA 6010 6.8 6 18-13 GS1 0-2' Sodium Adsorption Ratio MOE 4696e0	18-1 SS2 5-7					
Conductivity EPA 6010/SM 2510 mS/cm 2.1 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 20.6 12 5 18-11 SS1 2.5-4.5	Conductivity	EPA 6010/SM 2510	mS/cm	0.96		0.7
Sodium Adsorption Ratio MOE 4696e01/EPA 6010 20.6 12 5 18-11 SS1 2.5-4.5 2.0 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 30.5 12 5 18-4 GS1 0-2' 30.5 12 5 18-4 GS1 0-2' 13.8 12 5 18-6 SS1 2.5-4.5 69.2 12 5 18-6 SS1 2.5-4.5 69.2 12 5 18-6 SS1 0-2' 69.2 12 5 18-22 GS1 0-2' 6.8 5 18-13 GS1 0-2' 6.8 5	18-19 SS2 5-7					
18-11 SS1 2.5-4.5 Conductivity EPA 6010/SM 2510 mS/cm 2.0 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 30.5 12 5 18-4 GS1 0-2' Conductivity EPA 6010/SM 2510 mS/cm 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 13.8 12 5 18-6 SS1 2.5-4.5 Conductivity EPA 6010/SM 2510 mS/cm 4.9 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 69.2 12 5 18-6 SS1 2.5-4.5 Conductivity EPA 6010/SM 2510 mS/cm 4.9 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 69.2 12 5 18-22 GS1 0-2' Sodium Adsorption Ratio MOE 4696e01/EPA 6010 6.8 5 18-13 GS1 0-2' Sodium Adsorption Ratio MOE 4696e01/EPA 6010 6.8 5	Conductivity	EPA 6010/SM 2510	mS/cm	2.1	1.4	0.7
Conductivity EPA 6010/SM 2510 mS/cm 2.0 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 30.5 12 5 18-4 GS1 0-2' Conductivity EPA 6010/SM 2510 mS/cm 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 13.8 12 5 18-6 SS1 2.5-4.5 Conductivity EPA 6010/SM 2510 mS/cm 4.9 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 13.8 12 5 18-6 SS1 2.5-4.5 Conductivity EPA 6010/SM 2510 mS/cm 4.9 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 69.2 12 5 18-22 GS1 0-2' Sodium Adsorption Ratio MOE 4696e01/EPA 6010 6.8 5 18-13 GS1 0-2' Sodium Adsorption Ratio MOE 4696e01/EPA 6010 6.8 5	Sodium Adsorption Ratio	MOE 4696e01/EPA 6010		20.6	12	5
Sodium Adsorption Ratio MOE 4696e01/EPA 6010 30.5 12 5 18-4 GS1 0-2' Conductivity EPA 6010/SM 2510 mS/cm 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 13.8 12 5 18-6 SS1 2.5-4.5	18-11 SS1 2.5-4.5					
18-4 GS1 0-2' Conductivity EPA 6010/SM 2510 mS/cm 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 13.8 12 5 18-6 SS1 2.5-4.5 Conductivity EPA 6010/SM 2510 mS/cm 4.9 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 69.2 12 5 18-22 GS1 0-2' Sodium Adsorption Ratio MOE 4696e01/EPA 6010 6.8 5 18-13 GS1 0-2' Image: Context of the second	Conductivity	EPA 6010/SM 2510	mS/cm	2.0	1.4	0.7
Conductivity EPA 6010/SM 2510 mS/cm 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 13.8 12 5 18-6 SS1 2.5-4.5 Conductivity EPA 6010/SM 2510 mS/cm 4.9 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 69.2 12 5 18-22 GS1 0-2' Sodium Adsorption Ratio MOE 4696e01/EPA 6010 6.8 5 18-13 GS1 0-2' Sodium Adsorption Ratio MOE 4696e01/EPA 6010 6.8 5	Sodium Adsorption Ratio	MOE 4696e01/EPA 6010		30.5	12	5
Sodium Adsorption Ratio MOE 4696e01/EPA 6010 13.8 12 5 18-6 SS1 2.5-4.5	18-4 GS1 0-2'					
18-6 SS1 2.5-4.5 Conductivity EPA 6010/SM 2510 mS/cm 4.9 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 69.2 12 5 18-22 GS1 0-2' Sodium Adsorption Ratio MOE 4696e01/EPA 6010 6.8 5 18-13 GS1 0-2' Image: Content of the second s	Conductivity	EPA 6010/SM 2510	mS/cm	1.4		0.7
Conductivity EPA 6010/SM 2510 mS/cm 4.9 1.4 0.7 Sodium Adsorption Ratio MOE 4696e01/EPA 6010 69.2 12 5 18-22 GS1 0-2' Sodium Adsorption Ratio MOE 4696e01/EPA 6010 6.8 5 18-13 GS1 0-2' Image: Constraint of the second secon	Sodium Adsorption Ratio	MOE 4696e01/EPA 6010		13.8	12	5
Sodium Adsorption Ratio MOE 4696e01/EPA 6010 69.2 12 5 18-22 GS1 0-2' Sodium Adsorption Ratio MOE 4696e01/EPA 6010 6.8 5 18-13 GS1 0-2' Image: Comparison of the second	18-6 SS1 2.5-4.5					
18-22 GS1 0-2' Sodium Adsorption Ratio MOE 4696e01/EPA 6010 6.8 5 18-13 GS1 0-2'	Conductivity	EPA 6010/SM 2510	mS/cm	4.9	1.4	0.7
Sodium Adsorption Ratio MOE 4696e01/EPA 6010 6.8 5 18-13 GS1 0-2'	Sodium Adsorption Ratio	MOE 4696e01/EPA 6010		69.2	12	5
18-13 GS1 0-2'	18-22 GS1 0-2'					
	Sodium Adsorption Ratio	MOE 4696e01/EPA 6010		6.8		5
Cobalt EPA 3050/EPA 200.8 μg/g 33 22	18-13 GS1 0-2'					
	Cobalt	EPA 3050/EPA 200.8	hð\ð	33		22

Conductivity

Method: EPA 6010/SM 2510 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits 6)	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Conductivity	EWL0267-APR18	mS/cm	0.002	<0.002	0	10	99	90	110	NA			

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Free Cyanide	SKA5037-APR18	hð\ð	0.05	<0.05	ND	20	103	80	120	98	75	125	

Hexavalent Chromium by IC

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-IENVIIC-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Dup	olicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chromium VI	DIO0262-APR18	hð\ð	0.2	<0.2	ND	20	101	80	120	99	75	125

Mercury by CVAAS

Method: EPA 7471A/EPA 245 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	-		ery Limits %)	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Mercury	EMS0082-APR18	µg/g	0.05	<0.05	ND	20	97	80	120	116	70	130	

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike Recovery	Recover (%		Spike Recovery		ory Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Silver	EMS0082-APR18	hð\ð	0.01	<0.01	ND	20	103	70	130	106	70	130
Arsenic	EMS0082-APR18	µg/g	0.5	<0.5	18	20	96	70	130	113	70	130
Barium	EMS0082-APR18	µg/g	0.01	<0.01	4	20	101	70	130	104	70	130
Beryllium	EMS0082-APR18	µg/g	0.02	<0.02	4	20	100	70	130	87	70	130
Boron	EMS0082-APR18	µg/g	1	<1	ND	20	105	70	130	NV	70	130
Cadmium	EMS0082-APR18	µg/g	0.02	<0.02	ND	20	95	70	130	98	70	130
Cobalt	EMS0082-APR18	µg/g	0.01	<0.01	7	20	96	70	130	102	70	130
Chromium	EMS0082-APR18	µg/g	0.5	<0.5	3	20	96	70	130	118	70	130
Copper	EMS0082-APR18	µg/g	0.1	<0.1	5	20	96	70	130	109	70	130
Molybdenum	EMS0082-APR18	µg/g	0.1	<0.1	ND	20	101	70	130	76	70	130
Nickel	EMS0082-APR18	µg/g	0.1	<0.1	2	20	94	70	130	108	70	130
Lead	EMS0082-APR18	µg/g	0.1	<0.1	2	20	95	70	130	112	70	130
Antimony	EMS0082-APR18	µg/g	0.8	<0.8	ND	20	80	70	130	74	70	130
Selenium	EMS0082-APR18	µg/g	0.7	<0.7	ND	20	104	70	130	NV	70	130
Thallium	EMS0082-APR18	hð\ð	0.02	<0.02	20	20	95	70	130	107	70	130
Uranium	EMS0082-APR18	hð\ð	0.002	<0.002	1	20	92	70	130	83	70	130
Vanadium	EMS0082-APR18	µg/g	3	<3	1	20	98	70	130	99	70	130
Zinc	EMS0082-APR18	µg/g	0.7	<0.7	5	20	96	70	130	111	70	130

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	lank RPD		Spike	Recovery Limits (%)		Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F1 (C6-C10)	GCM0203-APR18	µg/g	10	<10	ND	30	104	80	120	111	60	140

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike Recovery	Recove	ry Limits %)	Spike Recovery		ery Limits %)
						(%)	(%)	Low	High	(%)	Low	High
F2 (C10-C16)	GCM0176-APR18	hð\ð	10	< 10	ND	30	113	80	120	99	60	140
F3 (C16-C34)	GCM0176-APR18	µg/g	50	< 50	ND	30	113	80	120	99	60	140
F4 (C34-C50)	GCM0176-APR18	µg/g	50	< 50	ND	30	113	80	120	99	60	140

Sodium adsorption ratio (SAR)

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-[ENVIARD-LAK-AN-021

Parameter	QC batch	Units	RL	Method	Duj	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recove	-	
					(%)	Recovery (%)	Low	High	(%)	Low	High		
Sodium Adsorption Ratio	ESG0041-APR18		0.2				0.16	80	120				

Volatile Organics

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.					
	Reference			Blank	RPD AC	AC (%)				Spike Recovery	Recover (۹	-	Spike Recovery	Recover (9	ry Limits %)
							(%)	Low	High	(%)	Low	High			
Benzene	GCM0202-APR18	µg/g	0.02	< 0.02	ND	50	94	60	130	106	50	140			
Ethylbenzene	GCM0202-APR18	µg/g	0.05	< 0.05	ND	50	95	60	130	107	50	140			
m/p-xylene	GCM0202-APR18	µg/g	0.05	< 0.05	ND	50	94	60	130	105	50	140			
o-xylene	GCM0202-APR18	µg/g	0.05	< 0.05	ND	50	95	60	130	106	50	140			
Toluene	GCM0202-APR18	µg/g	0.05	< 0.05	ND	50	95	60	130	106	50	140			

Water Soluble Boron

Method: O.Reg. 153/04 | Internal ref.: ME-CA-IENVI SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	LCS/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Water Soluble Boron	ESG0038-APR18	hð/ð	0.5	<0.5	ND	20	99	80	120	107	70	130

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

Ladarer ES Concentration Carelli Ladarer Million Ladarer Mill
t Information) t I I I I I I I I I I I I I I I I I I I
CE INFORMATION CE INFORMATION CE INFORMATION CE INFORMATION CE INFORMATION CH INCLUES CH
t Information) illulations: Sewer By-Law MMER MMER MMER MMER Municipality: NO NO NO Signature: Sewer By-Law Municipality: Sewer By-Law Municipality: Sewer By-Law Municipality: Seme Municipality: Seme Municipality: Signature: Seme Signature: Seme Seme Signature: Seme Se
Indiations: Server By-Law: 3 Day min TAT) Server By-Law: 3 Day min TAT) Server By-Law: 3 Day min TAT) Server By-Law: MMER Municipality: MILER Municipality: NO I NO I NO I NO I SampleD BOTTLES NO I SampleD BOTTLES NO I SampleD SampleD SampleD SampleD SampleD SampleD SampleD SampleD SampleD SampleD SampleD SampleD
Italitons: Sewer By-Law: 3 Day min TAT) Semer By-Law: MMER MMER Municipality: NO Other: Municipality: NO I Sanitary Sanitary Storm Sewer By-Law: Municipality: Storm Storm Storm<
Inditions: Server By-Law 3 Day min TAT) Server By-Law 3 Day min TAT) Server By-Law MMER Minicipality: MILER Municipality: Other: Municipality: NO I SampleD BOTTLES NO I SampleD BOTTLES NO I Signature: I
Italions: Sewer By-Law 3 Day min TAT) Sewer By-Law MMER Sanitary MMER Municipality: Other: Municipality: NO I SAMPLED BOTTLES Municipality: Samiary NO I Signature: I
Inditions: Server By-Lawwer By-Lawwe
Italitions: Sewer By-Law: 3 Day min TAT) Sewer By-Law: 3 MMER Common Stantary MMER Municipality: Other: Municipality: NO I NO I SampleD BOTTLES NO I SampleD I I S
Indiations: Server By-Law: 3 Day min TAT) Samiary 3 Day min TAT) Samiary MMER MINER MIER Municipality: NO I NO I SAMPLED BOTTLES Municipality: I Samiary I Signature: I
Idations: Server By-Law: 3 Day min TAT) Senver By-Law: MMER Common comparison MINER Municipality: NO I NO I SAMPLED BOTTLES Municipality: I NO I SAMPLED BOTTLES NO I Same I Same I I S I
3 Day min TAT) 3 Day min TAT) MMER MMIER Municipality: NO NO NO NO NO NO NO NO NO NO
Other: Municipality: Municipality: Municipality: Martill & OF MATRI SamPLED BOTTLES MATRI Signature: C C C C C C C C C C C C C C C C C C C
NO TIME # OF SAMPLED BOTTLES MATRI 1 5 1 5 1 5 1 5 1 5 1 5 1 5 2 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
OF BOTTLES AATRI 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Signature: Signature: 5000000000000000000000000000000000000
Signature: 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Signature: Signature:
Signature: 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Signature:
Signature:
Signature: S
2 mar Signature:
Signature:
Signature:

Date of Issue: 25 July, 2016

SAMPLE INTEGRITY REPORT

SGS

Project Number: 20337 SGS Sample ID CA 14274 - April8 Date / Time Sampled Apr 10/18 Client Sample ID See Cor

Temperature >10 C upon receipt if not sampled same day

ONTARIO REGULATION 153/04

ALL Sample Submission General Sample Integrity Violations

No evidence of cooling trend initiated if sampled same day	
Chain of Custody not submitted	
Chain of Custody incomplete	
Chain of Custody not signed / dated	
Chain of Custody not a current version	
Bottles / Samples listed on CoC but not received	
Bottles / Samples received but not listed on the CoC	

Sample container received empty

	Sample Specific Sample Int	egrity Vio	lations		
Sample received past hold time				0 0	
Incorrect preservation (including no preservation where required)		_			
Headspace present in VOC vial (aqueous)					
Sample(s) received frozen					
Bottle(s) broken or damaged in transport					
				0 0	
Discrepancy between sample label and chain of custody				0 0	
Analysis requirements absent / unclear				0 0	
Missing or incorrect sample label(s)					
Inappropriate sample container used					
Insufficient number of bottles received					
Limited sample volume					
Insufficient sample volume					
				0 0	
Sample contains multiple phases	Sediment L	00			
	seament				
Groundwater samples contain visible sediment / particulate Groundwater contains greater than 1cm of sediment / particulat	e				
matter in bottle	-				
	· /				

Additional Comments/Remarks:

No issues upon receipt

Initials:

CA14273-APR18 R

PO# 20337

Prepared for

Thurber Engineering Ltd.

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	Thurber Engineering Ltd.	Project Specialist	Deanna Edwards, B.Sc, C.Chem
		Laboratory	SGS Canada Inc.
Address	103, 2010 Winston Park Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Oakville, ON		
	L6H 5R7.		
Contact	Cecile Ritchie	Telephone	705-652-2000
Telephone	905-829-8666	Facsimile	705-652-6365
Facsimile		Email	deanna.edwards@sgs.com
Email	critchie@thurber.ca	SGS Reference	CA14273-APR18
Project	PO# 20337	Received	04/12/2018
Order Number		Approved	04/23/2018
Samples	Leachate (2)	Report Number	CA14273-APR18 R
		Date Reported	04/23/2018

COMMENTS

Temperature of Sample upon Receipt: 7.2 degrees C

Cooling Agent Present: Yes

Custody Seal Present: No

SIGNATORIES

Deanna Edwards, B.Sc, C.Chem

searra Edwards

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0

t 705-652-2000 f 705-652-6365 www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	
Exceedance Summary	5
QC Summary	6-9
Legend	10
Annexes	11-12

CA14273-APR18 R

Client: Thurber Engineering Ltd.

Project: PO# 20337

Project Manager: Cecile Ritchie

Samplers: Cecile R

ACKAGE: REG558 - Acid rock Dra	ainana		Sample Number	6	7
.EACHATE)	andyo		······································		
			Sample Name	18-20 SS1 2.5-4.5	18-6 GS1 0-2
= REG558 / LEACHATE / SCHEDULE 4			Sample Matrix		Leachate
			Sample Date		10/04/2018
Parameter	Units	RL	L1	Result	Result
cid rock Drainage					
Final pH	-	0.01		6.24	6.00
			1		
ACKAGE: REG558 - Metals and Ir	norganics		Sample Number	6	7
EACHATE)					
			Sample Name	18-20 SS1 2.5-4.5	18-6 GS1 0-2
= REG558 / LEACHATE / SCHEDULE 4			Sample Matrix	Leachate	Leachate
			Sample Date	10/04/2018	10/04/2018
Parameter	Units	RL	L1	Result	Result
letals and Inorganics					
Sample weight	g	0.001		100	100
Ext Fluid	#1 or #2	0.01		2	2
^ Ext Volume	mL	0.01		2000	2000
Nitrite (as N)	as N mg/L	0.03		< 0.3↑	< 0.3↑
Nitrate (as N)	as N mg/L	0.06		< 0.6↑	< 0.6↑
Nitrate + Nitrite (as N)	as N mg/L	0.06	1000	< 0.6↑	< 0.6↑
Fluoride	mg/L	0.06	150	0.43	0.45
Cyanide (total)	mg/L	0.01	20	< 0.01	< 0.01
Mercury	mg/L	0.00001	0.1	0.00001	< 0.00001
Arsenic	mg/L	0.01	2.5	0.01	< 0.01
Silver	mg/L	0.08	5	< 0.08	< 0.08
Barium	mg/L	0.0009	100	0.615	0.342
				0.136	0.077

CA14273-APR18 R

Client: Thurber Engineering Ltd.

Project: PO# 20337

Project Manager: Cecile Ritchie

Samplers: Cecile R

PACKAGE: REG558 - Metals and Inc (LEACHATE)	organics		Sample Nurr	iber 6	7
			Sample Na	ame 18-20 SS1 2.5-4.5	18-6 GS1 0-2
L1 = REG558 / LEACHATE / SCHEDULE 4			Sample Ma	atrix Leachate	Leachate
			Sample I	Date 10/04/2018	10/04/2018
Parameter	Units	RL	L1	Result	Result
Metals and Inorganics (continued)					
Cadmium	mg/L	0.001	0.5	0.001	0.002
Chromium	mg/L	0.001	5	0.003	< 0.001
Lead	mg/L	0.007	5	< 0.007	< 0.007
Selenium	mg/L	0.01	1	< 0.01	< 0.01
Uranium	mg/L	0.1	10	< 0.1	< 0.1

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duplicate LC		LCS/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike Recovery	Recovery Limits (%)	Spike Recovery	Recovery Limits (%)		
						(%)	(%)	Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0267-APR18	mg/L	0.06	<0.06	NA		NA			NA		
Nitrite (as N)	DIO0267-APR18	mg/L	0.03	<0.03	ND	20	98	80	120	102	75	125
Nitrate (as N)	DIO0267-APR18	mg/L	0.06	<0.06	1	20	103	80	120	104	75	125

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	Duplicate LC		S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery		ry Limits %)
								Low	High	(%)	Low	High
Cyanide (total)	SKA0121-APR18	mg/L	0.01	<0.01	ND	10	102	90	110	78	75	125

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	RPD AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0284-APR18	mg/L	0.06	<0.06	8	10	104	90	110	84	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	Duplicate RPD AC Spike		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD			Recovery Limits (%)		Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Mercury	EHG0020-APR18	mg/L	0.00001	< 0.00001	ND	20	84	80	120	104	70	130	

Metals in aqueous samples - ICP-OES

Method: SM 3030/EPA 200.7 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		I.
	Reference			Blank	RPD	AC	Spike	Recover (۹	-	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Silver	ESG0045-APR18	mg/L	0.08	< 0.08	ND	20	95	90	110	104	70	130
Arsenic	ESG0045-APR18	mg/L	0.01	< 0.01	11	20	106	90	110	94	70	130
Barium	ESG0045-APR18	mg/L	0.0009	< 0.0009	5	20	103	90	110	83	70	130
Boron	ESG0045-APR18	mg/L	0.005	< 0.005	6	20	101	90	110	78	70	130
Cadmium	ESG0045-APR18	mg/L	0.001	< 0.001	6	20	104	90	110	94	70	130
Chromium	ESG0045-APR18	mg/L	0.001	< 0.002	2	20	104	90	110	NV	70	130
Lead	ESG0045-APR18	mg/L	0.007	< 0.007	ND	20	105	90	110	81	70	130
Selenium	ESG0045-APR18	mg/L	0.01	< 0.01	ND	20	102	90	110	129	70	130
Uranium	ESG0045-APR18	mg/L	0.1	< 0.1	ND	20	102	90	110	120	70	130

Metals Prep

1.1

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike Becovery	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Recov.Metals	ESG0045-APR18	Prep	-		Error!							

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

montain Effect montain effective montain Ext 777 control (Web ext and control) montain Ext 777 control (Web ext and control) montain Effect montain Ext 777 control (Web ext and control) montain Ext 777 control (Web ext and control) montain Ext 777 control (Web ext and control) montain Effect montain Ext 777 control (Web ext and control) montain Ext 777 control (Web ext and control) montain Ext 777 control (Web ext and control) montain Effective montain Ext 777 control (Web ext 277 control) montain Ext 777 control) montain Ext 777 control (Web ext 277 control) montain Ext 777 control (Web ext 277 control) montain Ext 777 control) montain Ext 777 control) montain Ext 777 control) montain Ext 777 control (Web ext 277 control) montain Ext 777 control) montain Ext 777 control) montain Ext 777 control) montain Ext 777 control montain Ext 777 control) montain Ext 777 control) montain Ext 777 control) montain Ext 777 control) montain Ext 777 control montain Ext 777 control) montain Ext 777 control) montain Ext 777 control) montain Ext 777 control) montain Ext 777 control montain Ext 777 control) montain Ext 777 control) montain Ext 777 control) montain Ext 777 control) montain Ext 777 control montain Ext 777 control) montain Ext 777 control) montain Ext 777 control) montain Ext 777 control) mot	Health and Safety K - A A A L 201 mm/dd/gy) . 3 V am pm (circle) T INFORMATION	Concession St., Lakefield, ON K0L 2H0 Pho onsortium Court. London. ON. N6F 2S8 Phot	ne: 705-652-2000 Toll Free: 877-747-7658]	Fax: 705-652-6365		
Anticip	Add K - HOTH VIL 20(10mm/dd/yy) 0.: 3. 4 am) pm (circle) ORT INFORMATION		IIC: 219-0/2-4-200 1011 LICC: 8//-848-0000 1	ax: 519-672-0361 Web: w	WW.Ca.sgs.com	1 ago
I. L. J. J. Manuagay Costop Scal Tracent. V Costop Scal Tracent. V Costop Scal Tracent. V Temperature Upon R. ORT INFORMATION INVOICE INFORMATION Costop Scal Tracent. V Temperature Upon R. Temperature Upon R. ORT Exponential Construction Construction Quantica f. Temperature Upon R. OL CONNETERN Rect Construction Quantica f. Temperature Upon R. Temperature Upon R. Subject IO S Address: Construction Quantica f. Temperature Upon R. Subject IO S Scalar Address: Photo: Photo: Temperature Upon R. Subject IO S Scalar Address: Photo: Photo: Photo: Photo: Subject IO S Scalar Address: Photo: Maniformition Photo: Photo: Subject IO S Construction Construction Photo: Manucipality: Photo: Photo: Address: Address: Photo: Maniformition Photo: Photo: Stalar Address: Address: Photo: Manucipality: Photo: Photo: Photo: Address: Photo: Photo: Photo: Photo: Photo: Photo: Address: Address:	VIL 20 mm/dduy) 0 : 3 V am) pm (circle) ORT INFORMATION	Laboratory Information Section - L	ab use only	+	04	-Erghi
REPORT INFORMATION INVOICE INFORMATION my. Thu Creat Explored (1) Company. 1. Out of the set of the matter information) Contents (1) 1. Out of the set of the matter information) Contents (1) 1. Out of the set of the matter information) Contents (1) 1. Out of the set of the matter information) Contents (1) 1. Out of the set of the matter information Contents (1) 1. Out of the set of the matter information Matter information 1. Out of the set of the matter information Prove (1) 1. Out of the set of the matter information Prove (1) 1. Out of the set of the matter information Prove (1) 1. Out of the set of the matter information Prove (1) 1. Out of the set of the matter information Prove (1) 1. Out of the set of the matter information Prove (1) 1. Out of the set of the matter information Prove (1) 1. Age (1) Out of the matter information 1. Age (1) Prove (1) 1. Age (1) Prove (T A	Cooling Agent Present: (Y Temperature Upon Receipt (°	-	Tre LABI	LIMS #:
minution minution minution i: Occio Company: company: i: Occio Contract: company: i: Occio Contract: pojet if: 2033+ i: Occio Correct: Pane: i: Occio Correct: Correct: i: Occio Correct: Pane: i: Occio Correct: Pane: i: Occio Pane: Pane: i: Occio Correct: Pane: i: Occio Pane: Pane: i: Occio			ď	ROJECT INFORMA	TION	
Regulation 13 (2011): Address: Protect:	100210 BACK TE BOWERDE D	Report Information)	0		33	o to the second se
Note Subject Address. Ploce: Ploce: Ploce: Child Coll SCP Select Ploce: Ploce: Ploce: Child Coll Select Ploce: Child Coll Ploce: Ploce: REGULATIONS Other Regulation: Second Ploce Regulation IS3 (2011): Other Regulation: Second Ploce Regulation IS3 (2011): Plocon Other Regulation: Regulation IS3 (2011): Other Regulation: Second Ploce Regulation IS3 (2011): Other Regulation: Second Ploce Regulation IS3 (2011): Ploce: Municipality: Ploce Regulation Counce Ploce Multicipality: Ploce Regulation Second Ploce Ploce: Multicipality: Ploce Resolution Sample Ell Sample Ell Sommany Ploce SAMPLE IDENTIFICATION Sample Ell Sample Ell Sommany Ploce SAMPLE IDENTIFICATION Sample Ell Sample Ell Sommany	2010 Winston Park	4) 0. 2	5	DOLINIT TIME (TATE	adiioad	1.1.2110/01
CIOCS - 829 S.ELG Prone: RUSH TAT (Additional Charges CITUANE Prone: Prone: Prone: Prone: CITANE Breach Breach Prone: Prone: REGULATIONS REGULATIONS Regulation: Server By-Law: Specify Due Date: Bell Regulation: Regulation: Regulation: Specify Due Date: Bell Regulation: Regulation: Regulation: Specify Due Date: Bell Regulation: Regulation: Server By-Law: DRINKING WATER SAMP Bell Regulation: Regulation: Score Solution: Bell Indicom Conset Provo MARING Bell Provo MARING Score ANALYS Bell Provo MARING Solution: ANALYS Bell Provo Provo MARING Solution: Bell Provo Provo MARING Solution: Bell Provo Provo Provo Provo	suite 103	and and a first of the second se	2	are quoted in business days se received after 3pm or on	(exclude statuto weekends : TAT	ory holidays & weekends). I begins the next business day
PLEASE CONFIRM RUSH FEASIBILITY WITH SG REPRESENTATIVE PRODUCT Chrldwell-Phorber.Co. Inni: Rest Rate Confirmation ID. Requiring 135 (2011): Recturation ID. Recturation ID. Requiring 135 (2011): Other Regulations: Second State Presentations: Resident 130 (2011): Other Regulations: Second State Presentations: Resident 130 (2011): Other Regulations: Second State Presentations: Approbatic Manipality: Second State Presentations: Approbatic Manipality: Amaly (2011): Amaly (2011): Resident 130 (2011): Other Rest Manipality: Amaly (2011): Resident 130 (2011): Distribution: Content Rest Rest Distribution: Content Rest Second 130 (2011): Distribution: Content Rest Second 130 (2011): Distribution: Content Rest <tr< td=""><td>(0105) - 829</td><td></td><td>RUSH TAT (Additional Charges May A</td><td>pply) 1 Dav</td><td>2</td><td>Davs 3-4 Davs</td></tr<>	(0105) - 829		RUSH TAT (Additional Charges May A	pply) 1 Dav	2	Davs 3-4 Davs
Regulations: Rectur ATTONS Rescutations: Rectur ATTONS Regulation 153 (2011): Other Regulations: Seave By-Law: PANUNG WATER SAMPLES (POTABLE WATER FOR SUBMITTED WITH SGO OTHER SAMPLES (POTABLE WATER FOR Submit Score PW00 MAIRS 06.2 adCom conset PW00 MAIRS Seaming 06.2 adCom conset PW00 MAIRS Seaming 06.2 adCom conset other: Mainspluy: 06.3 Agritother modium conset other: 06.3 Agritother modium conset other: 08.3 Agritother modium conset other: 08.3 Agritother modium conset other: 08.3 Agritother modium conset other: 08.4 Fine Maintegality: other other 18.4 other other other other S-Lo S-Lo other other other S-Lo other other other other S-Lo other other other other S-Lo other other othe	cutchie@thustber.ca		PLEASE CONFIRM RUSH FEASIBIL Searcifty Due Date:	ITY WITH SGS REPRE	SENTATIVE P	PRIOR TO SUBMISSION
If St (2011): Other Reginations: Searce Rb-Laws Comments (7 and 20 and 17 and 18 and 1			DDINKING WATED SAMPLES		I II INAANI OON	
Plank Soul Texture: Canse PWO0 MMIL Coin Coinse PWO0 MMER Soun Coin Coinse PWO0 MMER Soun iOther Image Image Image Image IOther Image Minicipality: Image Image IOther Image Image Image Image Image Image Im			SUBMITTED WITH	SGS DRINKING WATE	R CHAIN OF	CUSTODY
iOther Municipality: Fine MISA Fine MISA CONDITION RSC YES MITICATION Sample B Simple B MATRIX Simple B Simple B Simple B Simple B Simple B Simple B Matrix Matrix <td>Res/Park Soil Texture:</td> <td></td> <td>ANALYSIS RI</td> <td>EQUESTED</td> <td>No tra</td> <td></td>	Res/Park Soil Texture:		ANALYSIS RI	EQUESTED	No tra	
CONDITION (RSC YES NO NTIFICATION DATE TIME # OF Solution DATE Sample # OF SS1 2.5-45 April 10/18 5 SS1 02 April 10/18 5	3 Agri/Other Medium C		مُندح			COMMENTS:
MIFICATION DATE SAMPLED TIME SAMPLED # OF SAMPLED MATRIX # OF SAMPLED SS1 2:S-45 April ID/18 5 0 SS1 0:-2 April ID/18 5 0 Solution 0:0 0 0 0 Coulde Etholo 1 0 0 Instructions 0 0 0 0		ON			3	Field Filtered (F) Preserved (P)
S1 2.5-45 April1018 5 1 S21 0-2 April1018 5 1 S1 0-2 April1018 5 1 S1 0-2 April1018 5 1 S21 0-2 April1018 5 1 S21 0-2 April1018 5 1 S1 0-2 April1018 5 1 S1 0-2 April1018 5 1 S1 0-2 April1018 5 1		# OF BOTTLES			2	abrase in the second
551 0-2 April 1018 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	-20 SSI 2:5-45					Stae of the U.E. of Standard
Celle Riferies 2 2 1 2 1 8		8				Blok Antero
Cevile Rignature: 1 Date: 041018	er van de sons ander	Albert T. S. S. Selfer Martin T. P.		841% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
cel li Rituctions el Le Ci Le Ci Signature: 1 Ce Ci Le Li Le Signature: 1 Ce Ci Le Sig	ter second s	additional and an an and an an and an an and an		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		a real and the second sec
cial listructions e la Ceutre Signature: 1 Ceutre El Puice Signature: 1 Ceutre El Puice Signature: 1 Ceutre El Puice Signature: 1 Date: $D \neq 1 \ Z = 1 \ $	- An interview model and stated of institution, four and an end of particular and in state and an end of a stated of the stat					And All All All All All All All All All Al
cial listructions el 210 Et EUR Signature: 241218 Ce ci le El 7C Wic Signature: 9 Date: 241218	The state of the s	and the second se		anota anota		
cial instructions el 210 Et EURE Signature: Date: 04/10/18 CEUTE El PEURE Signature: 9 Date: 04/12/18	(c) Statistical Solution (Section 2016) Statistical Solution (Section 2017) 12 (Section 2017) Solution (Section 2017) Solution (Section 2017) Solution (Section 2017) Solution (Section 2017) 12 (Section 2017)					Protection and the 201 SOL
el listructions el Ilo Etterrite Signature: A Date: 04/10/18 Ce ute El Perío Signature: 9 Date: 04/12/18	ත්ත කරන්න කරන්න කරන්න කරන්න කරන්න කරන්න කරන්න. මහත්ත කරන්න කරන					
elito literie signature: 2 Date: 04/10/18 Cecite literie signature: 1 Date: 04/12/18	vvations/Comments/Soecial Instructions					
elilo literie signature: A Date: 04/10/18 Cecile literie signature: 9 Date: 04/12/18						
Ceute Ritchic Signature: 1 Date: 041218	Ceca	Signature:	0	101	(mm/dd/yy) Pi	ink Copy - Client
	Cecile Ritchi	6	Date: 04	81271	(mm/dd/yy) Y	ellow & White Copy - SGS

SGS	SAMPLE INTEGI	RITY REI	PORT				
Project Number: 20837 SGS Sample ID CA 14273-Apr 18	ONTARIO REGULA	TION 153	/04				
Date / Time Sampled Apr 101 18							
Client Sample ID Soo	ALL						
	nple Submission General Sa	mple Integrity	Violations				
Temperature >10 C upon receipt if not sampled same day							
No evidence of cooling trend initiated if sampled same day							
Chain of Custody not submitted							
Chain of Custody Incomplete							
Chain of Custody not signed / dated							
Chain of Custody not a current version							
Bottles / Samples listed on CoC but not received							
Bottles / Samples received but not listed on the CoC							
Sample container received empty	Sample Specific Sample in	togrity Mala	Vene				
Sample received past hold time	oumple opecyle sumple in						
Incorrect preservation (Including no preservation where required)	1						
Headspace present in VOC vial (aqueous)							
Sample(s) received frozen							
Bottle(s) broken or damaged in transport							
Discrepancy between sample label and chain of custody							
Analysis requirements absent / unclear							
Missing or incorrect sample label(s)							
Inappropriate sample container used						_	
Insufficient number of bottles received							
Limited sample volume							
Insufficient sample volume							
Sample contains multiple phases							
	Sediment La	g		_	-		Ļ
Groundwater samples contain visible sediment / particulate							
Groundwater contains greater than 1cm of sediment / particulate matter in bottle							
Additional Comments/Remarks:							
No issues upon receipt	. AX		21				
	VV	Initials:	9T Q				

of Bottles not checked.

Appendix F

Pavement Design Analysis

1997 AASHTO Pavement Design

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product Thurber Engineering Ltd.

Flexible Structural Design Module

Burnhamthorpe Road Class EA Study Burnhamthorpe Road Widening Flexible Pavement Design

Flexible Structural Design

80-kN ESALs Over Initial Performance Period	3,233,225
Initial Serviceability	4.5
Terminal Serviceability	2.5
Reliability Level	90 %
Overall Standard Deviation	0.44
Roadbed Soil Resilient Modulus	30,000 kPa
Stage Construction	1
Calculated Design Structural Number	122 mm

Simple ESAL Calculation

Dorformance Daried (waara)	20
Performance Period (years)	20
Two-Way Traffic (ADT)	17,014
Number of Lanes in Design Direction	2
Percent of All Trucks in Design Lane	90 %
Percent Trucks in Design Direction	50 %
Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater	2 %
Average Initial Truck Factor (ESALs/truck)	2.5
Annual Truck Factor Growth Rate	0 %
Annual Truck Volume Growth Rate	1.5 %
Growth	Compound
Total Calculated Cumulative ESALs	3,233,225

Rigorous ESAL Calculation

Performance I	()		20		
Two-Way Tra	ffic (ADT)		17,014		
Number of La	nes in Design Direct	tion	2		
Percent of All	Trucks in Design La	ane	90 %		
Percent Truck	s in Design Direction	n	50 %		
			Average Initial	Annual %	Accumulated
	Percent	Annual	Truck Factor	Growth in	80-kN ESALs
Vehicle	of	%	(ESALs/	Truck	over Performance
<u>Class</u>	<u>ADT</u>	Growth	Truck)	Factor	Period
Total	-	-	-	-	-

Simple

- *

Total Calculated Cumulative ESALs

*Note: This value is not represented by the inputs or an error occurred in calculation.

Specified Layer Design

		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
Layer	Material Description	<u>(Ai)</u>	<u>(Mi)</u>	<u>(Di)(mm)</u>	<u>(m)</u>	<u>SN (mm)</u>
1	HMA	0.42	1	140	3.75	59
2	Granular Base	0.14	1	200	3.75	28
3	Granular Subbase	0.09	1	400	3.75	36
Total	-	-	-	740	-	123

Layered Thickness Design

Thickness	precision			Actual					
		Struct	Drain	Spec	Min	Elastic		Calculated	
		Coef.	Coef.	Thickness	Thickness	Modulus	Width	Thickness	Calculated
Layer	Material Description	<u>(Ai)</u>	<u>(Mi)</u>	<u>(Di)(mm)</u>	<u>(Di)(mm)</u>	<u>(kPa)</u>	<u>(m)</u>	<u>(mm)</u>	<u>SN (mm)</u>
1	HMA	0.42	1	-	20	2,750,000	3.75	137	57
2	Granular Base	0.14	1	200	-	250,000	3.75	200	28
3	Granular Subbase	0.09	1	-	100	150,000	3.75	406	37
Total	-	-	-	-	-	-	-	742	122